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Abstract Uncertainties in wind power forecast, day-ahead

and imbalance prices for the next day possess a great deal

of risk for the profit of generation companies participating

in a day-ahead electricity market. Generation companies

are exposed to imbalance penalties in the balancing market

for unordered mismatches between associated day-ahead

power schedule and real-time generation. Coordination of

wind and thermal power plants alleviates the risks raised

from wind uncertainties. This paper proposes a novel

optimal coordination strategy by balancing wind power

forecast deviations with thermal units in the Turkish day-

ahead electricity market. The main focus of this study is to

provide an optimal trade-off between the expected profit

and the risk under wind uncertainty through conditional

value at risk (CVaR) methodology. Coordination problem

is formulated as a two-stage mixed-integer stochastic pro-

gramming problem, where scenario-based wind power

approach is used to handle the stochasticity of the wind

power. Dynamic programming approach is utilized to

attain the commitment status of thermal units. Profitability

of the coordination with different day-ahead bidding

strategies and trade-off between expected profit and CVaR

are examined with comparative scenario studies.

Keywords Conditional value at risk (CVaR), Wind-

thermal coordination, Electricity market, Wind power,

Thermal power

1 Introduction

Participation of wind-based power plant in electricity

markets offers diverse privileges for utilities and end-use

costumers. However, trading of wind power in electricity

markets is a challenging issue. Most wind power producers

prefer trading electricity with grant-in-aid fixed feed-in

tariff or long-term agreements to guarantee their profits

against price fluctuations in short-term electricity markets

[1, 2]. Such risk-free long-term contracts usually have

lower selling prices compared to those in short-term elec-

tricity markets. On the other hand, participation in day-

ahead (DA) electricity markets imposes a significant

degree of risk for wind power producers. There are three

main risk sources that the producers are faced with,

namely, uncertainties in the forecasts of wind power, DA

price, and balancing market price for the next day [3].

Contrary to the wind power generation, thermal generation

is highly controllable and flexible. However, due to

uncertainty and variability in market prices, thermal units

are also subjected to risk of low profit or loss in DA

markets [4]. Coordination facilitates thermal units to con-

tribute to the revenue of a generation company by bal-

ancing wind generation deviations at periods of low

thermal profitability. Wind generation, on the other hand,

utilizes thermal units to avoid high imbalance penalties in
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guven@metu.edu.tr

1 Department of Electrical and Electronics Engineering,

Middle East Technical University, Ankara 06800, Turkey

2 The Bucharest University of Economic Studies, Bucharest,

Romania

123

J. Mod. Power Syst. Clean Energy (2019) 7(5):1307–1318

https://doi.org/10.1007/s40565-018-0492-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s40565-018-0492-3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40565-018-0492-3&amp;domain=pdf
https://doi.org/10.1007/s40565-018-0492-3


balancing market with the coordination. Consequently,

wind-thermal coordination has been found beneficial under

wind and price uncertainties [5].

DA markets mandate participants to declare their gen-

eration schedules for the next day several hours before the

start of the operational day. Time difference between the

submission of bids and real-time operation ranges from 14

to 38 hours. For example, in Spanish DA market, bids are

submitted a day before at 10:00 a.m. [5]. It is 11:30 a.m. for

Turkish DA market case [6]. However, hourly wind power

generation can be forecasted with a mean absolute error in

the range of 15%-20% for a single plant from one day

before; thus, deviations from DA schedule inevitably occur

in actual generation [7]. Consequently, wind power pro-

ducers are exposed to high imbalance penalties in balanc-

ing markets because of the uncertain wind forecasts.

Likewise wind uncertainty, imbalance prices are also

highly volatile and unpredictable. One of the reasons for

this is that the amount of energy traded and the number of

participants in balancing markets are relatively low com-

pared to DA markets. Secondly, dual pricing mechanism,

which Turkish balancing market has been practicing,

makes imbalance prices even more difficult to estimate due

to almost random nature of the direction of overall

imbalances of the producers and the system.

There are various studies in literature for hedging risks

associated with wind uncertainty in DA markets. Authors

in [1, 3, 8, 9] suggest bidding strategies for multiple short-

term markets for wind units alone. In addition to this,

coordinating wind units with different generation types are

widely suggested in recent studies. In [8, 10, 11], pumped-

storage and hydro-power units are proposed to complement

the wind generation because of their capability to com-

pensate imbalance power. There are other studies in [5, 12]

that combine wind and thermal units to reduce imbalance

penalties caused by wind deviations; however, they are not

directly applicable to Turkish DA electricity market due to

the different imbalance price mechanism. In addition to

this, most of the previous research studied the wind-ther-

mal coordination from an independent system operator

(ISO) perspective [13, 14].

This paper contributes to the state-of-art with coordi-

nating wind and thermal units by adapting conditional

value at risk (CVaR) concept — a mathematical approach

to optimize risk of profit — to control profit variation in

DA markets from the view point of generation company.

For this purpose, a stochastic programming procedure

considering Turkish DA market mechanism is developed.

