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Abstract
This paper presents a two-degree-of-freedom analytical model for the electromechanical
response of double ended tuning fork (DETF) force sensors. The model describes the
mechanical interaction between the tines and allows investigation of the effect of a number of
asymmetries, in tine stiffness, mass, electromechanical parameters and load sharing between
the tines. These asymmetries are introduced during fabrication (e.g., as a result of undercut)
and are impossible to completely eliminate in a practical design. The mechanical coupling
between the tines induces a frequency separation between the in-phase and the out-of-phase
resonant modes. The magnitude of this separation and the relative intensity of the two modes
are affected by all the asymmetries mentioned above. Two key conclusions emerge: (i) as the
external axial compressive load is increased, the in-phase mode reaches zero frequency
(buckling) much faster than the out-of-phase (i.e., operational) mode, resulting in a device with
a decreased load range. (ii) During the operation, balanced excitation is essential to guarantee
that the out-of-phase mode remain significantly stronger than the in-phase mode, thus allowing
sharp phase locked loop locking and hence robust performance. The proposed model can be
used to assess the magnitude of asymmetries introduced by a given manufacturing process and
accurately predict the performance of DETF force sensors. For the specific sensor
characterized in this study, the proposed model can capture the full dynamic response of the
DETF and accurately predict its maximum axial compressive load; by contrast, the
conventional single-DOF model does not capture peak splitting and overpredicts the maximum
load by ∼18%. The proposed model fits the measured frequency response of the
electromechanical system and its load-frequency data with coefficient of determination (R2) of
95.4% (0.954) and 99.2% (0.992), respectively.

(Some figures may appear in colour only in the online journal)

1. Introduction

Double ended tuning forks (DETF) are a unique class of force
sensors, providing high stability, a high dynamic range, low
mechanical compliance and easily digitizable output signals.
These features make them ideal for the development of highly
versatile and ultra-sensitive micro-mechanical load cells
for the characterization of complex materials (in particular

3 Author to whom any correspondence should be addressed.

micro-architected materials) at the micron-millimeter scale
[1]. The DETF structure is composed of two nominally
identical suspended parallel tines connected at both ends. In a
typical sensor design, one end is clamped to a nominally rigid
structure, with the external axial load (tensile or compressive)
applied at the opposite end. Upon external axial force
application (compressive or tensile), the resonant frequency
of the tines changes (decreases or increases, respectively),
and this change is detected at the capacitive plates connected
with the tines (e.g., by means of a phase locked loop
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Figure 1. MEMS DETF sensor (SEM image and setup
implementation).

(PLL) circuit) and accurately measured with a high-stability
frequency counter. Either through modeling or calibration (or
a combination thereof), the frequency change can be readily
related to the applied force [2–6].

The authors have recently designed, optimized and
implemented such a force sensor [7–9] (figure 1),
experimentally demonstrating a force resolution of ∼10 nN
and a force range of ∼0.1 N (in compression). To date, most
analytical predictions of the DETF electromechanical response
have been based on simple one-degree-of-freedom lumped
models [8, 10, 11], which ignore the mechanical interaction
between the tines. Although in a perfectly symmetric system
with rigid boundaries, the tines are indeed mechanically
decoupled, in practice, a finite substrate compliance and
any slight imbalance in the geometric parameters and/or
materials properties of the tines induce a coupling effect,
which affects the sensor response; in essence, load is no
longer distributed equally on the two tines, resulting in
a non-symmetric vibration pattern of the tine pair. These
asymmetries are induced by manufacturing imperfections and
are impossible to eliminate completely (or even accurately
predict). Undercut is a key example, as it can affect the two
tines by slightly different amounts, depending on the device

design. Recent work demonstrated that a robust operation is
possible even without accounting for these phenomena in
the design process; nonetheless, decoupled models grossly
overestimate the buckling load of the tines (by as much
as 18%), and hence the sensor range under compressive
loads [8]. As the desired force range is often a critical
sensor parameter, greatly affecting the DETF design [9], its
accurate estimation is critical for the fabrication of robust
sensors. Furthermore, an electromechanical model that fully
accounts for tine coupling is needed to quantify the effect
of various imperfections on the sensor response. This paper
describes the development of such a model, and is organized
as follows: section 2 describes the analytical model, reviewing
the single-degree-of-freedom (1-DOF) approach first and then
discussing its extension to two-degrees-of-freedom (2-DOF)
systems. In section 3, the new 2-DOF model is exercised to
quantify the sensitivity of the resonator response on geometric
and materials uncertainties. Experimental verifications are
provided in section 4. Conclusions follow.

