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Abstract

The neutral fermion sectors of E6-inspired low energy models, in particular the Alternative Left-

Right and Inert models, are considered in detail within the non-supersymmetric scenario. We show

that in their simplest form, these models always predict, for each generation, the lightest neutrino

to be an SU(2)L singlet, as well as two extra neutrinos with masses of the order of the up-quark

mass. In order to recover Standard Model phenomenology, additional assumptions in the form

of discrete symmetries and/or new interactions are needed. These are classified as the Discrete

Symmetry (DS), Higher Dimensional Operators (HDO), and Additional Neutral Fermion (ANF)

methods. The DS method can solve the problem, but requires additional Higgs doublets that do

not get vacuum expectation values. The HDO method predicts no sterile neutrino, and that the

active neutrinos mix with a heavy isodoublet neutrino, thus slightly suppressing the couplings of

active neutrinos, with interesting phenomenological implications. The ANF method also predicts

this suppression, and also naturally includes one or more “sterile” neutrinos. This scenario allows

the existence of sterile neutrino(s) in either a 3 + 1 or 2 + 2 structure at low energies, which are

favored by the LSND result.
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I. INTRODUCTION

The discovery of solar [1] and atmospheric [2] neutrino oscillations has provided the

first confirmed scenario of physics beyond the Standard Model. The combined results from

solar, atmospheric and long baseline neutrino experiments are well described by oscillations

of three active neutrinos νe, νµ and ντ , with mass squared splittings estimated to be

5.4×10−5 < ∆m2
sol < 9.5×10−5 eV2 and 1.2×10−3 < ∆m2

atm < 4.8×10−3 eV2 [3]. However,

the Los Alamos Liquid Scintillation Detector (LSND) requires 10 > ∆m2 > 0.2 eV2 [4], a

serious disagreement with the other results. The MiniBooNE experiment at Fermilab [5] is

in the process of checking the validity of the LSND experiment. Taking at face value the

LSND results, a minimum of four neutrinos seems to be required to explain all available

neutrino data. LEP-SLC measurements of the Z decay width restrict the number of active

neutrinos to three; thus one or more of the neutrinos must be “sterile” [6]. Such scenarios

have been studied extensively [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Mixing of sterile and active

neutrinos affects directly the present neutrino experiments and limits have been set on such

mixings. A valid question remains: how natural is it, in a beyond the Standard Model

scenario, to obtain physically acceptable mixings between sterile and active neutrinos, while

maintaining the constraints from weak scale phenomenology.

Several extensions of the Standard Model predict the existence of exotic fermions. Of

these, superstring theories represent the most promising scenario for a unified theory of all

fundamental interactions. One set of superstring theories are anomaly-free ten dimensional

theories based on E8 × E8 heterotic strings coupled to N=1 gravity [17], with matter be-

longing to the 27 representation of E6. Previous interest in the E6 GUTs dates as far as

1970’s [18] when it was noted that E6 was the next anomaly-free choice group after SO(10),

and that each generation of fermions can be placed in the 27-plet representation.

The E6 spectrum contains several neutral exotic fermions, some which could be inter-

preted as sterile neutrinos. The precise details of mass generation and mixing with the active

neutrinos would depend on which subgroup of E6 is considered. There are many phenomeno-

logically acceptable low energy models which arise from E6. In this work we concentrate on

rank-5 subgroups, which can always break to SU(3)C × SU(2)L × U(1)Y × U(1)η [19, 20].

We analyze neutrino masses and mixings, as well as active-sterile neutrino assignments

and mixing in group decompositions of E6 under the maximal subgroup SU(3)C ×SU(3)L×
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SU(3)H to the Standard Model. These intermediate subgroups can include extra SU(2)

groups, which give rise to the usual Left-Right symmetric model (LR) [21], the Alternative

Left-Right symmetric model (ALR) [22] and the Inert model [19, 23]. Though there are

small differences among these groups with regards to neutrino masses and mixing, we shall

be able to present a study applicable to all. We keep this discussion valid for the non-

supersymmetric case, leaving the details for the supersymmetric scenario to another work

[24].