Moreover, realistic scenario studies are carried out to test

the profitability of coordination and the performance of the

solution algorithm under different risk measures. Results

show that it is more profitable to coordinate wind and

thermal units for DA and balancing markets than partici-

pation of wind and thermal units independently.

The rest of the paper is organized as follows. Electricity

market mechanism in Turkey is summarized in Section 2.

Section 3 presents detailed description of the problem

formulation. In Section 4, the algorithm developed to solve

the coordination problem is introduced. In Section 5,

numerical studies are carried out and comparisons are

made to investigate the benefit of coordination and the

effect of risk attitude of generation company on CVaR and

expected profit. Finally, concluding remarks are given in

Section 6.

2 Turkish electricity market

In Turkish electricity market, participants can trade

electricity via bilateral contracts, DA market, ancillary

services market (for primary and secondary frequency

control) and balancing market. The aim of the DA market

is complementing bilateral agreements to ensure daily

electricity supply and demand balance of the system.

Balancing market manages tertiary reserves of attendants

which preserve system supply/demand balance and secu-

rity. Both DA and balancing markets are coordinated by

the market operator and national load dispatch centre.

Participation in the DA and the balancing markets is not

mandatory for both supply and demand sides.

In Turkish DA power exchange market, market clearing

price (MCP) is initially determined by ignoring network

constraints. Market participants submit their supply and

demand volumes remaining from bilateral transactions to

the DA market. Participants bid power quantities (MW)

and their corresponding prices ($/MWh) that they are

willing to sell or buy. At the end of the auction period, the

market operator puts these quantity-price offers in order,

starting from the least-cost for generator bids and highest

price for buying bids. The highest demand bids are mat-

ched with the lowest supply bids in terms of price. MCP,

which is equal to DA price in this case, corresponds to the

point that ordered demand and supply offers are met (i.e.,

marginal point).

Supply and demand sides can submit both up-regulation

and down-regulation bids into the market. There are certain

rules in up-regulation and down-regulation bids. Price for

up-regulation bid of an hour must be equal or more than the

DA price of that hour. On the contrary, down-regulation

price of an hour must be equal or lower than DA price of

that hour. Up-regulation and down-regulation bids of

qualified participants are arranged in increasing and

decreasing order based on their price by market operator of

Turkey, respectively. The hourly price determined by the

system direction and amount of deficit is called system
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marginal price (SMP). Network constraints including sec-

ondary reserves and transmission over-loadings at steady

state and significant contingencies are considered in

determining the upward/downward regulation orders in

Turkish electricity market, as illustrated in Fig. 1.

3 Problem formulation and methodology

3.1 Two-stage stochastic programming

To make optimal decisions in the presence of uncer-

tainties and tackle the uncertainties in electricity markets,

two-stage stochastic programming is widely used

[1, 5, 11, 15–18]. First stage decisions, which are also

known as ‘‘here-and-now decisions’’, are made before the

wind generation is realized. Scenarios that represent the

probability distribution of the wind power forecast are

generated in the first stage for realization of plausible wind

power scenarios in the second stage. The first stage deci-

sions involve the DA power bid and the thermal unit

commitment (UC). DA price, imbalance-up and imbal-

ance-down prices, and the risk preference of generation

company are the inputs to the first stage, and its objective is

to maximize the expected profit.

Second stage decisions, which are also known as ‘‘wait-

and-see decisions’’, are given according to deviations in

wind speed. Second stage decisions involve economic

dispatch (ED) of thermal units. Results of the first stage,

the DA power bid and thermal commitment decisions are

deterministic inputs to the second stage. Two-stage

stochastic programming model for wind-thermal coordi-

nation problem is summarized in Fig. 2.

3.2 CVaR

CVaR is frequently used to handle optimization problem

in case of uncertainties. This method is a useful tool in

electricity markets due to its linearity and other superior

mathematical properties [1, 3, 5]. CVaR is correlated to the

value at risk (VaR) which provides information about low

profits or large losses that generation company may incur.

VaR measures the potential minimum profit for a given

confidence level a. On the other hand, CVaR, which is also

known as the mean excess loss, mean shortfall, or tail VaR,

is measured as the weighted average of expected profits

lower than VaR. In comparison with VaR, CVaR calculates

the risk beyond VaR by looking at the tail of distribution.

Mathematically speaking, at a confidence level a, CVaR is

the expected value of conditional profits that does not

exceed VaR with a probability of 1 - a. Value of a is

proportional to the risk aversion attitude of generation

company. Maximization of CVaR of profit in optimization

problems is formulated as:

max CVaRa ¼ f� 1

1� a

XNS

s¼1

psgs ð1Þ

s.t.

�Ps þ f� gs � 0 8s ð2Þ
gs � 0 8s ð3Þ

where CVaRa is the CVaR at the a confidence interval;

s and NS are the scenario index and the total number of

scenarios, respectively; f is an auxiliary variable whose

optimal value is equal to VaR; gs is the difference between
VaR and Ps which is equal to the profit of scenario s with

the corresponding probability of ps.
VaR and CVaR parameters are illustrated in Fig. 3,

where PDF and CDF stand for probability density function

and cumulative density function, respectively. Assump-

tions made in the formulation are given explicitly as

follows.

