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Abstract—In this paper a Hilbert space structure of probability
mass functions (PMF) will be presented. The tools provided by
the Hilbert space, specifically the norm and the inner product,
may be useful while analyzing and improving the sum-product
algorithm in many aspects. Our approach provides a metric
distance between PMFs and a new point of a view of the
log-likelihood ratio (LLR) such that the LLR representation is
nothing but a Hilbert space representation.

I. INTRODUCTION

The sum-product algorithm has been extremely popular in
the communication community since the invention of turbo
codes [3], [4], [5]. The sum-product algorithm elegantly solves
the marginalized product density problem in a message passing
fashion. The messages passed during the sum product algo-
rithm (beliefs) are in fact probability density functions (PDF).
Therefore, representation of the PDFs is crucial for the sum-
product algorithm.

A good candidate for the representation of PDFs is a
linear vector space structure. The linear vector spaces are very
powerful mathematical structures such that they are employed
in many and very different areas of science.

A linear vector space always has the algebraic operations,
namely the addition and the scalar multiplication. Some of the
vector spaces have some other tools which are used to define
a geometric structure over the vector space. These tools are
the norm and the inner product.

Roughly speaking, the norm of a vector is defined as the
length of the vector. Together with the subtraction operation
the norm defines a distance between two vectors. A proper
distance function between PDFs is frequently needed durin the
researches on the sum-product algorithm, such as analyzing the
convergence of the sum product algorithm or evaluating the
performance of lossy message computation algorithms. The
Kullback-Leibler (KL) divergence is employed in the literature
as the distance function between PDFs [6], [7]. However, KL
divergence is not a true distance since it does not satisfy
triangle inequality and is not symmetric.

Second geometric operation is the inner product. The inner
product defines the angle between two vectors, consequently
the concept of orthogonality and projections. An inner product
always defines a proper norm and hence a proper distance.
Furthermore, we claim that, the inner product of PDFs may
be quite useful for developing lossy message computation
algorithms. If a proper inner product can be defined over a
vector space, the vector space becomes an inner product space.

Moreover, if the vector space is complete with respect to the
inner product induced norm it is called a Hilbert space.

The sum-product algorithm is usually employed in the
communication receivers in order to detect the transmitted
symbols. These symbols usually take values from a discrete
alphabet. Hence, the PDFs describing their probabilities are of
discrete type. Therefore, in this paper we will restrict ourselves
to the discrete PDFs or probability mass functions (PMF) and
derive the Hilbert space of PMFs. In other words, we will
define the algebraic and geometric operations for the PMFs.
While defining all of these operations it should be kept in
mind that these operations should be meaningful in terms
of detection and they should be useful in the sum-product
algorithm.

Our definition of the inner product of PMFs suggests a
trivial mapping from the set of PMFs to RN . Surprisingly,
this mapping is nothing but the log-likelihood ratio (LLR)
representation. In other words, our work on deriving a Hilbert
space of PMFs ends up with the well known LLR. The
LLRs first introduced in the classical detection theory in
order to get rid of the exponential functions frequently faced
due to the normal distribution [9]. Then the turbo decoding
algorithm assigned more jobs to LLRs. Firstly, they are used
for defining the extrinsic information. Secondly, LLRs are
used for numerical stability of the sum-product algorithm.
Finally, LLRs are employed in methods for analyzing the
iterative algorithms. Now, we assign a different meaning to
LLR representation such that the LLR representation is a
Hilbert space representation of PMFs.

A Hilbert space of PDFs is first presented in literature in [8].
Their derivation is for a class of continuous PDFs. On the other
hand our derivation is for discrete PDFs or PMFs. Although,
both of our and their work can be derivable from each other
easily, our derivation is independent of theirs. Moreover, we
emphasize the connection between the Hilbert space of PMFs,
the detection theory and the sum-product algorithm.

This paper is organized as follows. In the following section
the algebraic structure of the vector space will be defined. In
the next section the geometric structure of the Hilbert space of
PMFs will be derived. Finally the representation of the sum-
product algorithm by using the Hilbert space of PMFs will be
presented. The details in the proofs in the paper are omitted
due to the lack of space. However, all of the omitted details
are usually direct consequences of the definitions.
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II. ALGEBRAIC STRUCTURE

The first step in constructing a Hilbert space over a set is
constructing an algebraic structure over the set. The algebraic
structure of a vector space consists of addition and scalar
multiplication operations. While describing these operations,
the emphasis will be on making them meaningful in the sense
of detection.

