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Box-Cox power transformation is a commonly used methodology to transform the 

distribution of a non-normal data into a normal one. Estimation of the 

transformation parameter is crucial in this methodology. In this study, the 

estimation process is hold via a searching algorithm and is integrated into well-

known seven goodness of fit tests for normal distribution. An artificial covariate 

method is also included for comparative purposes. Simulation studies are 

implemented to compare the effectiveness of the proposed methods. The methods 

are also illustrated on two different real life data applications. Moreover, an R 

package AID is proposed for implementation.  
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1.  Introduction 

Normal distribution has a fundamental role in statistical literature, since it forms the basis of 

most of the statistical methods such as regression analysis, analysis of variance and t-test. 

Therefore, the validity of the related results necessitates the agreement between the 

distribution of the observed data and this theoretical distribution. In cases where this 

agreement is deteriorated, which is common in real life datasets, transformation methods 

might be a practical remedy to secure it. The most popular and commonly used method is the 

Box-Cox power transformation (Box and Cox, 1964). Since its proposition, it has been 

applied in various fields. Some of the recent works include Lee et al. (2013), Gillard (2012) 

and Sun et al. (2011). Box-Cox transformation mainly applies a deterministic power function 

to the raw data by using the estimate of the power transformation parameter, λ. Therefore, the 

estimation of λ is crucial. The original proposal of the methodology (Box and Cox, 1964) 

involved the maximum likelihood estimation (MLE). Alternative methodologies included the 

works of Rahman (1999), Rahman and Pearson (2013), and Dag et al. (2013). Whereas the 

first two studies proposed the estimation of λ via two normality tests, specifically Shapiro-

Wilk and Anderson-Darling tests, respectively, the third one proposed simulating a single 

artificial and non-informative covariate and finding    which minimizes the sum of squared 

error among several simple linear regression models. These studies showed that the MLE of λ 

might be biased and inefficient. 

Instead of using the MLE, the works of Rahman (1999) and Rahman and Pearson (2008) 

used Newton-Raphson (N-R) algorithm to obtain    within the aforementioned normality tests. 

However, it is well known that this procedure has some disadvantages. For instance, the 

method requires an initial point selection and it might capture a nearest root, i.e., a local root, 

instead of the global one. Moreover, its application to other goodness of fit tests, such as 

Lilliefors test, is challenging. Besides, there is no user-friendly software to estimate λ with the 
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aforementioned goodness of fit tests by using the N-R procedure. The MATLAB (2010) 

codes of Rahman (1999) and Rahman and Pearson (2008) are available from the original 

authors for Shapiro-Wilk and Anderson-Darling tests, but they are not in the form of public 

use. Moreover, these codes are restricted only to specific sample sizes: 20, 40 and 100.  

In this study, we extended their work in four perspectives: 1) We considered the estimation 

of λ with a different methodology, specifically a searching algorithm which finds the 

argument of maximum (arg max) or minimum (arg min) over a pre-specified interval in which 

candidate λ values lay; 2) We utilized the estimation via seven well-known goodness of fit 

tests and via a new method by Dag et al. (2013); 3) We implemented a publicly available R 

[15] package AID; 4) This package was not restricted to any sample size choices. 

We conducted two simulation studies. The first one questioned whether our searching 

method was at least as good as the numerical root finding methods such as N-R algorithm to 

estimate λ. The second simulation study was conducted to evaluate the performances of all the 

methods including the artificial covariate method of Dag et al. (2013) under different 

conditions. Furthermore, methods were illustrated on two different real life datasets with 

different characteristics; one of them was right skewed and the other was left skewed.  

The organization of the paper is as follows. In Section 2, we provide brief details of Box-

Cox power transformation and discuss the parameter estimation methodologies. The results of 

the simulation studies are provided in Section 3. Real life applications and related results are 

introduced in Section 4. We discuss the implementation of the methods via the package AID 

and some computational aspects in this Section as well, and close the article by conclusions in 

Section 5. 

 

2.  Methods 

The Box-Cox power transformation [5] on observations yi (i=1,2,…,n) is given by 

  
    =    

  
   

 
                     

                       

 ,                (1) 

where λ is the unknown power transformation parameter and n is the sample size. Generally, 

the transformation given in Equation 1 is known as the conventional Box-Cox transformation. 

Nonetheless, due to the fact that the analysis of variance does not change by linear 

transformation, an alternative version is usually considered:  

  
    =    

  
                         

                       
   ,       (2)     

In this study, we achieved the estimation of λ via well-known seven goodness of fit tests for 

normality; namely, Shapiro-Wilk, Anderson-Darling, Cramer-von Mises, Pearson Chi-square, 

Shapiro-Francia, Lilliefors (Kolmogorov-Smirnov) and Jarque-Bera tests and via a new 

artificial covariate method by Dag et al. (2013). Brief information on these tests and artificial 

covariate method can be found in the Appendix. Interested readers are referred to Noughabi 

and Arghami (2011) and Yap and Sim (2011) for power comparisons of some of these tests 

through Monte Carlo simulation. We preferred using searching algorithms to obtain the 

optimum value, i.e., arg max for Shapiro-Wilk and Shapiro-Francia tests and arg min for the 

rest of the normality tests, to find the estimate of λ. The algorithm is provided in the following 

steps: 
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Our proposed algorithm for the estimation of λ 

i) Select a sequence of candidate λ values by a fairly precise increment such as 1/10, 

