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Abstract

Colladay and Kostelecký have proposed a framework for studying Lorentz and CPT violation in

a natural extension of the Standard Model. Although numerous bounds exist on the Lorentz and

CPT violating parameters in the gauge boson and fermion sectors, there are no published bounds

on the parameters in the Higgs sector. We determine these bounds. The bounds on the CPT-even

asymmetric coefficients arise from the one-loop contributions to the photon propagator, those from

the CPT-even symmetric coefficients arise from the equivalent cµν coefficients in the fermion sector,

and those from the CPT-odd coefficient arise from bounds on the vacuum expectation value of the

Z-boson.
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I. INTRODUCTION

The scale of the unification of gravity with the other interactions is expected to be near

the Planck scale of 1019 GeV. This is far out of reach of any future accelerators and thus

is not directly experimentally accessible. However, the nonlocality of string theory leads

to the possibility that Lorentz and CPT symmetry violations might exist at that scale [1],

and hence high-precision studies of these symmetries might be able to probe Planck-scale

physics.

It is difficult to write the most general Lorentz and CPT violating theory–even the mean-

ing of a Lagrangian becomes questionable in such a theory. However, with some reason-

able assumptions, one can study Lorentz and CPT violation. To develop a framework for

studying Lorentz and CPT violation in the Standard Model, Colladay and Kostelecký [2]

constructed the Standard Model Extension (SME). This is a theory based on the standard

model but which includes additional Lorentz and CPT violating terms. These terms satisfy

the SU(3) × SU(2) × U(1) gauge symmetry of the Standard Model, and they also satisfy

invariance under observer Lorentz transformations [2, 3, 4]. This means that any Lorentz

indices that the additional term contains must be contracted (i.e., it must be an observer

Lorentz scalar), and that rotations and boosts of the observer inertial frame do not affect

the physics. This ensures that the physics does not depend on the choice of coordinates.

In addition, the Lorentz violation is assumed independent of position and time, and thus

energy and momentum are conserved. The Lorentz-violating terms considered in the SME

violate invariance under particle Lorentz transformations, i.e. under rotations and boost of

a particle within a fixed observer inertial frame. An example of two such terms in the pure

electron sector is ψMψ, whereM ≡ aµγ
µ+bµγ

µγ5. This term is clearly SU(3)×SU(2)×U(1)

invariant, and the coefficients are position-independent, but aµ and bµ are constant vectors

and do not transform under a particle Lorentz transformation. It should be noted that this

is the “minimal” extension. Non-Minkowski spacetimes [5] will lead to spacetime-dependent

coefficients, and some models can lead to nonrenormalizable terms. Such minimal extensions

are beyond the scope of this paper.

In the SME, the additional terms in the Higgs sector are given by [2]

LCPT−even =

[

1

2
(kSφφ + ikAφφ)µν(D

µΦ)†DνΦ + H.c.

]

−
1

2
kµνφBΦ

†ΦBµν −
1

2
kµνφWΦ†WµνΦ , (1.1)
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and

LCPT−odd = ikµφΦ
†DµΦ + H.c. (1.2)

Here, we have broken the kφφ term up into its real symmetric and imaginary antisymmet-

ric parts. Note that the kφB and kφW coefficients are real antisymmetric, the CPT even

coefficients are all dimensionless, and the complex-valued CPT odd coefficient has units of

mass.

To our knowledge, there are no published limits on the possible values of these coefficients.

The purpose of this article is to explore the current bounds on these terms. In section II,

we consider the bounds on the CPT-even antisymmetric coefficients, kAφφ, kφB and kφW . In

section III, the bounds of the CPT-even symmetric coefficients kSφφ are determined, and the

bounds on the CPT-odd coefficient, kφ are discussed in section IV. Section V contains our

conclusions and a summary of the bounds.

II. BOUNDS ON THE CPT-EVEN ANTISYMMETRIC COEFFICIENTS

Whenever new particles or new interactions are proposed, there are two approaches to

discovery. One can look for direct detection of these particles or interactions (as in searches

for supersymmetric particles or for flavor-changing neutral currents). Alternatively, one can

look at the loop effects of the new physics on lower energy processes, such as in precision

electroweak measurements. In studying the above coefficients, direct detection would neces-

sitate producing large numbers of Higgs bosons, and the resulting bounds would be quite

weak. However, there are extremely stringent bounds on Lorentz violation at low energies,

and thus searching for the effects of these new interactions through loop effects will provide

the strongest bounds. The most promising of these effects will be on the photon propagator.