Fig. 1 Hourly-based DA Turkish electricity market
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price
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Fig. 2 Two-stage stochastic programming model for wind-thermal

coordination

Fig. 3 VaR and CVaR illustration on profit distribution
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3.3 Assumptions

1) Generation company is assumed to have no bilateral

agreement and to trade energy only in the DA market.

It does not participate in the balancing market by

bidding up-regulation and down-regulation power;

however, is obliged to exchange power with balancing

market in case of a deviation from its DA power bid.

2) This paper aims to evaluate benefits of coordination

and observe how thermal units react to wind power

generation deviations. In order to see this explicitly,

generation company is assumed to have forecasted DA

and imbalance prices (i.e., MCP and SMP) and use

them as direct inputs into its profit maximization

problem. Forecasting MCP and SMP in electricity

markets similar to the one in Turkey is a difficult task

and is out of the scope of this paper. However, it

should be mentioned that this study utilizes the output

of a previous work which estimates MCP and SMP

probabilistically based on artificial neural networks

[19].

3) Given the estimated market prices for each hour,

generation company is assumed to be a price taker

which ensures acceptance of its bids to the DA market

for each hour by bidding low prices. Thus, generation

company is only concerned about the amount of power

in DA market bidding, not the price.

4) Wind power scenarios have finite values with certain

probabilities of occurrence, and sum of probabilities of

these different scenarios is equal to 1.

5) Hourly DA wind power forecast errors are assumed to

have a normal distribution. Expected value and standard

deviation of wind power forecast are available.

6) Generation company is assumed to degrade the system

balance for all hours in case of a deviation, i.e., when

generation company is short, the system is long or

vice-versa. Hence, generation company is paid with

the imbalance-up price for its excess generation sold to

the balancing market and buys deficit power with

imbalance-down price from balancing market.

7) System constraints such as spinning and non-spinning

reserves for primary and secondary frequency control

are not considered in the formulation.

8) Operating cost of wind power generation is assumed to

be zero. Outputs of wind power units are aggregated

and represented as if there is single wind power plant.

3.4 Objective function

The main objective of generation company’s wind-

thermal generation coordination problem is to maximize its

total expected profit PE,tot in Turkish DA market, as shown

in (4).

max
ðPbid

tgw;Ptsg;utg;DtsÞ
PE;tot ¼

XNT

t¼1

XNS

s¼1

ps Rtgw �
XNG

g¼1

Ctsg þ PI;ts

 !

ð4Þ

where t denotes index for bidding period; w and g denote

indices for wind plant and thermal unit, respectively; NT

and NG denote duration of period (hour) and number of

units, respectively; Pbid
tgw denotes optimum DA bid at t for

coordinated generation; Ptsg denotes power produced by

thermal unit g at time t for scenario s; utg denotes UC status

of thermal unit g at time t, 1 means on, 0 means off; Dts

denotes net imbalance power at time t for scenario s; Rtgw

denotes revenue from coordinated wind-thermal generation

DA bid; Ctsg denotes thermal generation cost of thermal

unit g at time t for scenario s; PI;ts denotes imbalance

penalty at time t for scenario s.

Revenue of generation company results from the total

energy sold to the DA market and the excess energy sold to

the balancing market. The first and the second stage deci-

sion variables of the objective function are given in

parenthesis. Note that the first stage decision variables —

the DA power bid Pbid
tgw and thermal unit status utg — are

independent of wind power scenarios, while the second

stage decision variables — the thermal unit dispatch Ptsg

and the imbalance power Dts — are dependent on the

realization of wind power scenario.The terms within the

brackets in (4) refer to per scenario revenue of the DA bid,

total cost of thermal generation and imbalance penalty,

respectively. These three terms can be expressed as

follows:

Rtgw ¼ qdat Pbid
tgw 8t ð5Þ

Ctsg ¼ CFgutgðagP2
tsg þ bgPtsg þ cgÞþ

maxf 0;CSgðutg � ut�1;gÞg 8t; s; g
ð6Þ

PI;ts ¼
qþt Dts

� �
M Dts � 0;M ¼ 1; 8t; s

q�t Dts

� �
1�Mð Þ Dts\0;M ¼ 0; 8t; s

�
ð7Þ

where qdat denotes DA market price at time; qþt ; q
�
t denote

imbalance-up and imbalance-down prices at time t; CFg

denotes fuel cost of thermal unit g; ag; bg; cg denote heat

rate curve parameters of unit g; CSg denotes start-up cost of

thermal unit g; M denotes a binary variable.

As seen from (5), DA revenue is dependent on the power

bid Pbid
tgw and the DA price qdat . Total cost function of the

thermal generation in (6) contains fuel cost of generation

type, generation cost function and start-up cost of the unit.

Thermal generation cost function is a quadratic function
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which causes nonlinearity in the objective function.