2. Electro-mechanical modeling

2.1. A 1-DOF electromechanical lumped model

The traditional analysis of DETF resonators ignores dynamic
coupling between the two tines and treats each as an
independent oscillator, for which a 1-DOF lumped spring–
mass model is readily established [8, 10, 11]. This section
quickly reviews the formulation.

With reference to figure 2, the dynamic response of the
tine in the absence of dissipative phenomena (e.g., damping)
is governed by the momentum equation [12]:

∂2

∂x2

(
EI

∂2v(x, t)

∂x2

)
+ ∂
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(
Fappl

2

∂v(x, t)

∂x

)

+ρA
∂2v(x, t)

∂t2
= Pe(x, t) (1)

where v is the deflection in the y direction, EI is the flexural
stiffness of the tine for bending in the (x, y) plane, Fappl is
the external axial force on the load cell (equal to twice the
force applied on each tine), ρ the materials mass density, A the
cross-sectional area of the tine and Pe the transverse actuation
force. For the design depicted in figure 1, Pe is a concentrated
force at the middle point of the tine (whereas it would be
a distributed force along the tine length for driving without
actuation plates).

If we assume that a solution can be found by separation
of variables, i.e.:

v(x, t) = φ(ε)y(t) (2)

with ε = x/L f , the solution can be written as [10]:

Meffÿ + cẏ + Keffy = Pe(t) (3)

where the effective mass, Meff, the effective stiffness, Keff and
the damping coefficient c (introduced to model mechanical
dissipation) are defined as:
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Figure 2. The reference system, geometric variables and assumed mode shape function throughout the analysis.
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with φi(ε) the vibration mode, mj the mass of the actuation
plate (modeled as a lumped mass), Lf the length of the
tine and Q the quality factor of the mechanical oscillator.
Approximating the mode shape to the elastica of a clamped–
clamped beam subjected to a point load at its center, i.e.,

φi = φ2 = 16ε3 − 12ε2 + 1 (5)

the stiffness and mass can be evaluated as:

Keff = 192
EI

L3
f

+ 2.4
Fappl

L f

Meff = 13

35
ρ h w f L f + ρ h (wpLp + wcLc) (6)

with Lf, wf, Lp, wp, Lc and wc the length and width of the tine, the
actuation plate and the connector, respectively (see figure 2),
and h the device thickness.The damped natural frequency of
this mode is then:
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where ξ is an alternative measure of the damping coefficient,
defined as:

ξ = 1

2Q
. (8)

Operation of the DETF requires a continuous oscillation of
the tines at the frequency of the operational mode. If the tine
is forced with a combination of Vdc and Vac at a frequency ω

as shown schematically in figure 3, the net force on the tine
(accounting for both the drive and sense plates) is:

Pe(t) = 1

2
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Figure 3. Basic actuation and detection scheme used for resonant
excitation.

where g is the initial gap between the actuation plate and the
fixed electrode, y(t) the tine displacement and α is the sense-
to-drive side ratio of plate-electrode overlap area (generally
α ≈ 1). For very small Vac(Vac � Vdc) and for small lateral
displacements of the tine during actuation (y � g), this force
reduces to:

Pe(t) = 1

2

ε0hLp

g2

(
V 2

dc(1 − α) − 2VdcVac cos(ω t)
)

(10)

whereas the effective stiffness in the lumped equation of
motion (equation (3)) becomes:

Keff,e = 192
EI

L3
f

+ 2.4
Fappl

L f
− ε0hLp

g3
V 2

dc(1 + α) (11)

(In equation (0.11) the term proportional to Vac has been
ignored by virtue of Vac � Vdc.) The equation of motion can
then be written as:
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ẏ(t) + ω2

n, e y(t) = 1

2

ε0hLp

Meffg2

×(
V 2

dc(1 − α) − 2VdcVac cos(ωt)
)

(12)

with ωn,e is the natural undamped resonance frequency in the
presence of electrostatic spring softening, that is:

ωn,e =
√
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Figure 4. Simulated frequency response of the single tine.