First of all, the set should be defined formally. Let the set
A be the support set of a discrete random variable. Then VA
is defined as the set of all possible PMFs defined over A:

VA , {q(x) : A → [0, 1]|
∑
∀xi∈A

q(xi) = 1}. (1)

This set contains the necessary PMFs encountered in a
detection process of discrete random variables. The detection
process can be summarized as estimating the value of an
unknown random variable from an observed variable. For
instance, assume that the random variable x̃, whose support
set is A, is to be estimated given the observed variable r̃. The
known densities are usually px̃(x) and fr̃|x̃(r|x). Obviously
px̃(x) is an element of VA, whereas fr̃|x̃(r|x) is not. However,
in a detection process we are usually more interested in
px̃|r̃(x|r) rather than fr̃|x̃(r|x). If we regard r in px̃|r̃(x|r)
as a parameter of the function rather than an argument, then
px̃|r̃(x|r) becomes an element of VA.

Now the addition operation can be defined. In order to
explain the meaning of the addition operation consider the
following situation. A random variable x̃ is to be detected
using two observed variables r̃1 and r̃2 which are conditionally
independent given x̃. In other words;

fr̃1,r̃2|x̃(r1, r2|x) = fr̃1|x̃(r1|x)fr̃2|x̃(r2|x). (2)

Moreover, let all events of x̃ be equally likely. We can infer
some information on x̃ given the value of r̃1. This information
is the a posteriori PMF of x̃ given r̃1, i.e. px̃|r̃1(x|r1). Let
q1(x) = px̃|r̃1(x|r1). Similarly let the deduced information
about x̃ given r̃2 be q2(x) = px̃|r̃2(x|r2). Then it is mean-
ingful to define the addition of q1(x) and q2(x) as the total
information inferred about x̃ given r̃1 and r̃2 together. In other
words;

q1(x)⊕ q2(x) = px̃|r̃1,r̃2(x|r1, r2) (3)

where ⊕ denotes the addition operator. In order to derive
q1(x) ⊕ q2(x) in terms of q1(x) and q2(x) Bayes’ theorem
and conditional independence can be used as follows:

q1(x)⊕ q2(x) =
fr̃1,r̃2|x̃(r1, r2|x)px̃(x)

fr̃1,r̃2(r1, r2)

=
fr̃1|x̃(r1|x)fr̃2|x̃(r2|x)px̃(x)

fr̃1,r̃2(r1, r2)
.

Using Bayes’ theorem once more the following expression can
be derived.

q1(x)⊕ q2(x) =
px̃|r̃1(x|r1)px̃|r̃2(x|r2)fr̃1(r1)fr̃2(r2)

fr̃1,r̃2(r1, r2)px̃(x)

= q1(x) q2(x)
fr̃1(r1)fr̃2(r2)

fr̃1,r̃2(r1, r2)px̃(x)
(4)

Since it is assumed that all events of x̃ are equally likely, the
last term in the multiplication in Equation 4 is independent of
x and can be replaced with a constant, i.e.;

q1(x)⊕ q2(x) = C q1(x) q2(x). (5)

We know from Equation 3 that q1(x) ⊕ q2(x) is a posteriori
PMF. Hence, the area underneath should be equal to 1.
Therefore,

C =
1∑

∀xi∈A q1(xi)q2(xi)
. (6)

Finally the addition of PMFs can be defined as follows;

q1(x)⊕ q2(x) ,
q1(x) q2(x)∑

∀xi∈A q1(xi)q2(xi)
. (7)

After defining the addition operation the scalar multiplica-
tion operation, which will be denoted by �, can be defined
for positive integer scalars easily as follows:

n� q(x) = q(x)⊕ q(x)⊕ . . .⊕ q(x)︸ ︷︷ ︸
n times

(8)

=
qn(x)∑

∀xi∈A qn(x)
(9)

This result can be generalized to all real numbers and the
definition of the scalar multiplication can be obtained as in
Equation 10.

r � q(x) ,
qr(x)∑

∀xi∈A qr(x)
(10)

Now it should be proven that these elements form a vector
space over R.

Theorem 1. The set VA together with the ⊕ and � operations
forms a vector space over R.

