
Rule-Based In-Network Processing in Wireless Sensor Networks

Ozgur Sanli

Department of Computer Engineering

Middle East Technical University

06531, Ankara, Turkey

Email: ozgur.sanli@ceng.metu.edu.tr

Ibrahim Korpeoglu

Department of Computer Engineering

Bilkent University

06800, Ankara, Turkey

Email: korpe@cs.bilkent.edu.tr

Adnan Yazici

Department of Computer Engineering

Middle East Technical University

06531, Ankara, Turkey

Email: yazici@ceng.metu.edu.tr

Abstract— Wireless sensor networks are application-specific
networks, and usually a new network design is required for a
new application. In event-driven wireless sensor network appli-
cations, the sink node of the network is generally concerned with
the higher level information describing the events happening in
the network, not the raw sensor data of individual sensor nodes.
As the communication is a costly operation in wireless sensor
networks, it is important to process the raw data triggering the
events inside the network instead of bringing the raw data to
the sink and processing it there. This helps reducing the total
amount of packets transmitted and total energy consumed in
the network. In this paper, we propose a new method that
distributes the information processing into the sensor network
for event-driven applications. We also describe an application
scenario, healthcare monitoring application, that can benefit
from our approach.

I. INTRODUCTION

With recent advancements in micro electro-mechanical

systems (MEMS), it is possible to employ wireless sensor

networks (WSN) that can sense and act on the physical

phenomenon that happens around them. A typical wireless

sensor network is composed of small sensing devices with

short-range radio communication capabilities and limited

resources. Sensor nodes generally operate on the power

supplied by the irreplaceable batteries, thus, energy efficiency

is very important in wireless sensor networks. The energy

consumption of sensing and processing operations are far

less compared to the energy consumption of communication

operations. As described in [7], transmitting 1 Kb of data

at a distance of 100 meters costs 3 joules in a noise-free

environment. Nevertheless, the same amount of energy is

consumed by a general purpose processor with 100 MIPS/W

capability when it executes 3 million instructions. This

suggests that reducing the network traffic volume must be

a major concern for energy efficient sensor networks.

In-network processing is a distributed information pro-

cessing technique that is used to reduce the network traffic

in sensor networks. If in-network processing is used, all or

part of the data is processed by the nodes inside the sensor

network rather than processing all data at a central node. As

a result, refined higher level information is transported inside

the network instead of raw sensor data.

When in-network processing is employed, sensor readings

can be processed near to the sensed area and the redundant

or unnecessary data can be filtered out. In this way, the

amount of traffic transported in the network decreases and

this improves the energy utilization, prolongs the lifetime of

both individual sensor nodes and the entire sensor network.

Furthermore, in-network processing of the data is also a more

fault-tolerant and scalable approach. If a centralized approach

is used for information processing, sink node takes all the

responsibility of processing and the raw data first need to

be brought to the sink in order to be processed. In such an

approach, sink node is a single point of failure. Additionally,

adding more sensor nodes will have a negative influence on

the sensor network as the total number of packets transmitted

in the network and passing through the nodes close to the

sink will increase: causing more energy consumption and

decreasing the sensor network lifetime.

An important challenge associated with the sensor net-

works is that different kinds of applications have different

sets of requirements, which makes it impossible to design

generalized algorithms that can be used in all application

scenarios. For example, some applications are deployed to

gain insights on an unknown physical phenomenon. Such

research oriented applications require all sensor readings to

be recorded for offline analysis. On the other hand, expec-

tation from a forest fire detection or health-care monitoring

application is the notification of emergency cases. As these

examples show, appropriate algorithms for an application

should be developed with its own specific requirements.

Sensor network applications can be classified as demand-

driven and event-driven applications [9]. In event-driven

application model, the processing and reactions take place

only after the occurrence of something important for the

application, and there is no need for continuous flow of

sensor readings or periodic query requests. In order to take

advantage of this approach, we need to establish mechanisms

that can produce high level information from raw data,

decide if the information is of interest to the application and

propagate the relevant information to the appropriate nodes

in the sensor network.