Figure 5. The complete DETF unit with connected ends and shorted
drive and sense plates.

The motion of the tine induces a current proportional to its
velocity, which can be sensed at the sensing plate and converted
to a voltage signal via a trans-impedance amplifier of resistance
R (figure 3):

V = Rε0hLpVdc

g2
ẏ. (14)

The variation of the output voltage amplitude V (normalized
by Vac) with forcing frequency (i.e., the frequency response of
the tine) is depicted in figure 4.

2.2. A 2-DOF electromechanical lumped model

The analysis presented in section 2.1 assumes that no
electromechanical coupling exists between the tines; this is
tantamount to assuming perfectly rigid connecting pads. In a
practical implementation, the complete DETF would be wired
as indicated in figure 5. Obviously, the pads at the end of the
tines have finite compliance. Structurally connecting the tines
with a real (i.e., non-rigid) material results in an additional
coupling spring (k12) and an additional coupling damper (c12)
(figure 6).

The former arises due to the elastic deformation of the
connecting region, whereas the latter represents the damping
effect of the air between the tines.

The value of k12 can be readily estimated with the
following consideration. If the middle point of one tine is

Figure 6. Coupling springs originating from non-rigid tine
connections.

Figure 7. The lumped model of the DETF with tine coupling.

displaced transversely by an amount u1, the middle point of
the second tine will tend to displace in the same direction
by an amount u2. From dimensional analysis, u2/u1 can only
depend on wf/Lf and d/Lf, with wf and Lf the width and length
of the tine, respectively, and d the distance between the tines.
From the lumped model of figure 7, it immediately follows
that K12/K1 = f /(1 − f ), with K1 = Keff the lumped stiffness
of a tine (equation (11)) and f = u2/u1. f can be readily
calculated by a finite element (FE) analysis. For the DETF
sensor design in table 1, an FE analysis reveals K12/K1 =
0.0017. A fit on experimental measurements (see section 4)
provides a coupling stiffness which is roughly two times
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Table 1. Summary of geometric dimensions and electrical
parameters of the DETF design for the response analysis. See
figure 2 for variable definition.

Parameter Symbol Value (μm)

Tine length Lf 964
Tine width wf 10
Capacitive plate length Lp 680
Capacitive plate width wp 10
Capacitive gap g 5
Connector length Lc 120
Connector width wc 10
Device thickness h 100
Proof mass voltage Vdc 20 V
Trans-R feedback resistance R 4.5 M	

higher, in acceptable agreement with the model; the difference
is attributed to geometric imperfections. Note that for perfectly
rigid connectors, f = 0 and hence K12 = 0. Although the value
of c12 is negligibly small for vacuum operation, it could become
significant under ambient conditions, and thus we will retain
it in the derivation for completeness.

Modeling this electromechanical coupling requires at least
a 2-DOF system analysis. Figure 7 depicts a schematic of the
lumped model for a 2-tine DETF. The overall set of equations
of the system can be written in the state-space representation
as:

m1ÿ1 + c1ẏ1 + c12(ẏ1 − ẏ2) + k1y1 + k12 (y1 − y2) = Pe,1

m2ÿ2 + c2ẏ2 + c12(ẏ2 − ẏ1) + k2y2 + k12 (y2 − y1) = Pe,2

(15)

where m1 and m2 are individual effective lumped masses
(Meff) of each tine, k1 and k2 are individual effective lumped
spring constants (Keff,e) of each tine and c1 and c2 are the
individual effective lumped damping coefficients acting on
each tine.This system of equations can be expanded to include
small fabrication variations of masses, spring constants and
electromechanical parameters. Introducing these variations
in equation (15) and replacing the mass term with the one
in equation (6) and spring constant term with the one in
equation (11) results in

[Meff(1 + εm1)]ÿ1 + c1ẏ1 + c12(ẏ1 − ẏ2)

+KTine1y1 + k12(y1 − y2) = Pe(1 + εe1)

[Meff(1 + εm2)]ÿ2 + c2ẏ2 + c12(ẏ2 − ẏ1)

+KTine2y2 + k12(y2 − y1) = Pe(1 + εe2) (16)

where

KTine1 = K0,eff,e(1 + εk1) + 2.4
Fappl

L f
(1 + εF )