Proof:. Firstly it should be proven that the VA and the ⊕
operation forms an abelian group.
• Closure: For all q1(x), q2(x) ∈ VA,

q3(x) = q1(x)⊕ q2(x) ∈ VA. (11)

• Commutativity: For all q1(x), q2(x) in VA
q1(x)⊕ q2(x) = q2(x)⊕ q1(x). (12)

• Associativity: For all q1(x), q2(x), q3(x) in VA
(q1(x)⊕ q2(x))⊕ q3(x) = q1(x)⊕ (q2(x)⊕ q3(x))

= q1(x)⊕ q2(x)⊕ q3(x)

• Neutral element: Let e(x) = 1
|A| , where |A| denotes the

number of elements in A. Then for all q(x) in VA
q(x)⊕ e(x) = e(x)⊕ q(x) = q(x)

• Inverse element: For all q(x) ∈ VA there exist a

q−1(x) =
1

q(x)∑
∀xi∈A

1
q(x)

such that q(x)⊕ q−1(x) = q−1(x)⊕ q(x) = e(x).
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All of these properties can be proven as direct consequences
of Equation 7.

Now the required properties of the scalar multiplication have
to be proven.
• Closure: For all α ∈ R and q(x) ∈ VA,

α� q(x) ∈ VA. (13)

• Compatibility with the multiplication in R: For all α, β
in R and all q(x) ∈ VA:

α� (β � q(x)) = (αβ)� q(x)

• Distributivity over vector addition: For all α in R and
q1(x), q2(x) in VA:

α� (q1(x)⊕ q2(x)) = α� q1(x)⊕ α� q2(x)

• Distributivity over scalar addition: For all α, β in R and
q(x) in VA:

(α + β)� q(x) = α� q(x)⊕ β � q(x)

All these properties directly follows the definitions of the
addition and the scalar multiplication. Finally, (VA,⊕,�) is
a vector space over R.

�

III. GEOMETRIC STRUCTURE

The next step in defining a Hilbert space is defining the
geometric structure of the vector space and showing the
completeness of the vector space. The geometric structure of a
vector space can be described by an inner product. In order to
define an inner product in the vector space of PMFs, firstly we
will try to propose an answer to the question what the meaning
of angle between two PMFs is. Secondly, we will propose an
inner product function and prove that the proposed function
satisfies the inner product axioms. After having defined the
inner product we will investigate the inner product induced
norm and distance function on the vector space of PMFs.
Finally we will show that the vector space of PMFs is a finite
dimensional vector space and hence, it is a Hilbert space.

A. The Angle Between Two PMFs

The angle between two vectors has an important property.
This property is the fact that the angle between two vectors is
kept constant when the vectors are scaled by nonzero scalars.
In other words, for any q1(x), q2(x) in VA and any nonzero
scalars α, β in R

∠(q1(x), q2(x)) = ∠(α� q1(x), β � q2(x)), (14)

where ∠(., .) denotes the angle between two PMFs. This
idea suggests that we should investigate the relations between
families of PMFs which are constructed by scaling certain
PMFs.

Representing PMFs in a coordinate space makes easier to
analyze the relation between these families of PMFs. Consider
any q(x) in VA. Let q(xi) = pi for all i in 1, 2, . . . , |A|.
Each q(x) can be represented by a point in the coordinate

p1

p2

p3

1

1

1

Fig. 1. Three different parametric curves which are constructed by scaling
three different PMFs for |A| = 3. Note that each curve intersects at the center
of mass of the triangle.

space of pi’s. However, the reverse is not true. Each point in
the coordinate space of pi’s does not represent a valid PMF.
Coordinates of a point should satisfy the following properties
in order to be able to represent a PMF.

|A|∑
i=1

pi = 1 (15)

pi ∈ [0, 1] ∀i ∈ 1, 2, . . . , |A| (16)

The Equation 15 defines a hyperplane, and Equation 16 defines
a region on the hyperplane.

Now consider a q(x) and its scaled versions α � q(x) for
all α in R. The corresponding points to the α � q(x) in the
coordinate space forms a parametric curve. For any q(x) in
VA, 0 � q(x) = 1

|A| . This means that the parametric curve
α�q(x), passes through the point pi = 1

|A| , which is the center
of mass of the region defined by Equations 15 and 16. As a
result any two parametric curves α� q1(x) and β� q2(x) for
any q1(x), q2(x) in VA always intersect at the point pi = 1

|A| .
Figure 1 depicts an example of this idea for |A| = 3.

