
 1 

Observations of temporal group delays in slow-light multiple 

coupled photonic crystal cavities  

S. Kocaman1*, X. Yang2, J. F. McMillan1, M. B.Yu3, D. L. Kwong3, and C. W. Wong1* 

1Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, 

Solid-State Science and Engineering, and Mechanical Engineering, Columbia University, 

New York, NY 10027, USA 

2University of California at Berkeley and Lawrence Berkeley National Laboratory, 

Berkeley, CA 94720, USA 

3The Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II  

Singapore 117685, Singapore 

We demonstrate temporal group delays in coherently-coupled high-Q multi-cavity 

photonic crystals, in an all-optical analogue to electromagnetically induced transparency. 

We report deterministic control of the group delay up to 4× the single cavity lifetime in 

our CMOS-fabricated room-temperature chip. Supported by three-dimensional numerical 

simulations and theoretical analyses, our multi-pump beam approach enables control of 

the multi-cavity resonances and inter-cavity phase, in both single and double 

transparency peaks. The standing-wave wavelength-scale photon localization allows 

direct scalability for chip-scale optical pulse trapping and coupled-cavity QED. 
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Large-scale communication systems have benefited from using photons as the 

transport medium, such as the optical fiber network infrastructure and massively parallel 

computing architectures. A subset of these efforts is the recent examination of optical 

interconnects and optical delay lines, where chip-scale implementations can provide 

scalability, integration, low-power dissipation and large bandwidths. Actively tunable 

delay lines provide a step towards network or communications reconfigurability. In 

electromagnetically induced transparency (EIT) – a remarkable outcome of the quantum 

coherence in atoms – destructive quantum interference introduced by a strong coupling 

laser cancels the ground state absorption to coherent superposing upper states in a three-

level system [1]. This observation of sharp cancellation of absorption resonance through 

atomic coherence has led to phenomena such as lasing without inversion [2], frozen light 

using the steep linear dispersion from extremely narrow linewidth of the EIT [3], and 

dynamic storage of light greater than a second in solid-state materials [4].  

Several theoretical analyses of coupled optical resonators has revealed that 

coupled resonator systems can have interestingly similar phenomena to atomic systems 

where the interference of resonant pathways with resulting EIT-like spectra is enforced 

by the geometry or dispersion of nanophotonic structures [5-8]. In this all-optical 

classical analog, a single or multiple sharp transparency windows can be induced by 

coherent interferences between normal modes in coupled optical resonators in an 

originally non-transmitting background with transparency linewidths at GHz or more, 

significantly broader than the narrow (~ 100 kHz or less) linewidths in atomic systems. 

These dispersive slow-light effects [9-10] were recently examined experimentally in two 

coupled whispering-gallery mode resonators [11], ultrahigh-Q microspheres [12], and 
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two or more coupled photonic crystal cavities [13], with applications in trapping light at 

room temperature beyond the fundamental delay-bandwidth product [5-8]. Here we 

report the experimental time-domain observations of  delays up to 17.12 ps, or more than 

4× the single cavity lifetime, in the near-infrared.  

Our system, illustrated in Fig. 1a, consists of a photonic crystal waveguide side-

coupled to four photonic crystal cavities. As recently demonstrated in multi-EIT-like 

lineshapes [13], we used defect-type cavities, formed with three missing air holes (L3) in 

an air-bridged hexagonal lattice photonic crystal membrane. From coupled mode theory 

[14], the dynamical equations for the cavity mode amplitudes are  

 

where n is the cavity number, � is the resonant frequency, a is the normalized cavity 

mode amplitude and s is the normalized waveguide mode amplitude. Without significant 

nonlinear absorption [15], the total loss rate for the resonance mode is described by 
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(FDTD) calculations (Fig. 1c) and the samples are fabricated using 248 nm UV 

lithography, with low (sub-20 Å) statistically quantified disorder [16] (example scanning 
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a thickness of 0.595a and hole radius of 0.261a, where the lattice period a = 420 nm. The 

position of the nearest neighbor holes are shifted by 0.15a to tune the radiation mode 

field for increasing the intrinsic Q factors [17]. The separation between the center of the 

waveguide and the center of the cavity is 2�3a. For a single cavity, the Qtot was 

determined experimentally to be 5,110 and, using the measured Qtot and the measured -

13.17dB resonance intensity contrast ratio, we determined Qv and Qin to be at 23,261 and 

6,548 respectively [18]. The experimental Qv factor is different than designed Qv of 

