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Abstract: We are concerned with positive solutions of two types of nonlinear elliptic boundary value
problems (BVPs). We present conditions for existence, uniqueness and multiple positive solutions of
a first type of elliptic BVPs. For a second type of elliptic BVPs, we obtain conditions for existence and
uniqueness of positive global solutions. We employ mathematical tools including strictly upper (SU)
and strictly lower (SL) solutions, iterative sequence method and Amann theorem. We present our
research findings in new original theorems. Finally, we summarize and indicate areas of future study
and possible applications of the research work.

Keywords: positive (global) solution; (strict) upper and lower solutions; multiplicity of positive
solutions; elliptic BVPs

1. Introduction

Nonlinear elliptic boundary value problems (NEBVP) are significantly important type PDEs
having applications in different branches of science and engineering including fluid mechanics such as
exothermic chemical reactions or auto catalytic reactions, see [1], in physics and chemistry. Some other
specific applications of elliptic BVPs may be seen in [2–22].

The interest of such problems come from the thesis [23] (Section 1.5, page 147), where the authors
asked open problem concerning multiplicity results. The main question we would like to address
in this direction is the existence of more than two solutions, the articles of Chipot and Lovat [1] and
Ovono and Rougirel [24], where the authors study classes of nonlocal problems motivated by the fact
that they appear in some applied mathematics areas and the diffusion at each point depends on all the
values of the solutions in a neighborhood of this point. Moreover, in [8], the authors have mentioned
that the importance of such a model lies in the fact that measurements that serve to determine physical
constants are not made at a point but represent an average in a neighborhood of a point so that these
physical constants depend on local averages. The lack of the existence of the multiple solutions by
using bifurcation theory showed that many local branches of solutions exist while, among them,
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only one is global and has no bifurcation point implying a considerable difficulty to prove the existence
of a bifurcation point interior of the ball. The authors in [24] (cf. Theorem 3.1) already pointed out
that the existence of a solution to the problem proposed (more exactly, for different kinds of NEBVP
involving different conditions) is not guaranteed for the unboundedness of data c. It is natural to
ask whether or not we can obtain the existence results of the EBVP or what happens if the data c are
unbounded. Up to now, the main scope of these papers consists in the imposing some conditions
on the nonlinearity c (c is the data) to prove the existence solutions to the problem (1) in smooth
domains in the presence of well-ordered lower and upper solutions. Note that the case where c is
unboundedness seems to be new in the literature. In other words, we obtain the existence results
under regularity assumptions on c, (see [25–28] for more discussion).

In the present research study, we are interested in existence, uniqueness, multiple positive
solutions and existence of weak positive solutions for an NEBVP, (called first type NEBVP), defined as{

−Au = c (y, u) , in Ω,

N u = h (y) , on ∂Ω,
(1)

and positive global solutions for the second NEBVP defined as
ut − ∆u = c (y, t, u) in Θ,

N u = h (y, t) , on ∂Θ,

u (y, 0) = u0 (y) , in Ω,

(2)

in which Θ = Ω × (0, T] , ∂Θ = ∂Ω × (0, T], Ω is a bounded set Rn with smooth boundary ∂Ω,
∆u = Au is a second order uniformly elliptic operator and N is defined as either

N u = u on ∂Θ,

or
N u = λuv + µu on ∂Θ,

where uv is outward derivative in Ω, λ = λ(y, t), µ = µ (y, t) are bounded and strictly nonnegative
maps on ∂Θ. The initial non-negative smooth map u0 (y) satisfies compatibility condition u0(y) = 0
on ∂Ω.

The structure of the article is as follows. In Sections 2 and 3, we prove the existence,
uniqueness and multiplicity of positive solutions for the first type and global positive solutions
for the second type by employing strictly upper (SU) and strictly lower (SL) solutions, by iterative
sequence method for both of them and the Amann theorem for the first type. Section 4 is devoted to
the existence of a weak solution to the first type.

2. Multiple Positive Solutions of Nonlinear Elliptic PDEs

Definition 1. A function α ∈ C2 (Ω) ∩ C
(
Ω
)

is said to be an upper solution (US) of (1) if α satisfies the
following inequalities: {

−Aα ≥ c (y, α) in Ω,

N α ≥ h, on ∂Ω.
(3)

Moreover, a function β ∈ C2 (Ω) ∩ C
(
Ω
)

is a lower solution (LS) of (1) if for β the conditions{
−Aβ ≤ f (y, β) in Ω,

N β ≤ h, on ∂Ω,
(4)

hold true.
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We say that a map u is a strict LS of (1) if,

(i) u is an LS of (1), and
(ii) u > u for all solutions of (1), such that u (t) ≥ u (t) holds for all t ∈ [0, T].

