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Abstract. Micro-architectured systems and periodic network structures play

an import role in multi-scale physics and material sciences. Mathematical mod-
eling leads to challenging problems on the analytical and the numerical side.

Previous studies focused on averaging techniques that can be used to reveal the

corresponding macroscopic model describing the effective behavior. This study
aims at a mathematical rigorous proof within the framework of homogenization

theory. As a model example, the variational form of a self-adjoint operator on

a large periodic network is considered. A notion of two-scale convergence for
network functions based on a so-called two-scale transform is applied. It is

shown that the sequence of solutions of the variational microscopic model on

varying networked domains converges towards the solution of the macroscopic
model. A similar result is achieved for the corresponding sequence of tangential

gradients. The resulting homogenized variational model can be easily solved
with standard PDE-solvers. In addition, the homogenized coefficients provide

a characterization of the physical system on a global scale. In this way, a math-

ematically rigorous concept for the homogenization of self-adjoint operators on
periodic manifolds is achieved. Numerical results illustrate the effectiveness of

the presented approach.

1. Introduction. This research is motivated by our studies on flow and transport
through extremely large capillary systems in the fields of groundmotion prediction
in geo-engineering and groundwater contamination monitoring in environmental
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sciences ([35]). Huge capillary networks can be represented by periodic graphs with
a very small length of periodicity when compared to the total extension of the
domain under consideration. The physical process on the periodic networked is
modeled by a system of second order differential equations that define a self-adjoint
operator. The solution of this diffusion-reaction system describes for example the
spatial distribution of a certain substance.

Network differential equations on very large networks with an inherent periodic
microstructure are very challenging from both the analytical and the numerical
perspective. Primarily, this is caused by

• the large number of branches,
• the huge amount of singularities (i.e., the nodes of the network),
• the highly oscillating coefficients of the system.

In addition, in case of very small diffusion coefficients, boundary layers arise
at the end of each branch. That means, a very fine discretization scheme has to
be applied in order to receive an adequate numerical solution. In case of capil-
lary networks, such a discretization leads to a huge computational effort and an
approximate solution can no longer be obtained in a reasonable amount of time.

In our study, we take advantage of the very small length of periodicity and
apply principles of homogenization theory. In homogenization theory, parameter-
dependent microscopic models are considered that describe the problem under con-
sideration in all its details. In particular, the effects of the inherent microscopic
structures, that are usually leading to highly oscillating coefficients, are integrated
in such models. Methods from homogenization theory are applied to identify the so-
called homogenized model in a mathematical rigorous way. The macroscopic model
provides an approximate model that describes the process under consideration on
a global scale. The so-called homogenized coefficients characterize the effective
properties. In particular, they comprise the effects of the inherent microscopic
structure. Various notions of convergence such as G-convergence, H-convergence or
Γ-convergence have been developed for the analysis of a wide range of applications.
These notions of convergence connect the macroscopic and the microscopic model
in the sense that the sequence of solutions of the microscopic model converges to
the solution of the macroscopic model. In addition, the limit function of the se-
quence of gradients of the solutions of the microscopic model can be determined
(see Figure 1).

Figure 1. Homogenization theory : The limit process.
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Homogenization of network differential equations on periodic man-
ifolds Despite the vast amount of literature on various theoretical aspects and
applications, there exists no generic concept for the homogenization of network dif-
ferential equations. In particular, a number of issues arise in context of network
differential equations that can be summarized as follows:

• no extension operators to the full domain are known,
• traditional notions of convergence are not applicable,
• huge number of singularities of the network,
• highly oscillating coefficients,
• development of boundary layers on each branch.

Important traditional approaches in homogenization theory rely on so-called ex-
tension operators. These operators transform a function on the domain of the
microscopic model into a function on the global domain of the macroscopic model
while constraints on the norm of the function and its gradient are preserved. Ap-
propriate extension operators for network functions, that transform a function from
the network domain to the global domain in the physical space, are not known by
now.

In addition, generic homogenization methods and the corresponding notions of
convergence are not directly applicable for microscopic models on periodic networks.
The microscopic models are defined on domains depending on the parameter ε > 0.
An appropriate inclusion relation for these domains and the corresponding function
spaces is not fulfilled.

The structure of the periodic networks leads to further complications. For exam-
ple, a huge number of singularities in the domain (i.e., the nodes of the graph) have
to be integrated in the homogenization process. The singular perturbations act as
connecting points of the network, where additional transmission conditions such as
continuity conditions and Kirchhoff laws are imposed.

During the homogenization process, the length of periodicity and, thus, the
length of each branch tends to zero. This immediately causes the problem of the
limit behaviour of the tangential derivatives along the vanishing edges. Further-
more, the limit behaviour of the sequence of solutions of the microscopic model
has to be addressed, because the physical domain (i.e., the global domain) will be
increasingly filled with singularities. In other words, a notion of convergence for
network functions is required; that allows us to decide whether or not the sequence
of solutions of the microscopic model and their corresponding tangential gradients
converge towards a limit function.

The singularities of the networked domain also cause major difficulties on the
numerical side. As mentioned before, an extremely fine discretization scheme is
required to provide appropriate numerical solutions on the networks with a vanish-
ing length of periodicity (see [12], [37]). The transmission conditions at the nodes
often destroy the symmetric (and diagonal) structure of the system’s matrix of the
numerical scheme. The periodicity of the network leads to highly oscillating (non-
continuous) coefficients. Furthermore, for small values of the diffusion coefficient,
boundary layers arise at the end of each single edge ([10]) and an adaptation of the
discretization scheme is required.

For this reason, homogenization theory has to be applied to network models in or-
der to identify approximate macroscopic models and their characteristic properties.
Until now, only a few authors have addressed the problem of homogenization on
periodic and singularly perturbed networks. Apparently, the most difficult aspect
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seems to be the lack of an appropriate notion of two-scale convergence for network
functions.

In [32], the problem of identification of the macroscopic model in case of a
self-adjoint differential operator has been discussed. This approach has been fur-
ther extended to non self-adjoint operators and diffusion-advection-reaction models
in ([20, 21, 22, 23, 24]). In particular, transport-dominated systems are addressed
where the diffusion part vanishes. Here, a two-scale averaging technique has been
applied that is based on a two-scale asymptotic expansion of the solution of the
microscopic model. Nevertheless, this method is a purely formal approach that can
reveal the type and structure of the macroscopic model. However, no formal notion
of convergence for network functions has been applied.

In particular, the mathematical sense of convergence of the solution of the micro-
scopic models towards the solution of the macroscopic model is not clear. The same
is true for the sequence of tangential gradients of the solutions of the microscopic
models.

In this paper, we address the situation of [32] and aim at a mathematical rigorous
proof of the homogenized model. We apply a notion of two-scale convergence for
network functions and identify the homogenized model. In addition, the limit func-
tions for sequence of solutions of the microscopic models as well as their tangential
gradients are derived with respect to this notion of convergence.

The rest of the paper is organized as follows: In Section 2, relevant approaches
for the averaging and homogenization of network differential equations are briefly
reviewed. In Section 3 various network structures are introduced and then, in
Section 4, appropriate function spaces on scalable networks with a periodic micro-
geometry are presented. In Section 5, the variational microscopic model is intro-
duced. In the following Section 6 the notions of two-scale convergence and two-scale
transform for network functions are discussed. The homogenization result and the
macroscopic model is derived in Section 7. Finally, in Section 8, an illustrative
numerical example of a self-adjoint operator on a network is presented that demon-
strates the effectiveness of this approach. We conclude with a discussion of potential
developments and future works.

2. Literature Review. Differential equations on large periodic networks are ap-
plied in various disciplines ranging from mechanics and engineering sciences to ma-
terial sciences and nanotechnology. They often arise in context of so-called micro-
architectured systems, where periodic cellular structures play an important role. In
modern multi-scale physics and material sciences, specimens and devices with an
inherent micro-geometry are of considerable importance. These applications are
concerned for example with photonic crystals in nanotechnology and the develop-
ment of new lightweight materials in engineering.

The major part of the current research in this field is devoted to differential
equations on networks with a positive thickness of the branches. Such network
structures are often called thin domains or fattened graphs. Generally, the corre-
sponding publications apply partial differential equations on the full domain that
depend on (several) small parameters such as the length of periodicity, the (pos-
itive) thickness of the branches and the thickness of the physical device. Several
authors addressed applications of such models. For example, elasticity problems for
gridworks and thermal problems on lattice-type structures and reticulated structures
are discussed in [8]. In [36], elasticity problems for thin planar box structures are
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addressed. Further applications deal with (ultra-) lightweight materials and space
antennas (see [11]).

Multi-parameter systems can be analyzed by so-called multiple-scale methods.
Such approaches are often based on asymptotic expansions that are used to reveal
the asymptotic behaviour with respect to these parameters. Limit analysis leads to
simplified continuous models supported by appropriate convergence results. These
approaches are heavily used in nanotechnology, where so-called photonic crystals and
their optical characteristics such as spectral band gaps are analyzed ([16, 25, 26, 27]).