KTine2 = K0,eff,e(1 + εk2) + 2.4
Fappl

L f
(1 − εF )

(17)

and εm, εk, εe and εF are the variation coefficients for the
mass, electromechanical spring constant, electromechanical
transduction (electrostatic excitation and detection) and
load sharing on each tine; these terms allow modeling of
imperfections in all critical parameters. K0,eff,e is the stiffness
of the tine at zero applied force, that is

K0,eff,e = 192
EI

L3
f

− ε0hLp

g3
V 2

dc(1 + α). (18)

Rewriting equation (16) in a matrix form to include the
electromechanical excitation and detection terms yields

Ẏ = AY + BU

V = CY (19)

where V is the trans-impedance amplifier output voltage, U is
the driving input voltage (in this case taken as equal to 1 V),
and
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ẏ1

y2

ẏ2
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and

C =
[

0
Rε0hLpVdc

g2
(1 + εe1) 0 −Rε0hLpVdc

g2
(1 + εe2)

]
(23)

A closed form solution for a system of this form is investigated
in detail in [12]. There are two important aspects of the system:
(i) the modal frequencies (eigenvalues of matrix A) and (ii)
the mode shapes (i.e., the corresponding eigenvectors). The
simplified (no damping) characteristic equation of A can be
written in the form [12]

ω4 − ω2(ω2
a + ω2

b

) + (
ω2

aω
2
b − ω4

ab

) = 0 (24)

where

ω2
a = KTine1 + k12

Meff(1 + εm1)
,

ω2
b = KTine2 + k12

Meff(1 + εm2)
,

ω2
ab = k12

Meff
√

(1 + εm1)(1 + εm2)
.

(25)

Here, ωa is the system frequency when the second tine is
clamped and ωb is the system frequency when the first tine is
clamped. ωab is a term related to the strength of the coupling.
Equation (24) has two solutions, resulting in two frequency
peaks:

ω2
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ω2

a + ω2
b
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2
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ω2
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2
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Figure 8. Mohr’s circle relating ω1, ω2, ωa, ωb and ωab [12].

These two fundamental frequencies can be graphically
depicted on Mohr’s circle in figure 8 [12]. The lowest
corresponds to the in-phase mode, whereas the latter represents
the anti-phase mode.

For a perfectly symmetric DETF structure (εm = εk = εe =
εF = 0) without any damping, the two modal frequencies
simplify to

ω2
1,p = Keff,e

Meff

ω2
2,p = Keff,e + 2k12

Meff
.

(27)

Hence, the frequency separation at zero load is

ω2,p − ω1,p =
√

Keff,e + 2k12 − √
Keff,e√

Meff
. (28)

As the compressive tip loading increases, the effective stiffness
of the tines decreases (equation (11)). When the load reaches
a critical value (ω1,p = 0) buckling occurs. The buckling load
is

Fbuckling,p =
−192 EI

L2
f
+ ε0hL f Lp

g3 V 2
dc (1 + α)

2.4
. (29)

When the tine buckles, the frequency of the second mode,
which is the minimum operational frequency for this
mode, is

ω2,min,p =
√

2k12

Meff
. (30)

Equation (30) defines the lower frequency limit for the DETF
operation, if second mode shape (out-of-phase) is chosen. This
limit is defined by the buckling load for the first mode shape
(in-phase mode). Obviously, in the ideal case of perfectly rigid
connection between the tines (k12 = 0), the separation between
the modes vanishes and we recover the results of the 1-DOF
model.

Any asymmetry in the system (primarily caused by
manufacturing imperfections) would affect the natural
frequencies of the two modes, as shown in equation (26).
The effect of these imperfections on the DETF response is
discussed in the next section.

3. Effect of tine coupling and manufacturing
imperfections

The impact of parameter variations (in mass, spring constant,
electromechanical excitation-detection coefficients and load
sharing of the tines) on the sensor response for a prototypical
DETF resonator is analyzed. As the model presented in this
paper reduces to the existing model (i.e., a single mass model
with no geometric imperfections and perfectly symmetrical
load distribution between the tines) when all asymmetries are
set to zero, this section allows a quantitative comparison of
the two formulations, providing motivation for the proposed
development. A list of the geometric dimensions and electrical
parameters assumed are given in table 1.