In this section, we will consider the bounds on the CPT-even antisymmetric coefficients,

kAφφ, kφB and kφW . These interactions will lead to modified vertices and propagators, and will

thus affect the one-loop photon propagator. We first look at the most general CPT-even

photon propagator, and then relate the kAφφ coefficients to the Lorentz-violating terms in

the photon propagator. Then, the experimental constraints on such terms lead directly to

stringent bounds on the kAφφ coefficients. We then consider the kφB and kφW coefficients.
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Considering CPT-even terms only, the photon Lagrangian can be written as [2]

Lphoton = −
1

4
FµνF

µν −
1

4
(kF )κλµνF

κλF µν . (2.1)

Here kF has the symmetries of the Riemann tensor plus a double-traceless constraint, giving

19 independent parameters. The equation of motion from this Lagrangian is

MαδAδ = 0 , (2.2)

where

Mαδ(p) ≡ gαδp2 − pαpδ − 2(kF )
αβγδpβpγ . (2.3)

The propagator is clearly gauge invariant (recall that kF is antisymmetric under exchange

of the first or last two indices).

To bound the coefficients, we calculate the vacuum polarization diagrams for the photon

propagator, using the full Lagrangian, including Lorentz-violating terms. The result will be

of the form of the above propagator, and one can read off the value of kF . Note that while

the gµνp2−pµpν structure is mandated by gauge invariance, the kF term is separately gauge

invariant and may differ order by order in perturbation theory. For simplicity, we look at

the divergent parts of the one loop diagrams only1. Consideration of higher orders and finite

parts will give similar, although not necessarily identical, results.

In general, due to the large number of Lorentz-violating terms, this yields a bound in

a multidimensional parameter space. However, if we do not consider the possibility of

fine-tuning, then we can consider each of the possible terms independently. One must

keep in mind that some of the parameters may be related by a symmetry, but absent

such a symmetry, we expect no high-precision cancellations. We begin by considering the

antisymmetric part of kφφ, and then kφB and kφW .

To calculate the additional vacuum polarization diagrams for the photon propagator due

to a non-zero kAφφ-term in Eq. (1.1) (assuming all other parameters are zero), we need to find

the vertices and propagators which are dependent on kAφφ. For our purpose, vertices involving

at least one photon field are necessary. Two of them, for instance, can be quoted here: The

1 At extremely high energies, either energy positivity or microcausality may be lost [6]. However if we cut

off the theory at a high, but finite, scale, this will not be an issue.
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AµW
−
ν φ

+ [Aµ(p)φ
+φ−] coupling is given by −emW (kAφφ)µν

[

−e(kAφφ)µνp
ν
]

. Here all momenta

are taken towards the vertex, and φ± is the usual charged Goldstone boson. As in the

conventional SM, one can choose acceptable gauge-fixing conditions to remove the redundant

degrees of freedom from the theory. In the SM, the following conditions in the Rξ-gauge

can be chosen [7] fi = ∂µA
µ
i + igξ

2

(

Φ′†τi〈Φ〉0 − 〈Φ†〉0τiΦ
′
)

, i = 1, 2, 3 for SU(2) case and

f = ∂µB
µ + ig′ξ

2

(

Φ′†〈Φ〉0 − 〈Φ†〉0Φ
′
)

for U(1) case, where g(g′) is the SU(2)(U(1)) coupling

constant, τi are the Pauli matrices, and Φ′ and 〈Φ〉0 are the Higgs doublet and vacuum

expectation value, respectively. Then the gauge-fixing term in the Lagrangian is Lgf =

−(f · f)2/2ξ−f 2/2ξ and this removes the mixing term between W± and φ∓. In the SME, we

have additional mixing proportional to kAφφ. A simple generalization of the above gauge-fixing

conditions, by adding a i(kAφφ)µν∂
µAν

i term to fi and a similar i(kAφφ)µν∂
µBν to the function f ,

would remove such Lorentz-violating mixing in our case as well. However, such generalization

also leads to an unwanted mixing between the gauge boson Zµ and the derivative of the

Higgs field, ∂νφ1, which is contracted with (kAφφ)
µν , as well as substantially complicating

the photon propagator. Instead we use a mixed propagator of the form mW (kAφφ)µνq
ν for

W±
µ (q)φ∓ fields (that is, we are treating the mixing term as an interaction, which leads

to diagrams like (d),(e),(g), and (h) in Fig. 1). Here we use the convention that the 4-

momentum q of Wµ is incoming to the point where the field turns into a charged Goldstone

boson.