60,000 mainly because of the fluctuations in the fabricated structures, small perturbations 

and slightly angled etched sidewalls. The modal volume V is ~ 0.74 cubic wavelengths 

[(�/n)3]. Large Qv/Qin ratios are needed to be high in order to operate in the overcoupled 

regime for strong in-plane interference. The interacting multiple cavities are designed 

identically; however due the slight fabrication deviations, the actual resonant frequencies 

are not exactly the same but with a slight detuning which allows us to obtain an EIT-like 

transparency peak. When the two cavity resonances are close enough and the cavity-to-

cavity round trip phase satisfy the condition of forming a Fabry-Pérot resonance (2n�), 

the system represents an all-optical analogue of EIT which has been observed spectrally 

with two and three cavities in our recent lineshape studies [13], resulting a photon delay 

that is longer than both cavity lifetimes (calculated as 4.15 ps each) combined.  

 To perform the group velocity delay measurements, we build the experimental 

setup is shown in Fig. 2, where a 1 GHz modulated tunable laser is coupled into the chip-

scale multi-cavity system. In order to increase the coupling efficiency between the optical 

fiber and the waveguides [19], we used nanotapered structures at both the input and 

output waveguides. Two polarization controllers are used; first one is for getting the 
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optimal modulation and the second one for tuning the light to transverse-electric (TE) 

polarization and then couple into the chip with a tapered lensed fiber. At the waveguide 

output, another tapered lensed fiber is used to collect the output signal. On the output side, 

an erbium doped fiber amplifier (EDFA) is used to get the desired power level for the 

high speed photo detector and an automatic channel locking filter (Digital Lightwave) is 

used to filter the EDFA noise. Finally, a digital sampling oscilloscope recorded the 

relative delays between different wavelengths, synchronized to the input modulator with 

1 ps accuracy [20]. To align the cavity resonances and tune the phase between cavities, 

we thermo-optically tune the chip locally with two frequency-doubled 532-nm pump 

lasers to get the desired state by increasing refractive index of silicon with a rate of 1.85

�10-4 /K at 1.55 �m [15,21]. We estimate 16 K temperature rise per milliwatt pump 

(~1.32nm/mW resonance redshift and 0.0153�/mW phaseshift).   

Here we present results from three series of experiments. Fig. 3 shows the 

comparison between measured and calculated transmission spectra, 
2 2

4 0/R RT s s= , and 

the corresponding measured and calculated group delay values, d dφ ω . Our system 

consist of a four L3 cavities coupled to a single line-defect photonic crystal waveguide 

(as shown in Fig.1d), where we work with three of the cavity resonances with closest 

frequency spacing. Fig. 3a shows the transmission spectrum of three cavities (without 

external tuning) where two of them are almost at the same frequency, with the cavity 

resonances are �1 = 1533.52 nm, �2 = 1533.98 nm and �3 = 1534.02 nm – the slight (3.3%) 

resonant frequency difference is due to fabrication deviations between cavities. Note that 

in this spectrum there is no transparency peaks due to the large frequency detuning 

between cavity 1 and cavities 2-3, and a phase mismatch between cavity 2 and cavity 3. 
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Correspondingly, in the temporal delay measurements (Fig. 3e), there is no significant 

spectral feature as expected, except for the Fabry-Perot-type reflection noise from the 

chip end facets.  

Fig. 3b shows the transmission spectrum with external tuning, with the resonances 

deterministically tuned to longer wavelengths. By adjusting the spatial position of the 

pump, we shift two resonances close enough for the EIT-like detuning condition δ23 < 

~3.5 [13]. In addition, we focus the second pump laser on the photonic crystal waveguide 

between the cavities in order to get the required phase condition (φ = nπ, where n is an 

integer). As shown in Fig. 3b, the coherent transparency peak appears at 1534.26 nm (δ23 

= 0.79), with the resonant frequencies now at �1 = 1534.10 nm, �2 = 1534.20 nm and �3 = 

1534.32 nm. A larger shift at �1 occurred due to the local heating. We note there is only 

one transparency peak due to the phase mismatch between cavity 1 and 2. Fig. 3f now 

shows the corresponding temporal delay values. We observed a 17.12 ps delay at the 

transparency wavelength, or equivalent to 4× of the single cavity lifetimes (4.15ps) and 

more than two incoherently summed cavity lifetimes. The slow-down factor S, or the 

ratio of the phase velocity to the group velocity (νφ/νg), is determined to be ~150 at the 

transparency peak [10]. We match the spectral features of both the transmission and the 

delay spectrum by breaking the cavity 1-2 phase condition by -0.14� for the other peak.  