Similarly, a map u is an SU solution of (1) if:

(i) u is a US of (1) and
(ii) u < u for all solutions of (1) with u (t) ≤ u (t) hold for all t ∈ [0, T].

Now, we assume that there exist α, β ∈ C2 (Ω) ∩ C
(
Ω
)

to (1), and define

(β, α) =
{

u ∈ C
(
Ω
)

: β ≤ u ≤ α
}

.

(H1) Let c be monotone nondecreasing in u and h > 0 such that

(i) for all ui ∈ R, (i = 1, 2) and for y ∈ Ω, c satisfies

u1 < u2 ⇒ c (y, u1) < c (y, u2) . (5)

(ii) for α, β ∈ C2 (Ω) ∩ C
(
Ω
)

with β ≤ α on Θ, and

min β ≤ u1 ≤ u2 ≤ max α,

suppose that there exists σ > 0 such that the inequality

c (y, u1)− c (y, u2) > −σ (u1 − u2) holds. (6)

(iii) for every y ∈ Ω, y′ ∈ ∂Ω, the inequalities c (y, 0) ≥ 0, h (y′, 0) ≥ 0, u0 (y) ≥ 0 hold.

We first make some observations on SU and SL solutions. We shall use the SU and SL solutions
together with strong maximum principle in the sequel.

Lemma 1. (Strong maximum principle, see [29]) Let F , N , two elliptic operators, Ω be as in Section 1 and
v ∈W2,p (Ω) be given. Then, the following holds.

(i) (Interior form) Let y0 ∈ Ω and let By0 be an open ball centered at y0 and contained Ω. If Fv ≥ 0 in By0 ,
v(x) ≥ v (y0) for all y ∈ By0 and v (y0) ≤ 0, then v (y) = v (y0) for all y ∈ By0 .

(ii) (Boundary form) Let y0 ∈ ∂Ω and let By0 be an open ball contained in Ω with y0 ∈ ∂By0 . If Fv ≥ 0 in
By0 , v (y) ≥ v (y0) for all y ∈ By0 and v (y0) ≤ 0, then ∂v

∂ζ (y0) < 0 for each ζ satisfying 〈ζ | ν〉 > 0.
(iii) (Global form) Let k ≥ 0 be a constant. If Fv + kv ≥ 0 in Ω and N v ≥ 0 on ∂Ω, then either v = 0 in Ω

or v (y) > 0 for all y ∈ Ω ∪ ∂Θ, and ∂v
∂ν (y) < 0 for all y ∈ ∂Θ, where N is defined as in Section 1.

Lemma 2. Let (5) hold and u be any solution of (1). Then, every lower (upper, respectively) solution u (u),
which is not a solution, (i.e., u > u (u < u)) is an SL (SU) solution of (1) .

Proof. Assume that u is an SL solution under hypotheses of Lemma 2. Let us prove this with a
contradiction. Let u, u be any solutions with u ≥ u. Then,{

−A (u) = c (y, u) , in Ω,

N (u) = h (y) , on ∂Ω.

and {
−A (u)≤c (y, u) , in Ω,

N (u)≤h (y) , on ∂Ω.
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Putting v = u − u implies that v > 0. By u ≥ u, and by the definition of the operator A,
a subtraction of above equations gives

−Av ≤ −Au +Au in Ω

≤ c (y, u)− c (y, u) .

Thus, by hypothesis of u = u and (6), we have

−Av > −σ (u− u) = 0,

which is a contradiction that completes the proof.
We can prove that u is a strict US under given conditions in a similar manner.

Lemma 3. Assume that (H1) holds. Then, by defining u, u, u as above, the inequalities

u ≤ u ≤ u,

hold true.

Now, we are in a position to present some results regarding existence of solutions. To achieve this,
starting from suitable maps u(0) = α or u(0) = β, obtain a sequence

{
u(n)

}
from

 − (A− σ) u(n) = c
(

y, u(n−1)
)
+ σu(n−1), in Ω,

N u(n) = h, on ∂Ω.