Another distinct feature of this model is the presence of a term of the form

imW (kAφφ)
µνW+

µ W
−
ν . This term needs to be considered carefully. It obviously repre-

sents a new term in the W-propagator. We will discuss how to deal with this term

in the Rξ-gauge, although we use ’t Hooft-Feynman gauge (ξ = 1) in our vacuum po-

larization calculations. Since this mixing term can be considered an interaction, one

can carry out the Dyson summation. If we pick up the quadratic terms in the W-

boson from the Lagrangian together with Lgf , we have ∆L
(2)
W = W−

µ K
µν(q)W+

ν , where

iKµν(q) ≡ i
[

−(q2 −m2
W )gµν + (1− 1/ξ)qµqν + im2

W (kAφφ)
µν
]

≡ iK(0)µν(q) − m2
W (kAφφ)

µν .

We know that the inverse of iK(0)µν(q), say i∆(0)νλ(q) (that is, K(0)µν∆(0)νλ = gµλ), is

the usual propagator for the W boson. From Kµν(q), one can write the form of the

propagator as ∆νλ(q) ≡ ∆
(0)
νλ (q) + Bνλ

(

kAφφ
)

, where all kAφφ dependence is in the second

term. To determine Bνλ, we can use the fact that ∆νλ is the inverse of Kµν . From
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this equation, one gets Bνλ = −im2
W∆

(0)
νλ′(kAφφ)

λ′µ
[

∆
(0)
µλ +Bµλ

]

. Iterating this equation,

one obtains a series. However, we know that kAφφ parameters are small, so it is suffi-

cient to keep the first few terms. Up to second order, it is straightforward to show that

Bνλ = −im2
W∆

(0)
να(kAφφ)

αβ∆
(0)
βλ −m4

W∆
(0)
να(kAφφ)

αα′

∆
(0)
α′β′(kAφφ)

β′β∆
(0)
βλ . In the ’t Hooft-Feynman

gauge the propagator has a simple form which can be given as

i∆νλ(ξ = 1) = i∆
(0)
νλ +m2

W

(kAφφ)νλ

(q2 −m2
W )2

+ im4
W

(kAφφ)να(k
A
φφ)

α
λ

(q2 −m2
W )3

, (2.4)

where, for example, the second term is represented as a blob in the W -propagator in Fig.

1(c), Fig. 1(f), and Fig. 1(i).

We are now ready to calculate the vacuum polarization diagrams for the photon propa-

gator. It is useful to classify contributions as the ones having first order kAφφ-dependence and

the ones with quadratic in kAφφ. The only possible structure in first order is (kAφφ)µν where

µ(ν) is the Lorentz index of the incoming(outgoing) photon field. If we add all possible

one-loop diagrams, the first order contributions vanish. This is expected from the gauge

invariance requirement. It is not difficult to show that getting a gauge invariant transverse

structure is only possible with at least two kAφφ-terms. In Fig. 1, we depict the one-loop

diagrams which, when permutations are added, give second order Lorentz-violating inclu-

sions. There are two possible structures in second order, which are either (kAφφ)µλ(k
A
φφ)

λ
ν
or

(kAφφ)µλ(k
A
φφ)λ′νp

λpλ
′

. Here p is the four momentum of the external photons. Again the first

possibility is not gauge invariant and should vanish, thus contributions from the third term

in Eq. (2.4) should vanish. We have verified this explicitly. The latter is gauge invariant and

gives a non-zero contribution (if we contract with any of two external momenta of photons,

pµ or pν , it vanishes due to the antisymmetry property of kAφφ).

Calculating the one-loop diagrams, and comparing with Eq. (2.3), we find that the

components of kF can simply be expressed in terms of kAφφ as (kF )µλλ′ν = 1
3
(kAφφ)µλ(k

A
φφ)λ′ν .

We now turn to the experimental bounds on the kF .

