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“Self Dual” Solutions of Topologically Massive Gravity Coupled with the

Maxwell-Chern-Simons Theory

T. Dereli and Ö. Sarıoğlu
Department of Physics, Middle East Technical University, 06531 Ankara, TURKEY

We give a general class of exact solutions to the (1+2)-dimensional topologically massive gravity
model coupled with Maxwell-Chern-Simons theory where a “self duality” condition is imposed on
the Maxwell field.

It is well known that general relativity in (1+2) dimensions has no degrees of freedom and the gravitational field is
determined solely by the matter sources (see [1] and the references therein). However a dynamical model is provided by
the topologically massive gravity (TMG) theory which is obtained by the addition of the gravitational Chern-Simons
term to the usual Einstein-Hilbert piece in the action [2]. Recently, a general class of exact black hole solutions to
TMG with a negative cosmological constant has been obtained [3] and it has also been shown that these solutions
are supersymmetric and asymptotically approach the extremal BTZ black hole solution [4]. Here, we present a new
class of solutions to TMG coupled with Maxwell-Chern-Simons theory where the Maxwell field has been constrained
to obey the “self duality” condition.
We begin with the action I[e, ω,A] =

∫

M
L where the Lagrangian 3-form is given by

L =
1

µ
(ωa

b ∧ dωb
a +

2

3
ωa

b ∧ ωb
c ∧ ωc

a) +
1

2
R ∗ 1− λ ∗ 1−

1

2
F ∧ ∗F −

1

2
mA ∧ F . (1)

Apart from the usual Einstein-Hilbert term and the negative cosmological constant λ = −1/l2 < 0, the gravitational
Chern-Simons term with the coupling constant µ, which has dimensions of mass, is written in terms of the connection
1-forms ωa

b; there is also the standard Maxwell Lagrangian given in terms of the Maxwell field F ≡ dA along with
the vector Chern-Simons term with the coupling constant m. The variation of I with respect to the orthonormal
coframes ea and the electromagnetic potential A yields

1

µ
Ca +Ga + λ ∗ ea = −τa[A] , (2)

d ∗ dA+mdA = 0 , (3)

respectively. Here

τa[A] = −
1

2
(ιadA ∧ ∗dA − dA ∧ ιa ∗ dA)

is the electromagnetic field energy momentum 2-form along with the standard Einstein 2-forms Ga ≡ Gab ∗ eb =
− 1

2R
bc ∗ eabc and the Cotton 2-forms Ca ≡ DYa = dYa + ω b

a ∧ Yb, where Ya ≡ (Ric)a − 1
4Rea is defined in terms of

the Ricci 1-forms (Ric)b ≡ ιaR
a
b and the curvature scalar R ≡ ιa(Ric)a. The Ra

b, of course, are the curvature 2-forms
Ra

b = dωa
b + ωa

c ∧ ωc
b of the connection 1-forms ωa

b, which satisfy the Cartan structure equations dea + ωa
b ∧ eb = 0,

so that there is no torsion present in the theory. The Hodge duality operation is specified with the oriented volume
element ∗1 = e0 ∧ e1 ∧ e2 and eabc is a short hand notation for ea ∧ eb ∧ ec.
We choose the local coordinates (t, ρ, φ) and make a general ansatz for the Maxwell field

F = dA = E(ρ) e0 ∧ e1 +B(ρ) e1 ∧ e2 , (4)

and for the orthonormal coframe 1-forms as

e0 = f(ρ)dt , e1 = dρ , e2 = h(ρ)(dφ+ a(ρ)dt) , (5)

so that the metric takes the form

ds2 = −e0 ⊗ e0 + e1 ⊗ e1 + e2 ⊗ e2 , (6)

which is most suitable for a study of rotationaly symmetric solutions.
This choice gives
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− Z +
1

l2
+

1

µ

(

X ′ + γX +
1

2
β(Y −W )

)

=
1

2
(E2 +B2) , (7)

−X +
1

µ

(

1

2
(Z −W − Y )′ + α(Z − Y ) +

3

2
βX

)

= −EB , (8)

Y −
1

l2
+

1

µ

(

(γ − α)X +
1

2
β(W − Z)

)

= −
1

2
(E2 −B2) , (9)

W −
1

l2
+

1

µ

(

X ′ + αX +
1

2
β(Y + Z − 2W )

)

=
1

2
(E2 +B2) , (10)

for the gravitational field equations (2), whereas the modified Maxwell equations (3) become:

B′ + αB − (β +m)E = 0 , (11)

E′ + γE −mB = 0 , (12)

where we denote derivatives with respect to ρ by a prime.
Here we introduced the functions:

W ≡ α′ + α2 −
3

4
β2 , X ≡

1

2
β′ + γβ , Y ≡ αγ +

1

4
β2 , Z ≡ γ′ + γ2 +

1

4
β2 , (13)

which actually describe the curvature 2-forms Ra
b, and

α ≡
f ′

f
, β ≡

a′h

f
, γ ≡

h′

h
, (14)

that come from the connection 1-forms ωa
b (see [3] for details).