Lemma 4. Let α, β, g be nonnegative, bounded functions and ϕ ∈ C2 (Ω) satisfying{
−Aϕ + gϕ ≥ 0, in Ω,

N ϕ ≥ 0, on ∂Ω.

In this case, ϕ ≥ 0 in Ω. Furthermore, ϕ > 0 in Ω, unless ϕ = 0.

Theorem 1. Assume (H1) holds. Let α, β be LS and US of (1) with β ≤ α and c (y, u) be a smooth map on
min β ≤ u ≤ max α. Then, there are two non-negative solutions u and u of problem (1) with

β ≤ u ≤ u ≤ α.

Proof. Obviously, by the hypothesis (H1) and β ≤ α, β = 0 is an LS of (1).
Now, define Q : C

(
Ω
)
7→ C2 (Ω) ∩ C

(
Ω
)

as w = Qu, and{
− (A− σ)w = c (y, u) + σu, in Ω,

Nw = h, on ∂Ω.

By Schauder estimates, we deduce Q is completely continuous and monotonic in the sense of
Collatz [30] type, that is; u1 ≤ u2 implies Qu1 < Qu2, provided that u1 and u2 restricted to the set
min β ≤ u1, u2 ≤ max α. In fact, if u1 ≤ u2, then{

− (A− σ) (Qu2 −Qu1) = c (y, u2)− c (y, u1) + σ (u2 − u1) , in Ω,

N (Qu2 −Qu1) = 0, on ∂Ω,
(7)
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Then, {
−A (Qu2 −Qu1) ≥ −σ (u2 − u1) + σ (u2 − u1) , in Ω,

N (Qu2 −Qu1) = 0, on ∂Ω,

i.e., {
−A (Qu2 −Qu1) ≥ 0, in Ω,

N (Qu2 −Qu1) = 0, on ∂Ω,

Hence, Qu1 < Qu2, in Ω.
Letting u(0) = α or u(0) = β, generate

{
u(n)

}
=
{
Qu(n−1)

}
as

 − (A− σ) u(n) = c
(

y, u(n−1) (y)
)
+ σu(n−1) in Ω,

N u(k) = h, on ∂Ω.

When u(0) = α, we set
{

u(n)
}

and
{

u(n)
}

when u(0) = β. Then, the sequence
{

u(n)
}

and
{

u(n)
}

converges monotonically by the continuity of Q to umax and umin, respectively. Thus, u = umax and
u = umin are two fixed point of Q. The proof is completed.

Corollary 1. Let {umax} and {umin} be two solutions of (1). If w is a solution of (1) satisfying β ≤ w ≤ α,
the inequalities umin ≤ w ≤ umax hold.

Proof. By Theorem 1, we have w = Qw and u1 = Qα, since w ≤ α, Qw < Qα or w < u1.
By induction, w ≤ u(n) for every n. Thus, w ≤ umax. Similarly, w ≥ umin, hence umin ≤ w ≤ umax.

Theorem 2. Assume (H1) holds. (1) has positive local solution u+(y).

Proof. Notice that (H1) implies existence of LS and US. Then, by Theorem 1, there is a local positive
solution u+(y) of (1).

We adopt the following assumption:
(H2) Let u1, u2 ∈ (β, α) with u1 ≤ u2, c1 (y) ∈ Ω be bounded nonnegative maps and the map

c (y, u) satisfies the following inequality

c (y, u1)− c (y, u2) ≥ −c1 (y) (u1 − u2) in Ω.

Theorem 3. Let (5) and (iii) in (H1) , (H2) hold true. Assume also that β (y) , α (y) are, LS and US of
problem (1). Then, problem (1) has unique positive solutions in (β, α).

Proof. Existence of positive solutions of (1) may be observed by Theorem 1. Let u1, u2 ∈ (β, α) be two
poitive solutions with u1 ≤ u2. Suppose w = u1 − u2, then w ≤ 0 and by (H2), we have{

−Aw = c (y, u1)− c (y, u2) ≥ 0, in Ω,

Nw = h (y)− h (y) = 0, on ∂Ω,

Applying Lemma 4 we have u1 = u2.