Imbalance penalty function PI;ts is modeled with a binary

variable M in (7). In this paper, an equivalent linear for-

mulation proposed in [3] is used to eliminate the binary

variable in order to obtain computational simplicity and

efficiency in the solution. This linear formulation which is

presented in (8) is descended from the decomposition of

energy imbalance Dts into summation of positive and

negative imbalances D�
ts and Dþ

ts , respectively. Since the

imbalance penalty, regardless of positive or negative,

opposes to the maximization of profit, the optimization

problem tends to minimize the imbalance penalty function.

Therefore, without a necessity of M, the optimal solution is

guaranteed with one of the variables D�
ts or D

þ
ts is zero since

qþt � qda and q�t � qda. Hence, thermal UC status utg is the

only integer variable in the problem.

PI;ts ¼ qþtsD
þ
ts � q�tsD

�
ts 8t; s ð8Þ

where Dþ
ts and D�

ts denote imbalance-up and imbalance-

down power at time t for scenario s.

The introduced coordinated objective function aims to

maximize the expected profit excluding the risk. Risk

assessment is crucial for the evaluation of the trade-off

between profit and risk in stochastic problems. CVaR is

included as a risk measurement term in the objective

function given in (9). CVaR term is multiplied by a

weighting factor — risk aversion parameter b[ [0,?) — in

order to simulate the effect of risk averse behavior on the

expected profit and CVaR.

max
ðPbid

tgw;Ptsg;utg;D
þ
ts ;D

�
ts Þ
PE;tot þ b � CVaRa ð9Þ

3.5 Constraints

There are various types of constraints that can be added

to the wind-thermal generation coordination problem.

Detailed description on system constraints, emission con-

straints, crew and other constraints are given in [20]. In this

paper, bidding, market and thermal constraints are

embedded in the problem formulation.

3.5.1 Bidding constraints

Bidding constraints are separately defined for stochastic

and deterministic bidding approach for coordinated gen-

eration as well as uncoordinated generation.

1) Stochastic wind-thermal coordinated bidding

The amount of power bided to DA market must be

within maximum and minimum wind power generation

plus generation limits of thermal generators which are

available (on) at that hour. Equation (10) presents the

bidding constraint.

Pmin
tsw þ

XNG

g¼1

Pmin
tsg utg �Pbid

tgwP
max
tsw þ

XNG

g¼1

Pmax
tsg utg 8t ð10Þ

where Pmin
tsw and Pmax

tsw denote the minimum and maximum

wind power generations at time t for scenario s; Pmin
tsg and

Pmax
tsg denote the minimum and maximum power outputs of

thermal unit g at time t for scenario s.

2) Deterministic wind-thermal coordinated bidding

Power bid is within the limits between the possible

maximum and minimum generation limits of thermal

generators available at that hour. The amount of power bid

for wind generation is determined as if wind power forecast

is certain. Equation (11) illustrates the deterministic wind-

thermal bidding constraint:

Pexp
tw þ

XNG

g¼1

Pmin
tsg utg �Pbid

tgw �Pexp
tw þ

XNG

g¼1

Pmax
tsg utg 8t

ð11Þ

where P
exp
tw denotes expected wind power generation at

time t.

3) Stochastic wind-thermal uncoordinated bidding

Power bids of thermal and wind units are determined

separately as in (12) and (13).

XNG

g¼1

Pmin
tg utg �Pbid

tg �
XNG

g¼1

Pmax
tg utg 8t ð12Þ

Pmin
tsw �Pbid

tw �Pmax
tsw 8t ð13Þ

where Pbid
tg and Pbid

tw denote optimum DA bid and optimum

DA power bid at time t for uncoordinated thermal gener-

ation, respectively; Pmin
tg and Pmax

tg denote the minimum and

maximum power outputs of thermal unit at time t.

3.5.2 Imbalance price constraints

Double price mechanism which is practiced by Turkish

balancing market is presented below for the supplier side.

qsmpt � qdat k[ 0; 8t
qsmpt � qdat k\0; 8t

�
ð14Þ

where qsmpt denotes SMP at time t; k denotes system

direction.

1) When generation company’s real-time generation is

more than the amount of DA schedule, excess

generation is sold to the balancing market with

imbalance-up price qþt as in (15).
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qþt ¼ min qdat ; qsmpt

� �
¼ qsmpt k[ 0; 8t

max qdat ; qsmpt

� �
¼ qdat k\0; 8t

�
ð15Þ

2) When generation company’s real-time generation is

less than the amount of DA power schedule,

generation deficit is bought from balancing market

with imbalance down price q�t as in (16).

q�t ¼ min qdat ; qsmpt

� �
¼ qdat k[ 0; 8t

max qdat ; qsmpt

� �
¼ qsmpt k\0; 8t

�
ð16Þ

Since it is assumed that generation company degrades

the system balance for all hours, constraint on imbalance

prices can be summarized as in (17).

qþt � qdat � q�t 8t ð17Þ

3.5.3 Imbalance power constraints

Imbalance power is equal to the difference between DA

power schedule and real-time generation of generation

company. Either Dþ
ts or D�

ts is equal to zero for all t and s

due to nature of the optimization problem. Equation (18)

presents the imbalance power constraint.