Many approaches and applications in mechanics and material sciences fall into
the framework of so-called porous media ([3, 9, 15]). The underlying physical system
can be described as a heterogeneous material ([38]) consisting of a large number of
periodically distributed inclusions. Capillary systems are an important class of
models in the field of porous media. For example, they are applied for the modeling
of transport problems in soil mechanics and oil recovery (see [1, 2]). Corresponding
simulations of microflows and nanoflows are discussed in [17].

Measure theoretic (fattening) approaches are a part of a more recent methodology
in the field of homogenization of thin domains. The basic idea of these approaches
consists in an identification of the physical system’s topology with an appropriate
measure (see [4, 5, 40]). With respect to a representation of the physical domain
by measures, Sobolev spaces on measures and the fields of potential and solenoidal
(divergence free) vector-functions have been introduced. In particular, periodic
wire-networks are analyzed in [7]. In [18], measure theoretic homogenization ap-
proaches have been used for the homogenization of optimal control problems on
periodic graphs.

Applications on periodic networks
The situation on networks that do not show a positive thickness of the branches

is much more complicated. Only a few authors addressed this type of networks
with particular regard to homogenization theory. A first model for a class of re-
sistive networks in two-dimensional domains is presented by Vogelius ([39]). Mi-
croelectromechanical systems consisting of recurrent cellular electronic circuits are
addressed by Lenczner et al. ([30, 31]). Lenczner also discussed applications in the
fields of smart materials ([6]) and field effect microscopy ([29]). In [14, 33, 34],
Göktepe and his colleagues applied a micro-mechanically based network model to
analyze the viscoelasticity and elastic response of rubbery polymers.

3. Periodic Networked Domains. The mathematical models under considera-
tion are defined on a finite periodic network with a small length of periodicity ε > 0.
The physical domain of the material or device is represented by the polyhedral do-
main Ω ⊂ Rd, d ∈ N.

Definition 3.1 (Infinite periodic networks). Let ε > 0 be a given length of
periodicity and Ω ⊂ Rd, d ∈ N, is a polyhedral domain that describes the physical
domain of the material or device under consideration. With Nε ⊂ Rd we denote
an infinite ε-periodic network in Rd. The corresponding set of vertices is defined
by Vε. For each bounded domain B ⊂ Rd, the condition |Vε ∩ B| < ∞ has to be
satisfied. In addition, we assume that ∂Ω ∩ Vε = ∅. This means that no vertex of
the infinite periodic network Nε is located on the boundary of the domain Ω.
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Figure 2. Periodic networks: The network NΩ
ε is the segment of

the infinite network Nε contained in the polyhedral domain Ω, that
is obtained by copying and scaling from the reference graph G in
the unit cell [0, 1)d.

Definition 3.2 (Finite Network). The microscopic model is defined on the re-
striction NΩ

ε := Nε ∩Ω of the infinite network Nε to the domain Ω. The associated
(now finite) set of nodes of NΩ

ε is defined by VΩ
ε . With ∂B

(
NΩ
ε

)
:= Nε ∩ ∂Ω we

denote the boundary nodes (or outer nodes) of NΩ
ε and ∂R

(
NΩ
ε

)
:= Vε ∩ Ω are the

ramification nodes (or inner nodes). Since both sets of nodes are distinct, we get
VΩ
ε = ∂R

(
NΩ
ε

)
∪̇ ∂B

(
NΩ
ε

)
. The set of branches of the finite network NΩ

ε is given by

JΩ
ε . The edges Bε

j ⊂ Rd with index j ∈ JΩ
ε are parameterized in terms of their arc

length Lεj with regard to the interval Iεj := (0,Lεj). The tips of the branch Bε
j are

denoted by E−
(
Bε
j

)
and E+

(
Bε
j

)
.

Assumption 3.3 (Length scales).

(P) The length of periodicity ε > 0 of the network NΩ
ε is considered as “very

small” when compared to the diameter of the polyhedral domain Ω ⊂ Rd
(i.e., diam (Ω)� ε > 0).

Remark 1. The periodic networks introduced before are so-called singularly per-
turbed manifolds. Here, the junctions of distinct branches - the nodes of the graph
- are the singular perturbations of the networked domain.

Definition 3.4 (Unit cell and reference graph). With � = [0, 1)d we denote
the unit cell in Rd. The graph G := N1 ∩� is called the reference graph in �. The
set of nodes of the reference graph are given by V

(
G
)
. The set of boundary nodes

(or outer nodes) is defined by ∂B
(
G
)

:= N1 ∩ ∂� and the set of ramification nodes

(or inner nodes) is denoted by ∂R
(
G
)

:= V1 ∩ int� (i.e., V
(
G
)

= ∂R
(
G
)
∪̇ ∂B

(
G
)
).

In addition, the corresponding set of edges of the reference graph is denoted JG.
Each branch j ∈ JG is parameterized in terms of its arc length LG

j with respect to

the interval IGj := (0,LG
j ).

Both networks Nε and NΩ
ε are composed of recurrent elements that are obtained

from the reference graph G by copying and scaling with factor ε. Finally, we intro-
duce an assumption regarding the topology of the reference graph.
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Assumption 3.5 (Geometry).

(G1) Each edge of the reference graph G crosses the unit cell � completely and
connects two opposite boundary nodes τ−, τ+ ∈ ∂B

(
G
)
.

(G2) A (directed) edge of the reference graph G can intersect the boundary of the
unit cell � only with its vertices.

4. Function Spaces on Scalable Networks with a Periodic Microgeome-
try. The homogenization process of the microscopic model of the physical process
on the ε-periodic network NΩ

ε requires appropriate function spaces. The periodic
coefficients of the variational microscopic model are defined on the infinite periodic
network N1. The solutions of the variational network models are elements of some
Hilbert spaces on networks that eventually guarantee the existence of solutions. The
two-scale limit analysis of the sequence of solutions of the microscopic models and
the corresponding sequence of tangential gradients leads to limit functions on the
domain Ω×G. For this reason, functions spaces are considered which are associated
with domains combining the microscopic level and the macroscopic scale.

Notation. Let φε : NΩ
ε → R be a network function. Then, ∇ετφε : NΩ

ε → R
denotes the tangential derivative of φε on NΩ

ε . Similarly, the tangential derivative
of a function φ : G→ R on the reference graph is given by ∇G

τ φ. By u∗v we denote
the inner product of u, v ∈ Rd.

Function spaces on the network NΩ
ε

The function spaces associated with the variational microscopic model on NΩ
ε are

derived from Lp-spaces.

Definition 4.1. Let 1 ≤ p < ∞. The function space Lp
(
NΩ
ε

)
, equipped with the

norm

‖φε‖p
Lp(NΩ

ε )
:=

∫
NΩ
ε

|φε(x)|p dx,

is introduced on the edges of the ε-periodic network NΩ
ε .

The two-scale limit analysis of the variational microscopic model depends on the
L2-inner product of network functions on NΩ

ε .

Definition 4.2. Let φ, ψ ∈ L2(NΩ
ε ). The L2-inner product of network functions

on NΩ
ε is defined by

〈φ, ψ〉NΩ
ε

:=

∫
NΩ
ε

φ(x) · ψ(x) dx.

On the restricted ε-periodic network NΩ
ε two types of Sobolev-spaces are introduced.

Definition 4.3. On the ε-periodic network NΩ
ε the Hilbert spaces

H̃1
(
NΩ
ε

)
:= H1

(
NΩ
ε

)
and

H1
(
NΩ
ε

)
:=
{
φε ∈ H̃1

(
NΩ
ε

) ∣∣∣φε is continuous at x ∈ VΩ
ε

}
are introduced. Each function φ ∈ H1

(
NΩ
ε

)
is continuous at the inner nodes. Mi-

croscopic models with Dirichlet boundary conditions at the outer nodes depend on
the following Hilbert space:

H1
0

(
NΩ
ε

)
:=
{
φε ∈ H1

(
NΩ
ε

) ∣∣∣φε(x) = 0 for x ∈ ∂B(NΩ
ε )
}
.
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These function spaces can be equipped with the equivalent norms∥∥φε∥∥
H1

1(NΩ
ε )

:=

{∫
NΩ
ε

[
∇ετφε(x)

]2
+ [φε(x)]2 dx

} 1
2

and ∥∥φε∥∥
H1

1,∗(N
Ω
ε )

:=

{∫
NΩ
ε

[
∇ετφε(x)

]2
dx

} 1
2

.

In order to guarantee the existence of a solution of the microscopic variational
model NΩ

ε , the next function space is introduced.

Definition 4.4. The solution of the variational microscopic model with Dirichlet
boundary conditions will be an element of the function space

H1
0,∗ :=

(
H1

0(NΩ
ε ), ‖ · ‖H1

1,∗(N
Ω
ε )

)
.