By employing Amann Theorem [31], we show multiple positive solutions. Let α1, α2 are two
upper solutions and β1, β2 are two lower solutions of problem (1).
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Theorem 4. ([31]) Assume that E is a Banach space. Assume also that K ⊂ E is a normal solid cone.
Suppose that there are α1, α2, β1, β2 ∈ E by β1 < α1 < β2 < α2. The operator A : [β1, α2]→ E satisfying

β1 ≤ Aβ1, Aα1 ≤ α1, β2 < Aβ2, Aα2 ≤ α2.

has at least three fixed points, u1, u2, u3 such that

β1 < u1 < α1, β2 < u2 ≤ α2, β2 � u3 � α1.

Theorem 5. Assume that (H1) holds. Suppose that β1, β2 are LS, and α1, α2 are US of (1) such that β2, α1

are strict with β1 < α1 < β2 < α2. In this case, (1) has at least three solutions u1, u2, u3 such that

β1 ≤ Aβ1, Aα1 ≤ α1, β2 < Aβ2, Aα2 ≤ α2.

Proof. We shall show thatA is strongly increasing operator. Equivalently saying, or all u1, u2 ∈ [β2, α2]

with u1 < u2 u1 (y) ≤ u2 (y) and u1 (y) 6= u2 (y). In view of (H1), we have

c (y, u1)− c (y, u2) ≥ 0 for all y ∈ Ω.

As a result that there exists a neighborhood Ω′ ⊂ Ω such that u1 (y) ≤ u2 (y) for y ∈ Ω′ since
u1 (y) 6= u2 (y). Hence, by (H1), we have for all y ∈ Ω

c (y, u1)− c (y, u2) ≥ 0, y ∈ Ω′. (8)

By (8), we have

− (A− σ) (Qu2 −Qu1) = c (y, u1)− c (y, u2) + σ (u2 − u1)

≥ −σ (u2 − u1) + σ (u2 − u1) ≥ 0 for all y ∈ Ω.

Therefore, Qu2 < Qu1 in Ω by strong maximum principle, and we conclude that Q is a strongly
increasing operator.

Now, we prove β1 ≤ Qβ1. Consider the following problem:{
− (A− σ) (Qβ1 − β1) = c (y, β1) + σβ1, in Ω,

N (Qβ1 − β1) = h, on ∂Ω.

In the view of β1, an LS of (1), we have

− (A− σ) (Qβ1 − β1) = − (A− σ)Qβ1 + (A− σ) β1

= − (A− σ)Qβ1 +Aβ1 − σβ1

= − (A− σ)Qβ1 − σβ1 +Aβ1

≥ c (y, β1)− c (y, β1) + σβ1 − σβ1 ≥ 0.

Thus, − (A− σ) (Qβ1 − β1) ≥ 0 and by strong maximum principle, we get Qβ1 ≥ β1.
In view of β1, an LS of (1), we have

N (Qβ1 − β1) = N (Qβ1)−N β1

≥ B (Qβ1)− h

= h− h = 0,
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hence N (Qβ1 − β1) ≥ 0, that is by strong maximum principle, we conclude Qβ1 ≥ β1. Then,
Qβ1 ≥ β1.

Similarly, we have Qβ2 ≥ β2.
We know that Qβ1 6= β1. Since β2 is an LS of (1) , it is strict solution of (1). Thus, β2 < Tβ2.
According to the same way, we can get

Aα1 ≤ α1, Aα2 ≤ α2.

Thanks to the Theorem 4, Q has at least three fixed points u1, u2, u3 with

β1 < u1 < α1, β2 < u2 ≤ α2, β2 � u3 � α1.

Corollary 2. Assume that (H1) holds. Let β1, β2 be LSs and α1 be strict US of (1) such that β1 < α < β2.
Then, (1) has at least three solutions u1, u2, u3 such that

β1 ≤ Aβ1, Aα1 ≤ α1, β2 < Aβ2, Aα2 ≤ α2.

Proof. We shall apply Theorem 5. That is, assume that there are two upper solutions, α1, α2 satisfying:

β1 (y) ≤ α1 (y) < α2 (y) < β2 (y) for y ∈ Ω ∪ ∂Θ,

Let α1 and α2 be US such that α1 (y) < α2 (y) , for y ∈ Ω and

∂α1

∂ν
(y) >

∂α2

∂ν
(y) , for y ∈ ∂Θ.

Hence, we only verify that
α2 (y) < β2 (y) for y ∈ Ω.