The dimensionless coefficient (kF )κλµν has the symmetries of the Riemann tensor and a

vanishing double trace, resulting in nineteen independent elements. Following Kostelecký

and Mewes [8], we can express these elements in terms of four traceless 3 × 3 matrices and

one coefficient:

(κ̃e+)
jk =

1

2
(κDE + κHB)

jk ,

6



(a) (b) (
)

(d) (e) (f)

(g) (h) (i)

FIG. 1: One-loop contributions to the photon vacuum polarization involving Lorentz-violating

interactions to second order. These diagrams are for kAφφ case but similar diagrams exist for the

other antisymmetric coefficients. Here the wavy (dashed) line circulating in the loop represents W

boson (charged Goldstone boson). Each blob in vertices, W -propagator or W−φ mixed propagator

represents a single Lorentz-violating coefficient insertion. The rest of the diagrams can be obtained

by permutations of these 9 diagrams.

(κ̃e−)
jk =

1

2
(κDE − κHB)

jk −
1

3
δij (κDE)

ll ,

(κ̃o+)
jk =

1

2
(κDB + κHE)

jk ,

(κ̃o−)
jk =

1

2
(κDB − κHE)

jk ,

κ̃tr =
1

3
(κDE)

ll . (2.5)

where

(κDE)
jk = −2(kF )

0j0k,

(κHB)
jk =

1

2
ǫjpqǫkrs(kF )

pqrs,

(κDB)
jk = − (κHE)

kj = (kF )
0jpqǫkpq. (2.6)
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There are stringent astrophysical bounds on 10 of the 19 elements, those given by κ̃e+ and

by κ̃o−. These astrophysical bounds have been discussed recently in detail by Kostelecký

and Mewes [8]. The observations of radiation propagating in free space over astrophysical

distances results in bounds on these elements from velocity and birefringence constraints

[3, 9, 10, 11, 12]. The bound from birefringence constraints is the strongest, and is given by

3 × 10−32. The bounds on the remaining 9 elements are much weaker (and in fact can be

moved into the fermion sector, as will be discussed below).

If one of our coefficients is nonzero, say (kAφφ)01 = −(kAφφ)10 ≡ x, then the only nonzero

components of kF are the (kF )1010, (kF )0101, (kF )1001 and (kF )0110 components. This leads

to a nonzero κ̃e+ matrix, and thus the stringent bounds apply. Extending this one can see

that for any single or possible combination of non-zero elements of (kAφφ)µν it is impossible

for both κ̃e+ and κ̃o− to be null matrices, and thus the birefringence constraints apply.

One cautionary note should be added. In the above example, the kF tensor is not double

traceless, since (kF )
µν
µν is proportional to x2. This means that the kinetic energy for the

photon has not been properly normalized. By adding and subtracting a term proportional

to the double trace

L = −
1

4

(

1 + ςx2
)

FµνF
µν −

1

4
(kF )κ′λ′µ′ν′F

κ′λ′

F µ′ν′ +
1

4

(

ςx2
)

FµνF
µν , (2.7)

where ς is a constant and the primed indices are summed only over the nonzero elements (in

the above example, only over (kF )1010, (kF )0101, (kF )1001, (kF )0110). A redefinition of the pho-

ton field will give a conventional kinetic term, and the remaining terms obey the double trace-

less condition if one chooses a suitable ς value. This means that, although we started with

only a (kF )0101 term (plus permutations), we also have (kF )0202, (kF )0303, (kF )1212, (kF )1313

and (kF )2323 terms (plus permutations). Nonetheless it will still not be possible for the

elements of κ̃e+ and κ̃o− to become zero, hence these redefinitions do not affect the bounds.

From these results, we find an upper bound of 3× 10−16 for the kAφφ coefficients, barring, of

course, fine-tuned cancellations.

Next, we consider the kφB-term by setting all other parameters to zero in Eq. (1.1). This

term has a interesting new interaction Aµφ1φ1, where φ1 is the Standard Model Higgs boson.

There also exists a similar Lorentz-violating vertex with the neutral Goldstone boson, φ2.