Dts ¼ Ptsw þ
XNG

g¼1

Ptsg � Pbid
tgw ¼ Dþ

ts � D�
ts 8t; s ð18Þ

3.5.4 Thermal unit constraints

Thermal unit constraints considered in the paper are

generation, ramp-up and ramp-down power and minimum-

up and minimum-down time limits.

1) Unit’s ramp-up and ramp-down capacity constraints

Due to machinery limits, electrical output of a thermal

unit cannot change more than a certain amount over a

period of time. Generation of thermal unit for successive

hours is bounded by ramp-up and ramp-down constraints,

as shown in (19).

��RDg �Ptsg � Pt�1;sg � �RUg 8t; s; g ð19Þ

where �RUg and �RDg denote the maximum ramp-up rate limit

and the maximum ramp-down rate limit of thermal unit g,

respectively.

2) Generation constraints

Generation constraints are defined as the minimum and

maximum feasible generation capacity of an operating

thermal unit. In addition, ramp-up and ramp-down con-

straints related with the units should be taken into account,

as shown in (20)–(22).

Pmin
tsg utg �Ptsg �Pmax

tsg utg 8t; s; g ð20Þ

Ptsg ¼
minfPt�1;sg þ �RUg; �Pgg utg ¼ ut�1;g ¼ 1; 8t; s; g
minfPg þ Rug;Pgg utg ¼ 1; ut�1;g ¼ 0; 8t; s; g

�

ð21Þ

Ptsg ¼
minfPt�1;sg þ �RDg;Pgg utg ¼ ut�1;g ¼ 1; 8t; s; g
Pg utg ¼ 1; ut�1;g ¼ 0; 8t; s; g

�

ð22Þ

where �Pg and Pg denote the maximum and the minimum

thermal power output limits of thermal unit g.

3) Minimum-up and minimum-down time constraints

Once a unit is running, it cannot be shut down imme-

diately. Likewise, the off units cannot be started immedi-

ately. Time requirement for a thermal unit to be turned off

and on is defined as minimum-up and minimum-down

times as given in (23) and (24), respectively.

ðTup
t�1;g � T

up
min;gÞðut�1;g � utgÞ� 0 8t; g ð23Þ

ðTdn
t�1;g � Tdn

min;gÞðutg � ut�1;gÞ� 0 8t; g ð24Þ

where T
up
t�1;g and Tdn

t�1;g denote the time that thermal unit g

has been up and the time that thermal unit g has been down

at time t, respectively; T
up
min;g and Tdn

min;g denote the mini-

mum-up time and the minimum-down time of thermal unit

g, respectively.

4 Solution algorithm

The solution algorithm for the wind-thermal coordina-

tion, which is developed in MATLAB environment, is

presented in a flowchart in Fig. 4. Dynamic programming

(DP) is used in order to eliminate the mixed-integer nature

of the problem formulation and find the optimum UC of

thermal units.

In the first stage of the solution algorithm, t and k, which

denote time and number of feasible previous transitions,

respectively, are initialized. t is initialized as 1 since it is

the beginning of the scheduling period and k is initialized

as 1 due to there is only one feasible previous state at t = 1

(i.e., operating conditions of the units in the last hour of the

previous day). Also, at this stage of the algorithm, the

problem is fed with market, wind and thermal unit data.

These include:

1) Market data: forecasted DA clearing price, imbalance-

up and imbalance-down prices.

2) Wind power forecast data: expected wind power and

standard deviation.

3) Thermal unit data: number of units, unit generation

capacity, ramp-up/down limits, start-up costs, initial

on/off durations, minimum-up/down time, fuel price,

and cost coefficients for each unit.
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In the second stage of the algorithm, all possible N = 2G

(G is the number of thermal units) thermal UC states for

each previous transition k and hour t are created with

complete enumeration. However, only limited number of

statuses is recorded to reduce the computational time, as

discussed below.

Whether transition k from previous hour to current hour

for state n is feasible or not is checked with minimum-up

and minimum-down constraints in the third stage of the

algorithm. For this purpose, on/off data of thermal units in

current state n are compared to data stored in XR (working

hour of thermal unit matrix) which keeps the duration that

thermal units have been on or off until that hour. Then, XR

is updated for the next hour if transition to current state is

feasible. Infeasible transitions are not stored in the

memory.

In the fourth stage of the algorithm, ED with thermal

units which are on is conducted for each wind power

scenario. Expected profits and corresponding optimum

transition sub-paths are saved in PR (profit matrix) and TR

(transition matrix), respectively.

Obtaining an optimal solution for this problem is not

easy. The size of the transition matrix TR increases with

t through the scheduling horizon. As mentioned before, for

G number of thermal units there are 2G possible states.