Assuming the “self duality” of the electromagnetic field as

E = kB with k2 = 1 (15)

and substituting this into (11) and (12), we find γ + kβ = α, and using this in (9) gives (γ + k
2β)

2 = 1
l2 . Hence one

finds that α and γ are determined by β alone as

α =
k

2
β +

1

l
, γ = −

k

2
β +

1

l
. (16)

These ubiquitous conditions have first appeared in the study of the general self dual solutions of the Einstein-Maxwell-
Chern-Simons theory in (1+2) dimensions [5]. They are in fact the necessary and sufficient conditions that any solution
to TMG of the form (5), (6) has to satisfy in order to be supersymmmetric as well [3].
The above conditions (16) simplify W , X , Y and Z which now take the form

W = u+
1

l2
, X = ku , Y =

1

l2
, Z =

1

l2
− u (17)

where

u ≡ −
1

2
β2 +

k

2
β′ + k

β

l
. (18)

Finally, we find that equations (7)...(12) are satisfied simultaneously provided

u′ − k β u+ (
1

l
+ µk)u = y , (19)

y′ − k β y + 2(
1

l
−mk)y = 0 , (20)

where we defined y ≡ k µB2.
By setting y = k u

z in (20), we find a linear first order differential equation for z as

z′ + (µk + 2mk − 1/l)z = k . (21)
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Integrating this, one finds

z =
k

µk + 2mk − 1/l

(

1 + y0e
(1/l−µk−2mk)ρ

)

(22)

for some integration constant y0. Substituting this back into (19), one finds that

u′ − k β u+

(

1

l
+ µ k −

µk + 2mk − 1/l

1 + y0e(1/l−µk−2mk)ρ

)

u = 0 (23)

and taking u = k β
v , this simplifies to a linear first order differential equation for v as

v′ +

(

1

l
− µ k +

µk + 2mk − 1/l

1 + y0e(1/l−µk−2mk)ρ

)

v = 2 . (24)

This can be integrated easily and one finds

v =
1

e(1/l−kµ)ρ + 1
y0

e2kmρ

(

v0 +
2

1/l− µk
e(1/l−µk)ρ +

1

kmy0
e2kmρ

)

(25)

with a new integration constant v0.
Going back to the definition of u, (18), gives a differential equation for β and by setting ω ≡ 1

β , it becomes:

ω′ +

(

2e(1/l−µk)ρ + 2
y0

e2kmρ

v0 +
2

1/l−µk e
(1/l−µk)ρ + 1

kmy0

e2kmρ
−

2

l

)

ω + k = 0 . (26)

This is of the form

ω′ +

(

ϕ′

ϕ
−

2

l

)

ω + k = 0 , (27)

with

ϕ = v0 +
2

1/l− µk
e(1/l−µk)ρ +

1

kmy0
e2kmρ , (28)

and its solution is given by (see [5])

ω =
1

β
=

kΩ

ϕe−2ρ/l
where Ω ≡ c0 −

∫ ρ

dρ̃ ϕ(ρ̃) e−2ρ̃/l (29)

for some integration constant c0. In this case, Ω is:

Ω = c0 +
v0l

2
e−2ρ/l +

2

1/l2 − µ2
e−(1/l+µk)ρ −

1

2kmy0(km− 1/l)
e2(km−1/l)ρ . (30)

Finally, integrating for the metric functions using (14) and (16), we find

f = f0 eρ/l Ω−1/2 , (31)

h = h0 eρ/l Ω1/2 , (32)

a = −a0 + k
f0
h0

Ω−1 , (33)

for some integration constants f0, h0, a0 whereas the magnetic field becomes

B2 =
µk + 2mk − 1/l

kµy0
e2(km−1/l)ρ Ω−1 . (34)

As a first check of this solution, we look at the kµ → ∞ limit. Then the contributions from the gravitational
Chern-Simons term vanish and we must arrive at the “self dual” solutions of the Einstein-Maxwell-Chern-Simons
theory which was studied earlier in [5]. Taking kµ → ∞ in (30), one gets
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Ω → c0 +
v0l

2
e−2ρ/l −

1

2kmy0(km− 1/l)
e2(km−1/l)ρ . (35)

To compare this result with [5], take equation (23) of [5] and substitute in (21) to find

Ω = c0 +
l

2
e−2ρ/l +

u0

2(km− 1/l)
e2(km−1/l)ρ . (36)

Hence our solution has the correct limit provided v0 = 1 and u0 = − 1
kmy0

.

As for the physical properties of our solution, it is obvious that depending on the values of the integration constants
c0, v0 and y0, and also on the values of l, µ and m, the metric functions may have singularities. One needs to carefully
study the causal structure of our solution to understand its nature and the geometry that it describes. However, just
as explained in [3], this is again rendered impossible since one cannot invert the functional relation r = h(ρ) which is
crucial to put the line element given by (5), (6) and (31)..(33) into the well studied form of the BTZ (and hence the
AdS) metric.
Nevertheless one can still work out the quasilocal mass and the angular momentum corresponding to this solution.