Notice that
β2 (y)− α1 (y) = 0, for y ∈ ∂Θ,

β2 (y)− α1 (y) > 0, for y ∈ Ω ∪ ∂Θ.

Provided that
∂β2

∂ν
(y)− ∂α1

∂ν
(y) < 0, for y ∈ ∂Θ.

Then, by strong maximum principle (Lemma 1), we have

β2 (y)− α1 (y) > 0, for y ∈ Ω,

Suppose there is a y0 ∈ ∂Θ with

∂β2

∂ν
(y0)−

∂α

∂ν
(y0) = 0.

Let w = β2 − α1. Since ∂w
∂ν (y0) > 0, we find an open ball By0 such that ∂w

∂ν (y) > 0, for all
y ∈ By0 ∩Ω. Since w (y) = 0 for y ∈ ∂Θ, w (y) < 0 for y ∈ By0 ∩Ω, that implies:

0 < β2 (y)− α1 (y) < 0, for y ∈ By0 ∩Ω,

which is a contradiction.
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3. Positive Global Solutions for Second Problem

We are interested in existence of global solutions of (2). Suppose that N is defined either as
N u (y, t) = u (y, t) , on ∂Θ,

or

N u (y, t) = λuv (y, t) + µu (y, t) , on ∂Θ,

u (y, 0) = u0 (y) in Ω.

where the initial non-negative smooth map u0(y) satisfies compatibility condition u0 (y) = 0 on ∂Ω.
Recall that the operator F is defined as

Fu = ut −Au, where ∆u = Au.

As a matter of fact, we have that:

Definition 2. α (y, t) ∈ C
(
Q
)
∩ C1,2 (Θ) is a US of (2) provided that

Fα ≥ c (y, t, α) , in Θ,

N α ≥ h (y, t) , on ∂Θ,

u (y, 0) ≥ u0 (y) , in Ω.

(9)

Similarly, β (y, t) ∈ C
(
Q
)
∩ C1,2 (Θ) is an LS by changing direction of inequalities in (9), we set

u ∈ C
(
Θ
)

with β ≤ u ≤ α in Θ.

It is obvious that the upper and lower solutions of (2) are given by α (y, t) , β (y, t). Let σ be at
(H1) with

c (y, u1)− c (y, u2) + σ (u1 − u2) > 0,

on
min β (y, t) ≤ ui ≤ max α (y, t) , i = 1, 2.

We define u(1) as 
Fu(1) + σu(1) = c (y, t, α) + σα in Θ,

N u(1) = h, on ∂Θ,

u(1) (y, 0) = u0 (y) , in Ω.

Then, by the maximum principle for a parabolic equation, we have

u(1) (y, t) < α (y, t) , in Ω.

Defining ψ : α (y, t) 7→ u(1) (y, t) , we have u(1) = ψα is a monotone operator with type of
Collatz [30]. Letting u(1) = ψβ, we get {

u(n)
}

,
{

u(n)
}

,

with
u(n) = ψu(n−1),

and
u(n) = ψu(n−1),
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in which
u(1) = ψα, u(1) = ψβ.

Theorem 6. Suppose that conditions of (H1) hold. Assume also that α (y, t) ∈ Θ, β (y, t) ∈ Θ are a US and
LS of (2). If there is a σ such that

c (y, u1)− c (y, u2) + σ (u1 − u2) > 0,

where
min

Ω
β ≤ ui ≤ max

Ω
α, i = 1, 2,

there exists a unique strong solution u of (2) with

lim
n→∞

u(n) = ψu = u = lim
n→∞

u(n),

where
{

u(n)
}

is decreasing and
{

u(n)
}

is increasing sequences. We address the situation where h is time
independent next.

Corollary 3. Suppose that conditions of (H1) hold. If u (y) ∈ (u (y) , u (y)) is a solution of{
−Au = c (y, u (y)) , in Ω,

N u = h, on ∂Ω,

where u (y) and u (y) are an upper and an LS, respectively, there is a global regular solution u (y, t) ∈
(u (y) , u (y)) , for all t > 0.

Now, we introduce two identities:{
−Au = c (y, u) , on Θ,

u = 0, on ∂Ω,
(10)

and 
Fu = c (y, t, u) , in Θ,

u = 0, on ∂Θ,

u (y, 0) = u (y) , in Ω.