Therefore, in addition to the charged Goldstone loop, we have diagrams like Fig. 1(a), which

8



are second order in kφB with different vertex factors, where now the particles circulating in

the loop are the Higgs and the would-be Goldstone bosons. The coupling is cos θW (kφB)µνp
ν ,

where p is the four momentum of the photon. Unlike the kAφφ case, we obviously don’t have

an additional mixing between the W and charged Goldstone bosons (thus, no diagrams like

(d),(e),(g), and (h) in Fig. 1). But this new term induces a remarkable mixing between

the photon and the Higgs scalar, since when the Higgs gets a vacuum expectation value, an

Aµ∂νφ mixing term appears. This term can’t be removed by gauge-fixing, and represents

a mixed propagator. In our one-loop calculation of the photon propagator, however, the

mixing will not contribute to the divergent part, and is thus not relevant2. Therefore, if

we look at the structures in the first and the second order in kφB, there exist (kφB)µλp
λpν ,

(kφB)νλp
λpµ, and (kφB)µλ(kφB)λ′νp

λpλ
′

. Note that only the scalar loop diagrams with two

Lorentz-violating vertices yields the last structure (three scalar loop diagrams with charged

Goldstone φ±, Higgs boson φ1, and would-be neutral Goldstone boson φ2). Gauge invariance

makes us expect that the first two non-invariant structures should vanish and this is indeed

the case. So, in this framework, the (kF )µλλ′ν = 5
12e2

cos2 θW (kφB)µλ(kφB)λ′ν equality holds.

Numerically, the bound on the individual kφB is stronger than that for kAφφ by a factor of

(5 cos θ2W/4e
2)1/2 ∼ 3.2. This gives the upper bound on kφB of 0.9× 10−16.

The kφW term has very similar features to the kAφφ case except for the photon-Higgs

mixing. It additionally allows the Lorentz-violating Aµ(p)φ1φ1 vertex, which is equal to

− sin θWkµνp
ν (leading to diagrams like Fig. 1(a) with φ1 second order in kφW ). Adapting

the same gauge-fixing conditions of kAφφ, one can show that the W-propagator with one kφW

inclusion becomes 2im2
W (kφW )µν/g(q

2−m2
W )2. Computation of diagrams (Fig. 1(a)-(i) plus

their permutations) shows us the (kφW )µν , (kφW )µλp
λpν , and (kφW )λνp

λpµ structures in the

first order and (kφW )µλ(kφW )λν and (kφW )µλ(kφW )λ′νp
λpλ

′

in the second order. The only

surviving term is the last one which is gauge-invariant. Consequently, like the kφB case, a

very similar relation between kF and kφW , (kF )µλλ′ν = − 5
12e2

sin2 θW (kφW )µλ(kφW )λ′ν , yields

an upper bound of 1.7×10−16. It is seen that the current bound on all three Lorentz-violating

coefficients is of the order of 10−16.

2 With the use of this mixing, there is an another place where the Lorentz-violating kφB term could con-

tribute, namely in the Aµee and φ1ee effective vertices. However, the bounds we obtain below render any

such effects negligible.
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III. COORDINATE AND FIELD REDEFINITIONSAND THE SYMMETRIC CO-

EFFICIENTS

In this section, we consider bounds on the kSφφ coefficients. In this case, the strongest

bounds come from relating, through field redefinitions, these coefficients to other Lorentz

violating coefficients in the fermion sector, and then using previously determined bounds on

those coefficients.

Once one extends a model by relaxing one or more symmetry properties of the original

model, the extended model should involve all possible otherwise invariant structures. How-

ever, if the modification is carried out under the assumption that the fields are transformed

under this otherwise broken symmetry group in the usual way, not all of new parameters

representing apparent violation of this symmetry may be physical (i.e. the model has some

redundant parameters). Therefore an extension should be carefully analyzed to check for

redundant parameters. This analysis may yield several Lagrangians which are equivalent to

each other by some coordinate and field redefinitions and rescalings [2, 13, 14, 15]. The same

situation applies to the SME case. A simple example is provided by Colladay and Kostelecký

[2]. Consider the electron in QED, with the kinetic term ψγµDµψ. Suppose one transforms

the electron field as ψ → exp(−iaµxµ)ψ, where a is a constant vector. This is not a gauge

transformation, since Aµ is not changed. Plugging into the kinetic term, one finds a term

aµψγ
µψ. But this is one of the Lorentz-violating terms mentioned in the first section, and

thus this term can have no physical effect. Other field redefinitions can eliminate (or, more

precisely, make redundant) other possible terms. Recently, the spinor part of the extended

QED has been extensively discussed by Colladay and McDonald [13]. The aµ term need

not be redundant if gravity is included. This has been explored [5] by studying the SME

with gravity in the context of Riemann-Cartan spacetimes, and thus new Lorentz-violating

coefficients appear in such a framework.