1/50 and so on, in a specified interval. 

ii) Be sure that each element of the dataset is positive. Otherwise, add a small 

constant to all observations to shift the location to positive values (as originally 

proposed by Box and Cox [5]).  

iii) Apply Box-Cox power transformation given in Equation 1 by using all of the 

candidate λ values and obtain several transformed samples, as many as the λ 
values. 

iv) Check the normality of each of these transformed samples by the specified 

goodness of fit tests. 

v) Select the λ value for which the maximum or minimum test statistic, depending on 

the choice of the test, is obtained. 

vi) Control whether this λ value is able to satisfy the normality of the transformed data 

by three of the aforementioned seven normality tests. Furthermore, check whether 

it yields global maximum or minimum by graphical analysis. 

vii) If these checks do not support the selection of the candidate λ value, then enlarge 

the range of the lambda sequence and repeat steps ii) to vi) again. 

We used three goodness of fit tests in order to check the normality in the validation step 

after the transformation; namely, Shapiro-Wilk test, Shapiro-Francia test and Jarque-Bera test. 

The question of why we used these three goodness of fit tests in validation stage of normality 

might arise. Within a group that is composed of Shapiro-Wilk test, Anderson-Darling test, 

Lilliefors test, Cramer-von Mises test, Jarque-Bera test and Pearson Chi-square test; Shapiro-

Wilk test is the best one for the asymmetric distributions and is powerful for symmetric short 

tailed distributions (Yap and Sim, 2011). Shapiro-Francia is the modification of Shapiro-Wilk 

test for large sample sizes (See Appendix for the details). We also added Jarque-Bera test in 

the validation part since it is superior to Shapiro-Wilk test when data have symmetric 

distribution with medium or long tails or slightly skewed distribution with long tails 

(Thadewald and Buning, 2007). Hence, we considered the validation step for different possible 

types of data.   

For the validation of normality after transformation, it is better to adjust the p-values for 

multiple comparisons since we have used more than one normality test. Benjamini and 

Hochberg (1995) suggested a simple procedure to control the false discovery rate. It is more 

powerful than the procedures controlling the traditional familywise error rate for independent 

test statistics. The same procedure was verified in Benjamini and Yekutieli (2001) to control 

the false discovery rate when positive dependency of test statistics existed. Herewith, it was 

set as default in the function boxcoxnc proposed under the R package AID.   

The package AID to implement our methodologies is available from Comprehensive R 

Archive Network (CRAN) at http://CRAN.R-project.org/package=AID.  

 

3. Results on simulation studies 

Two simulation studies are carried out to answer different questions. In the next two 

subsections, these questions, algorithm and results of the simulation studies are provided.  

3.1. Simulation study I 

In this subsection, we conducted a simulation study to answer the following question: “Do our 

proposed estimation methodology, i.e., searching algorithm, work at least as good as the ones 

http://cran.r-project.org/package=AID
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of Rahman (1999) and Rahman and Pearson (2008)?”. Our simulation study included 

different scenarios considered in these two works, specifically, different sample sizes, and 

different combinations of mean, standard deviation and true  values. The related 

methodology could be depicted in the steps below. 

Algorithm for simulation study I 

i) Generate a random sample from normal distribution with mean   (  
                  ) and standard deviation   (     ) with a sample size n 

(n=20, 100) by using the MATLAB code of Rahman and Pearson (2008).  

ii) Apply inverse Box-Cox transformation defined by       
 

   for   
                    to create non-normal samples. 

iii) Estimate   by the methods of Rahman (1999) and Rahman and Pearson (2008) by 

utilizing the MATLAB code. 

iv) Extract the datasets generated in MATLAB to a file and read them into R. 

v) Estimate   by our proposed methodology. 

Following Rahman (1999) and Rahman and Pearson (2008), the replication number is 

selected as 1,000. Standard accuracy measures such as mean, bias, percentage bias, standard 

error (SE) and mean squared error (MSE) were calculated to assess the comparison. However, 

only the bias, SE and MSE are reported here due to page limitations. 

The N-R algorithm reached convergence within small number of iterations. For instance, 

the algorithm, that used the N-R, converged in at most 4 steps, even for small sample sizes 

such as 20, with a convergence threshold of     . The initial value of the transformation 

parameter in all Newton processes was chosen as 1. 