Our paper is organized as follows. We discuss these models in Section 2. In sections

3 and 4 we analyze neutrino masses and mixings in the Alternative Left-Right and Inert

models, respectively. Both of these models suffer from predicting too large a Dirac mass

for the active neutrinos. We suggests mechanisms to rectify this problem in Section 5. We

discuss the implications of our results and conclude in Section 6.

II. THE MODELS

The fundamental representation of E6, the 27-plet, branches into

27 = (3c, 3, 1) + (3̄c, 1, 3̄) + (1c, 3̄, 3)

= q + q̄ + l (2.1)

under the maximal subgroup, SU(3)C ⊗ SU(3)L ⊗ SU(3)H . The particle content of the

27-plet for one family under this decomposition can be written as

q =











u

d

h











L

, q̄ = (uc dc hc)L , l =











Ec N ν

N c E e

ec νc Sc











L

. (2.2)

Here we have used the notation that SU(3)L(SU(3)H) operates vertically (horizontally)

and the minus signs in front of the fields are suppressed.1 There are three ways to

1 We write fields as left-chiral Dirac spinors and throughout the rest of the paper we use f c
L for a fermion

field f as a shorthand notation for (f c)L, as we know that the chiral projection and conjugation do not

commute. Thus, f c
L ≡ (fR)

c = Cγ0f∗
R where C =

(

−ǫ 0

0 ǫ

)

. Here we adopt the chiral representation

and ǫ ≡ iσ2.
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embed an SU(2)H into the SU(3)H , just as I-spin, U -spin and V -spin can be embed-

ded in the SU(3) flavor group. The best-known breaking is when the first and the

second columns form a SU(2)H doublet; this corresponds to the LR symmetric model

(H = R). An alternative version is when the first and the third columns form an

SU(2)H doublet; this corresponds to the ALR symmetric model (H = R′). Finally,

the second and the third columns can form an SU(2)H doublet; this corresponds to the

Inert model (H = I). In LR, (uc dc)L ((e
c νc)L),





Ec N

N c E





L

, and hcL (and the third

column of l) become SU(2)R doublets, a bi-doublet, and singlets, respectively. For

the ALR case, (hc uc)L ((e
c Sc)L),





Ec ν

N c e





L

, and dcL (and the particles in the second

column of l) are the corresponding ones under SU(2)R′ . Finally in the Inert model,

(hc dc)L ((ν
c Sc)L),





N ν

E e





L

, and ucL (and the particles in the first column of l) are the

corresponding multiplets under SU(2)I .

To determine the U(1) quantum numbers, we need to look at the electromagnetic charge

operator. If we consider the case where only SU(3)L is broken down to SU(2)L ⊗ U(1)YL
,

the electromagnetic charge Qem = I3L + Y/2 for all q̄ becomes zero. Therefore, SU(3)H →
SU(2)H ⊗U(1)YH

is needed such that SU(2)H and/or U(1)YH
can contribute to Qem. When

both SU(2)H and U(1)YH
contribute to Qem, we end up with the LR 2 and ALR symmetric

models. The “Inert” model, is obtained when the SU(2)H does not contribute to Qem.

We will use the notation H = R,R′, I; YH = YR,R′,I for the LR, ALR and Inert groups,

respectively. The gauge groups are at this level SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)L ⊗
U(1)R, SU(3)C ⊗ SU(2)L ⊗ SU(2)R′ ⊗ U(1)L ⊗ U(1)R′ , and SU(3)C ⊗ SU(2)L ⊗ SU(2)I ⊗
U(1)Y ⊗ U(1)′ for LR, ALR and Inert cases, respectively [19, 25]. It is further possible to

break them into some effective rank-5 forms by reducing U(1)L⊗U(1)R(R′) → U(1)V=L+R(R′)

for the LR (ALR) case and SU(2)I ⊗ U(1)′ → SU(2)I for the Inert case. The quantum

numbers of the particles in ALR and Inert models are given in Table I.