In the Higgs sector, one can also make some of the symmetric coefficients redundant. Here

we just consider the U(1) part but the generalization to SU(2)×U(1) is straightforward. A

toy model discussed in [8, 15] is relevant to our purpose. Consider first a model involving only

two Lorentz-violating parameters kφφ and kF in the scalar and photon sectors, respectively.

The Lagrangian is L = [gµν + (kφφ)µν ] (D
µΦ)†DνΦ−m2Φ†Φ− 1

4
FµνF

µν− 1
4
(kF )µλλ′νF

µλF λ′ν ,
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where Dµ = ∂µ + iqAµ and kφφ is real and symmetric. First let us assume that only one

component of kφφ, (kφφ)00 ≡ k2−1, is nonzero [8, 15] and that kF is taken as zero. By

making the coordinate transformations t → kt, x → x and the field redefinitions A0 → A0,

A → kA with rescaling of the electric charge q → q/k, one gets the Lagrangian Lphoton =

(DµΦ)
†DµΦ −m2Φ†Φ + 1

2
(E2 − k2B2), where E(B) is the electric(magnetic) field. So, we

start with a system having a Lorentz violation in the scalar sector (kF = 0) and end up with

an equivalent Lagrangian involving Lorentz violation in photon sector (some components of

kF are nonzero). Second we can further show that by choosing3 only (kφφ)11 = (kφφ)22 =

(kφφ)33 = k2−1 nonzero it is still possible to get an equivalent Lagrangian as Lphoton =

(DµΦ)
†DµΦ −m2Φ†Φ + 1

2
(E2 − B2/k2) under the transformations t → t, x → kx and the

redefinitions A0 → kA0, A → A with the same charge rescaling q → q/k. However, for the

other components of kφφ, there are no such obvious transformations.

Another analysis of the physical effects of the Lorentz-violating coefficients kSφφ can be

found by looking at the effects of field redefinitions over those parameters. These effects in

the fermion sector were discussed in detail in the context of extended QED [13]. There it

was shown that under the fermion field redefinition ψ(x) = (1 + cµνx
µ∂ν)χ(x) it is possible

to generate a would-be Lorentz-violating Lagrangian in the free fermion context and cµν

represents the Lorentz violation. Here cµν is a real symmetric coefficient of the Lorentz

violating cµνψγ
µDνψ term in the fermion sector. However, this transformed Lagrangian can

further be expressed in terms of a new coordinate system having a non-diagonal metric, i.e.

a skewed coordinate system, and in this way it is possible to restore the form of the original

Lagrangian. In this framework, this shows that cµν is not physical. The redundancy of cµν ,

however, disappears when the fermion-photon interaction is involved. A very similar analysis

for the scalar sector of a toy model, involving a conventional fermion sector with a scalar

field φ, gives us L(ψ,Φ) = Lf
0(ψ) + LH

0 (ϕ) +
[

1
2
(kSφφ)µν(∂

µϕ†)∂νϕ+H.c.
]

, where the scalar

field redefinition Φ(x) =
(

1 + 1
2
(kSφφ)µνx

µ∂ν
)

ϕ(x) is assumed. Again expressing the fields in

terms of skewed coordinates with a modified metric ηµν = gµν+(kSφφ)µν the apparent Lorentz-

violating (kSφφ)-term can be absorbed in the scalar sector but it reappears in the fermion

3 This choice was made in Ref. [16], where it was shown that the contribution to Higgs decays from this

term is negligible.
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sector as a c-term. If we further extend our model by including fermion-photon interactions

one can show that there is a mixing among kSφφ, cµν , and nine unbounded kF coefficients [17].

Consequently, the observability of kSφφ is nothing but a matter of convention. The above

analysis enables us to move a non-zero kSφφ term into either a cµν term or a kF term. In

this Letter we only concentrate on the Lorentz and CPT violation in the scalar sector of the

SME, hence we assume that the theory has a conventional fermion sector, which means that

bounds on cµν will lead to effective bounds on kSφφ. A full and systematic analysis of all of

the field redefinitions and redundancies in the SME would be valuable, but is beyond the

scope of this paper. With our normalizations, a bound on cµν will translate directly into an

equivalent bound on (kSφφ)µν .