(11)

Theorem 7. Suppose that conditions of (H1) hold and also u (y) is a US of (10). If u (y, t) is a solution of (11),
ut ≤ 0.

Proof. Assume
{

u(n)(y, t)
}
⊂ Θ is a sequence of maps by u(0) (y, t) = u (y), and for n ≥ 1,


Fu(n) + σu(n) = c

(
y, u(n−1)

)
+ σu(n−1), in Θ,

u(n) = 0, on ∂Θ,

u(n) (y, 0) = u (y) , in Ω.

(12)

In this case,
u (y) ≥ u(1) (y, t) ≥ . . . ≥ u(n−1) (y, t) ≥ u(n) (y, t) ≥ . . . . (13)
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Recall that  F
(

u(1) − u
)
+ σ

(
u(1) − u

)
= − [c (y, u)−Au] ≥ 0,

N
(

u(1) − u
)
= h (y, t)−N u ≤ 0.

We conclude by strong maximum principle that u ≥ u(1).
By induction and from (13) for n ∈ N, we deduce the existence

u(n) → u∗ as n→ ∞.

Thus, u∗(y, t) is a solution of
Fu∗ = c (x, u∗) , in Θ,

u∗ = 0, on ∂Θ,

u∗ (y, 0) = u (y) , in Ω,

Hence, u∗ (y, t) = u (y, t) ∈ Θ, via uniqueness condition. Differentiating (12) with respect to t,
we have  F

(
u(n)

)
t
+ σ

(
u(n)

)
t
= cU (y, U)Ut, in Θ,(

u(n)
)

t
= 0, on ∂Θ,

in which U = u(n−1).
Since cU(y, U)Ut is located in Θ, it is bounded.
We set

wn =
u(n) (y, δ)− u(n) (y, 0)

δ
, y ∈ Ω. δ > 0,

As a result by (12) and (13), we get wn ≤ 0. Hence,
(

u(n) (y, 0)
)

t
≤ 0, y ∈ Ω. Furthermore,

we have
(

u(n)
)

t
≤ 0.

We can apply the same proof of Theorem 1 to get

u(n) 7→ u ∈ C1+η on t, for 0 < η < 1.

Thus, ut (y, t) ≤ 0 in Θ. Herewith, the proof is complete.

Let us assume c (y, t, u) is a C1-mapping for u and satisfies the inequalities:{
c (y, t, c1) ≥ 0, c (y, t, c2) ≤ 0, in Ω ∩R+,

c1µ (y, t) ≤ h (y, t) ≤ c2µ (y, t) , on ∂Ω ∩R+,
(14)

where c1 > 0, c2 > 0 are constants with c1 < c2.

Theorem 8. Assume that (14) holds. If there exists constants c1 > 0, c2 > 0 with c1 < c2. Then, for all
u ∈ [c1, c2], (2) has a unique positive and bounded global solution.

Proof. Let α = c2, β = c1; then, by (14), we get
Fα = 0 ≥ c (y, t, c2) = c (y, t, α) , in Ω×R+,

N α = λαv + µα = c2µ (y, t) ≥ h (y, t) , on ∂Ω×R+,

α = c2, in Ω.
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This allows to conclude that α = c2, is a US. Similarly, β = c1 is an LS. Consequently, thanks to
the Theorem 6, we conclude the result.

We are now ready to prove the uniqueness result of global positive solution. To this purpose,
we assume that:

(a) For every y ∈ Ω, y′ ∈ ∂Ω: c (y, t) ≥ 0, h (y′, t) ≥ 0 and u0 (y) ≥ 0.

Theorem 9. Suppose that (a), (5) and (6) hold. If there exists a mapping M with

cu (y, t, u) u ≤ M (y, t) u, for every T < ∞, u ≥ 0, in Θ, (15)

then, (2) has a unique global positive solution.

Proof. Using the mean-value theorem, (5) and (6), we have

c (y, t, u) = cu (y, t, ξ) u + c (y, t, 0) ,

≥ cu (y, t, ξ) u, in Θ, (16)

in which ξ = ξ (y, t) is intermediate value between u and 0.
By Lemma 3 and F , we write

c3 (y, t) = −cu (y, t, ξ) .

Hence, u = 0, or 0 < u in Θ. u is positive because, if it is not, u = 0 only if all of the maps in (a)
is equal to 0. This implies that u = β is an LS of (2).