The Higgs sector of the model is sometimes found by assuming, in the spirit of SUSY

models, that the allowed representations also come from a 27-plet. However, since we are

not considering SUSY models, we do not assume that all of the states in the 27-plet are

2 This is the rank-6 version of the familiar LR symmetric model.
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TABLE I: The quantum numbers of fermions in 27 of E6 at SU(3)C ⊗ SU(2)L ⊗ SU(2)R′ ⊗

U(1)V =YL+Y
R′

and SU(3)C ⊗ SU(2)L ⊗ SU(2)I ⊗ U(1)Y levels.

state I3L I3R′ I3I V/2 Y/2 Qem

uL 1/2 0 0 1/6 1/6 2/3

ucL 0 -1/2 0 -1/6 -2/3 -2/3

dL -1/2 0 0 1/6 1/6 -1/3

dcL 0 0 -1/2 1/3 1/3 1/3

hL 0 0 0 -1/3 -1/3 -1/3

hcL 0 1/2 1/2 -1/6 1/3 1/3

eL -1/2 -1/2 -1/2 0 -1/2 -1

ecL 0 1/2 0 1/2 1 1

EL -1/2 0 1/2 -1/2 -1/2 -1

Ec
L 1/2 1/2 0 0 1/2 1

νL 1/2 -1/2 -1/2 0 -1/2 0

νcL 0 0 1/2 0 0 0

NL 1/2 0 1/2 -1/2 -1/2 0

N c
L -1/2 1/2 0 0 1/2 0

Sc
L 0 -1/2 -1/2 1/2 0 0

present (so colored scalars will not be introduced, for example). For the ALR model, we

can have HS, singlet under both SU(2) groups, H1 doublet under SU(2)R′ and singlet under

SU(2)L, H2 doublet under SU(2)L and singlet under SU(2)R′ , and a bi-doublet H3. The

neutral components of HS, H1, H2, and H3 are scalars with the same quantum numbers

as νcL, S
c
L, NL, and (N c

L, νL) and they are from (16, 1), (1, 1), (10, 5), and ((10, 5), (16, 5))

representations under (SU(10), SU(5)), respectively. In the case of the Inert model, however,

the representations are slightly different [23]. There is no singlet scalar field (HS) under

SU(2)I but an additional neutral SU(2)I doublet HD is needed. This doublet corresponds

to the components νcL and Sc
L of the fermion doublet. We parametrize these Higgs doublets
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vev’s as

〈H1〉 = (0 N1) , 〈H2〉 =





v1

0



 , 〈H3〉 =





0 v2

v3 0



 , 〈HS〉 = N2, (2.3)

in the ALR model and

〈HD〉 = (N2 N1) , 〈H2〉 =





0

v3



 , 〈H3〉 =





v1 v2

0 0



 , (2.4)

in the Inert model. The quantum numbers and vev’s of the color-singlet, neutral Higgs fields

in 27 of E6 are given in Table II. We assume that the SU(2)L doublets acquire vev’s vi ∼ 102

TABLE II: The quantum numbers of fermions in 27 of E6 at SU(3)C ⊗ SU(2)L ⊗ SU(2)R′ ⊗

U(1)V =YL+Y
R′

and SU(3)C ⊗ SU(2)L ⊗ SU(2)I ⊗ U(1)Y levels.

vev I3L I3R′ I3I V/2 Y/2

v1 1/2 0 1/2 -1/2 -1/2

v2 1/2 -1/2 -1/2 0 -1/2

v3 -1/2 1/2 0 0 1/2

N1 0 -1/2 -1/2 1/2 0

N2 0 0 1/2 0 0

GeV, the symmetry breaking scale of the electroweak gauge group, while the SU(2)L Higgs

singlets get vev’s Ni much larger than the scale of the electroweak symmetry breaking (that

is, Ni ≫ vi). This hierarchy is needed from the fact that no experimental signal for the

exotic quarks and leptons has been observed. The mass terms for the fermions can be

obtained from the dimension-4 Yukawa interactions of the form LY = λψ(27)ψ(27)H(27).