Remark 2. In some situations, a scaled norm on H1(NΩ
ε ) has to be applied:

‖φε‖H1
ε,∗(N

Ω
ε ) := ε

d−1
2 ·

∥∥φε∥∥
H1

1,∗(N
Ω
ε )
.

Periodic functions

The microscopic variational model on the ε-periodic network NΩ
ε depends on highly

oscillating (periodic) coefficients. They are defined on the infinite network N1.
Since the ε-periodic network Nε is obtained by scaling from N1, the corresponding
coefficients on Nε are determined by φε(x) := u(ε−1x) for each x ∈ Nε.

Definition 4.5. The spaces of periodic functions

L2
per := {φ ∈ L2(N1) |φ is G-periodic},

H1
per := {φ ∈ H1(N1) |φ is G-periodic},

are defined on the infinite network N1.

Functions on Ω × G
The two-scale limit analysis of sequences of functions on the scalable network NΩ

ε

leads to limit functions on the domain Ω × G. Again, appropriate Lp-spaces are
required.

Definition 4.6. Let 1 ≤ p < ∞. The function space Lp(Ω × G) is equipped with
the norm

‖φ‖pLp(Ω×G) :=

∫
Ω

∫
G

|φ(z, y)|p dy dz.

The two-scale limit analysis of the sequence of solutions of the variational micro-
scopic models on the ε-periodic networks reveals that this sequence converges to a
function in the following space.

Definition 4.7. Let Ω ⊂ Rd be the superior domain and G denotes the reference
graph. We set

H1
0,τG(Ω,G) := {φ ∈ L2(Ω×G) | ∇zφ(z, y) ∗ τG(y) ∈ L2(Ω) for y ∈ G,

∇G
τ φ(z, y) = 0 for (z, y) ∈ Ω×G}.
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5. The Variational Form of the Microscopic Model. In this study, the phys-
ical system under consideration is represented by a diffusion-reaction process on an
extremely fine periodic network like a capillary system. Such models are motivated
by our studies on groundwater contamination monitoring and groundmotion pre-
diction ([35]). The microscopic model on the periodic network NΩ

ε is given in the
variational form of a diffusion-reaction process. We assume that continuity condi-
tions at the ramification nodes and Dirichlet boundary conditions are imposed.

Definition 5.1 (Variational microscopic model).
Let the assumptions (P), (B), (G1), (G2) and the condition (C) defined below be
fulfilled. The variational microscopic model is given by

Find φε ∈ H1
0,∗
(
NΩ
ε

)
, such that

Γε
(
φε, ψε

)
=
〈
fε, ψε

〉
NΩ
ε

(
∀ψε ∈ H1

0,∗
(
NΩ
ε

))
,

}
(VMPε)

where the self-adjoint operator is given by the bilinear form Γε : H1
0

(
NΩ
ε

)
×

H1
0

(
NΩ
ε

)
→ R with

Γε
(
φε, ψε

)
:=

∫
NΩ
ε

aε(x)∇ετφε(x)∇ετψε(x) + dε(x)φε(x)ψε(x) dx.

Assumption 5.2 (Coefficients of the variational microscopic model
(VMPε)).

(C) The coefficients a, d and the function F are G-periodic and they fulfill the
following conditions:

a ∈ H1
per(N1), amax ≥ a ≥ a0 > 0,

d ∈ H1
per (N1), dmax ≥ d ≥ 0,

f ∈ L2
per (N1).

Remark 3. In the rest of the paper, we assume that the assumptions (P), (B),
(G1), (G2), (C) are always satisfied.

In the sequel, some properties of the bilinear form Γ are summarized. Firstly, we
refer to an inequality of Poincaré-type, that is fulfilled for network functions in
H1

0

(
NΩ
ε

)
.

Theorem 5.3. Let φε ∈ H1
0

(
NΩ
ε

)
. Then, the inequality∫

NΩ
ε

[
φε(x)

]2
dx ≤ C ·

∫
NΩ
ε

[
∇ετφε(x)

]2
dx

is fulfilled, where C ∈ O(1).1

Next, we recall the Lax-Milgram-Theorem.

Theorem 5.4 (Lax-Milgram-Theorem2). Let Γ : H×H → R be a bounded and
coercive (with constant γ0) bilinear form on the Hilbert space H and let F ∈ H ′.
Then there exists a unique φ ∈ H, such that

Γ(φ, ψ) = F (ψ) (∀ψ ∈ H) .

1See Mazja/Nasarow/Plamenewski 1991, Theorem 19.2.2, p. 261.
2See [13], Theorem 5.8, p. 78.
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In addition, the following inequality is fulfilled:

‖φ‖H ≤
1

γ0
· ‖F‖H′ .

Firstly, we prove that the bilinear form Γε is coercive.

Theorem 5.5. The bilinear form Γε is H1
0,∗
(
NΩ
ε

)
-coercive with constant δa0.

Proof. Let φε ∈ H1
0

(
NΩ
ε

)
. Then, we get

Γε
(
φε, φε

)
= 〈aε, [∇ετφε]

2〉NΩ
ε

+ 〈dε, [φε]2〉NΩ
ε
,

and with assumption (C) we obtain Γε
(
φε, φε

)
≥ a0 ·

∥∥φε∥∥
H1

1,∗(N
Ω
ε )

.

Now, we prove that the bilinear form Γε is bounded.

Theorem 5.6. The bilinear form Γε is Lipschitz-continuous on H1
0,∗
(
NΩ
ε

)
×

H1
0,∗
(
NΩ
ε

)
.

Proof. Let φε, ψε ∈ H1
0

(
NΩ
ε

)
and M := max {amax, dmax}. Applying the Cauchy-

Schwarz inequality leads to∣∣aε(φε, ψε)∣∣ ≤ amax · ∥∥φε∥∥H1
1,∗(N

Ω
ε )
·+dmax ·

∥∥φε∥∥
H1

1(NΩ
ε )
·
∥∥ψε∥∥

H1
1(NΩ

ε )

≤
{
amax + dmax

}{∥∥φε∥∥
H1

1,∗(N
Ω
ε )
·
∥∥ψε∥∥

H1
1,∗(N

Ω
ε )

}
≤ 2M ·

∥∥φε∥∥
H1

1(NΩ
ε )
·
∥∥ψε∥∥

H1
1(NΩ

ε )
.

Because of ∣∣Γε(φε, ψε)∣∣ ≤ 2M ·
∥∥φε∥∥

H1
1(NΩ

ε )
·
∥∥ψε∥∥

H1
1(NΩ

ε )
,

the bilinear form Γε is bounded on H1
0

(
NΩ
ε

)
. The norms

∥∥·∥∥
H1

1(NΩ
ε )

and
∥∥·∥∥

H1
1,∗(N

Ω
ε )

are equivalent. That means, there exists a value C > 0 such that∣∣Γε(φε, ψε)∣∣ ≤ 2MC ·
∥∥φε∥∥

H1
1,∗(N

Ω
ε )
·
∥∥ψε∥∥

H1
1,∗(N

Ω
ε )
.

Because of Theorem 5.5 and Theorem 5.6 the bilinear form Γε is continuous and
coercive. The Lax-Milgram-theorem leads to the next result.

Theorem 5.7. (Existence and uniqueness)
The variational problem (VMP)ε has a unique solution in H1

0,∗
(
NΩ
ε

)
.

We note that a priori estimations of the solution of the variational formulation
of the microscopic model can be derived by some standard calculations.

Theorem 5.8. (A priori estimations)
The solution φε ∈ H1

0,∗
(
NΩ
ε

)
of the variational problem (VMPε) satisfies∥∥φε∥∥
H1

1,∗(N
Ω
ε )
≤
√
C

γ0
‖fε‖L2(NΩ

ε ) ,

where C ∈ O(1).

The sequence {φε}ε∈E of solutions of the variational microscopic models is also
uniformly bounded.
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Theorem 5.9. (Uniformly boundedness)
Let φε ∈ H1

0,∗
(
NΩ
ε

)
be the solution of the variational problem (VMPε). Then, there

exists a parameter K ∈ O(1) such that the following inequality is satisfied:

ε
d−1

2 ·
∥∥φε∥∥

H1
1,∗(N

Ω
ε )
≤ K

a0
· ‖f‖L2(G) .

Proof. Let φε ∈ H1
0,∗
(
NΩ
ε

)
be the solution of (VMPε). With Theorem 5.8 and the

periodicity of f we get∥∥φε∥∥
H1

1,∗(N
Ω
ε )
≤
√
C

γ0
· ‖fε‖L2(NΩ

ε ) =

√
C

γ0
· ε 1

2 · ‖f‖L2(Nε-1Ω)

=

√
C

γ0
· ε 1

2 · C(ε)
1
2 ‖f‖L2(G) =

√
C · C̃
γ0

· ε 1
2 · ε− d2 · ‖f‖L2(G)

=

√
C · C̃
γ0

· ε
1−d

2 · ‖f‖L2(G) ,

where C is the constant from Theorem 5.3 (i.e., C ∈ O(1)) and Nε-1Ω := ε−1 ·NΩ
ε .