In this paper we propose an in-network processing method

for wireless sensor networks. In our approach, we adopt

the rule-based inferencing as the information fusion method.

Event-condition-action (ECA) rules in a rule-base express the

application logic. For each type of node that has processing

capabilities, a new sub-rule-base is created from the original

rule-base; i.e, the original central rule-base is decomposed

2009 IEEE International Symposium on Intelligent Control
Part of 2009 IEEE Multi-conference on Systems and Control
Saint Petersburg, Russia, July 8-10, 2009

978-1-4244-4603-2/09/$25.00 ©2009 IEEE 660

into multiple sub-rule-bases which are used to construct

information processing engines distributed into the sensor

network.

Our approach is particularly useful for large scale sensor

networks that run event-driven real-time applications. In such

applications, transmitting all the raw sensor measurements

without considering whether they are related to an event of

interest or not causes too much energy consumption. Ad-

ditionally, for real-time applications that require immediate

response, the delay between the occurrence of an event and

the respective decision and the accompanying action should

be small and bounded. In large networks, this delay may be

quite large if processing is only done at a central location.

The rest of the paper is organized as follows: In Section

2, we present the related work. In Section 3 we show the

details of our proposed solution and give some examples for

clarification. In Section 4, we discuss about an application

scenario which benefits from our approach. Finally in Section

5, we conclude the paper.

II. RELATED WORK

Cougar [8], TinyDB [4] and Directed Diffusion [3] are

the popular data processing schemes that employ in-network

processing in sensor networks. Cougar and TinyDB views

the sensor network as a large distributed database and instead

of collecting data at the sink, queries are distributed into the

network. Query processing systems are demand-driven in na-

ture, so they are not suitable for event-driven applications. In

Directed Diffusion, interests, which are attribute-value pairs,

are placed in the network by the sink and the nodes send their

data to it if the interest is satisfied. Data is aggregated along

the way back to the sink. Similar to previous approaches, it is

demand-driven and not suitable for applications that require

continuous monitoring. Furthermore, attribute-value pairs are

not always expressive enough to describe what is interesting.

Therefore, unnecessary packets might still be transported.

In [6], a composite event processing framework that works

on top of a range of publish/subscribe systems is proposed.

Distributed composite event detectors are installed at various

locations in the sensor network according to the requirements

of the application such as latency, reliability or bandwidth

usage. Although this work is similar to our study in the way

that composite event expressions are decomposed into sub-

expressions as we do in rule-base decomposition process,

their proposition is not specifically about the wireless sensor

networks and therefore, they do not take the constraints

present in the wireless sensor networks into account. Fur-

thermore they do not discuss about how the decomposition

is done. On the other hand, we give an algorithmic way

of decomposition that suits to the requirements of wireless

sensor networks. Additionally, we consider a hierarchical

network architecture, and we describe precisely how we

can classify the nodes based on what they can process, and

therefore where the information processing engines can be

placed.

In [5], a rule-based distributed fuzzy logic reasoning

engine is described. The reasoning engine employs simple

if-then rules for the decision process and it uses fuzzy

logic to fuse the individual sensor readings and the neighbor

observations to get more accurate results. Although if-then

rules which are similar to our ECA rules are used for

information processing, the main motivation of this study is

to improve reliability of the decisions and it mentions only

about processing done at a single node. However, our method

is about distributed processing in the entire wireless sensor

network, and in our approach sensor nodes cooperate for the

purpose of reducing network traffic and energy consumption.

In [1], a proactive and distributed mechanism is proposed

to detect the sets of interrelated events, also called contexts.

Event notifications are delivered to special nodes which

are connected through an overlay network. Similar to our

method, these nodes make partial context decisions and

forward their decision to the next node in the overlay.