At this stage we can reasonably define the angle between
two PMFs as the angle between these two parametric curves at
their intersection points. In order to derive the angle between
them, a more formal definition of these curves is required. Let
c1(α), which is a vector function of a scalar, be the curve
composed of the points corresponding to α � q1(x). Then
c1(α) is given as

c1(α) =
|A|∑
i=1

pα
i∑|A|

j=1 pα
j

ei (17)

where ei’s denote the canonical bases vectors of R|A|. The
tangential vector to this curve at α = 0 , which will be denoted
by t1, is:

t1 =

 |A|∑
i=1

d
dα

(
pα

i∑|A|
j=1 pα

j

)
ei

∣∣∣∣∣
α=0

(18)

=
1

|A|2

|A|∑
i=1

log
q
|A|
1 (xi)∏|A|

j=1 q1(xj)
ei (19)
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Similarly, let c2(β) is the curve corresponding to β�q2(x).
Then the tangential vector to this curve at β = 0, t2, is:

t2 =
1

|A|2

|A|∑
i=1

log
q
|A|
2 (xi)∏|A|

j=1 q2(xj)
ei (20)

Then the angle between q1(x) and q2(x) can be calculated by

∠(q1(x), q2(x)) = cos−1 < t1, t2 >

‖t1‖ ‖t2‖
, (21)

where < ., . > and ‖.‖ denotes the usual inner product and
norm in R|A| respectively.

B. The Inner Product of PMFs

In the previous section, the angle between two PMFs is
defined as the angle between the vectors t1 and t2 which
are the tangential vectors to the parametric curves obtained
by scaling the two PMFs. It is quite reasonable to define
the inner product of two PMFs as the inner product of these
tangential vectors. When the constants in the definitions of t
hese tangential vectors are discarded, an inner product between
two PMFs q(x), r(x) in VA can be proposed as follows:

σ(q(x), r(x)) ,
|A|∑
i=1

log
q|A|(xi)∏|A|
j=1 q(xj)

log
r|A|(xi)∏|A|
j=1 r(xj)

(22)

It should be shown that σ(q(x), r(x)) satisfies the inner
product axioms.

Theorem 2. The function σ(q(x), r(x)) : VA × VA → R is
an inner product in VA.

Proof:. Three inner product axioms should be proven for
σ(q(x), r(x)).
• Commutativity: For any q(x), r(x) in VA:

σ(q(x), r(x)) = σ(r(x), q(x))

• Linearity with respect to first argument: For any
q1(x),q2(x), and r(x) in VA, and α, β in R.

σ(α� q1(x)⊕ β � q2(x), r(x)) =
ασ(q1(x), r(x)) + βσ(q2(x), r(x))

• Nonnegativity: For any q(x) in VA:

σ(q(x), q(x)) ≥ 0

Equality holds if and only if q(x) = e(x).
All of these items can be proven directly from the Equation
22, and hence, σ(q(x), r(x)) is an inner product and the inner
product notation can be used for it as follows:

< q(x), r(x) >, σ(q(x), r(x)) (23)

Up to now we have proven that (VA, < ., . >) is an inner
product space. The only missing step to show that VA is a
Hilbert space, is to prove that VA is complete. Before proving
that VA is complete, inner product induced norm will be
investigated in the next section.

C. The Inner Product Induced Norm of PMFs

Every inner product defines a norm in the vector space it
belongs to. So does < ., . > in VA. This norm is:

‖q(x)‖ ,
√

< q(x), q(x) > (24)

This norm inherits all the properties of a norm. These are;

• Scalability: For any α ≥ 0 in R and q(x) in VA

‖α� q(x)‖ = α ‖q(x)‖ . (25)

• Nonnegativity: For any q(x) in VA

‖q(x)‖ ≥ 0 (26)

and equality holds if and only if q(x) = e(x).
• Triangle Inequality: For any q(x), r(x) in VA:

‖q(x)⊕ r(x)‖ ≤ ‖q(x)‖+ ‖r(x)‖ . (27)

D. The Distance Between PMFs

An important tool that this norm provides is a distance
function between PMFs which satisfies all requirements for
being a metric distance. Unlike existing divergence func-
tions, such as KL divergence and Jensen-Shannon divergence,
the following distance function, defined in Equation 28, is
symmetric, nonnegative, and zero if and only if the PMFs
are equal. Moreover, this distance function satisfies triangle
inequality.