Here ψ(27) is the 27-plet of E6 involving leptons and quarks, and H(27) is the one involving

Higgs scalars. The coefficient λ represents the corresponding generation dependent Yukawa

coupling, where generation indices are suppressed. The explicit mass terms in the above

Lagrangian LY can be written using the fact that each term has total hypercharge Y zero

and is invariant under the gauge group of the model under consideration (that is, terms

invariant under the SU(3)C ⊗ SU(2)L ⊗ SU(2)R′ ⊗ U(1)V gauge group for the ALR model

and under the SU(3)C ⊗ SU(2)L ⊗ SU(2)I ⊗ U(1)Y gauge group for the Inert model).
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Therefore, all the allowed Yukawa terms can be written with the use of the Tables I and II.

We consider the neutral sector of the 27-plet of E6 in the rest of the paper for the ALR and

Inert models. Similar results can be obtained for LR models.

III. NEUTRINOS IN THE ALR SYMMETRIC MODEL

We now look at the allowed Yukawa couplings in the ALR model. For convenience, we

use the following notation:

Q =





u

d





L

(3, 2, 1, 1/6) , Xc = (hc uc)L (3, 1, 2,−1/6) , L′ =





N

E





L

(1, 2, 1, 0) ,

F =





Ec ν

N c e





L

(1, 2, 2, 0) , Lc = (ec Sc)L (1, 1, 2, 1/2) . (3.1)

Then, all possible Yukawa terms which are SU(3)C ⊗ SU(2)L ⊗ SU(2)R′ ⊗ U(1) invariant

can be written using of the Higgs fields in Eq. (2.3). The Yukawa Lagrangian is

LY = −λ1 [LcFH2 + LcH3L
′ +H1FL

′] +
λ2
2
[FFHS + FH3ν

c
L] + λ3QH3X

c

+λ4d
c
LQH2 + λ5hLX

cH1 + λ6hLd
c
LHS , (3.2)

where we suppress all generation indices and use a shorthand notation for each term. So, for

example, LcFH2 should be read as (Lc)T ǫ F ǫH2 with ǫ = iσ2. The part of the Lagrangian

relevant to our discussion here is (when the Higgs fields get vev’s)

L0
Y = λ1 [v1(eLe

c
L −N c

LS
c
L)− v2e

c
LEL − v3NLS

c
L +N1(ELE

c
L −NLN

c
L)]

+λ2 [v2ν
c
LN

c
L + v3νLν

c
L +N2(−eLEc

L + νLN
c
L)] + λ3v3uLu

c
L , (3.3)

where we have suppressed family indices and include charged lepton terms and part of the λ3

term for later convenience.3 Here it should be understood that the eLe
c
L term, for example,

stands for (ec)TL C eL ≡ eReL.

3 Since this paper is concentrating on neutrinos, we will not discuss mixing between light and heavy fields in

the charged lepton or quark sectors. Such mixing can have a wide range of interesting phenomenological

effects, see Ref. [26] for a detailed discussion and a list of references.
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From the above Yukawa interactions, the Majorana mass matrix for the neutral fields in

the (νL, NL, N
c
L, ν

c
L, S

c
L) basis becomes (for one generation)

Mneutral =





























0 0 λ2N2 λ2v3 0

0 0 −λ1N1 0 −λ1v3

λ2N2 −λ1N1 0 λ2v2 −λ1v1

λ2v3 0 λ2v2 0 0

0 −λ1v3 −λ1v1 0 0





























. (3.4)

Further we define λ1v1 ≡ meec , λ1N1 ≡ mEEc, and λ2v3 ≡ mννc since it is clear from Eq. (3.3)

that meec , mEEc, and mννc are the Dirac mass terms for the electron eL, the exotic charged

lepton EL, and the ordinary (active) neutrino νL. Note that the SM (active) neutrino gets