In addition, the parameter C(ε) = C̃ · ε−d ∈ O
(
ε−d
)

describes the number of cells

that contain the set NΩ
ε . Multiplication with ε

d−1
2 leads to

ε
d−1

2 ·
∥∥φε∥∥

H1
1,∗(N

Ω
ε )
≤ K1

γ0
· ‖f‖L2(G) ,

where K :=
√
C · C̃.

6. Two-Scale Transform and Two-Scale Convergence. The limit analysis
ε → 0 for the microscopic variational models on the varying networks NΩ

ε and
the corresponding sequence of solutions is based on the notion of two-scale conver-
gence for network functions. Here, we discuss this two-scale convergence and the
associated two-scale transform. The two-scale transform is applied to establish a
connection to functions on the fixed domain Ω × G which does not depend on the
parameter ε ∈ E. In this way, traditional notions of convergence for functions on
the domain Ω×G can be made applicable for network functions.

6.1. Coverings of domains and networks. The notion of two-scale convergence
and the associated two-scale transform depend on specific coverings with cells of
the domain Ω segments of the networks Nε and NΩ

ε .
Covering of Rd with ε-cells

For a given length of periodicity ε > 0 we set �ε := [0, ε)d. The corner point
cεi := εi ∈ Rd is defined for each multi-index i = (i1, . . . , id) ∈ Zd. Then, the ε-cell
in Rd with corner point cεi is introduced by Cεi := ε (i+�) = cεi +�ε. The union

of the cells Cεi provides a disjoint covering of Rd:

Rd =

·⋃
i∈Zd
Cεi .

Covering of Nε

We introduce the sets Gε := εG and Gεi := ε (i+ G) = cεi +Gε. Then, Gεi represents
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the segment of the network Nε contained in the ε-cell Cεi . Thus, the infinite network
Nε is as a disjoint union of all these sets:

Nε =

·⋃
i∈Zd

Gεi .

(0,0)

(0,1)

(0,2)

(1,0)
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Figure 3. Covering with cells: The ε-cells and the corresponding graphs.

Covering of Ω with ε-cells

For each ε > 0, the index set of all ε-cells in Ω is defined as the set of multi-indices

IΩ
ε :=

{
i ∈ Rd

∣∣ Cεi ∩ Ω 6= ∅
}

. The ε-cell in Ω is given by CΩ,ε
i := Cεi ∩ Ω for all

i ∈ IΩ
ε . The feasible lengths of periodicity are denoted by

E :=

{
ε ∈ (0, 1]

∣∣∣∣Ω =

·⋃
i∈IΩ

ε

CΩ,ε
i

}
.

For each feasible length of periodicity ε ∈ E, the domain Ω is covered by pairwise
disjoint ε-cells. We refer to Figure 4 for an example.
Covering of NΩ

ε

For each ε ∈ E the sets GΩ,ε
i := Gεi ∩ Ω can be introduced for each i ∈ IΩ

ε . Then
we obtain

NΩ
ε =

⋃
i∈IΩ

ε

GΩ,ε
i . (1)

Feasible networks are illustrated in Figure 4.
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ε 1 ε 1
2

NΩ
1 ∂Ω NΩ

1
2

∂Ω

Figure 4. Feasible networks: The network NΩ
1 (left figure) and the

network NΩ
1
2

are feasible networks where the corresponding ε-cells

cover the domain Ω.

6.2. The two-scale transform. After these preparations, the two-scale transform

φ̂ε ∈ L2(Ω×G) of a network function φε ∈ L2(NΩ
ε ) can be introduced. This notion

is based on the so-called inverse two-scale transform - a surjective mapping from
the product Ω×G of the microscopic and the macroscopic scale to the set NΩ

ε . It is

important to note that the domain of the two-scale transform φ̂ε does not depend

on the parameter ε. In other words, φ̂ε ∈ L2(Ω × G) is defined on a fixed domain
that does not vary with ε. For this reason, the limit behaviour of the sequence

{φ̂ε}ε∈E can be analyzed with respect to traditional notions of convergence such as
the weak and strong two scale-convergence (see Section 6.3).

Two-scale transform

Let ε ∈ E be a feasible length of periodicity, let z ∈ Ω be an element of the
macroscopic space and y ∈ G be an element of the microscopic space. The domain
Ω is covered by pairwise disjoint ε-cells by Equation (1). Thus, for each z ∈ Ω there

exists a unique cell index i ∈ IΩ
ε such that z ∈ CΩ,ε

i which can be used to the define
the point

x(z, y) := ε(i+ y) = cεi + εy ∈ NΩ
ε .

Now, assume that ŷ ∈ G is fixed. Then, x(z, ŷ) takes the same value for all

z ∈ CΩ,ε
i . This means, x(z, ŷ) only depends on the ε-cell CΩ,ε

i with z ∈ CΩ,ε
i , but

not on the location of z within the ε-cell CΩ,ε
i . It follows:

z1, z2 ∈ CΩ,ε
i for i ∈ IΩ

ε , ŷ ∈ G ⇒ x(z1, ŷ) = x(z2, ŷ).

The parameter z ∈ CΩ,ε
i can be replaced by each other element of the ε-cell CΩ,ε

i in
x(·, ŷ) and the value of x does not change. In particular, the corner point cεi = εi

of the ε-cell CΩ,ε
i can be inserted.

Because of

x(cεi , y) = x(z, y)
(
∀z ∈ CΩ,ε

i

)(
∀y ∈ G

)
,

the corner point cεi = εi is a representative of the ε-cell CΩ,ε
i . Furthermore, we get

GΩ,ε
i =

{
x(cεi , y)

∣∣∣ y ∈ G
}

=
{
x(z, y)

∣∣∣ z ∈ CΩ,ε
i , y ∈ G

}
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for each i ∈ IΩ
ε , and because of Equation (1) we achieve

NΩ
ε =

⋃
i∈IΩ

ε

{
x(cεi , y)

∣∣∣ y ∈ G
}

=
⋃
i∈IΩ

ε

{
x(z, y)

∣∣∣ z ∈ CΩ,ε
i , y ∈ G

}
.

The function

Ω×G→ NΩ
ε ,

(z, y) 7→ x(z, y),

is surjective, but not injective. For each s ∈ {1, . . . , d} we introduce the vector

1s := (0, . . . , 0, 1, 0, . . . , 0) ∈ Rd.
↑

position s

For each i, j ∈ IΩ
ε with CΩ,ε

j = CΩ,ε
i + 1s and v−, v+ ∈ ∂VG with v+ = v− + 1s

we have x(cεi , v
+) = x(cεj , v

−). This means, the function x(·, ·) is not injective (see
Figure 5).

xi x i +1s
0 1

1
Y

v v+

x(ci ,v
+) = x(ci+1s ,v )

Figure 5. Two-scale transform: The function x : Ω×G→ NΩ
ε is

surjective, but not injective.

Two-scale transform and inverse two-scale transform

Summarizing the previous observations, it follows that the set CΩ,ε
i × {y} can be

assigned to each point x ∈ NΩ
ε on the network, where

x = x(cεi , y) = x(z, y) for all z ∈ CΩ,ε
i .

This can be used to define the two-scale transform TTS on NΩ
ε with

TTS(x) := CΩ,ε
i × {y}.

In addition, each element (z, y) ∈ CΩ,ε
i × {y} leads to the point x ∈ GΩ,ε

i

(
⊂ NΩ

ε

)
.

The function (
T i
TS

)−1
: CΩ,ε

i ×G→ Gεi ,

(z, y) 7→
(
T i
ZS

)−1
(z, y) := x(z, y)

can be introduced for each i ∈ IΩ
ε .

By extending this function to the ε-periodic network NΩ
ε and the combination Ω×G

of the microscopic scale and the macroscopic scale we achieve

(TTS)
−1

: Ω×G→ NΩ
ε ,

(z, y) 7→ (TTS)
−1

(z, y) :=
(
T i
ZS

)−1
(z, y),

for all z ∈ CΩ,ε
i . The surjective function (TTS)

−1
is called the inverse two-scale

transform.
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After these technical preparations, the two-scale transform of a function on a
network is introduced. Basically, the two-scale transform assigns a measurable
function on Ω×G to a measurable function on NΩ

ε .

Definition 6.1. Let φε ∈ L1
(
NΩ
ε

)
. The function

φ̂ε : Ω×G→ R,

(z, y) 7→ φ̂ε(z, y) := φε(x),

with x = (TTS)
−1

(z, y) is called the two-scale transform of φε.