Results of our method are presented, under the heading of O, together with the results of 

Newton-Raphson method, under the heading of N, in Table 1. Our method yielded smaller or 

similar bias and MSEs compared to the N-R procedure for both Shapiro-Wilk and Anderson-

Darling tests under most sample sizes and mean, standard deviation combinations. The main 

differences between the two methods were observed when the absolute value of   gets larger 

for small sample size. For instance, the MSE for our method was observed to be 5.877 [6.454] 

for Shaprio-Wilk [Anderson-Darling] test, whereas it was found to be 7.163 [8.176] with their 

procedure when n=20 under µ= -5, σ=1 and     . For smaller values of   these two 

methods seemed to be working similarly. For n=100, the results for these two methods were 

similar even for           . In the light of these results, we can conclude that our 

searching approach performs at least as good as the available procedure, i.e., N-R method, for 

Shapiro-Wilk and Anderson-Darling tests in terms of estimating the Box-Cox power 

transformation parameter,  , regarding both consistency and efficiency. 

[Insert Table 1 here] 

3.2. Simulation study II 

Next, we conducted a simulation study to answer the following questions: “Which one of the 

eight methods does yield better results?” and “Are there any differences in the results based 

on the sample size?” The methodology followed in this simulation study is provided in the 

following steps. 

Algorithm for simulation study II 
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i) Generate a random sample from normal distribution with mean   (   ) and 

standard deviation   (     ) for sample size n (n=20, 30, 50, 100, 500). 

ii) Apply inverse transformation    
 

   by considering the Box-Cox transformation 

defined in Equation 2 with power transformation parameter, λ (λ= -5, -2, -1, 0, 2, 

5). 

iii) Estimate λ by using our proposed approaches. 

The simulation was repeated for 10,000 runs. Results are presented in Table 2. For this 

simulation study, we only reported the bias and MSE, despite the fact that other statistics such 

as mean, percentage bias and standard error were also calculated.  

As expected, biases and MSEs became smaller as the sample size increased and/or the 

magnitude of λ decreased. Almost all of the estimation approaches performed similar to each 

other, especially when the sample size increased. However, Pearson Chi-square test showed 

less consistent and efficient performance at small sample sizes. For instance, under n=20 and 

λ= -5, the bias and MSE were found to be -0.756 and 6.241, respectively, whereas the related 

values for other methods such as Shapiro-Wilk were found to be 0.039 and 3.323. As the 

magnitude of λ decreased and the sample size increased, its inefficient performance 

disappeared. In fact, all of the methods, including Chi-square method, performed well at λ=0 

regardless of the parameter combinations (   ) in data generation. To illustrate, the biases and 

MSEs of all the tests were practically 0 for n=500 and λ=0. The artificial covariate method 

performed as the most consistent method especially for small sample sizes and large λ values 

in the magnitude, although sizable biases were observed for it. In fact, it yielded the smallest 

MSEs under all conditions. Moreover, as the sample size increased, its biasness tended to 

disappear.    

When the standard deviation of the data generation distribution was decreased, all of the 

methods showed higher inconsistencies through higher MSEs; though estimation with the 

artificial covariate method was less biased. For instance, under N(0, 25) with n=20 and λ=-5, 

the MSE was found to be 4.639 for the Lilliefors test; it increased to 7.472 under N(0, 1) 

when the other parameters were kept same. Nevertheless, since the comparison of methods 

remained same regardless of σ, only the results for N(0,25) were included here due to space 

limitations. Results for N(0,1) are available as Supplementary Data. 

Within the techniques discussed in this study, artificial covariate approach was the best one 

with respect to the MSE criteria. Moreover, this approach was found to be superior compared 

to MLE for estimating λ in Dag et al. (2013). The biases obtained with artificial covariate 

method seemed to be slightly higher than the other biases. However, the bias of an estimate 

was stated to be within the acceptable range if it was less than its SE/2; some references even 

stated this value as 2SE (Sinharay et al., 2001, Burton et al., 2006). All methods discussed in 

this study, including artificial covariate method, had small biases, even smaller than SE/2. The 

method utilizing Shapiro-Wilk test also provided better results compared to the methods using 

other normality tests with respect to bias and MSE in most of the cases. To illustrate, it was 

noted that the bias and MSE values were the smallest for the sample size of 50 when Shapiro-

Wilk test was utilized to estimate   for all true λ combinations when data were generated from 

N(0, 25). 

In brief, Pearson Chi-square test might not be preferred to estimate λ. Other methods could 

be studied together to obtain a consensus perspective. However, artificial covariate method 

and Shapiro-Wilk test seem to be more effective than most of the tests. 

 

[Insert table 2 here] 

4.  Results on real data  
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Our methods are illustrated on two real life data applications in this section. Brief information 

on datasets is provided together with results. Some computational details are discussed in the 

last subsection.   

 

4.1.  Data on textile  

Data exerted in this application were collected by International Wool Textile Organization to 

detect the impact of some factors on the number of cycles to failure of worsted yarn [5]. The 

factors described in that experiment were the length of test specimen (250, 300, 350 mm.), 

amplitude of loading cycle (8, 9, 10 mm.), and load (40, 45, 50 gm.). Data involved only 27 

observations. Data are available in the R package BHH2 (Barrios, 2012) under the name of 

woolen.data. 

Density plot of cycles to failure indicated right-skewness of the data with possibly a 

mixture of two densities (Figure 1, left panel). Moreover, all of the normality tests pointed out 

that there was enough evidence to conclude that cycles to failure followed a non-normal 

distribution (e.g., p-value for Shapiro-Wilk =3.031     ).   