We next tune the pump powers and spatial locations for coherent interaction 

between all three cavities with two transparency windows, as shown in Fig. 3g. In this 

case, the resonant values are 1534.20 nm, 1534.35 nm and 1534.51 nm and the recorded 

relative delays at the EIT wavelengths are 16.48 ps and 13.29 ps. For both transparencies 

the detuning factor δ = 0.99. Here we calculated an extra 0.06� phase difference for the 
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second transparency peak which we cannot remove to perfectly zero without affecting the 

other conditions. The estimated slow-down factors S are ~350 and 115 respectively. We 

note that the exact spatial positions of the pumps have critical importance and allow 

better tuning: for instance, moving the pump that adjusts the phase, we can adjust various 

relative detuning of the resonant cavities without breaking the phase condition. For all of 

the theoretical simulations, we used Qv = 23,261 and Qin = 6,548 consistently as for the 

previous set of measurements. Longer delays can be achieved with increased number of 

coupled cavities and increased cavity Q, where Qint up to 100,000 or more are attainable.  

In our experimental data, there is a consistent background Fabry-Perot noise due 

to finite reflections between the different interfaces on the chip. However, the additional 

EIT-like delay can be distinguished on top of the Fabry-Perot noise, and lines up well 

with the spectral transparency windows. The data is averaged over 64 times. For instance, 

when we statistically analyze the delay values and calculate the noise standard deviation 

� in our data we clearly see the difference between the Fabry-Perot noise and delay 

region. For example, in the two cavity interference of Fig. 3f, � = 5.87 ps and all the 

noise is between -1.99� and 1.76�, whereas the maximum transparency peak shows up 

clearly at 2.88�. In the three cavity interference of Fig. 3g, � = 5.04 ps and all the noise is 

between -1.48� and 1.92�, whereas the maximum transparency peaks show up at 3.27� 

and 2.64� respectively. The transparency peak delays of 17.12 ps (Fig. 3f) and 16.48 ps 

(Fig. 3g) are larger (by 6.57 ps and 6.81 ps respectively) than the maximum noise, 

resolvable in the measurement data. The corresponding histograms for the delay values in 

Fig. 3f and 3g are shown in Fig. 3d and 3h respectively, where the transparency peak 

delay measurements are distinguished over the noise fluctuations. 
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In summary, we demonstrate time-domain optical delay measurements and 

observed slow- light in our multi-coupled photonic crystal cavities. We observe tunable 

delay measurements on CMOS-fabricated devices through coherent multi-cavity 

interactions, with delays of up to 4× the single cavity lifetime. These observations 

support applications towards all-optical trapping of light in a solid-state scalable 

implementation. 
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Figure 1 | Designed and fabricated L3 coupled cavity system. a, Simplified model of 

the system which is consisting of four point-defect cavities in a 2D PC slab. b, Example 

of near-infrared top view image of 2 cavities with very close resonant frequencies. c, Ey 

field intensity of coupled-cavity transparency mode between two L3 cavities. d, SEM of 

the fabricated sample with a = 420 nm; r = 0.261a; t = 0.595a. Each cavity is tuned (s1 = 

0.15a) for high intrinsic Q. L12=12a and L23=30a. Scale bar: 5 µm.  e, SEM of one of the 

cavities with higher resolution. Scale bar: 1 µm.  

Figure 2 | Temporal delay measurement setup. The straight lines represent optical 

fibers and dashed lines are coaxial cables. A high speed electro-optic modulator generates 

a sinusoidal probe beam of 1 GHz. Two 532 nm continuous wave lasers with a 5 µm spot 

size at a cavity and interconnecting waveguide region are used for thermo-optic tuning. 

Refractive index change is 1.85x10-4 / K at 300 K and we estimate 16 K temperature rise 

per milliwatt pump. Pump positions and powers are carefully selected to precisely control 

the resonant frequencies and the phase between the cavities in order to get the ideal 

coherent interference. 

Figure 3 | Comparison between couple mode theory calculations and the 

experimental results. Measured and theoretical transmission line shapes with various 

detuning and the phase differences. a. Cavity resonances are carefully adjusted and there 

is no transparency window. b and c. Three resonances with spectral and phase detuning 

controlled for transparency peak windows. f-g. Measured and theoretical optical delay 

corresponding to 17.12 ps for b and 16.48 and 13.29 ps for c. d and h. Histograms of the 

delay values in f and g where the delay values at the transparency frequencies are 

distinctive over the noise distribution 
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