Remark 4. The notion of a two-scale transform for network functions on a one-
dimensional manifold has been introduced by Lenzner et al. in [28, 31]. In this
paper, this transform has been technically adapted to the situation of our appli-
cations in terms of network structure and topology. Nevertheless, the two-scale
convergence of network functions is still a difficult task, because no extension oper-
ators are known that directly connect network functions on NΩ

ε and functions on the
domain Ω. The two-scale transform applied here is based on the so-called dilatation
operator ”∼“ introduced by Arbogast/Douglas/Hornung in [1]. The authors are
concerned with flow and transport through thin networks of channels in the soil of
a petroleum reservoir. In these applications, the dilatation-operator transforms a

function φε ∈ L2(Ωε) with domain Ωε ⊂ Ω into a function φ̃ε ∈ L2(Ω×G).

Figure 6. Two-scale transform: Mapping from NΩ
ε to the prod-

uct Ω×G.

Properties of the two-scale transform

In the sequel, we are summarizing some results about functions on the network NΩ
ε

and the corresponding two-scale transform ([28, 31]). Let ε ∈ E be a feasible length
of periodicity. Then, the macroscopic domain Ω is covered by pairwise disjoint

ε-cells CΩ,ε
i :

Ω =

·⋃
i∈IΩ

ε

CΩ,ε
i . (2)

With Equation (2) the following lemma is obtained.
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Lemma 6.2. Let φε ∈ L1
(
NΩ
ε

)
and let i ∈ IΩ

ε . Then,

φ̂ε(z, y) = φ̂ε(cεi , y)

for each z ∈ CΩ,ε
i and all y ∈ G.

Now, we state a first connection between the Lp
(
NΩ
ε

)
-norm of a function on a

network and the Lp(Ω×G)-norm of the corresponding two-scale transform.

Lemma 6.3. Let φε ∈ Lp
(
NΩ
ε

)
with 1 ≤ p <∞. Then, φ̂ε ∈ Lp(Ω×G) and∥∥φε∥∥p

Lp(NΩ
ε )

= ε1−d ·
∥∥φ̂ε∥∥p

Lp(Ω×G)
.

Proof. Let φε ∈ Lp
(
NΩ
ε

)
. With Equation (2) and Lemma 6.2 it follows

ε1−d ·
∥∥φ̂ε∥∥p

Lp(Ω×G)
= ε1−d ·

∫
Ω

∫
G

∣∣φ̂ε(z, y)
∣∣p dy dz

= ε1−d ·
∑
i∈IΩ

ε

∫
CΩ,ε
i

∫
G

∣∣φ̂ε(cεi , y)
∣∣p dy dz

= ε1−d ·
∑
i∈IΩ

ε

∫
CΩ,ε
i

dz

︸ ︷︷ ︸
εd

∫
G

∣∣φε(cεi + εy)
∣∣p dy

= ε1−d · ε
d

ε
·
∑
i∈IΩ

ε

∫
X=εG

∣∣φε(cεi + x)
∣∣p dx

=
∑
i∈IΩ

ε

∫
X=εG

∣∣φε(cεi + x)
∣∣p dx =

∫
NΩ
ε

∣∣φε(x)
∣∣p dx =

∥∥φε∥∥p
Lp(NΩ

ε )
.

For p = 2 we achieve an important case of the previous lemma.

Lemma 6.4. Let φε ∈ L2
(
NΩ
ε

)
, then φ̂ε ∈ L2(Ω×G) and∥∥φε∥∥2

L2(NΩ
ε )

= ε1−d ·
∥∥φ̂ε∥∥2

L2(Ω×G)
.

A similar result is obtained for the L2-inner products.

Lemma 6.5. Let φε, ψε ∈ L2
(
NΩ
ε

)
. Then,〈

φε, ψε
〉
L2(NΩ

ε )
= ε1−d ·

〈
φ̂ε, ψ̂ε

〉
L2(Ω×G)

.

Proof. Let φε, ψε ∈ L2
(
NΩ
ε

)
. With Equation (2) and Lemma 6.2 we get:

ε1−d ·
〈
φ̂ε, ψ̂ε

〉
L2(Ω×Y )

= ε1−d ·
∫
Ω

∫
G

φ̂ε(z, y) · ψ̂ε(z, y) dy dz

= ε1−d ·
∑
i∈IΩ

ε

∫
CΩ,ε
i

∫
G

φ̂ε(cεi , y) · ψ̂ε(cεi , y) dy dz
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= ε1−d ·
∑
i∈IΩ

ε

∫
CΩ,ε
i

dz

︸ ︷︷ ︸
εd

∫
G

φε(cεi + εy) · ψε(cεi + εy) dy

= ε1−d · ε
d

ε
·
∑
i∈IΩ

ε

∫
X=εG

φε(cεi + x) · ψε(cεi + x) dx

=
∑
i∈IΩ

ε

∫
X=εG

φε(cεi + x) · ψε(cεi + x) dx

=

∫
NΩ
ε

φε(x) · ψε(x) dx =
〈
φε, ψε

〉
L2(NΩ

ε )
.

For the limit analysis of the variational microscopic model, the two-scale trans-
form of the tangential derivatives of functions on the network NΩ

ε and functions on
the reference graph have to be considered.

Lemma 6.6. Let φε ∈ H1
(
NΩ
ε

)
and let x ∈ NΩ

ε . For each (z, y) ∈ Ω × G with

(TTS)−1(z, y) = x we obtain

∇ετφε(x) = ∇̂ετφε(z, y) =
1

ε
· ∇G

τ φ̂
ε(z, y).

Proof. Let φε ∈ H1
(
NΩ
ε

)
and let x ∈ NΩ

ε . For (z, y) ∈ Ω× Y with (TTS)−1(z, y) = x,

there exists a unique i ∈ IΩ
ε with z ∈ CΩ,ε

i as can be seen by Equation (2). With
Lemma 6.2 it follows:

1

ε
· ∇G

τ φ̂
ε(z, y) =

1

ε
· ∇G

τ φ̂
ε(cεi , y) =

1

ε
· ∇G

τ φ
ε(cεi + εy)

=
1

ε
· ε · ∇ετφε(x) = ∇ετφε(x) = ∇̂ετφε(z, y).

There is also a connection between the L2
(
NΩ
ε

)
-norm of the tangential derivative

∇ετφε and the L2(Ω×G)-norm of ∇G
τ φ̂

ε.

Lemma 6.7. Let φε ∈ H1
(
NΩ
ε

)
. Then the following equation is satisfied:

ε
d−1

2 ·
∥∥∇ετφε∥∥L2(NΩ

ε )
=

1

ε
·
∥∥∇G

τ φ̂
ε
∥∥
L2(Ω×G)

.

Proof. Let φε ∈ H1
(
NΩ
ε

)
. With Equation (2), Lemma 6.2 and Lemma 6.6 we obtain:

∥∥∇G
τ φ̂

ε
∥∥
L2(Ω×G)

=

{∫
Ω

∫
G

[
∇G
τ φ̂

ε(z, y)
]2
dy dz

} 1
2

=

{∑
i∈IΩ

ε

∫
CΩ,ε
i

∫
Y

[
∇G
τ φ̂

ε(cεi , y)
]2
dy dz

} 1
2
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=

{∑
i∈IΩ

ε

∫
CΩ,ε
i

dz

︸ ︷︷ ︸
=εd

∫
G

[
∇G
τ φ̂

ε(cεi , y)
]2
dy

} 1
2

= ε
d
2 ·
{∑
i∈IΩ

ε

∫
G

[
∇G
τ φ̂

ε(cεi , y)
]2
dy

} 1
2

= ε
d
2 · ε

ε
1
2

·
{∫
NΩ
ε

[∇ετφε(x)]
2
dx

} 1
2

= ε
d+1

2 ·
∥∥∇ετφε∥∥L2(NΩ

ε )
.

Division by ε leads to

1

ε
·
∥∥∇G

τ φ̂
ε
∥∥
L2(Ω×G)

= ε
d−1

2 ·
∥∥∇ετφε∥∥L2(NΩ

ε )
.

Finally, the two-scale transform is additive, multiplicative and homogeneous.

Lemma 6.8. Let φε, ψε ∈ L2
(
NΩ
ε

)
. For each (z, y) ∈ Ω×G we get

1. ̂φε + ψε(z, y) = φ̂ε(z, y) + ψ̂ε(z, y), (additive)

2. φ̂ε · ψε(z, y) = φ̂ε(z, y) · ψ̂ε(z, y), (multiplicative)

3. φ̂ε(z, y) = φ̂ε(z, y). (homogeneous)

Remark 5. Because of the previous lemma, the function

·̂ : L2
(
NΩ
ε

)
→ L2

(
Ω×G

)
,

that assigns a two-scale transform to each function in L2
(
NΩ
ε

)
, is linear.