The estimates of transformation parameter under all eight methods are presented in Table 

3. Moreover, the p-values of three normality tests on transformed datasets are provided in this 

table. For instance, Shapiro-Wilk test yielded a p-value of 1.00 when applied to the 

transformed data with the    obtained by Anderson-Darling test. All of these p-values 

indicated that there was not enough evidence towards non-normality of these transformed 

samples. Moreover, density plots of all of the transformed cycles to failure demonstrated 

symmetric distributions around their means (Figure 1, right panel). Note that Box-Cox (Box 

and Cox, 1964) suggested using          which was supported exactly by four of our 

methods; namely, Shapiro-Wilk, Shapiro-Francia, Lilliefors and Jarque-Bera tests. The 

estimates obtained by the other methods were approximately equal to this original estimate; 

these estimates were also successful in terms of converting the distribution to a normal one. 

Note that the Pearson chi-square result seemed to be the most adverse one. 

[Insert table 3 here] 

[Insert figure 1 here] 

4.2. Data on students’ grades 

Data used in this application included grades of 42 college students collected at Middle East 

Technical University of Turkey. The data were exerted to illustrate the behavior of the 

approaches proposed in this paper on negatively skewed data (figure is not shown here).  

All of the tests suggested non-normality of the raw data (e.g., Shapiro-Wilk test p-value 

=3.237     ). The proposed methods were implemented and the estimates of power 

transformation parameters and the results of normality tests on the transformed datasets are 

displayed in Table 4. The p-values suggested that the transformations to normality were 

successful.  

[Insert table 4 here] 

4.3.  Implementation 

The function boxcoxnc under the R package AID was proposed to implement all of the 

aforementioned methods. The estimates of λ’s for the textile and students’ grades datasets can 

be obtained by the following R codes: 
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R>  install.packages(“AID”) 

R>  library(AID) 

R>  data(textile) 

R>  boxcoxnc(textile$textile ) 

R> data(grades) 

R> boxcoxnc(grades$grades) 

The computational times are provided in Table 5 for both real life datasets. Artificial covariate 

method demands slightly longer times since its reliable implementation requires repetitions. 

Nevertheless, the methods took less than 3 seconds even when all of the methods were run 

together. The analyses were done on a PC with 6.00 GB RAM and 2.50 GHz processor. 

[Insert table 5 here] 

 

5.  Conclusion 

In this study, different approaches were proposed to estimate Box-Cox power transformation 

parameter. Our proposed methods were based on different normality tests and we used 

searching algorithms to find maximum or minimum instead of numerical methods such as 

Newton-Raphson. 

We conducted two simulation studies. First one was based on the comparison of searching 

algorithms and numerical methods, and the related results indicated that the former one was 

performing at least as good as the N-R root finding procedure. The second study was based on 

evaluating the features of the proposed methods under different scenarios.  Results showed 

that artificial covariate method and Shapiro-Wilk test seem to be more effective than most of 

the tests in attaining the true transformation parameter. It was observed that Pearson Chi-

square test was able to compete with the other methods only for large sample sizes. The 

methods were applied on two real life datasets. We proposed an R package, AID, for 

implementation. 
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Appendix 

Shapiro-Wilk & Shapiro-Francia tests 

Shapiro and Wilk (1965) proposed a goodness of fit test, which was named after its founders, 

and was specifically designed to test the normality of a dataset. The calculation of the 

Shapiro-Wilk test statistic is defined by                   

W = 
  

         
 ,             (A1) 
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b =                  
   
         ,         

where a = (w′   )/    ′        ), V is the covariance matrix of order statistics, w is the 

vector of expected value of order statistics, and      are sample order statistics [24].   

Alternatively, Shapiro and Francia (1972) pointed out that order statistics for large samples 

behaved independently and they proposed a modification of the Shapiro-Wilk test statistic for 

large sample sizes. The Shapiro-Francia test statistic is defined by 

W′ = 
      

         
,             (A2) 

where    = (w′)/    ′  . Weisberg and Bingham (1975) suggested an approximation to wi 

defined by wi =    (
       

      
),     is the inverse of cumulative distribution function of 

standard normal distribution. 

Both Shapiro-Wilk and Shapiro-Francia test statistics take the maximum value of 1, which 

indicates less evidence towards non-normality. 

Anderson-Darling test 

Anderson and Darling (1954) presented an empirical distribution function (EDF) test for 

normality. The related test statistic is given by 

  = -   -                                    
 
   ,      (A3) 

where                    . The values of the Anderson-Darling test statistic which are 

close to 0 indicate less evidence towards non-normality. 

Cramer-von Mises test 

The Cramer-von Mises test statistics (1928) is given by 

       = 
 

   
 +         

    

  
  .             (A4) 

As Cramer-von Mises test statistic is adjacent to the value of 0, which is the minimum value 

of the test statistic, it indicates less evidence towards non-normality.  