The analysis is very similar to the ones given in [5] and [3], and we refer the reader to these articles for the missing
details below. The quasilocal angular momentum is

j(r) = kh2
0ϕ(r) , (37)

whereas the quasilocal mass is given by

m(r) = a0j(r) = ka0h
2
0ϕ(r) (38)

in an AdS background. Here ϕ is as given in (28) and it is understood that r = h(ρ) has to be inverted so that ϕ is
a function of r.
The total angular momentum J and the total mass M are defined by the limits J ≡ j(r)|r→∞ and M ≡ m(r)|r→∞,

respectively. We assume that r → ∞ limits can be found by taking the ρ → ∞ limits in our solution, i.e. that
ϕ(r)|r→∞ = ϕ(ρ)|ρ→∞. Just as was done in [5] and [3], start by examining a(r). Depending on the values of l, µ and

m, a either goes to −a0 or −a0 +
kf0
h0c0

as r → ∞. For a to vanish asymptotically as r → ∞, a0 has to be chosen

either as 0 or as kf0
h0c0

. When 1/l > kµ or km > 0, a0 = 0 and hence M = 0 whereas J → ∞. For 1/l < kµ and

km < 0, J = kh2
0v0. Then a0 = kf0

h0c0
, M = a0J and both M and J are finite. As kµ → ∞, this solution approaches

the extremal BTZ solution. We again refer the reader to [5] and [3] for the details.
We next examine the special cases i) m = 0 and 1/l 6= 0, ii) m 6= 0 and 1/l = 0, and iii) m = 1/l = 0. In all these

cases, one has to go back to the original equations since simply taking the corresponding m → 0 and (or) 1/l → 0
limits in the above expressions do not give the correct answers.
i) m = 0 and 1/l 6= 0:
In this case, the equation for v becomes

v′ +

(

y0(1/l− µk)e(1/l−µk)ρ

1 + y0e(1/l−µk)ρ

)

v = 2 (39)

which yields

v =
1

1 + y0e(1/l−µk)ρ

(

v0 +
2

y0
ρ+

2

1/l− µk
e(1/l−µk)ρ

)

(40)

with an integration constant v0.
Again using the definition of u, (18), one gets a new differential equation for β and by setting ω ≡ 1

β , one again

finds a differential equation of the form (27). Only this time

ϕ = v0 +
2

y0
ρ+

2

1/l− µk
e(1/l−µk)ρ , (41)

and

Ω = c0 +
v0l

2
e−2ρ/l +

2

1/l2 − µ2
e−(1/l+µk)ρ +

l

y0
ρ e−2ρ/l . (42)
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The metric functions are again of the form (31)..(33) only that Ω is now given by (42). Now the magnetic field
becomes

B2 =
µk − 1/l

kµy0
e−2ρ/l Ω−1 . (43)

ii) m 6= 0 and 1/l = 0:
For this case, following similar steps as was done in i), one gets

ϕ = v0 −
2

kµ
e−kµρ +

1

kmy0
e2kmρ , (44)

and

Ω = c0 − v0ρ−
2

µ2
e−kµρ −

1

2y0m2
e2kmρ . (45)

Using these, the metric functions are then found to be

f = f0 Ω−1/2 , (46)

h = h0 Ω1/2 , (47)

a = −a0 + k
f0
h0

Ω−1 , (48)

for some new integration constants f0, h0, a0 whereas the magnetic field becomes

B2 =
µ+ 2m

µy0
e2kmρ Ω−1 . (49)

iii) m = 1/l = 0:
In this case, the equation for v is

v′ −

(

kµy0e
−kµρ

1 + y0e−kµρ

)

v = 2 (50)

which is easily integrated as

v =
1

1 + y0e−kµρ

(

v0 +
2

y0
ρ−

2

kµ
e−kµρ

)

. (51)

Following similar steps as in i) and ii), one finds

ϕ = v0 +
2

y0
ρ−

2

kµ
e−kµρ , (52)

and

Ω = c0 − v0ρ−
1

y0
ρ2 −

2

µ2
e−kµρ . (53)

Now the metric functions are of the form (46)..(48) where it is understood that Ω is given by (53). Finally the
magnetic field is simply

B2 =
1

y0
Ω−1 . (54)

In this work, we have obtained a general class of “self dual” solutions to TMG model coupled with Maxwell-Chern-
Simons theory which covers all the particular cases studied previously. Even though we couldn’t give a detailed
analysis of the causal structure of our solutions, we were able to analyze the corresponding total angular momentum
and the total mass. We also found the special solutions corresponding to taking the cosmological constant and (or)
the Chern-Simons coupling constant to zero.
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