Assume that all state transitions are feasible, for T hours of

scheduling horizon, size of TR, K, becomes (2G)T. In order

to reduce the computational effort, time and program

memory, at each hour not all but K number of most prof-

itable states are saved in PR, TR and XR in the fifth, sixth

and seventh stages. This approach may result in a subop-

timal solution. In the eighth stage of the problem, the

algorithm decides on the number of transitions K to be

saved for the next hour. Whether the DP reaches to the last

hour in the scheduling period is checked in the ninth stage

with the counter t. In the final stage, the suboptimal tran-

sition path (thus the UC schedule) is found by the transition

path saved in TR that corresponds to the maximum profit in

PR.

5 Numerical studies and results

Effects of coordination and bidding strategy on the

expected profit and CVaR are evaluated in a 24-hour

scheduling problem for different scenarios. Problems are

solved in a computer that has Intel Core i5 processor with

2.60 GHz and 8 GB memory. Not all but K number of most

profitable states are saved in each stage of the DP in order

to reduce the computational size and time. Nevertheless,

this may result in a suboptimal solution since not all the

integer combinations are searched by DP. In order to test

the optimality of solution, expected profit and execution

time are compared under different K values. It is found that

the value of 8 for K provides the best balance between

optimal solution and execution time.

The generation company considered in the numerical

studies is assumed to own two thermal units and a wind

farm. The capacity of the wind farm is 180 MW, while the

total installed capacity of thermal plants is 90 MW. Market

prices and wind power forecasts are inputs to the proposed

model. Thermal unit data are given in Table 1, where uini
represents the number of hours that unit has been on.

It is assumed that hourly wind power forecast error lies

within a normal distribution fashion similar to

[5, 13, 21, 22] and an increasing standard deviation in the

later hours of the day. Instead of dealing with a continuous

PDF, discrete variables which are called scenarios that

could represent continuous variables are generally pre-

ferred [12, 19, 23]. In order to find a good approximation

for the wind power forecast, large number of scenarios is

needed to cover the probability space. On the other hand,

Fig. 4 Solution algorithm for wind-thermal coordination
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there is a trade-off between number of sample scenarios

and the computational complexity. For the scenario studies,

PDF of the wind power forecast error, denoted as Q(x) in

Fig. 5, for each hour is divided into six confidence intervals

with a standard deviation of r around the expected value l
in the x-axis between [-3r, ?3r] so as to find represen-

tative scenarios. The interval [-3r,?3r] spans the 99.74%
of the total area in PDF. This can be interpreted as the

probability of the wind power outcome in the next day lies

within this interval with 99.74% of chance. Therefore,

values which deviate more than 3r from the expected wind

power forecast value are ignored to reduce the computa-

tional burden and execution time. In Fig. 6, six

representative wind power scenarios for different r inter-

vals are drawn in black lines.

The six different scenarios investigated throughout this

paper are uncoordinated wind-thermal generation (scenario

1, corresponds to -3r), coordinated wind-thermal gener-

ation with risk attitude parameter b of 0, 0.1, 0.5 and 1.0

(scenarios 2, 3, 4, 5, correspond to -2r, -r, r, 2r), and
coordinated wind-thermal generation with deterministic

bidding (scenario 6, corresponds to 3r). Market data and

wind power forecast data considered in the study are pre-

sented in Table 2 and Table 3, respectively. Wind power

Fig. 5 Normal PDF of wind power forecast and confidence intervals

with respect to r

Fig. 6 Wind power scenarios for every r interval

Table 1 Thermal unit data

Unit No. Pg (MW) �Pg (MW) T
up
min;g (hour) Tdn

min;g (hour) uini (hour) Fuel cost ($/Mbtu)

1 5 45 4 2 - 2 1.0

2 5 45 1 1 - 2 1.0

Unit No. �RUg (MW) �RDg (MW) ag (Mbtu) bg (Mbtu/MW) cg (Mbtu/MW2) CSg ($)

1 10 10 85.51 70.86 0.19 100

2 40 40 89.34 78.23 0.23 0

Table 2 Market data

Time (hour) qdat ($/MWh) qþt ($/MWh) q�t ($/MWh)

1 74 40 100

2 86 55 120

3 75 65 112

4 95 50 101

5 70 35 88

6 95 50 118

7 77 72 80

8 85 46 128

9 75 64 114

10 72 36 102

11 76 56 90

12 70 62 82

13 82 68 94

14 88 83 101

15 92 78 104

16 95 91 124

17 77 58 93

18 75 71 87

19 70 50 81

20 75 48 84

21 82 72 88

22 88 75 114

23 94 62 120

24 80 60 102
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generation data for scenarios 1-6, which are developed

based on assumptions in Table 3, are illustrated in

Table 4.

UC results in Table 5 (U1 and U2 represent unit 1 and

unit 2) ensure optimal trade-off between the expected profit

and the risk under wind uncertainty under the ED solutions

presented in Table 6.

The profit and CVaR values for each scenario are pre-

sented in Table 7. CVaR is calculated for a = 0.98

(CVaR0.98) which equals to the value of lowest prof-

itable scenario in the problem. In terms of expected profit

and CVaR, coordinated wind-thermal generation with

stochastic bidding is prominent to uncoordinated genera-

tion and coordinated generation with deterministic bidding.