Pearson Chi-square test 

The Pearson Chi-Square test (Pearson, 1900) statistic is described by 

  =  
         

 

   

 
   ,        (A5) 
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where n observations are separated into k exclusive classes,    is the probability of an 

observation to appear in class i under null hypothesis,    is the number of observations in the 

i
th 

class (Thode, 2002). Larger values of the test statistic indicate departures from normality.  

Lilliefors (Kolmogorov-Smirnov) test 

Lilliefors (1967) is an EDF based goodness of fit test for normality and the test statistic 

depends on maximum difference between the empirical and hypothetical cumulative 

distribution functions. The test statistic is given by 

   =  
 

 
              

       ,    =        
   

 
        

         

  = max[  ,   ]                                                         (A6) 

where                    . The values of the Lilliefors test statistic closer to 0 indicate less 

evidence towards non-normality. 

Jarque-Bera test 

Jarque and Bera (1987) proposed a skewness and kurtosis based goodness of fit test for the 

normality and the related test statistic is  

LM = 
 

 
     

      

 
  ,     (A7) 

where S and K are skewness and kurtosis, respectively. The values of the test statistic close to 

0 indicate less evidence towards non-normality. 

Method of artificial covariate 

Dag et al. (2013) proposed simulating a single non-informative covariate from normal 

distribution with mean 0 and standard deviation 100 when no covariate was available. The 

usual Box-Cox power transformation parameter was applied by using this artificial covariate. 

This methodology was included in this study to compare its performance in terms of 

estimating λ with the proposed goodness of fit test methodologies. 
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Figure 1. Density plot of cycles to failure before (left) and after transformations (right). 
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 Table 1. Bias, SE and MSE estimates of λ 

 

n µ σ λ          O-SW         N-SW         O-AD        N-AD 

20 

-5 1 -2 

Bias 0.111 0.128 0.061 0.071 

SE 2.422 2.673 2.540 2.858 

MSE 5.877 7.163 6.454 8.176 
        

-10 2 -2 

Bias 0.114 0.130 0.065 0.072 

SE 2.338 2.546 2.458 2.723 

MSE 5.478 6.498 6.044 7.419 
        

-5 1 -1 

Bias 0.063 0.064 0.036 0.035 

SE 1.449 1.460 1.548 1.563 

MSE 2.105 2.137 2.399 2.443 
        

-10 2 -1 

Bias 0.063 0.064 0.036 0.036 

SE 1.330 1.337 1.422 1.429 

MSE 1.772 1.791 2.023 2.044 
        

-10 1 -0.5 

Bias 0.043 0.035 0.019 0.017 

SE 1.492 1.495 1.561 1.578 

MSE 2.228 2.235 2.438 2.491 
        

-15 2 -0.5 

Bias 0.037 0.031 0.018 0.017 

SE 1.055 1.041 1.109 1.115 

MSE 1.115 1.085 1.231 1.243 
        

10 1 0.5 

Bias -0.037 -0.032 -0.016 -0.018 

SE 1.479 1.475 1.560 1.577 

MSE 2.188 2.178 2.434 2.488 
        

15 2 0.5 

Bias -0.038 -0.031 -0.017 -0.018 

SE 1.055 1.043 1.108 1.114 

MSE 1.115 1.088 1.229 1.242 
        

5 1 1 

Bias -0.064 -0.065 -0.034 -0.036 

SE 1.453 1.461 1.546 1.559 

MSE 2.114 2.140 2.390 2.433 
        

10 2 1 

Bias -0.065 -0.066 -0.035 -0.036 

SE 1.333 1.337 1.421 1.429 

MSE 1.782 1.792 2.021 2.044 
        

5 1 2 

Bias -0.104 -0.132 -0.051 -0.072 

SE 2.430 2.674 2.535 2.859 

MSE 5.916 7.166 6.430 8.177 
        

10 2 2 

Bias -0.105 -0.130 -0.052 -0.073 

SE 2.347 2.548 2.451 2.726 

MSE 5.518 6.509 6.008 7.435 

Note: O-SW and O-AD were obtained by our proposed approach, while N-SW and N-AD were obtained by Newton-Raphson 

root finding procedure. Shapiro-Wilk and Anderson-Darling test statistics were used in Box-Cox transformation for both 

methods. 
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Table 1. (Continuation) 

 