However, the approach adopted in this study is to express the

logical relations as disjunctions of conjunctions of premises

whereas our approach is to express them as conjunctions of

disjunctions of premises. Furthermore, in [1] nodes need to

keep the address of the sensor nodes that are responsible for

processing the next input element. As we use a hierarchical

sensor network architecture, sensor nodes in our approach

only need to know how they can reach the nearest node in the

next hierarchical level. This simplifies the routing strategy.

III. DISTRIBUTED INFORMATION PROCESSING

In this section we give the details of how we distribute

the information processing into the sensor network.

A. Event-Condition-Action Rules

In our approach, application logic is expressed by a set

of Event-Condition-Action (ECA) rules. An ECA rule is a

formal method to express active capabilities. The rules are

in the following format:

ON Event

IF <Conditions>

THEN <Actions> / <Conclusions>

ECA rules represent a set of statements the execution of

which depends on the occurrence of a triggering event and

satisfaction of a set of conditions. These statements express

the actions to be taken and the conclusions to be drawn.

Employing ECA rules instead of embedding the logic into

the application code has some advantages [9]. First the rules

can be stored outside in a rule-base which improves the mod-

ularity, maintainability and extensibility of the applications.

Second, ECA rules have a high-level declarative syntax, so

they can easily be analyzed and optimized. Finally, ECA

rules provide a generic mechanism to express the reactive

behavior contrary to the application code that is typically

specialized to a particular type of reactive scenario.

B. Hierarchical Information Processing

An ECA rule that is in the form of "ON <event>;

IF <conditions>; THEN <actions>" can be rewrit-

ten as a deductive rule in the form of "IF (<event>

& <conditions>); THEN <actions>". The triggering

661

event of a rule and the conditions are the inputs of that rule,

whereas the actions or conclusions are the outputs.

A rule can only satisfy once all the inputs are available

and they evaluate to true. Nevertheless, these inputs become

available at different times and in different places in the

sensor network (e.g. ordinary sensor nodes, cluster-heads

or the sink). If a node cannot process a rule because

some part of the input is located at a different node, then

these inputs should be collected at some place where it is

possible to check the satisfaction of the premises and execute

the accompanying statements in the case of a match. The

simplest approach would be to collect all the inputs at a

central location, and process them once all of them become

available. However, it has already been stated that it is de-

sirable to do in-network processing. Therefore, information

processing should be distributed into different nodes in the

network in an efficient and reliable manner.

All the rules that are required for the application constitute

a rule-base. A reasonable way to express the application

logic is to devise a central rule-base which does not take

where and how the data is processed into consideration.

Because, designing multiple rule-bases while taking such

issues into account requires much more attention in order not

to make mistakes which lead to serious problems common

in distributed applications, like consistency problems. Such a

design is especially a problem for applications that use large

sets of rules.

After the generation of a central rule-base properly ex-

pressing the application logic, the central rule-base is de-

composed into smaller rule-bases for distributed information

processing in the sensor network. The rules in a sub-rule-

base is such that all the premises can be evaluated at the

place where the information processing engine based on this

sub-rule-base will run.

A sub-rule-base is created only for the nodes having

processing capabilities. Inputs that are available for these

nodes are used to classify the types of nodes in the sensor

network. Different types of nodes have different input sets.

Two nodes which can process exactly the same inputs are

referred to as the same type of nodes, and employ the same

rule-base. Although nodes in a homogeneous sensor network

are all same kind, it is still possible that they have different

input sets because their responsibility in the sensor network

might differ. For example, majority of the nodes only process

their own data while some of them function as cluster-heads

and process their neighbors’ data as well.

In a hierarchical sensor network, the input sets of nodes

differ at each hierarchical level and as a result, a different

rule-base is created for each of these hierarchical levels.

For example, if all nodes have the information processing

capabilities in a cluster-based sensor network, then there

might be three sub-rule-bases employed at ordinary sensor

nodes, cluster-heads and the sink, respectively. If ordinary

sensor nodes can not process data, only two rule-bases are

used: for cluster-heads and the sink.