Let w be a solution of: 
Fw = Mw + c (y, t, 0) in Θ,

Nw = h (y, t) on ∂Θ,

w (y, 0) = u0 (y) in Ω,

Therefore, w is a upper positive solution of (2). As a matter of fact, for α = w and again applying
the mean-value theorem,

c (y, t, α) = cα (y, t, ξ) (α) + c (y, t, 0) ,

where ξ = ξ (y, t) is located between α and 0.
Combining with (a), (5), (6) and (15), we have

c (y, t, α) ≤ M (y, t) α + c (y, t, 0) , in Θ.

Thus, 
Fα = Mα + c (y, t, 0) ≥ c (y, t, α) , in Θ,

Nw = h (y, t) ≥ 0, on ∂Θ,

w (y, 0) = u0 (y) ≥ 0, in Ω,

which implies that α is an upper positive solution of (2). Hence, by Theorem 8, we deduce the unique
positive global solution of (2).

4. Weak Solutions for the First Problem

Now, our main result shows the existence of a weak solution to problem (1) with Dirichlet
boundary condition (u = 0 i.e., h = 0 and N u = u) under a unboundedness on c. Before doing this,
we introduce the following notion of weak solution to (1). For that, we need Lemmas 5–7 and the
assumptions (H3) and (H4) (see later). Note that the notion of weak solution to (1) is essentially the
same as in Definition 1, the only difference is that we now require that u belong to H1

0 (Ω).
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Definition 3. Let u ∈ H1
0 (Ω), u is said to be a weak solution of (1) if it satisfies∫

Ω

∇u∇φdx =
∫
Ω

c (u) φdx in Ω.

A nonnegative function u, u ∈ H1
0 (Ω) is called a weak lower solution (WLS) and weak upper solution

(WUS) of (1) if they satisfy ∫
Ω

∇u∇φdx ≤
∫
Ω

c (u) φdx in Ω,

and ∫
Ω

∇u∇φdx ≥
∫
Ω

c (u) φdx in Ω,

for all φ ∈ H1
0 (Ω).

Lemma 5. ([26]) Let v solve ∆v = c in Ω. If c ∈ C (Ω), then v ∈ C1,η (Ω) for any η ∈ (0, 1), thus in
particular, v is continuous in Ω.

Lemma 6. ([32]) For each c ∈ L2 (Ω). Then, there exists a unique solution v ∈ H1
0 (Ω) to problem (1).

Lemma 7. ([33]) Assume that u and v are two non-negative functions such that{
−∆u ≥ −∆v, in Ω,

u = v = 0, in ∂Ω.

Then, u ≥ v, a.e., in Ω.

(H3) c ∈ C1 ((0,+∞)) is increasing function such that

lim
u→+∞

c (u) = +∞.

(H4) Moreover, c ∈ C1 ((0,+∞)) satisfies

lim
u→+∞

c (u)
u

= 0.

Theorem 10. Let (H3) and (H4) hold. Then, problem (1) has a positive weak solution.

Proof. Let σ be the first eigenvalue of −∆ with Dirichlet boundary conditions and φ1 be the
corresponding positive eigenfunction with ‖φ1‖ = 1.

Let δ > 0 be such that |∇φ1|2 − σφ2
1 > 0 on

Ωδ = {x ∈ Ω : d (x, ∂Ω) ≤ δ} .

Let us define
u =

1
2

φ2
1.

We shall verify that u is a weak LS of (1). Indeed, let φ ∈ H1
0 (Ω) with φ > 0 in Ω. A simple

calculation shows that ∫
Ωδ

∇u∇φdx =
∫

Ωδ

φ1∇φ1∇φdx
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=
∫

Ωδ

∇φ1∇ (φ1 · φ) dx−
∫

Ωδ

|∇φ|2 φdx

=
∫

Ωδ

(
σφ2

1 − |∇φ|2
)

φdx.

On Ωδ, we have |∇φ1|2 − σφ2
1 > 0, then σφ2

1 − |∇φ1|2 < 0. Hence,∫
Ωδ

∇u∇φdx < 0.