6.3. The two-scale convergence. The notion of two-scale convergence of a se-
quence of network functions in the sense of Lenczner et al. (see [28, 31]) is based on
the two-scale transform introduced above. In this way, the parameter-dependent
domain NΩ

ε is connected with the fixed domain Ω×G, where traditional notions of
convergence can be applied.

Definition 6.9. Let
{
φε ∈ L2

(
NΩ
ε

)}
ε∈E be a sequence of network functions and

let φ0 ∈ L2(Ω×G).

1. The sequence
{
φε ∈ L2

(
NΩ
ε

)}
ε∈E is weakly two-scale convergent to u0,

in symbols φε
2
⇀ φ0,, if

{
φ̂ε ∈ L2(Ω×G)

}
ε∈E

is weakly convergent in L2(Ω×G)

to φ0.
2. The sequence

{
φε ∈ L2

(
NΩ
ε

)}
ε∈E is strongly two-scale convergent to φ0

in symbols φε
2→ φ0, if

{
φ̂ε ∈ L2(Ω×G)

}
ε∈E

strongly converges in L2(Ω × G)

to φ0.

As usual, the strong two-scale convergence in L2(Ω×G) immediately implies the
weak two-scale convergence.

Corollary 1. If the sequence
{
φε ∈ L2

(
NΩ
ε

)}
ε∈E is strongly two-scale convergent

to φ0 ∈ L2(Ω×G), then it is also weakly two-scale convergent to φ0.
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The limit analysis of the solutions of the microscopic models in Section 7 is based
on the following theorem on the two-scale convergence of network functions3.

Theorem 6.10 (Two-scale convergence).
Let the assumptions (P ), (B), (G1), (G2) be fulfilled. Let

{
φε ∈ H1

0

(
NΩ
ε

)}
ε∈E be se-

quence of network functions such that the sequence
{
‖φε‖H1

1(NΩ
ε ) ∈ R

}
ε∈E is bounded,

then there exists a subsequence
{
φεk ∈ H1

0

(
NΩ
εk

)}
εk∈Ek

, such that:

(i)
{
φεk ∈L2

(
NΩ
εk

)}
εk∈Ek

is weakly two-scale convergent to φ0 ∈ H1
0,τG(Ω,G).

(ii)
{
∇εkτ φεk ∈ L2

(
NΩ
εk

)}
εk∈Ek

is weakly two-scale convergent to

∇zφ0 ∗ τG +∇G
τ φ1,

where φ1 ∈ L2
(
Ω;H1

G
)
.

7. The Macroscopic Model. In this section, the limit behavior of the sequence
of solutions of the microscopic variational models (VMPε) associated with the self-
adjoint operators on the network NΩ

ε is addressed. The two-scale limit analysis
leads to the macroscopic variational problem on Ω×G. This two-scale homogenized
problem provides the characterization of the original model on a global scale.

Let ε ∈ E be a feasible length of periodicity. The variational microscopic model
(VMP)ε has a unique solution in H1

0,∗. Because of Theorem 5.9, the corresponding
sequence of solutions is uniformly bounded with respect to the ‖ · ‖H1

ε,∗(N
Ω
ε )-norm.

Theorem 6.10 gives us the following result.

Theorem 7.1. (Two-scale convergence)
Let

{
φε ∈ H1

(
NΩ
ε

)}
ε∈E be the sequence of solutions of the variational microscopic

model (VMPε). Then, there exists a subsequence
{
φεk ∈ H1

(
NΩ
εk

)}
εk∈Ek

such that

(i)
{
φεk ∈ L2

(
NΩ
εk

)}
εk∈Ek

is weakly two-scale convergent to φ0 ∈ H1
τG(Ω,G).

(ii)
{
∇εkτ φεk ∈ L2

(
NΩ
εk

)}
εk∈Ek

is weakly two-scale convergent to

∇zφ0 ∗ τG(y) +∇G
τ φ1,

where φ1 ∈ L2
(
Ω;H1

G
)
.

Two-scale limit analysis

The two-scale limit analysis of the microscopic variational models for a vanishing
length of periodicity applies test functions of the form

ψε = ψ0ε + ε · ψ1ε.

In order to obtain the desired homogenization results, we have to prove that their
strong two-scale limit exists (see, e.g., [31]).
The test function ψ0ε

Firstly, we introduce the test function ψ0ε : NΩ
ε → R. Let ξ0 ∈ H1

0,τG(Ω,G). Then,

the function ξ0(z, y) is independent from y for each z ∈ Ω. In addition, we obtain
∇zξ0(z, y) ∗ τG(y) ∈ L2(Ω) for each y ∈ G. At each node of the network NΩ

ε , the
test function ψ0ε is equal to ξ0:

ψ0ε(x) := ξ0(x) for each x ∈ VΩ
ε .

3The theorem on the two-scale convergence for network functions has been stated in [31, 28]
with respect to models electrical networks. We also refer to [20] for the corresponding theorem

with respect to the variational problems discussed in this paper.
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For each edge Bε
j with j ∈ JΩ

ε and tips x− ∈ E−
(
Bε
j

)
, x+ ∈ E+

(
Bε
j

)
at the ends

E−, E+ of branch Bε
j we set

ψ0ε(x) := ξ0(x−) +Hε(x) · δε(x) for each x ∈ Bε
j ,

where

Hε(x) := |x− x−| > 0 for each x ∈ Bε
j

and

δε(x) :=
ξ0(x+)− ξ0(x−)

|x+ − x−|
for each x ∈ Bε

j .

At each boundary point we define

ψ0ε(x) := ξ0(x) = 0 for each x ∈ ∂BVΩ
ε .

The function ψ0ε is continuous at each node of the network NΩ
ε . This follows from

lim
x→x−
x∈Bε

j

ψ0ε(x) = lim
x→x−
x∈Bε

j

{
ξ0(x−) + |x− x−| · δε(x)

}
= ξ0(x−)

and

lim
x→x+

x∈Bε
j

ψ0ε(x) = lim
x→x+

x∈Bε
j

{
ξ0(x−) + |x− x−| · ξ

0(x+)− ξ0(x−)

|x+ − x−|

}
= ξ0(x−) + ξ0(x+)− ξ0(x−) = ξ0(x+)

for j ∈ JΩ
ε . Now we have proved that ψ0ε ∈ H1

0

(
NΩ
ε

)
. Let (z, y) ∈ Ω × Y with

z ∈ CΩ,ε
i for the index i ∈ IΩ

ε and T −1(z, y) = x ∈ Bε
j for j ∈ JΩ

ε , then

ψ̂0ε(z, y) = ψ̂0ε(xεi , y
−) + Ĥε(z, y) · δ̂ε(z, y) = ξ0(xεi + εy−) +O(ε)

and

∇̂ετψ0ε(z, y) =
1

ε
· ∇G

τ ψ̂
0ε(z, y) = ∇zξ0(xεi + εy−) ∗ τG(y) +O(ε),

where y− ∈ E−
(
BG
t

)
for t ∈ JG with Bε

j = ε · BG
t . For a vanishing length of

periodicity it follows

lim
ε→0

ψ̂0ε(z, y) = ξ0(z)

and

lim
ε→0
∇̂ετψ0ε(z, y) = ∇zξ0(z) ∗ τG(y).

Finally, we receive the following lemma.

Lemma 7.2. The sequence {ψ0ε}ε∈E is strongly two-scale convergent to ξ0, and
the sequence {∇ετψ0ε}ε∈E is strongly two-scale convergent to ∇zξ0 ∗ τY .

The test function ψ1ε

Let ψ1 ∈ H1
G and let ρ ∈ D(Ω). The function ρε : NΩ

ε → R be defined by ρε := ρ |NΩ
ε

and the function ψε : NΩ
ε → R is introduced by

ψε(x) = ψ̂ε(z, y) := ψ1(y) for x = T −1
TS (z, y).

The test function ψ1ε : NΩ
ε → R is the product

ψ1ε(x) := ρε(x) · ψε(x).
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Because of the definition of ψ1ε, we obtain ψ1ε |Bεj ∈ H1(Bε
j) for each j ∈ JΩ

ε .

In addition, ψ1ε is continuous at the nodes of the network NΩ
ε and ψ1ε(x) = 0 is

satisfied for each x ∈ ∂BVΩ
ε , because of ρ ∈ D(Ω). Thus, ψ1ε ∈ H1

0

(
NΩ
ε

)
.

With ξ1 : Ω× Y → R, defined by

ξ1(z, y) := ρ(z) · ψ1(y),

we obtain the next lemma.

Lemma 7.3. The sequence {ψ1ε}ε∈E is strongly two-scale convergent to ψ1, and
the sequence {ε∇ετψ1ε}ε∈E is strongly two-scale convergent to ∇G

τ ψ
1.