Dirac mass from the same source as the up quark. Thus, at the first stage, there appears

to be a large Dirac mass problem for the neutrinos unless there is an (unnatural) hierarchy

λ2 ≪ λ3. Unlike the “conventional” see-saw model, we do not have a large Majorana mass

term for the right-handed neutrino, so other techniques must be used to deal with this large

mass. This problem is also severe in both the Inert and the ordinary LR symmetric models

where the active neutrinos and up quark (the electron for LR case) get their Dirac masses

from the same source. We will discuss the Inert model case in the next section. For the

ordinary LR symmetric model, see [27, 28] for further details.

The secular equation for the eigenvalues cannot be solved exactly, and so we expand in

powers of vi/Ni. In this approximation (neglecting O(vi/Ni) terms), there are two roots of

the secular equation which correspond to states with mass eigenvalue ±mννc . The other

three mass eigenvalues can also be determined, again under the assumption that λ2v2 ∼
mννc ∼ meec ≪ λ2N2 ∼ mEEc

R1 ≃ −2mννc (meecmEEc + λ22v2N2)

m2
EEc + λ22N

2
2

,

R2,3 ≃ ±
√

m2
EEc + λ22N

2
2 , (3.5)

where we neglect the terms of the order vi/Ni. The associated eigenvectors with R2 and

R3 form a Dirac spinor with mass
√

m2
EEc + λ22N

2
2 . R1 is the lightest mass eigenvalue

(≪ mννc) which represents the lightest mass eigenstate. The corresponding eigenvectors

can be found in a straightforward manner under the same assumption that we have used to
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get the eigenvalues and the transformation from the mass eigenstates to the flavor eigenstates

becomes




























|νL〉

|NL〉

|N c
L〉

|νcL〉

|Sc
L〉





























=





























0 λ2N2

R
−λ2N2

R
−mEEc

R
−mEEc

R

0 mEEc

R
−mEEc

R
λ2N2

R
λ2N2

R

0 1
2

1
2

0 0

λ2N2

R
0 0 mEEc

R
−mEEc

R

−mEEc

R
0 0 λ2N2

R
−λ2N2

R

























































|ν1〉

|ν2〉

|ν3〉

|ν4〉

|ν5〉





























, (3.6)

where R ≡
√

2(m2
EEc + λ22N

2
2 ).

At this stage there appears another potential problem in that the lightest mass eigenstate

is |ν1〉 = 1√
m2

EEc+λ2

2
N2

2

[λ2N2|νcL〉 −mEEc|Sc
L〉]. Both νcL and Sc

L transform as singlets under

the weak interaction gauge group SU(2)L. This presumed physical neutrino state does not

couple with the left handed SM particles at the low energy scale where the neutrinos are

relevant.4 The mass is of the order of magnitude of m2
ννc/mEEc, which is the expected order

of magnitude for neutrinos. We thus have two problems: the active neutrinos have a mass of

the same order of magnitude as the up quark mass, and the lightest neutrino is composed of

SU(2)L singlets. After considering neutrinos in the Inert model, we will address the above

issues and discuss the possible solutions.

IV. NEUTRINOS IN THE INERT MODEL

The neutral fermion mass matrix has similarities with that of the ALR model. The

Yukawa interactions are invariant under the SU(2)I group which transforms (NL EL) ⇔
(νL eL) , d

c
L ⇔ hcL, and ν

c
L ⇔ Sc

L. By following the same procedure as for the ALR symmetric

model, one can obtain the Yukawa Lagrangian for the Inert group and the relevant part of

it reads

L′ 0
Y = λ′1 [v1N

c
LS

c
L + v2ν

c
LN

c
L + v3 (νLν

c
L +NLS

c
L) +N1 (NLN

c
L + ELE

c
L)

+N2 (νLN
c
L + eLE

c
L)] + λ′2 [v1eLe

c
L + v2e

c
LEL] + λ′3v3uLu

c
L , (4.1)

4 Even though Sc
L is a part of SU(2)R′ doublet and it is possible to consider its interaction with left handed

SM leptons through Higgs bi-doublet at the scales where ALR gauge group is not broken.
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where the λ′3-term is especially included to show that, as in the ALR case, the νL neutrinos

get Dirac masses from the same Higgs scalar as the up quark. Without fine tuning between

λ′1 and λ′3, the Inert model has the same Dirac mass problem for active neutrinos as ALR.