D(q(x), r(x)) , ‖q(x)	 r(x)‖ (28)

Our empirical studies show that, this distance function
relates to the KL divergence as follows:

0 <
DKL(q(x), r(x))
D(q(x), r(x))

< C, (29)

where C is a constant depending on |A| and the ratio can be
made arbitrarily close to zero by suitable selection of p(x) and
q(x).

The question of whether this distance function is better than
the KL divergence is very difficult to answer. The answer to
this question depends on the application and the definition
of being better. In the context of sum-product algorithm
satisfaction of the triangle inequality is important as it will
be explained in Section IV-C. Hence, we claim that in the
context of sum-product algorithm the distance function defined
in Equation 28 is more useful than the KL divergence.

Moreover, the Equation 29 states that, CD(p(x), q(x))
provides an upper bound for the KL divergence. Since the
mutual information and channel capacity are defined using KL
divergence, D(p(x), q(x)) can be used for calculating bounds
for the capacity of some channels which have capacities
difficult to calculate.
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E. The LLR Representation of PMFs

The definition of inner product existing in Equation 22 sug-
gests a transformation from VA to R|A|. This transformation
can be defined as;

q = L{q(x)}

,



log q|A|(x1)∏|A|
j=1

q(xj)

log q|A|(x2)∏|A|
j=1

q(xj)

...

log q|A|(x|A|)∏|A|
j=1

q(xj)


(30)

Then the definition of the inner product can be rewritten more
simply as;

< q(x), r(x) > = L{q(x)} · L{r(x)}
= q · r (31)

Besides simplifying the definition of inner product, this
transformation has an important property stated by the fol-
lowing theorem.

Theorem 3. L{.} : VA → R|A| is a linear map. In other
words;

L{α� q1(x)⊕ β � q2(x)} = αL{q1(x)}+ βL{q2(x)}

for all q1(x), q2(x) in VA and α, β in R.

The proof of this theorem readily follows from the defini-
tions of L{.}, the addition, and the multiplication of PMFs.

This theorem states that, PMFs can be transformed into
R|A|, and algebraic operations can be conducted in this
domain. Moreover, as it is shown in the Equation 31 the inner
products can be calculated in the R|A| as well. In other words,
any PMF can be represented by a vector in R|A|, and any
algebraic or geometric operation conducted on the PMFs can
be represented by the same operation in R|A|.

Surprisingly, this representation is nothing but a redundant
version of the LLR representation which is very familiar to
the turbo coding community. For instance, for |A| = 2 the
transformation becomes

L{q(x)} =

(
log q(x1)

q(x2)

log q(x2)
q(x1)

)
. (32)

For alphabet sizes greater than 2 the representation is still
redundant. The entries of the vector in the R|A| always sum
up to zero as it is shown below. Let q = L{q(x)} for any
alphabet size. Then

|A|∑
i=1

(q)i =
|A|∑
i=1

log
q|A|(xi)∏|A|
j=1 q(xj)

= 0. (33)

Note that the Equation 33 also defines the range space of
the mapping L{}. This range space is a hyperplane which is
|A| − 1 dimensional subspace of R|A|.

The LLR representation always played an important role
while analyzing the performance of sum-product algorithms.
We believe that the underlying reason is that the LLR repre-
sentation is a vector space representation of PMFs.

F. Completeness of the Vector Space

Completeness of an inner product space is important for
working on convergence or approximations. It is known from
functional analysis theory that a finite dimensional inner
product space is always complete. Therefore, showing that the
vector space of PMFs is finite dimensional is enough to show
that the vector space of PMFs is complete.

Theorem 4. The vector space (VA,⊕,�) is a |A| − 1
dimensional vector space.

This theorem can be proven by finding a linear mapping
from VA to R|A|−1 which is one-to-one and onto. In the
previous section we have defined the linear map L{.} and
observed that its range space is |A|−1 dimensional. By slightly
modifying the mapping L{.} we can obtain a one-to-one and
onto transformation from VA to R|A|−1 and the vector space
of PMFs becomes a Hilbert space.

IV. REPRESENTATION OF THE SUM-PRODUCT ALGORITHM
USING THE HILBERT SPACE OF PMFS

Since we have defined the addition operation between
PMFs to be meaningful in the detection sense, the Hilbert
space of PMFs results in a trivial representation for message
calculation in the sum-product algorithm. Before presenting
the representation we need to define two operators which will
simplify the representation.