3.1. Imbalance in tines stiffness

Figure 9 provides a snapshot of the sensitivity of the frequency
response of the DETF (design parameters in table 1) to small
variations in the lumped effective spring constant of one of
the tines, with all other parameters kept constant and equal for
both tines.

The coupling stiffness k12 is also assumed to be zero
to capture the effect of lumped spring constant variation
of one tine. As expected, in the absence of asymmetries
(i.e., when the tines have exactly the same values for all
parameters), there is only a single peak. Increasing the tine
stiffness imbalance results in the appearance of a second
peak and an increasing separation of the modal frequencies.
The minima in the amplitude/frequency curves emerge as
a result of the interaction of the two tines, at a frequency
where the phases are opposite and the amplitudes very
close (destructive interference). Note that the zero-response
frequency (the ‘minimum amplitude’ frequency) also shifts
left with increasing tine stiffness imbalance.

3.2. Imbalance in tines mass

Figure 10 shows the dependence of the frequency response of
the DETF (design parameters in table 1) to small variations in
the lumped effective mass of one of the tines. Again, all other
parameters (including the stiffness terms) are kept constant and
equal for both tines. The effect is similar to that of stiffness
imbalance (figure 9), with the exception that this time the peak
is shifted in the opposite direction.

3.3. Effect of coupling stiffness from the end blocks

Introducing the coupling spring, k12, induces a separation
of the modal frequencies, as evident from the Mohr circle
representation (figure 8) and equation (28). Figure 11 shows
the frequency responses of the DETF with different coupling
stiffness values, with a 1% tine stiffness imbalance. The 1%
imbalance is introduced in order to make both peaks visible. As
the peak progressively separate with increasing coupling, the
zero-response point (which is unaffected by the numerator of
the transfer function) does not move, while the lower frequency
peak (corresponding to the in-phase mode) gets closer to the
zero-response frequency and decreases in amplitude. This kind

6
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Figure 9. Effect of tine stiffness imbalance on the frequency response of the DETF (design parameters in table 1).

Figure 10. Effect of tine mass imbalance on the frequency response of the DETF (design parameters in table 1).

Figure 11. Effect of the coupling stiffness on the frequency response of the DETF, with a tine stiffness imbalance of 1% (design parameters
in table 1).

of suppression is critical in the normal operation of the DETF
because the control electronics should avoid locking to the
lower frequency peak and jumping from one peak to the other,
especially under larger load fluctuations.

3.4. Imbalance in electromechanical parameters

In addition to variations in the mechanical parameters
discussed above, by virtue of the coupled nature of

MEMS capacitive structures, electromechanical parameters
like voltage-to-force conversion coefficients (second and
fourth terms in matrix B, equation (22)) and velocity-to-
voltage conversion coefficients (second and fourth terms in
matrix C, equation (23)) also affect the overall sensor response.
Figure 12 shows the frequency response of the DETF with
different electromechanical parameter variations, with a tine
stiffness imbalance of 1%. Here, εe1 is the variation in the term
ε0hLpVdc/g2, which appears in both the B and C matrices.
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Figure 12. Effect of electromechanical parameter imbalance on the frequency response of the DETF (design parameters in table 1).

Figure 13. The evolution of the force–frequency relation of the DETF (design parameters in table 1) with respect to load imbalance, εF, on
the tines, in the absence of coupling (k12 = 0). In the graph, the frequency gap between the first and the second resonant modes increases
faster with increasing imbalance, and for each value of εF, the first mode hits zero-frequency (meaning pull-in, or buckling) well before the
second mode, as indicated by the dashed vertical line.

Practically, these imbalances are induced by variations in
two geometric parameters: the width of the capacitive gap,
g, and the length of the capacitive plate, Lp. Importantly, the
capacitive gap also affects the spring constant of the tines,
i.e., any increase in the gap results in a decrease in tine
width, resulting in a reduced mechanical tine stiffness; this
effect is lumped in the parameter εk1 in figure 9. Note that
the electromechanical parameters hardly affect the ‘resonance
frequencies’ or ‘frequencies of poles’ of the two modes, but
they do affect the ‘frequency of the zero’ that emerges between
the modes.