We thus need the current bounds on the cµν coefficients. Although numerous bounds

appear in the literature, many of them should be taken cum grano salis. Consider the spatial

parts of cµν . The strongest bounds give an upper limit on the diagonal spatial elements of

10−27 [18, 20, 21] and on the off-diagonal elements cXZ and cY Z of 10−25 [20, 21, 22], and

cXY of 10−27 [18, 20, 21]. There are several caveats, however. First, these are bounds for

cµν of the neutron. It is conceivable that the mechanism that results in Lorentz violation is

proportional to the charge, and these experiments would miss the effect. It is also conceivable

that a version of Schiff’s theorem (which shows that in the nonrelativistic limit, the electric

dipole moment of an atom will vanish, even if it does not vanish for constituents) will

cause a screening of the cµν coefficients of the quarks. The first effect can be eliminated

by considering protons or electrons, the second can be eliminated by considering electrons.

Another caveat is that the bounds on the diagonal elements are actually bounds on cXX−cY Y

and cXX + cY Y − 2cZZ , and thus if the Lorentz violation is isotropic, the bounds will not

apply. In this case, the vanishing trace condition will (as in the case of the double-traceless

condition on kF ) yield, when the fermion field is properly normalized, a nonzero cTT , and

thus the bounds on the diagonal spatial elements will be that of the bound on cTT .

The bound on cTT can be obtained by comparing antiproton cyclotron frequencies with

those of a hydrogen ion [23] and a very weak bound of 4×10−13 is extracted. An interesting

connection between the dispersion relation for fermions and the cTT coefficient has been

noted by Bertolami, et al.[19], and astrophysical experiments to improve the bound is pro-

posed. For the time-space components, there are various studies based on the sensitivities of
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some planned experiments [20, 24, 25, 26]; most of the bounds are from the neutrino sector

of the SME and the highest proposed sensitivity is around 10−25 [24].

IV. BOUNDS ON THE CPT-ODD COEFFICIENT

The remaining part of the Higgs sector Lagrangian has one term that violates both

Lorentz and CPT symmetries, represented by the complex constant coefficient (kφ)
µ. One

interesting effect of this term is the modification of the conventional electroweak SU(2) ×

U(1) symmetry breaking. Minimization of the static potential yields a nonzero expectation

value for Zµ boson field of the form 〈Zµ〉0 = sin 2θW
q

Re(kφ)µ. Here we have assumed all

the other Lorentz-violating coefficients zero. The nonzero expectation value for the Z will,

when plugged into the conventional fermion-fermion-Z interaction, yield a bµψγ
µγ5ψ term.

Alternatively, one can look at the one-loop effects on the photon propagator, however this

will yield much weaker bounds. By assuming kφ is the only Lorentz-violating term in the

Higgs sector, one finds that the effective bµ = 1
4
Re(kφ)µ. If we look at the best current bounds

on bµ, from testing of cosmic spatial isotropy for polarized electrons [27], beX,Y ≤ 3.1× 10−29

GeV and beZ ≤ 7.1 × 10−28 GeV in the Sun-centered frame. The best bound comes from

the neutron with the use of a two-species noble-gas maser [28] and it is of the order of

bnX,Y ≤ 10−32 GeV. Note that in order to get this bound there are some assumption about

the nuclear configurations, which make the bound uncertain accuracy to within one or two

orders of magnitude. The bound on the time component of bµ is around bnT ≤ 10−27 GeV

[29]. Therefore, the best bounds for the real part of (kφ)µ are 10−31 GeV and 10−27 GeV for

the X, Y and for the Z, T components, respectively. The imaginary part of kφ is unphysical,

since this term in the Lagrangian is a total divergence.