n µ σ λ          O-SW         N-SW         O-AD        N-AD 

100 

-5 1 -2 

Bias 0.029 -0.151 -0.013 -0.005 

SE 0.885 1.042 0.995 1.060 

MSE 0.784 1.108 0.990 1.124 
        

-10 2 -2 

Bias 0.031 -0.151 -0.011 -0.004 

SE 0.847 0.990 0.959 1.009 

MSE 0.719 1.003 0.919 1.018 
        

-5 1 -1 

Bias 0.018 -0.075 -0.003 -0.003 

SE 0.504 0.571 0.581 0.581 

MSE 0.254 0.332 0.337 0.338 
        

-10 2 -1 

Bias 0.018 -0.075 -0.003 -0.002 

SE 0.459 0.521 0.530 0.530 

MSE 0.211 0.277 0.281 0.281 
        

-10 1 -0.5 

Bias 0.010 -0.035 -0.004 -0.004 

SE 0.515 0.584 0.590 0.591 

MSE 0.265 0.342 0.348 0.349 
        

-15 2 -0.5 

Bias 0.010 -0.037 -0.003 -0.003 

SE 0.362 0.411 0.416 0.416 

MSE 0.131 0.170 0.173 0.173 
        

10 1 0.5 

Bias -0.005 0.045 -0.005 -0.005 

SE 0.515 0.584 0.589 0.590 

MSE 0.265 0.343 0.347 0.348 
        

15 2 0.5 

Bias -0.006 0.043 -0.004 -0.004 

SE 0.362 0.411 0.415 0.415 

MSE 0.131 0.171 0.172 0.172 
        

5 1 1 

Bias -0.014 0.085 -0.005 -0.005 

SE 0.504 0.573 0.579 0.579 

MSE 0.254 0.336 0.335 0.335 
        

10 2 1 

Bias -0.014 0.084 -0.005 -0.005 

SE 0.459 0.522 0.527 0.528 

MSE 0.211 0.280 0.278 0.279 
        

5 1 2 

Bias -0.029 0.168 -0.012 -0.010 

SE 0.892 1.045 0.997 1.056 

MSE 0.797 1.121 0.994 1.115 
        

10 2 2 

Bias -0.029 0.168 -0.012 -0.010 

SE 0.854 0.994 0.960 1.004 

MSE 0.731 1.017 0.921 1.009 

Note: O-SW and O-AD were obtained by our proposed approach, while N-SW and N-AD were obtained by Newton-Raphson 

root finding procedure. Shapiro-Wilk and Anderson-Darling test statistics were used in Box-Cox transformation for both 

methods. 
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Table 2. Comparison of bias, SE and MSE estimates of λ with 8 different methods when 

data is generated from N(0, 25) 

N true λ 
  

    SW 
 

   AD 
 

    CVM 
 

    PT 
 

   SF 
 

   LT 
 

   JB 
 

  AC 

20 

-5 

Bias 

 

0.039 

 

-0.079 

 

-0.101 

 

-0.756 

 

-0.112 

 
-0.015 

 

0.087 

 

0.624 

SE  1.822  1.933  2.070  2.381  1.845  2.154  1.909  1.485 

MSE 

 

3.323 

 

3.744 

 

4.297 

 

6.241 

 

3.415 

 

4.639 

 

3.653 

 
2.594 

                  

-2 

Bias 

 

-0.008 

 

-0.065 

 

-0.086 

 

-0.554 

 

-0.073 

 

-0.068 

 
0.000 

 

0.250 

SE  0.802  0.873  0.960  1.423  0.820  1.037  0.876  0.600 

MSE 

 

0.643 

 

0.767 

 

0.929 

 

2.331 

 

0.677 

 

1.079 

 

0.768 

 
0.423 

                  

-1 

Bias 

 

-0.004 

 

-0.033 

 

-0.044 

 

-0.295 

 

-0.037 

 

-0.037 

 
-0.003 

 

0.126 

SE  0.407  0.449  0.499  0.772  0.417  0.535  0.463  0.302 

MSE 

 

0.166 

 

0.203 

 

0.251 

 

0.683 

 

0.175 

 

0.288 

 

0.214 

 
0.107 

                  

0 

Bias 

 

-0.001 

 

-0.001 

 

-0.001 

 

-0.017 

 

-0.001 

 

-0.001 

 

-0.001 

 
0.000 

SE  0.045      0.055  0.055  0.082  0.055  0.063  0.055  0.045 

MSE 

 
0.002 

 

    0.003 

 

0.003 

 

0.007 

 

0.003 

 

0.004 

 

0.003 

 
0.002 

                  

2 

Bias 

 
0.001 

 

0.058 

 

0.080 

 

-0.166 

 

0.067 

 

0.064 

 

-0.005 

 

-0.254 

SE  0.802  0.875  0.967  1.273  0.820  1.048  0.879  0.598 

MSE 

 

0.643 

 

0.769 

 

0.941 

 

1.649 

 

0.677 

 

1.103 

 

0.773 

 
0.422 

                  

5 

Bias 

 

-0.045 

 

0.072 

 

0.096 

 

-0.750 

 

0.106 

 
0.014 

 

-0.101 

 

-0.634 

SE  1.843  1.956  2.086  2.248  1.864  2.163  1.918  1.491 

MSE 

 

3.398 

 

3.832 

 

4.362 

 

5.617 

 

3.486 

 

4.678 

 

3.689 

 
2.624 

 
                  

30 

-5 

Bias 

 
-0.008 

 

-0.118 

 

-0.131 

 

-0.554 

 

-0.149 

 

-0.064 

 

0.053 

 

0.445 

SE  1.560  1.692  1.838  2.249  1.584  1.940  1.622  1.297 

MSE 

 

2.433 

 

2.876 

 

3.395 

 

5.366 

 

2.530 

 

3.768 

 