Algorithm 1 Rule-Base Decomposition

1: RB = original rule-base

2: SRB = new sub-rule-base

3: k ← 0
4: for all R in RB do

5: a← antecedent(R)
6: cnf ← conjunctive normal form(a)
7: /∗ cnf = (α ∧ (β1 ∨ β′

1
) ∧ · · · ∧ (βn ∨ β′

n)) ∗/
8: β ← beta(cnf) // {β1, β2, . . . , βn}
9: β′ ← beta′(cnf) // {β′

1
, β′

2
, . . . , β′

n}
10: P ← powerset(β)
11: for all M in P do

12: if M == β then

13: Add ”if (α∧β1∧ . . .∧βn); then A” into SRB
14: Remove R from RB
15: else

16: m← number of elements(M)
17: a1 ← α ∧ (

∧m

i=1
element(M, i))

18: Add ”if (a1); then Ak” into SRB
19: M ′ ← {β′

i | βi /∈M}
20: n← number of elements(M ′)

21: a2 ← Ak ∧
(

∧n

j=1
element(M ′, j)

)

22: Add ”if (a2); then A” into RB
23: k ← k + 1
24: end if

25: end for

26: end for

C. Rule-Base Decomposition

The rule-base decomposition process first creates the sub-

rule-base for the type of nodes that are classified as being in

the lowest hierarchical level. Such nodes’ input set does not

have any subset which is the input set of some other node.

If such a subset existed, then the hierarchical level of these

nodes would not be the lowest level, because higher layers

have more inputs, which possibly include the inputs from

lower layers.

Next rule-base is going to be created for the nodes having

the following property: subsets of those nodes’ input set

might only be the input set of a node at a lower hierarchical

level, not at the higher levels. This process is repeated until

a sub-rule-base is created for each different type of nodes.

The data is processed in the lowest hierarchical level where it

can be processed and it is not relayed into upper layers. This

bottom-up approach in creating the sub-rule-bases supports

the ”data should be processed as close to its source as

possible” idea.

The inputs of a rule are in the form of conjunctions or

disjunctions of the events and conditions. Our algorithm for

rule-base decomposition process, Algorithm 1, requires that

the antecedent part of the rules are put in the conjunctive

normal form which is a conjunction of disjunctive clauses:

(c11 ∨ c12 ∨ · · · ∨ c1k) ∧ . . . ∧ (ci1 ∨ ci2 ∨ · · · ∨ cin)

Each cij is called an input expression and it is a literal

662

or a comparison that evaluates to true or f alse. For any

node in the sensor network, the input expressions of a rule

can be classified into two: the input expressions that might

be processed by the node, and the expressions that cannot

be evaluated by that node. Using this information, we can

construct a generalized form of the antecedent of a rule in

the following format:

α ∧ (β1 ∨ β′

1
) ∧ (β2 ∨ β′

2
) ∧ · · · ∧ (βn ∨ β′

n)

where α is the conjunction of disjunctive clauses that only

contain the boolean expressions that use the input variables

from the node’s input set; i.e. all the necessary input for

the evaluation of α is available at the node. Similarly,

β1, β2, · · · , βn are the disjunctions of the boolean expressions

that the node can evaluate, whereas, β′

1
, β′

2
, · · · , β′

n are the

disjunctions of the expressions that this node cannot decide

on.

Let β be the set β = {β1, β2, . . . , βn}, β′ be the set β′ =
{β′

1
, β′

2
, . . . , β′

n} and P be the powerset of β. For a member

M of the powerset P , if M and β are not identical, then a

rule having the following antecedent will be added into the

sub-rule-base:

α ∧

m
∧

i=1

M(i)

where m is the cardinality of M and M(i) is the ith element

of M . The output part of the rule will be an auxiliary

output Ot representing the current matching conditions of

the original rule. If β part of a disjunctive clause evaluates

to false, it is still possible that overall disjunctive clause holds

true as β′ part of the clause might result in a true evaluation.

For this reason, when an auxiliary output is generated, i.e.

it is not possible to decide whether the conditions for the

original rule hold true or not, this auxiliary output should

be forwarded to the upper layers in the hierarchy so that

the inputs available there can be used to further validate the

conditions.