3.5. Load sharing between the tines

Beyond all the possible asymmetries discussed above, there
is one more parameter that can be affected by fabrication
imperfections: the load sharing between the tines. Although
the structure is perfectly symmetric by design, any fabrication
imperfection, causing slight cross-section variations in the
tines, results in an imbalanced load distribution. This
imbalance has profound effects on the dynamic range and the
maximum operational loading of the sensor. Figure 13 shows
the evolution of the force–frequency relation of the DETF

(design parameters in table 1) with respect to load imbalance,
εF, on the tines, in the absence of stiffness coupling (k12 = 0).
As is evidently shown in the graph, the frequency gap between
the first and the second resonant modes increases faster with
increasing imbalance, and the first mode hits zero-frequency
(meaning pull-in, or buckling) well before the second mode.

Since stiffness coupling is ignored in figure 13, the plots
for ω1 and ω2 are identical when εF = 0. Upon the introduction
of a coupling stiffness of 1% of the nominal tine stiffness (k12 =
k1/100), the frequency-force profiles for ω1 and ω2 at εF = 0
separate, as shown in figure 14. Yet the relation between the
gap of the modal resonance frequencies and the applied load
as a function of load distribution between the tines is very
similar to that of the zero-coupling case. Note that even for a
small load imbalance (εF = 0.01), the modes have a significant
divergence: at a compressive force of ∼120 mN, the in-phase
peak falls below 0 Hz (signaling the onset of buckling), while
the out-of-phase peak is still at ∼9 KHz.

4. Experimental verification

As the asymmetries discussed in this model are induced by
manufacturing imperfections and are impossible to eliminate

8
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Figure 14. The evolution of the force–frequency relation of the DETF (design parameters in table 1) with respect to load imbalance, εF, on
the tines, assuming a coupling stiffness of 1% of the tine stiffness (k12 = k1/100). In the graph, the frequency gap between the first and the
second resonant modes increases faster with increasing imbalance, and for each value of εF, the first mode hits zero-frequency (meaning
pull-in, or buckling) well before the second mode, as indicated by the dashed vertical line.

and/or accurately control, an experimental platform where
individual asymmetries are selectively introduced one at
a time for model validation is impossible to implement.
Obviously, artificially large individual geometric asymmetries
could be intentionally introduced in the design (e.g., 10% width
difference between the tines) in order to dwarf all other effects;
however, their impact on the DETF performance would be
too large to be meaningful. Consequently, the experimental
validation of the model is conducted by measuring the dynamic
response of a real design and demonstrating that an excellent
fit is obtained with the proposed model, when reasonable
magnitudes for all asymmetries are assumed. The DETF
design used for the experimental validation is identical to that
described in [8]. The nominal design parameters are reported
in table 1. The test setup and the frequency response of the
DETF at zero load are illustrated in figure 15. The frequency
sweep is performed using a LF353 OpAmp trans-impedance
stage with 4.5 M	 feedback resistor, in vacuum (2.7 mTorr)
and with a proof mass voltage, Vdc = 40 V.

The effect of the feed-through capacitance is eliminated
by a feed-through cancellation method similar to that discussed
in [13], but using a manually adjusted gain stage instead of an
identical device in close proximity. This is achieved by feeding
the drive signal with opposite phase to a very small capacitance
between the inverting input of the trans-impedance stage and
manually setting the amplitude to match the injected currents
by the feedthrough path and the added capacitive path. (In [13],
manual gain setting was unnecessary, as identical devices have
identical feedthrough paths.) Due to balanced excitation, the
gain difference between two modes is significant (>20 dB)
and the quality factor of the operational mode is above 60 000.
This guarantees locking on the desired mode. In theory, the in-
phase mode can be eliminated entirely by perfectly symmetric
driving (whereby the forcing signal on the two tines has no
phase difference); in practice, any geometric or chip/substrate
bonding asymmetry would make it appear, as discussed above.
As the frequency separation of the two modes is very small
(for the geometry under consideration, the measured in-phase
mode has a natural frequency of 47.28 kHz versus a frequency

of 47.63 kHz for the out-of-phase mode), balanced actuation
is crucial. It should also be noted that these are the first modes
visible with balanced excitation and detection of the parallel
plate structure, implying that the parasitic modes 1 and 2 in
[8] are not interfering at zero load.