2.634 

 
1.879 

                  

-2 

Bias 

 
0.002 

 

-0.050 

 

-0.067 

 

-0.374 

 

-0.056 

 

-0.048 

 

0.019 

 

0.186 

SE  0.652  0.726  0.806  1.193  0.665  0.880  0.694  0.523 

MSE 

 

0.425 

 

0.529 

 

0.654 

 

1.564 

 

0.446 

 

0.777 

 

0.482 

 
0.308 

                  

-1 

Bias 

 
0.001 

 

-0.023 

 

-0.030 

 

-0.189 

 

-0.028 

 

-0.022 

 

0.012 

 

0.094 

SE  0.329  0.368  0.412  0.629  0.336  0.447  0.351  0.263 

MSE 

 

0.108 

 

0.136 

 

0.171 

 

0.431 

 

0.114 

 

0.200 

 

0.123 

 
0.078 

                  

0 

Bias 

 
0.000 

 

0.000 

 

0.000 

 

-0.007 

 
0.000 

 

0.001 

 
0.000 

 

0.000 

SE  0.032  0.045  0.045  0.063  0.032  0.045  0.032  0.032 

MSE 

 
0.001 

 

0.002 

 

0.002 

 

0.004 

 
0.001 

 

0.002 

 
0.001 

 
0.001 

                  

2 

Bias 

 
-0.001 

 

0.050 

 

0.067 

 

-0.049 

 

0.057 

 

0.054 

 

-0.017 

 

-0.188 

SE  0.647  0.720  0.805  1.132  0.660  0.886  0.693  0.519 

MSE 

 

0.418 

 

0.521 

 

0.653 

 

1.283 

 

0.439 

 

0.788 

 

0.481 

 
0.305 

                  

5 

Bias 

 

-0.045 

 

0.067 

 

0.088 

 

-0.429 

 

0.095 

 
0.022 

 

-0.099 

 

-0.492 

SE  1.531  1.670  1.819  2.156  1.556  1.933  1.598  1.269 

MSE 

 

2.347 

 

2.792 

 

3.318 

 

4.833 

 

2.429 

 

3.738 

 

2.564 

 
1.853 

Note: SW: Shapiro-Wilk; AD: Anderson-Darling; CVM: Cramer-von Mises; PT: Pearson Chi-square; SF: Shapiro-Francia; 

LT: Lilliefors; JB: Jarque-Bera; AC: Artificial Covariate. 
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Table 2. (Continuation) 

N true λ 
  

    SW 
 

   AD 
 

    CVM 
 

    PT 
 

   SF 
 

   LT 
 

   JB 
 

  AC 

50 

-5 

Bias  -0.009  -0.097  -0.109  -0.334  -0.129  -0.052  0.050  0.303 

SE  1.274  1.427  1.570  2.046  1.295  1.694  1.315  1.102 

MSE  1.622  2.045  2.476  4.297  1.694  2.874  1.733  1.307 

                  

-2 

Bias  -0.001  -0.041  -0.049  -0.208  -0.049  -0.038  0.021  0.126 

SE  0.516  0.588  0.660  0.963  0.525  0.725  0.537  0.441 

MSE  0.266  0.348  0.438  0.971  0.278  0.527  0.289  0.210 

                  

-1 

Bias  0.004  -0.014  -0.017  -0.099  -0.020  -0.016  0.016  0.067 

SE  0.253  0.289  0.325  0.485  0.258  0.360  0.264  0.218 

MSE  0.064  0.084  0.106  0.245  0.067  0.130  0.070  0.052 

                  

0 

Bias  0.000  0.001  0.000  -0.002  0.000  0.001  0.000  0.000 

SE  0.032  0.032  0.032  0.045  0.032  0.032  0.032  0.032 

MSE  0.001  0.001  0.001  0.002  0.001  0.001  0.001  0.001 

                  

2 

Bias  -0.002  0.036  0.044  -0.020  0.045  0.035  -0.024  -0.129 

SE  0.513  0.586  0.659  0.929  0.522  0.720  0.533  0.437 

MSE  0.263  0.345  0.436  0.864  0.275  0.520  0.285  0.208 

                  

5 

Bias  0.010  0.107  0.124  -0.212  0.128  0.060  -0.046  -0.311 

SE  1.286  1.441  1.587  1.991  1.308  1.699  1.324  1.107 

MSE  1.655  2.089  2.534  4.008  1.726  2.889  1.755  1.322 

 
                  

100 

-5 

Bias  -0.017  -0.064  -0.070  -0.179  -0.108  -0.057  0.030  0.171 

SE  0.964  1.133  1.264  1.751  0.978  1.367  0.986  0.875 

MSE  0.929  1.288  1.603  3.098  0.968  1.871  0.973  0.795 

                  

-2 

Bias  0.000  -0.018  -0.019  -0.072  -0.036  -0.014  0.019  0.076 

SE  0.387  0.452  0.505  0.741  0.393  0.552  0.395  0.351 

MSE  0.150  0.205  0.255  0.555  0.156  0.305  0.156  0.129 

                  