If we define the set M ′ as M ′ = {β′

i | βi /∈ M} with

cardinality n, then a new rule with the original output O and

the following antecedent is added into the central rule-base:

Ot ∧

n
∧

i=1

M ′(i)

where M ′(i) is the ith element of M ′.

If M and β are identical, the formula for adding a new rule

into the newly generated rule-base does not differ from the

previous case with the exception that the rule will have the

original output O as its output part, not an auxiliary output.

Another difference from the previous case is that the original

rule will be removed from the central rule-base instead of the

addition of a new rule.

The above process should be repeated for each member of

the powerset P so that all possible combinations of condition

matching are enumerated. As a result of this process, a

central rule is decomposed into multiple sub-rules placed in

two rule-bases: newly created sub-rule-base and the modified

central rule-base.

The above steps are for the decomposition of a single

rule. In order to generate the complete sub-rule-base, the

operations taken for just one rule should be repeated for

every rule in the original rule-base. The complete distribution

of information processing into the sensor network requires

the creation of sub-rule-bases for every different type of node

residing in different hierarchical levels.

1) Rule Decomposition Example: The following example

is given to illustrate the rule-base decomposition process.

Let’s consider the following rule:

if (α ∧ (β1 ∨ β′

1
) ∧ (β2 ∨ β′

2
)); then O

where α represents the conjunction of disjunctive clauses

that contain only the input expressions that can be processed

by the node; similarly β1 and β2 represent the disjunctions

of input expressions that can be processed by the node, and

β′

1
and β′

2
represent the disjunctions of input expressions

that cannot be evaluated by that node. For such a rule, the

powerset P is equal to {{β1, β2}, {β1}, {β2}, {}}. In such a

case, if we follow the steps described above, the following

rules would be added into the new sub-rule-base:

if (α ∧ β1 ∧ β2); then O

if (α ∧ β1); then O1

if (α ∧ β2); then O2

if (α); then O3

If all of α, β1 and β2 hold true, then the event detection

engine reaches a conclusion and the associated actions are

taken. On the other hand, if one or both of the β1 or β2

cannot be evaluated as true, then the available information is

fused and the result is sent to the next node in the hierarchy.

The original rule in the central rule-base is removed and the

following rules are added into it:

if (O1 ∧ β
′

2); then O

if (O2 ∧ β
′

1); then O

if (O3 ∧ β
′

1 ∧ β
′

2); then O

IV. APPLICATION SCENARIO

Our approach is useful for event-driven sensor network

applications where the meaning of events depend on the

conditions in different contexts. Furthermore, the application

should not require the raw sensor data to be recorded, like

it is the case for research oriented applications where the

aim is to extract knowledge about the inner workings of an

unexplored real-world phenomena. On the other hand, there

are many application scenarios where the only interest is in

the high-level knowledge of whether some event happens or

not. For example early detection of forest fires, healthcare

monitoring, etc.

Healthcare monitoring is an appropriate application sce-

nario for demonstrating the benefits of our proposed in-

network processing scheme. In a healthcare monitoring ap-

plication, physiological signals of a person also called vital

663

signs, such as pulse rate, blood pressure, blood oxygen

saturation, respiration rate, body temperature, etc., together

with the environmental conditions are assessed so that an

emergency case or an abnormal situation can be detected

and handled immediately. Vital signs may have a different

meaning in different conditions. For example, pulse rate of

a person while he is exercising might be twice the value of

it while he is resting. Besides, normal values of vital signs

differ according to the person’s age or sex.

Healthcare applications require continuous evaluation of

sensor values since an emergency case might happen at any

time and any place. What’s more, time is very critical in

such applications and immediate reaction is required in the

case of an emergency. Finally, it is very important to relay

only the relevant information to the medical center as the

person there responsible for monitoring and managing alerts

might be overwhelmed by the number of those alerts and

miss some important ones.

In the following subsections, we give the details of the

system architecture of a healthcare monitoring application

and the information processing in this sensor network.