A. The Expansion Operator

The expansion operator is used for determining the joint
PMF of a combined experiment. This combined experiment
is assumed to be composed of independent individual experi-
ments, one of which has a known PMF and others distributed
equally likely. After this introduction the expansion operator
can be defined formally as follows. Consider an ordered
set of N independent experiments with support sets A1,
A2, . . ., AN . The expansion operator of the ith experiment,
Ei : VAi

→ VA1×A2×...×AN
is defined as

Ei{q(x)} ,
1∏

j∈{1..N}\{i} |Aj |
q(xi) (34)

= qx̃1,x̃2,...,x̃N
(x1, x2, . . . , xN )

Then the joint PMF of a combined experiment which is
composed of independent experiments all of which has a
known PMF can be calculated from the individual PMFs as
follows;

qx̃1,x̃2,...,x̃N
(x1, x2, . . . , xN ) =

N⊕
i=1

Ei{qi(xi)}. (35)

Obviously the expansion operator is a linear operator.
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f1

f2

f3
x1

x2

x3

µf2->x1
(x1)

µf3->x1
(x1) µf1->x1

(x1)

µx1->f1
(x1)

µx2->f1
(x2)

µx2->f1
(x2)

Fig. 2. A sample factor graph showing the message nomenclature

B. The Marginalization Operator

The marginalization operator, as its name implies, is used
for obtaining the marginal PMF from a given joint PMF.
The marginalization operator M : VA1×A2×...×An

→ VAi

is defined as

Mi{q(x1, x2, . . . , xN )} ,∑
∀(x1,x2,...,xi−1,xi+1,...,xN )

q(x1, x2, . . . , xN ). (36)

Marginalization and expansion operators are not the inverse
operators of each other in general. Although the equation

qi(xi) = Mi{Ei{qi(xi)}} (37)

always holds, the reverse is not true in general.
On the contrary to the expansion operator the marginaliza-

tion operator is not linear.

C. The Message Update Rules

After defining the expansion and marginalization operators
we will show how the Hilbert space representation naturally
fits to message update rules in the sum-product algorithm. We
will adopt the same factor graph representation and message
nomenclature as in [4], which is shown in Figure 2.

The representation of the message calculation in the variable
nodes becomes extremely simple thanks to the definition of the
addition of PMFs which is given below.

µxi→fj
(xi) =

⊕
k∈n(xi)\{fj}

µfk→xi
(xi), (38)

where n(xi) denotes the set of neighbors of the node xi.
Before passing to the message calculation rules at the factor

nodes, it should be noted that factor functions can be regarded
as PMFs after some proper scaling which does not affect the
operation of the algorithm. Hence, they can be represented
as vectors in the Hilbert space of PMFs. Then the message
calculation rules at the factor nodes is given as follows:

µfi→xj
(xj) =

Mj

fi(n(fi))⊕
⊕

k∈n(fi)\{xj}

Ek{µxk→fi
(xk)}

 (39)

If the marginalization operator was a linear operator, the
messages could be computed by multiplying the incoming

message vectors with some matrices and adding the results up.
This would result in a message computation complexity pro-
portional to |A|2. Unfortunately, the marginalization operator
is not a linear operator. However, the marginalization operator
can be linearized over a specific region. This approach may
lead to new lossy message computation methods.

Equations 38 and 39 show that the messages are added
up during message computation. This fact emphasizes the
importance of using a distance function satisfying the triangle
inequality while evaluating the approximateness of the lossy
messages. If the errors in the incoming lossy messages are
bounded with respected to the distance defined in Equation 28
then it is guaranteed that the errors in the outgoing messages
will also be bounded with respected to the same distance. For
instance assume that two incoming messages to a node are
p(x) and q(x). If these messages are approximated by p̂(x)
and q̂(x) such that D(p(x), p̂(x)) < ε and D(q(x), q̂(x)) < ε
then it is guaranteed due to the triangle inequality that

D(p(x)⊕ q(x), p̂(x)⊕ q̂(x)) < 2ε. (40)

Moreover, due to Equation 29 KL divergence in the output
will also be bounded as follows:

DKL(p(x)⊕ q(x), p̂(x)⊕ q̂(x)) < 2Cε (41)

However, no bound exist for the error in the output message
in terms KL divergence between the input messages.

V. CONCLUSION

In this paper we have presented the Hilbert space of PMFs.
We believe that the Hilbert space of PMFs can be a useful
tool for analyzing and improving the sum-product algorithm.
Actually, we have already known some of the applications of
the Hilbert space of PMFs due to the fact that the LLR is
actually a Hilbert space representation.
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