Proof. We consider the sequence {ψ1ε}ε∈E . Because of

lim
ε→0

∥∥∥ψ̂1ε − ξ1
∥∥∥
L2(Ω×G)

= lim
ε→0

{∫
Ω

∫
G

[
ψ̂1ε(z, y)− ψ1(z, y)

]2
dy dz

} 1
2

= lim
ε→0

{∑
i∈IΩ

ε

∫
CΩ,ε
i

[∫
G

ρ̂ε · ψε(z, y)− ψ1(z, y) dy

]2

dz

} 1
2

= lim
ε→0

{∑
i∈IΩ

ε

∫
CΩ,ε
i

[∫
G

ρ̂ε · ψε(z, y)− ρ(z) · ψ1(y) dy

]2

dz

} 1
2

=

{∫
G

(
ψ1(y)

)2 · lim
ε→0

{∑
i∈IΩ

ε

∫
CΩ,ε
i

[
ρ̂ε(z, y)− ρ(z)

]2
dz

}
dy

} 1
2

=

{∫
G

(
ψ1(y)

)2 · lim
ε→0

{∑
i∈IΩ

ε

∫
CΩ,ε
i

[
ρε(xεi + εy)−ρ(z)

]2
dz

}
dy

} 1
2

=

{∫
G

(
ψ1(y)

)2 · 0 dy} 1
2

= 0,

we can see that the sequence is strongly two-scale convergent to ψ1. Next, we
consider the sequence {ε∇ετψ1ε}ε∈E . With

∇ετψ1ε(x) = ∇ετρε(x) · ψε(x) + ρε(x) · ∇ετψε(x),

Lemma 6.8 and Lemma 6.6, we obtain

∇̂ετψ1ε(z, y) = ∇̂ετρε(z, y) · ψ̂ε(z, y) + ρ̂ε(z, y) · ∇̂ετψε(z, y)

= ∇̂ετρε(z, y) · ψ̂ε(z, y) + ρ̂ε(z, y) · 1

ε
· ∇G

τ ψ̂
ε(z, y)

= ∇̂ετρε(z, y) · ψ1(y) + ρ̂ε(z, y) · 1

ε
· ∇G

τ ψ
1(y),

for x = (TTS)−1(z, y). Then, we get

ε · ∇̂ετψ1ε(z, y) = ε · ∇̂ετρε(z, y) · ψ1(y) + ρ̂ε(z, y) · ∇G
τ ψ

1(y).

Finally, we see

lim
ε→0

∥∥∥ ̂ε∇ετψ1ε −∇G
τ ψ

1
∥∥∥
L2(Ω×G
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= lim
ε→0

{∫
Ω

∫
G

[
̂ε∇ετψ1ε(z, y)−∇G

τ ψ
1(z, y)

]2
dy dz

} 1
2

= lim
ε→0

{∑
i∈IΩ

ε

∫
CΩ,ε
i

[∫
G

[
ε∇̂ετρε(z, y) · ψ1(y) + ρ̂ε(z, y) · ∇G

τ ψ
1(y)

−ρ(z) · ∇G
τ ψ

1(y)
]2
dy

]
dz

} 1
2

=

{∫
G

lim
ε→0

{∑
i∈IΩ

ε

∫
ZCΩ,ε

i

[ε∇zρ(xεi + εy) ∗ τ(y) +
(
ρε(xεi + εy)− ρ(z)

)

×∇G
τ ψ

1(y)
]2
dz

}
dy

} 1
2

= 0.

This means, the sequence {ε∇ετψ1ε}ε∈E is strongly two-scale convergent to ∇G
τ ψ

1.

The macroscopic homogenized model

The two-scale homogenized problem is obtained by a limit analysis for vanishing
values of ε. The coefficients and the right hand side of the variational microscopic
problem have satisfy some additional conditions.

Assumption 7.4 (Coefficients).
The coefficients and the right hand side of the variational microscopic model fulfill
the following assumptions:

(K) aε
2→ a0, dε

2→ d0, Fε 2
⇀ F0.

Remark 6. Each strongly two-scale convergent sequence is also weakly two-scale

convergent by Theorem 1. For this reason, it is sufficient to assume that Fε 2→ F0.

The next theorem states the main homogenization result.

Theorem 7.5. (Homogenization result)
Let the assumptions (C), (G1), (G2), (P), (B), and (K) be fulfilled. Let{
φε ∈ H1

0

(
NΩ
ε

)}
ε∈E be the sequence of solutions of the variational problems (VPMε).

Then, there exists a subsequence
{
φεk ∈ H1

0(NΩ
εk

)
}
εk∈Ek

such that

φεk
2
⇀ φ0,

∇εkτ φεk
2
⇀ ∇zφ0 ∗ τG +∇G

τ φ1.

Here, (φ0, φ1) is the unique solution of the variational two-scale homogenized
problem:
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Find (φ0, φ1) ∈ H1
0,τG(Ω,G)× L2(Ω;H1

G), such that∫
Ω

∫
G

a0(z, y)φ0(z, y) ·
(
∇zφ0(z) ∗ τG(y) +∇G

τ φ1(z, y)
)

·
(
∇zψ0(z) ∗ τG(y) +∇G

τ ψ
1(z, y)

)
+ d0(z, y)φ0(z, y) · φ0(z) · ψ0(z) dy dz

=

∫
Ω

∫
G

F0(z, y) · ψ0(z) dy dz

for all (ψ0, ψ1) ∈ H1
0,τG(Ω,G)× L2(Ω;H1

G). (VHP0)

Proof. Let
{
φε ∈ H1

0

(
NΩ
ε

)}
ε∈E be the sequence of solutions of the variational prob-

lem (VPMε). Because of Theorem 5.9, the sequence{
‖φε‖H1

ε,∗(N
Ω
ε ) ∈ R

}
ε∈E

is bounded. With Theorem 6.10 there exists a subsequence{
φεk ∈ H1

0(NΩ
εk

)
}
εk∈Ek

such that

φεk
2
⇀ φ0,

∇εkτ φεk
2
⇀ ∇zφ0 ∗ τG +∇G

τ φ1,

where φ0 ∈ H1
0,τG(Ω,G) and φ1 ∈ L2(Ω;H1

G). In order to show that (φ0, φ1) is

the (unique) solution of the two-scaled homogenized problem we consider the test
function

ψε = ψ0ε + εψ1ε ∈ H1
0

(
NΩ
ε

)
in the variational problem (VMPε). It follows

〈aε∇ετφε,
[
∇ετψ0ε + ε∇ετψ1ε

]
〉NΩ

ε
+ 〈dεφε,

[
ψ0ε + εψ1ε

]
〉NΩ

ε
= 〈Fε,

[
ψ0ε + εψ1ε

]
〉NΩ

ε
.

Separating the strongly and weakly two-scale convergent parts, we get

〈∇ετφεaε,∇ετψ0ε〉NΩ
ε

+ 〈∇ετφεaε, ε∇ετψ1ε〉NΩ
ε

+ 〈φεdε, ψ0ε〉NΩ
ε

+ 〈φεdε, εψ1ε〉NΩ
ε

= 〈Fε, ψ0ε〉NΩ
ε

+ 〈Fε, εψ1ε〉NΩ
ε
.

With Lemma 6.5 and Lemma 6.8 we obtain

ε1−d ·
{
〈∇̂ετφεâε, ∇̂ετψ0ε〉L2(Ω×G) + 〈∇̂ετφεâε, ̂ε∇ετψ1ε〉L2(Ω×G)

+〈φ̂εd̂ε, εψ̂1ε〉L2(Ω×G)

}
= ε1−d ·

{
〈F̂ε, ψ̂0ε〉L2(Ω×G) + 〈F̂ε, εψ̂1ε〉L2(Ω×G)

}
.

Multiplying both sides with εd−1 and passing to the limit ε→ 0 we obtain∫
Ω

∫
G

(
∇zφ0(z) ∗ τG(y) +∇G

τ φ1(z, y)
)
· a0(z, y) · ∇zψ0(z) ∗ τG(y) dy dz

+

∫
Ω

∫
G

(
∇zφ0(z) ∗ τG(y) +∇G

τ φ1(z, y)
)
· a0(z, y) · ∇G

τ ψ
1(z, y) dy dz
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+

∫
Ω

∫
G

φ0(z) · d0(z, y) · ψ0(z) dy dz =

∫
Ω

∫
G

F0(z, y) · ψ0(z) dy dz.

With∫
Ω

∫
G

a0(z, y) ·
(
∇zφ0(z) ∗ τG(y) +∇G

τ φ1(z, y)
)
·
(
∇zψ0(z) ∗ τG(y) +∇G

τ ψ
1(z, y)

)
+ d0(z, y) · φ0(z) · ψ0(z) dy dz =

∫
Ω

∫
G

F0(z, y) · ψ0(z) dy dz,

we receive the variational equation of the two-scaled homogenized problem.
Next, we show that the homogenized equation is a variational problem in

H := H1
0,τG(Ω,G)× L2(Ω;H1

G).