By (H3), we get c (u) > 0 (large enough).
Then, ∫

Ωδ

∇u∇φdx ≤
∫

Ωδ

c (u) φdx. (17)

Next, on Ω \Ωδ, we have φ1 ≥ d for some d > 0. By (H3) and by the definition of u, it follows that:∫
Ω\Ωδ

c (u) φdx ≥
∫

Ω\Ωδ

σφdx

≥
∫

Ω\Ωδ

(
σφ2

1 − |∇φ|2
)

φdx

=
∫

Ωδ

∇u∇φdx, (18)

From (17) and (18), we deduce that∫
Ω

∇u∇φdx ≤
∫
Ω

c (u) φdx,

for any φ ∈ H1
0 (Ω). That is, u is a weak LS of problem (1).

Next, we shall construct a WUS of (1). Let e be the solution of the following problem{
∆e = 1 in Ω,

e = 0, on ∂Ω.
(19)

Let u = Ce, where C is a positive real number which will be chosen later. We will verify that u is a
weak US (1). Let φ ∈ H1

0 (Ω) with φ > 0 in Ω. Then, from (19), we get∫
Ω

∇u∇φdx = C
∫
Ω

∇e∇φdx

= C
∫
Ω

φdx.

By (H3), we can choose C large enough so that

C ≥ c (C ‖e‖∞) .
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Therefore, ∫
Ω

∇u∇φdx ≥ c (C ‖e‖∞)
∫
Ω

φdx

≥
∫
Ω

c (C ‖e‖∞) φdx

≥
∫
Ω

c (u) φdx.

that is, u a weak US of (1) for a large enough C. In order to obtain a weak solution of (1) , we define
the sequence

{un} ⊂ E = H1
0 (Ω) ∩ C (Ω) ,

as u0 = u ⊂ E = H1
0 (Ω) ∩ C (Ω) , and un is the unique solution of the problem{

−∆un = c (un−1) , in Ω,

u = 0, in ∂Ω.
(20)

If un−1 ∈ E is given, the right-hand-side of (20) is independent of un since c (u0) ∈ C (Ω) ⊂ L2 (Ω)

in x and from Lemma 6. Then, (20) with n = 1 has unique solution u1 ∈ H1
0 (Ω).

We deduce from Lemma 5 that u1 ∈ C (Ω). Consequently, we conclude that u1 ∈ E. In the same
way, we construct the following elements un ∈ E of our sequence. From (20), and by the fact that u0 is
a weak US of (1), we have {

−∆u0 ≥ c (u0) = −∆u1, in Ω,

u = 0, in ∂Ω,

from which and Lemma 7, we have u0 ≥ u1.
Since u0 ≥ u and by the monotonicity of c, we have

−∆u1 = c (u0) ≥ c (u) ≥ −∆u.

from which and Lemma 7, we deduce that u1 ≥ u.
From (20), and by the monotonicity of c, u1 ≥ u and u0 ≥ u1, for u2, we write

−∆u1 = c (u0) ≥ c (u1) = −∆u2,

and
−∆u2 = c (u1) ≥ c (u) ≥ −∆u.

Then, thanks to the Lemma 7, we get u1 ≥ u2 and u2 ≥ u. Repeating this argument, we get a
bounded monotonic sequence {un} satisfying

u = u0 ≥ u1 ≥ · · · ≥ un ≥ u > 0.

Thanks to the continuity of the function c and by the definition of the sequences {un}, there exists
a constantR, which is independent from n such that

|c (un−1)| < R. (21)

Using (21), multiplying the first equation of (20) by un, integrating and using the Hölder
inequality and Sobolev’s embedding, we can show that



Appl. Sci. 2020, 10, 4863 15 of 17

∫
Ω

|∇un|2 dx ≤
∫
Ω

c (un) undx

≤ R
∫
Ω

|un| dx

≤ R‖un‖H1
0 (Ω) .

Then,
‖un‖H1

0 (Ω) ≤ R, f or. all n. (22)

whereR′ is a constant and independent from n. By (22), we infer that {un} has a subsequence which
weakly converges in H1

0 (Ω,R) to u with u ≥ u >0. Now, letting n → +∞, we deduce that u is a
positive weak solution of (1). Hereby, the proof is completed.

5. Conclusions and Outlook

There have been two main objectives in this paper. As explained in introduction part, the first
one is from the lack of existence of multiple solutions by using the bifurcation theory. Second one is
concerning multiplicity of more than two solutions. We presented new original theorems regarding the
existence of positive solutions of nonlinear elliptic BVPs (Theorem 10). Extension of obtained results to
fractional-stochastic PDEs will be investigated in a future research work.
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