A. System Architecture

The architecture of the healthcare monitoring application

consists of a body area sensor network, a home network

and a medical center network. Body area sensor network

consists of wearable medical sensors that sense the physio-

logical signals of a person and sensor nodes that detect the

posture and movement or other relevant physical activities

or characteristics of the person. Medical sensors detect pulse

rate, pulse rhythm, blood pressure, respiration rate, body

temperature, blood oxygen saturation, and similar vital signs.

Additionally, physical motion sensors like the accelerometer

and the gyroscope is used to detect the current physical

condition of the person. An accelerometer is used to measure

the forward or upward acceleration so that it is possible to

determine if the person is running, walking, falling down or

stationary. A gyroscope measures the orientation, so it might

help to detect the orientation of the body of the person, such

as sitting, lying or standing. Wearable sensor nodes have

limited processing capabilities and they only check if the

sensed value is above or below a threshold value.

Sensor nodes communicate with a PDA or a special

device that is used to collect and process sensor nodes’

readings, communicate with the medical center network, and

react to emergency cases. Apart from the wearable sensors,

temperature and light sensors placed in the home give the

extra information which helps in the clarification of the state

of the person being monitored. Sensor nodes communicate

with the special device/PDA using 802.15.4 or a similar low

power and low data-rate protocol.

Medical center’s network contains a central server that

stores and processes the information coming from individ-

uals. Medical history of the people is also stored in this

center for additional analysis. The special device/PDA in the

home network communicates with this network using GSM

or UMTS (3G) networks. In addition to the information pro-

cessing systems, there are also experts who are responsible

for monitoring and managing the emergency cases.

B. Healthcare Monitoring Rules

Rules that are used in monitoring the healthcare should

be developed by domain experts. Although we are not

domain experts, the following rules are given for illustration

purpose. These rules are used to show how we distribute the

processing so that not all data is collected at a central place.

ON (Blood_Oxygen_Saturation < 80)

IF ((Blood_Pressure < 100/70) & (Respiration_Rate > 20))

THEN Send_Alert("Shock")

ON (Pulse_Rate > 100)

IF ((Blood_Pressure < 100/70) &

((Blood_Oxygen_Saturation < 80) |

(Respiration_Rate < 15)))

THEN Send_Alert("Hearth Attack")

ON (Speed >= 6 km/h)

THEN Running

ON (Pulse_Rate > 100)

IF (!Running & (Respiration_Rate > 20))

THEN Send_Alert("Abnormal situation")

ON (Blood_Pressure > 120/80)

THEN Increment(High_Blood_Pressure_Count)

ON (Blood_Pressure > 120/80)

IF ((High_Blood_Pressure_Count > 5) &

(High_Blood_Pressure_in_Family = true))

THEN Warn("See Doctor")

The above rules contain parts that can be processed

at different places in the network and if we follow our

decomposition algorithm we come up with several rule-bases

for ordinary sensor nodes, a rule-base for the PDA/special

device and a final one for central server at the medical center.

Sensor nodes make comparison of their measurements with

the appropriate threshold values in order to detect events that

might be interesting for the application. The following is a

collection of rule-bases for different types of sensor nodes:

ON (Blood_Oxygen_Saturation < 80)

THEN low_oxygen_saturation

ON (Blood_Pressure < 100/70)

THEN low_blood_pressure

ON (Blood_Pressure > 120/80)

THEN high_blood_pressure

ON (Respiration_Rate > 20))

THEN high_respiration_rate

ON (Respiration_Rate < 15)

THEN low_respiration_rate

ON (Pulse_Rate > 100)

THEN fast_pulse_rate

ON (Speed >= 6 km/h)

THEN Running

Simple events from sensor nodes are gathered and fused

in the PDA/special device and the rules used for this purpose

are as follows:

ON low_oxygen_saturation

IF (low_blood_pressure & high_respiration_rate)

THEN Send_Alert("Shock")

ON (fast_pulse_rate)