In addition, we prove that the Lax-Milgram-theorem is fulfilled such that there
exists a unique solution (φ0, φ1) ∈ H. On H we define the norm

‖Φ‖2H := ‖φ0‖2H1

0,τG
(Ω,G) + ‖φ1‖2L2(Ω;H1

G)

for each Φ = (φ0, φ1) ∈ H, where

‖φ0‖H1

0,τG
(Ω,G) :=

∥∥∇zφ0 ∗ τG
∥∥
L2(Ω×G)

=

{∫
Ω

∫
G

[
∇zφ0(z) ∗ τG(y)

]2
dy dz

} 1
2

and

‖φ1‖L2(Ω;H1
G) :=

∥∥∇G
τ φ1

∥∥
L2(Ω×G)

=

{∫
Ω

∫
G

[
∇G
τ φ1(z, y)

]2
dy dz

} 1
2

.

Let A : H×H → R be the continuous bilinear function

A(Φ,Ψ) :=

∫
Ω

∫
G

a0(z, y) ·
(
∇zφ0(z) ∗ τG(y) +∇G

τ φ1(z, y)
)

·
(
∇zψ0(z) ∗ τG(y) +∇G

τ ψ
1(z, y)

)
+d0(z, y) · φ0(z) · ψ0(z) dy dz,

where Φ = (φ0, φ1) ∈ H and Ψ = (ψ0, ψ1) ∈ H.

For each Φ = (φ0, φ1) ∈ H we obtain

A(Φ,Φ) =

∫
Ω

∫
G

a0(z, y) ·
(
∇zφ0(z) ∗ τG(y) +∇G

τ φ1(z, y)
)2

+ d0(z, y) · (φ0(z))2 dy dz

≥ γ0 ·
∫
Ω

∫
G

(
∇zφ0(z) ∗ τG(y) +∇G

τ φ1(z, y)
)2
dy dz

= a0 ·
∥∥∇zφ0 ∗ τG +∇G

τ φ1

∥∥2

L2(Ω×G)
.

In addition, we get∥∥∇zφ0 ∗ τG +∇G
τ φ1

∥∥2

L2(Ω×G)
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=

∫
Ω

∫
G

(
∇zφ0(z) ∗ τG(y) +∇G

τ φ1(z, y)
)2
dy dz =

∫
Ω

∫
G

[
∇zφ0(z) ∗ τG(y)

]2
dy dz

+

∫
Ω

∫
G

[
∇G
τ φ1(z, y)

]2
dy dz + 2

∫
Ω

∫
G

∇zφ0(z) ∗ τG(y) · ∇G
τ φ1(z, y) dy dz

= ‖φ0‖2H1

0,τG
(Ω,G) + ‖φ1‖2L2(Ω;H1

G) + 2

∫
Ω

∫
G

∇zφ0(z) ∗ τG(y) · ∇G
τ φ1(z, y) dy dz

= ‖U‖2H + 2

∫
Ω

∫
G

∇zφ0(z) ∗ τG(y) · ∇G
τ φ1(z, y) dy dz

and the equation ∫
Ω

∫
G

∇zφ0(z) ∗ τG(y) · ∇G
τ φ1(z, y) dy dz = 0,

which is satisfied because of the G-periodicity of u1, we obtain

A(Φ,Φ) ≥ a0 ‖Φ‖2H .
Thus, A is H-coercive. Since F : H → R with

F (v) :=

∫
Ω

∫
G

F0(z, y) · ψ1(z, y) dy dz,

for any Ψ = (ψ0, ψ1) ∈ H, is a continuous, linear functional on H, the Lax-Milgram-
theorem guarantees the existence and uniqueness of the solution

(φ0, φ1) ∈ H1
0,τG(Ω,G)× L2(Ω;H1

G)

of the two-scale homogenized problem.

8. Numerical Results. In this section, we discuss an illustrative numerical exam-
ple of the two-scale limit process. The microscopic problem is the variational form
of a model with second-order differential equations on edge of the periodic network
NΩ
ε in the macroscopic domain Ω = (0, 10)2. The system of differential equations is

associated with a self-adjoint (symmetric) operator. The reference graph G of the
two-dimensional network NΩ

ε is shown in Figure 7.
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Figure 7. Illustrative example: The reference graph G.

We introduce the index sets of branches

JG0 := {1, 4, 7, 10}, JG1 := {2, 5, 8, 11}, JG2 := {3, 6, 9, 12},
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and the intervals

IGj :=
(
0, 1

8

)
for j ∈ JG0 ∪ JG2 , I

G
j :=

(
0, 1

4

)
for j ∈ JG1 .

The coefficients of the microscopic model are given by

aj(λj) :=


0.2 , j ∈ JG0 ,

1.0 , j ∈ JG1 ,

0.2 , j ∈ JG2 ,

and

dj(λj) := 1 for each j ∈ JG0 ∪ JG1 ∪ JG2 ,

where λj ∈ IGj . The source term is defined as

fj(λj) :=


1 + cos

(
4π · λj

)
, j ∈ JG0 ,

1 + cos
(
4π ·

(
λj + 1

8

))
, j ∈ JG1 ,

1 + cos
(
4π ·

(
λj + 3

8

))
, j ∈ JG2 .

Figure 8 shows the diffusion coefficient a and the source term f .
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Diffusion coefficient a(y) Source term f(y)

Figure 8. Illustrative example: Diffusion coefficient and source term.

The ε-periodic network NΩ
ε consists of k ≥ 10 copies of the reference graph G for

each coordinate direction. For this reason, the length of periodicity ε satisfies the
equation ε = 10

k . The network NΩ
ε consists of 12 · k2 branches.
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Figure 9. Illustrative example: The periodic network NΩ
1 .

The corresponding homogenized problem is given by

−0.3 · ∂
2

∂z2
1

φ0(z)− 0.3 · ∂
2

∂z2
2

φ0(z) + 2 · φ0(z) = 2, z ∈ Ω,

φ0(z) = 0, z ∈ ∂Ω.


Figure 10 shows the behavior of the sequence of solutions of the microcsopic

variational model for a vanishing length of periodicity ε. The number of cells and
the parameter ε are indicated above each subfigure in the form #cells/ε.

Figure 11 illustrates the quality of the approximate homogenized model for the
parameter ε = 0.2 (i.e., , 2500 cells). The numerical computations have been
performed on a Pentium III-processor with 500 MHz and 4 GB random access
memory. The computation time for the solution of the variational network model
reached approximately 10.000 seconds. The homogenized model can be solved by
standard PDE-solver in less than a second.

9. Conclusion and Outlook. The present study is a part of our investigations
on mathematical problems in spatial data analysis related to large scale flow and
transport models for capillary systems in the soil. Such problems are important for
applications such as groundwater contamination monitoring in environmental sci-
ences and groundmotion prediction ([35]). In these applications, the physical domain
under considerations is large when compared to the very small length of periodicity
of the capillary network. A numerical solution of the corresponding microscopic
models in an acceptable amount of time is no longer possible. In many applica-
tions related to flow problems of capillary systems, the microscopic model describes
the concentration values of a certain substance. The spatial distribution of this
substance can be modeled by a diffusion-reaction system on the periodic network.
Previous studies applied averaging approaches in order to derive an easy-to-solve
approximating model on the scale of the physical domain. Two-scale averaging
techniques are considered as purely formal approaches that provide a first picture
of the corresponding macroscopic model. Sometimes it is also possible to provide
some measure for the quality of the approximation. Nevertheless, this kind of ap-
proach does not refer to a mathematical analysis of the corresponding self-adjoint
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(symmetric) operator and it does not rely on a particular notion of convergence. In
order to overcome this drawback, an extension principle and a corresponding notion
of convergence introduced by Lenczner et al. is applied. The microscopic model is
defined in variational form of a diffusion-reaction process defined on the branches
of the network. For a vanishing length of periodicity the homogenized model can
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Figure 10. Illustrative example: Solutions of the microscopic
model for different lengths of periodicity ε.
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Figure 11. Illustrative example: The approximate homogenized
model and the solution for ε = 0.2.

be homogenized model can be identified. Several directions of research can be pur-
sued in future work. In a further study, we will address the problem of the homoge-
nization of non self-adjoint operators on singularly perturbed networks. Currently,
we are working on methods for a topology optimization for systems on large scale
periodic networks. These approaches can be applied for example to develop new
materials that - when there topology is optimized - possess optimal global prop-
erties. The homogenization of stochastic process on periodic networks have been
completely ignored until now. We intend to apply such systems in problems related
to signal theory. In this regard, homogenization approaches for optimal control prob-
lems on networks offer a promising avenue for further investigations. In previous
studies conducted by Kogut and Leugering [19], the concept of S-homogenization
has been used for a limit analysis of optimal control problems on periodic graphs.
In further studies, we intend to show how the notion of two-scale convergence for
network functions can be integrated into the framework of S-homogenization.
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