Expected profit of coordinated generation is 1.25% which

is 0.5% higher than that of uncoordinated generation and

coordinated deterministic bidding. Situation in CVaR is

even more distinct for coordinated generation with 4.6%

and 2.4% higher CVaR values compared to uncoordinated

generation and coordinated deterministic bidding, respec-

tively. Note that CVaR of uncoordinated thermal genera-

tion is equal to its expected profit as there is no

stochasticity in thermal only generation.

Expected profit versus CVaR plot is given for all sce-

narios in Fig. 7. Uncoordinated bidding has the lowest

expected profit and CVaR among all scenarios. For coor-

dinated generation, as the risk averse behavior increases

with b; CVaR0.98 increases as well but the expected profit

decreases. The performance of coordinated deterministic

bidding in terms of expected profit and CVaR is better than

that of uncoordinated generation. Comparing scenario 1

and scenario 5 reveals that 4.6% increase in CVaR results

in only 1.3% reduction in the expected profit. According to

this trade-off between the expected profit and CVaR,

generation company can choose its preference of risk

before bidding in the DA market.

The risk on profit variability can be controlled at the cost

of a small reduction in the expected profit. Figure 8 illus-

trates such a case for the coordinated wind-thermal gen-

eration with generation company’s attitude towards risk.

As the risk averse behavior increases with b, standard

deviation of realized profits decreases. In Fig. 9, coordi-

nated wind-thermal generation with b = 0 is solved for

different values of K and expected profit and execution

Table 3 Wind power forecast data

Time (hour) P
exp
tw (MW) r (MW)

1 100 10.00

2 120 10.50

3 110 11.00

4 130 11.50

5 115 12.00

6 125 12.50

7 100 13.00

8 95 13.50

9 102 14.00

10 116 14.50

11 104 15.00

12 88 15.50

13 94 16.00

14 80 16.50

15 75 17.00

16 85 17.50

17 95 18.00

18 102 18.50

19 100 19.00

20 115 19.50

21 120 20.00

22 110 20.50

23 105 21.00

24 110 21.50

Table 4 Wind power generation data for different scenarios

Time (hour) Wind power generation data (MW)

1 2 3 4 5 6

1 76.92 86.22 95.42 104.58 113.78 123.08

2 95.77 105.53 115.19 124.81 134.47 144.23

3 84.61 94.84 104.96 115.04 125.16 135.39

4 103.45 114.15 124.73 135.27 145.85 156.55

5 87.29 98.46 109.50 120.50 131.54 142.71

6 96.13 107.76 119.27 130.73 142.24 153.87

7 69.98 82.07 94.04 105.96 117.93 130.02

8 63.82 76.38 88.81 101.19 113.62 126.18

9 69.66 82.69 95.58 108.42 121.31 134.34

10 82.50 96.00 109.35 122.65 136.00 149.50

11 69.34 83.31 97.12 110.88 124.69 138.66

12 52.19 66.62 80.89 95.11 109.38 123.81

13 57.03 71.92 86.66 101.34 116.08 130.97

14 41.87 57.23 72.43 87.57 102.77 118.13

15 35.71 51.54 67.20 82.80 98.46 114.29

16 44.55 60.85 76.97 93.03 109.15 125.45

17 53.40 70.16 86.74 103.26 119.84 136.60

18 59.24 76.47 93.51 110.49 127.53 144.76

19 56.08 73.77 91.28 108.72 126.23 143.92

20 69.92 88.08 106.05 123.95 141.92 160.08

21 73.77 92.39 110.82 129.18 147.61 166.23

22 62.61 81.70 100.59 119.41 138.30 157.39

23 56.45 76.01 95.36 114.64 133.99 153.55

24 60.29 80.32 100.13 119.87 139.68 159.71
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time results are presented. According to results, optimality

of the solution changes with K; expected profit increases as

the value of K increases due to the larger search space

scanned with DP. For K[ 4, significant increment in the

expected profit is not observed; hence, for this specific

problem one can make a tradeoff between K and the exe-

cution time.