V. CONCLUSION

In this work we have studied the bounds on the Lorentz and/or CPT violating coefficients

in the Higgs sector of the SME. It is shown that all antisymmetric CPT-even Lorentz-

violating coefficients give second-order contributions to the photon vacuum polarization at

one-loop. By comparing with the kF -term and assuming one of them nonzero in each case

13



(without high-precision cancellation), we find (kAφφ)µν , (kφB)µν , (kφW )µν <
∼ 10−16. For the

symmetric part of kφφ, after discussing the close connections with the Lorentz-violating

coefficients cµν in the fermion sector by means of coordinate and field redefinitions, we

conclude that the bounds could be determined directly from the cµν-term. In a very similar

way we obtain the bound on the CPT and Lorentz-violating coefficient (kφ)µ by comparing

with bµ-term in the fermion sector. The existence of kφ-term leads to a nonzero vacuum

value for Zµ which further enables us to relate (kφ)µ with bµ and we find an upper bound of

10−31(10−27) GeV for X, Y (T, Z) components of (kφ)µ. Table I lists all the bounds together

with their sources.

Perhaps the most intriguing bounds are for the antisymmetric coefficients. Recent devel-

opments in string theory indicate that Lorentz-violating non-commutative geometry might

be a low-energy probe of Planck scale physics [14, 30], and this geometry will be antisym-

metric. It is interesting that our upper bounds on the coefficients are O(10−16), which is

less than an order of magnitude above the ratio of the electroweak to Planck scale. An im-

provement in the birefringence bounds of a couple of orders of magnitude (which is feasible

[10, 31]) could probe this sensitivity. Should a kF term actually be discovered, our analysis

shows how one can distinguish Higgs sector Lorentz violation from other sectors. Specifically,

of the ten observable kF coefficients, we find nonzero values only for the two independent

diagonal elements of κ̃e+. Thus, the origin of Lorentz violation might be experimentally

accessible. It should be noted that inclusion of gravity might lead to new Lorentz-violating

terms, as discussed in Ref. [5].

If the primary effects of an underlying Lorentz and CPT violation appear in the Higgs

sector, what are the most promising experiments? We have seen that CPT violation will

be manifested through a vacuum expectation value of the Z boson, and the “b” coefficient

for a fermion will be proportional to the weak axial coupling of that fermion. Testing this

would require bf to be measured for at least two fermions. For antisymmetric CPT-even

Lorentz violation, there are very specific signatures, discussed in the previous paragraph,

and improvement in the birefringence bounds of a couple of orders of magnitude would

be valuable. For symmetric CPT-even Lorentz violation, there are tight bounds, but with

various assumptions and caveats. The relatively weak cTT and cTI bounds, as noted in Ref.

[20], could be substantially tightened.
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TABLE I: Estimated upper bounds for the Lorentz and CPT violating coefficients in the Higgs

sector of the SME.

Parameters Sources Comments

κ̃e+ , κ̃o− cµν bµ (GeV)

(kAφφ)µν 3× 10−16 - - -

(kφB)µν 0.9 × 10−16 - - -

(kφW )µν 1.7× 10−16 - - -

(kSφφ)II - 10−27 - a

(kSφφ)TT - 4× 10−13 - b

(kSφφ)TI - 10−25 - c

(kSφφ)XZ , (k
S
φφ)Y Z - 10−25 - d

(kSφφ)XY - 10−27 - d

(kφ)X , (kφ)Y - - 10−31 e

(kφ)Z , (kφ)T - - 2.8× 10−27 f

aObtained from cneutronµν with the assumption that Lorentz violation is not isotropic. If it is isotropic,

the bound on (kSφφ)TT applies.
bObtained from the comparison of the anti-proton’s frequency with the hydrogen ion’s frequency.
cEstimated value based on the sensitivity calculations of some planned space-experiments.
dObtained from the neutron.
eFrom bneutronµ with the use of a two-species noble-gas maser. From belectronµ , a weaker but cleaner bound

of 1.2× 10−25 can be obtained.
fThis bound is from the spatial isotropy test of polarized electrons.
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[4] R. Lehnert, Phys. Rev. D 68, 085003 (2003); R. Lehnert, hep-ph/0401124.

[5] V. A. Kostelecky, hep-th/0312310.

[6] V. A. Kostelecky and R. Lehnert, Phys. Rev. D 63, 065008 (2001); V. A. Kostelecky,

C. D. Lane and A. G. M. Pickering, Phys. Rev. D 65, 056006 (2002).

[7] T.-P. Cheng and L.-F. Li, Gauge theory of elementary particle physics, Oxford University

Press, New York, 1992.
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