-1 

Bias  0.001  -0.009  -0.010  -0.035  -0.017  -0.007  0.011  0.039 

SE  0.192  0.223  0.251  0.368  0.194  0.274  0.195  0.172 

MSE  0.037  0.050  0.063  0.137  0.038  0.075  0.038  0.031 

                  

0 

Bias  0.000  0.000  0.000  -0.001  0.000  0.000  0.000  0.000 

SE  0.000  0.000  0.000  0.032  0.000  0.032  0.000  0.000 

MSE  0.000  0.000  0.000  0.001  0.000  0.001  0.000  0.000 

                  

2 

Bias  0.008  0.029  0.033  -0.011  0.044  0.030  -0.012  -0.068 

SE  0.390  0.458  0.513  0.733  0.396  0.563  0.397  0.354 

MSE  0.152  0.211  0.264  0.537  0.159  0.318  0.158  0.130 

                  

5 

Bias  0.006  0.063  0.070  -0.082  0.096  0.049  -0.041  -0.185 

SE  0.972  1.142  1.273  1.722  0.987  1.382  0.993  0.882 

MSE  0.945  1.308  1.626  2.973  0.984  1.912  0.988  0.812 

Note: SW: Shapiro-Wilk; AD: Anderson-Darling; CVM: Cramer-von Mises; PT: Pearson Chi-square; SF: Shapiro-Francia; 

LT: Lilliefors; JB: Jarque-Bera; AC: Artificial Covariate. 

 

 

 

 

 

 

 

 



16 
 

Table 2. (Continuation) 

N true λ 
  

    SW 
 

   AD 
 

    CVM 
 

    PT 
 

   SF 
 

   LT 
 

   JB 
 

  AC 

500 

-5 

Bias  -0.009  -0.015  -0.019  0.006  -0.048  -0.012  0.010  0.049 

SE  0.518  0.628  0.693  1.002  0.521  0.757  0.520  0.500 

MSE  0.268  0.394  0.480  1.004  0.274  0.573  0.271  0.252 

                  

-2 

Bias  -0.004  -0.005  -0.006  -0.004  -0.020  -0.006  0.003  0.019 

SE  0.205  0.251  0.277  0.405  0.206  0.300  0.205  0.197 

MSE  0.042  0.063  0.077  0.164  0.043  0.090  0.042  0.039 

                  

-1 

Bias  -0.001  -0.001  -0.001  0.002  -0.009  0.001  0.003  0.011 

SE  0.105  0.126  0.138  0.202  0.104  0.148  0.105  0.099 

MSE  0.011  0.016  0.019  0.041  0.011  0.022  0.011  0.010 

                  

0 

Bias  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

SE  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

MSE  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

                  

2 

Bias  0.003  0.002  0.002  -0.010  0.019  0.000  -0.005  -0.020 

SE  0.205  0.251  0.277  0.406  0.206  0.302  0.207  0.199 

MSE  0.042  0.063  0.077  0.165  0.043  0.091  0.043  0.040 

                  

5 

Bias  0.005  0.006  0.008  -0.031  0.045  0.003  -0.015  -0.053 

SE  0.511  0.623  0.689  1.014  0.515  0.747  0.515  0.493 

MSE  0.261  0.388  0.475  1.030  0.267  0.558  0.265  0.246 

Note: SW: Shapiro-Wilk; AD: Anderson-Darling; CVM: Cramer-von Mises; PT: Pearson Chi-square; SF: Shapiro-Francia; 

LT: Lilliefors; JB: Jarque-Bera; AC: Artificial Covariate. 
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Table 3. Results on textile data 

 SW AD CVM PT SF LT JB AC 

   -0.060 -0.080 -0.100 0.020 -0.060 -0.060 -0.060 -0.044 

SW-pval  1.000  1.000  1.000 1.000  1.000  1.000   1.000  1.000 

SF-pval  1.000  1.000  1.000 1.000  1.000  1.000  1.000  1.000 

JB-pval  1.000  1.000  1.000 1.000  1.000  1.000  1.000  1.000 

Note:    is the estimate of power transformation parameter, pval is the p-value of the corresponding test after transformation. 

 

 

 

Table 4. Results on students’ grades data 

 SW AD CVM PT SF LT JB AC 

   1.910 1.760 1.580 1.270 1.970 1.540 1.780 1.393 

SW-pval 1.000 1.000 0.804 0.152 1.000 0.700 1.000 0.345 

SF-pval 1.000 1.000 0.804 0.152 1.000 0.700 1.000 0.345 

JB-pval 1.000 1.000 1.000 0.269 1.000 1.000 1.000 0.616 

Note:    is the estimate of power transformation parameter, pval is the p-value of the corresponding test after transformation. 

 

 

 

Table 5. Computational Times (in seconds) 

 ALL SW AD CVM PT SF LT JB AC 

textile 2.55 0.28 0.33 0.32 0.25 0.31 0.34 0.20 1.68 

grades 2.65 0.30 0.36 0.39 0.25 0.31 0.33 0.22 1.67 

 

 

 

 

 

 

 

 