IF (low_blood_pressure &

(low_oxygen_saturation | (low_respiration_rate))

664

THEN Send_Alert("Hearth Attack")

ON (high_pulse_rate)

IF (!Running & high_respiration_rate)

THEN Send_Alert("Abnormal situation")

ON (high_blood_pressure)

THEN Increment(High_Blood_Pressure_Count)

ON (high_blood_pressure)

IF (High_Blood_Pressure_Count > 5)

THEN High_Blood_Pressure_Alarm

We assume that the information about whether there is

high blood pressure problem in a family member is stored

in a database in medical center network. The rule-base for

the central server at the medical center is as follows:

ON (High_Blood_Pressure_Alarm)

IF (High_Blood_Pressure_in_Family = true)

THEN Warn("See Doctor")

The above rule-bases make sure that the processing is

distributed in the network and the data is transported only if

there is an interest in it. Sensor readings are transported if

they satisfy a filtering rule. Similarly, PDA eliminates false

positives to be sent to the central server. For example, heart

rate goes up while exercising and respiration rate decreases

while sleeping, and these should be considered normal.

Actually, for a typical person, we expect a large value for

the ratio of these false positives to the real problems.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed a new method to distribute

information processing into different nodes in a wireless sen-

sor network for event-driven applications. We presented how

we decompose a central rule-base expressing the application

logic into multiple sub-rule-bases which are employed in the

appropriate places inside the network. Our motivation was

to process the data inside the network as much as we can,

since communication operations are responsible for most

of the energy consumption in the sensor nodes. We also

described an application scenario which might benefit from

our approach.

In this study we only considered logical relations between

events and conditions. But temporal relations between these

events and conditions are also important and need to be

considered. In our future work we will study how we can

incorporate temporal aspects of information processing into

our approach. As another future work, we will work on how

we can handle the uncertainty and imprecision of sensor

readings.

ACKNOWLEDGMENTS

This work is supported in part by a research grant from

TUBITAK EEEAG 106E012.

REFERENCES

[1] S. Ahn, D. Kim, ”Proactive Context-Aware Sensor Networks”, Lecture

Notes in Computer Science, Vol. 3868/2006, pp. 38-53, 2006.
[2] I. F. Akyildiz, S. Weilian, Y. Sankarasubramaniam, E. Cayirci, ”A

Survey on Sensor Networks”, IEEE Communications Magazine, Vol.
40, No. 8, pp. 102-114, Aug 2002.

[3] C. Intanagonwiwat, R. Govindan, D. Estrin, ”Directed Diffusion: a
scalable and robust communication paradigm”, Proceedings of the

6th. Annual International Conference on Mobile Computing and

Networking, pp. 56-67, Boston, 2000.
[4] S. R. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong, ”TinyDB: an

Acquisitional Query Processing System for Sensor Networks”, ACM

Trans. Database Syst., Vol. 30, No. 1, pp. 122-173, 2005.
[5] M. M. Perianu, P. Havinga, ”D-FLER: Distributed Fuzzy Logic Engine

for Rule-Based Wireless Sensor Networks”, Ubiquitous Computing

Systems, Vol. 4836/2007, pp. 86-101, 2007.
[6] P. R. Pietzuch, B. Shand, J. Bacon, ”Composite Event Detection as a

Generic Middleware Extension”, IEEE Network Magazine, Special Is-

sue on Middleware Technologies for Future Communication Networks,
Jan/Feb 2004.

[7] G. J. Pottie, W. J. Kaiser, ”Wireless Integrated Network Sensors”,
Communications of the ACM, Vol. 43, No. 5, pp. 51-58, 2000.

[8] Y. Yao, J. Gehrke, ”The Cougar Approach to In-Network Query
Processing in Sensor Networks”, SIGMOD, 2002.

[9] M. Zoumboulakis, G. Roussos, A. Poulovassilis, ”Active Rules for
Sensor Databases”, Proceedings of the First Workshop on Data Man-

agement for Sensor Networks (DMSN’04), August 2004.

665