6 Conclusion

In this paper, a two-stage stochastic programming model

for wind-thermal coordination is proposed. The problem

considers a generation company participating in Turkish

DA electricity market with its thermal and wind generation

units. The main objective of the generation company is to

determine the optimum power for the DA market to max-

imize its expected profit in the first stage while controlling

risks associated with possible realizations of wind power

output in the second stage. Based on this objective,

generation company obtains the most suitable hourly gen-

eration schedule and optimal bids under CVaR considera-

tion. Comparative scenario studies are investigated to

illustrate the performance of bidding strategies and benefits

of the coordination. Results indicate that the wind-thermal

generation coordination could significantly contribute to

profit of generation company by reducing the imbalance

penalty charged by the balancing market. Coordination also

steers thermal units to commit more often to balance real-

time generation deviations from the DA bid caused by the

wind uncertainty. Thus, ramp limits, start-up cost, mini-

mum-up times, minimum-down time and generation

capacity of thermal units can greatly affect the benefit of

coordination. To determine hourly power bid to market,

generation company should not compute optimal thermal

and wind power bids separately but aggregate wind and

thermal power bids in order to have higher profit. Wind-

thermal coordination not only improves expected profits

but also substantially increases the CVaR. The imbalance

penalty for any discrepancy between the DA schedule and

Table 5 UC statuses of thermal units

Time (hour) Thermal UC status

1 2 3 4 5 6

U1 U2 U1 U2 U1 U2 U1 U2 U1 U2 U1 U2

1 1 0 1 0 1 0 1 0 1 0 1 0

2 1 0 1 1 1 1 1 1 1 1 1 0

3 1 0 1 0 1 0 1 0 1 0 1 0

4 1 1 1 1 1 1 1 1 1 1 1 1

5 1 0 1 0 1 0 1 0 1 0 1 0

6 1 1 1 1 1 1 1 1 1 1 1 1

7 1 0 1 0 1 0 1 0 1 0 1 0

8 1 0 1 1 1 1 1 1 1 1 1 0

9 1 0 1 0 1 0 1 0 1 0 1 0

10 0 0 1 0 1 0 1 1 1 1 1 0

11 0 0 1 0 1 0 1 0 1 0 0 0

12 0 0 1 0 1 0 1 0 1 0 0 0

13 1 0 1 0 1 0 1 1 1 1 1 0

14 1 0 1 1 1 1 1 1 1 1 1 1

15 1 1 1 1 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1 1 1 1 1

17 1 0 1 0 1 0 1 0 1 0 1 0

18 1 0 1 0 1 0 1 0 1 0 1 0

19 1 0 1 0 1 0 1 0 1 0 1 0

20 1 0 1 0 1 0 1 0 1 0 1 0

21 1 0 1 0 1 0 1 0 1 0 1 0

22 1 1 1 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1 1 1 1

24 1 0 1 1 1 1 1 1 1 1 1 0
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the real-time delivery may force generation company to

accept more risk averse decisions to increase CVaR. The

CVaR criterion maximizes the expected profits of the

lowest possible wind power scenarios which lessens the

chance of having low profits. Generation company can

effectively control the trade-off between CVaR and

expected profit with the proposed model. Small reduction

in the expected profit can result in high growth in CVaR.

Hence, generation company determines its generation

scheduling and DA bidding according to associated risk

preference.

In this study, the DA market prices are assumed to be

forecasted deterministically. Future studies might include

effects of stochastic DA price forecasting on the results.

Analysis can be further scaled up with other types of

generation such as hydro pumped-storage. Impact of

Table 6 Amount of DA power bid

Time (hour) DA power bid (MW)

1 2 3 4 5 6

1 112.9 110.4 109.6 102.9 100.4 108.4

2 140.2 162.8 160.4 154.5 153.1 145.0

3 120.0 130.0 129.8 119.6 119.6 125.0

4 217.1 211.9 210.2 204.1 196.6 201.3

5 135.5 145.5 145.5 144.5 134.5 130.0

6 202.0 199.4 197.8 186.1 186.1 196.3

7 122.3 131.0 131.0 119.0 119.0 116.3

8 123.8 143.6 143.6 139.2 131.2 130.0

9 110.6 110.6 107.7 94.7 94.7 117.0

10 127.7 127.7 125.3 132.7 119.4 121.0

11 110.9 115.9 115.9 112.1 102.1 104.0

12 80.9 95.0 85.9 73.6 67.2 88.0

13 116.3 116.3 111.7 119.0 108.2 109.0

14 118.6 133.3 128.4 115.0 107.7 126.1

15 147.6 147.8 143.5 130.5 125.7 139.8

16 142.1 150.9 139.6 134.6 134.0 166.3

17 128.3 128.2 121.7 111.7 95.2 120.0

18 108.5 108.5 108.5 84.2 80.4 117.0

19 113.7 113.7 113.7 106.3 96.3 105.0

20 139.0 139.0 129.0 129.0 121.1 130.0

21 158.8 154.2 144.2 135.8 125.8 149.6

22 166.7 171.7 156.0 142.6 137.1 176.1

23 193.7 177.6 174.0 154.6 146.5 184.1

24 125.1 149.9 149.9 134.6 130.1 135.0

Table 7 Profit analysis of scenario studies

Scenario CVaR0.98 ($) PE;tot ($)

Uncoordinated thermal 3731.21 3731.21

Uncoordinated wind 115481.59 197705.77

Scenario 1 119212.81 201436.98

Scenario 2 124641.41 203945.83

Scenario 3 125893.38 203824.79

Scenario 4 130151.08 202669.44

Scenario 5 132088.57 201288.32

Scenario 6 121738.92 202895.95

Fig. 7 Expected profit versus CVaR

Fig. 8 Expected profit versus standard deviation

Fig. 9 Expected profit versus execution time with respect to K
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greenhouse emission caps on electricity generation facili-

ties which are likely to be imposed in near future by

governments aiming to comply with international agree-

ments can be added to the coordination problem with dif-

ferent objective functions and constraints.

The development in battery storage technology is promis-

ing for the utility scale. In future studies, battery stor-

age could be considered to mitigate risks from the short-

term operational and long-term investment perspectives.
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