Based on the analysis in section 2.2, a fitting study is
performed on the zero-axial load frequency response obtained
in figure 15, resulting in the curve depicted in figure 16 with
a coefficient of determination (R2) of 95.4% (0.954). The
imperfection parameters extracted from the fit are listed in
table 2. Note that εm1 and εm2 are similar. The same applies
to εin1 and εout1, and to εin2 and εout2 also. There is a slight
difference between εk1 and εk2. Finally εin1 is almost twice
as large as εin2. These parameters are consistent with a fairly
uniform undercut of the structure, possibly due to slight scaling
effects during the pattern transfer steps and additional deep
reactive ion etch.

To capture the effect of the load imbalance, a fitting study
has been conducted on the loading test results reported in
[8]. The loading test was conducted in a vacuum chamber
with a viewport for alignment purposes. Figure 17 shows the
test setup with Polytec MSA-500 white light interferometer
for sample-to-sensor alignment. The sample is aligned to the
sensor at atmospheric pressure via a 10-DOF stage (details in
[8]), and the alignment is verified during the pump-down and
loading stages to make sure that the force applied is aligned
with the sensors’ sensitive axis to the best extent possible.
(Incidentally, this setup is capable of testing various thin film
materials with the same precision.) The load is applied in
compression, as this is the primary loading mode for micro-
mechanical test frames (the key application for the proposed
DETF design).

When the DETF is axially compressed, the experimental
results show sudden buckling at a load much smaller
than predicted with FEs simulations or analytical modeling
(figure 18). The 2-DOF model presented in this work, with the
same imbalance parameters fitted on the zero load response
with a coefficient of determination (R2) of 99.2% (0.992)
(table 2) and a force imbalance, εF = 8.17%, captures the
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Figure 15. The test setup and the frequency response of the DETF at zero load.

Figure 16. Fitting of the analytical 2-DOF model (equation (19)) on the experimental data depicted in figure 15 with a coefficient of
determination (R2) of 95.4% (0.954).
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Figure 17. Vacuum test setup with Polytec MSA-500 white light interferometer for sample alignment.

Figure 18. Fitting result of the analytical 2-DOF model (equation (19)) on the experimental loading test reported in [7]. The fitting, with a
coefficient of determination (R2) of 99.2% (0.992), assumes a force imbalance, εF = 8.17%, resulting in an early buckling of the in-phase
mode, hence limiting the overall range of the force sensor.

Table 2. Fitted imperfection parameters.

εm1 εm2 εk1 εk2 εin1 εin2 εout1 εout2 k12 (N m–1)

−0.0313 −0.0313 −0.2154 −0.2248 −0.1144 −0.2739 −0.1144 −0.2739 0.9617

frequency/load trend for the out-of-plane mode as well as
buckling of the in-phase mode in excellent agreement with the
experimental results. By contrast, a single-DOF model, even
fitted on the experimental results [8], overpredicts the bucking
load by as much as 18%.

5. Conclusions

This paper presented a two-degree-of-freedom analytical
model for the electromechanical response of double ended
tuning fork (DETF) force sensors. The model captures the
effect of the mechanical interaction between the tines and
allows investigation of the effect of a number of asymmetries,

in tine stiffness, mass, electromechanical parameters and
load sharing between the tines. The mechanical coupling
between the tines (resulting from the finite stiffness of
the tine connectors at both ends) induces a frequency
separation between the in-phase and out-of-phase resonant
modes. This separation cannot be captured by the standard
single DOF model, and has profound implications on the
electromechanical behavior of the sensor. The magnitude of
the frequency separation and the relative intensity of the two
peaks are affected by all the asymmetries mentioned above.
To validate the model, a DETF sensor was designed and
fabricated, and driven by a custom-built PLL circuit. The
peak separation clearly emerged and the model presented
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in this paper provided an excellent fit to the experimental
frequency response, assuming reasonable values for all the
geometric asymmetries. Two key conclusions can be extracted
by this model: (i) as the external axial load is increased,
the in-phase mode reaches zero frequency (buckling) much
faster than the out-of-phase (i.e., operational) mode, effectively
limiting the range of the device. This is consistent with
previously published results [8]. (ii) During the operation,
balanced excitation is essential to guarantee that the out-of-
phase mode remain significantly stronger than the in-phase
mode, thus allowing sharp PLL locking and hence robust
performance. The proposed analytical model can be used to
assess the magnitude of asymmetries introduced by a given
manufacturing process and, more importantly, to accurately
predict the performance of a DETF device in a real design.
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