The mass matrix for one generation in the basis (νL, NL, N
c
L, ν

c
L, S

c
L)

M′
neutral =





























0 0 λ′1N2 λ′1v3 0

0 0 λ′1N1 0 λ′1v3

λ′1N2 λ′1N1 0 λ′1v2 λ′1v1

λ′1v3 0 λ′1v2 0 0

0 λ′1v3 λ′1v1 0 0





























. (4.2)

Here we recall λ′1v1 ≡ m′
eec , λ

′
1N1 ≡ m′

EEc , and λ′1v3 ≡ m′
ννc . The secular equation becomes

(R′ −m′
ννc) (R

′ +m′
ννc) (R

′3 − R′ (m′2
EEc + λ′21 (N

2
2 + v21 + v22) +m′2

ννc

)

+2m′
ννc

(

λ′21 v2N2 + λ′1v1m
′
EEc

)

) = 0 , (4.3)

where there are two eigenvalues ±mννc which are exact (unlike the ALR model). Diagonal-

ization of the mass matrix gives the following eigenvalues, under the assumption vi ≪ Ni

R′
1 ≃ −2m′

ννc (λ
′v1m

′
EEc + λ′21 v2N2)

m2
EEc + λ′21N

2
2

,

R′
2,3 ≃ ±

√

m2
EEc + λ′21 N

2
2 ,

R′
4,5 = ±m′

ννc , (4.4)

It is clear from the ALR symmetric model results that there will be two very heavy neutrinos,

one very light neutrino, and two neutrinos with masses of the scale of up quark mass. The

lightest neutrino is |ν ′1〉 = 1√
m′2

EEc+λ′2

1
N2

2

(λ′1N2|νcL〉 −m′
EEc|Sc

L〉) and suffers from the same

problem that the ALR symmetric model neutrino does. We will discuss possible remedies

these problems for both models in the next section.

V. SOLUTIONS TO THE NEUTRINO MASS PROBLEM

As shown in the last two sections, both ALR and Inert models (as well as the conven-

tional LR symmetric model) have a Dirac neutrino mass problem at the first stage. This

seems to be a general feature of string-inspired low-energy E6 models. Both models under

10



consideration predict that the lightest neutrino state, while having a reasonable mass, is

composed of SU(2)L singlets. Furthermore, in their neutral fermion spectrum, there are

neutrino eigenstates having masses of the order of the up quark mass (or the electron mass

for the conventional LR model). There are three methods discussed in the literature to

rectify this latter neutrino mass problem. The smallness of the neutrino masses can be

achieved by introducing a discrete symmetry (the DS method) [29, 30, 31, 32, 33, 34], or

by including a non-renormalizable higher-order dimensional operators (the HDO method)

[28, 35, 36, 37], or using light E6 singlet fields ( the additional neutral fermion (ANF)

method ) [38, 39, 40]. We discuss the features of the models under consideration for each

of these three methods. As we will see, the predictions are quite different. The DS method

is the most attractive method among them as it doesn’t require any further particles or the

existence of some intermediate scale. However, it does not help in non-SUSY framework

(at least for the simplest discrete symmetry) without introducing many additional parti-

cles. The HDO method will offer a partial solution but does not predict any light sterile

neutrino(s) and requires new Higgs fields from 27 representation of E6, and the existence

of some intermediate scale, which further breaks the gauge groups of the model. The ANF

method works well for predicting the lightest state with sterile neutrino(s) mixing and can

explain the LSND result. However, the method requires a discrete symmetry as well as new

neutral E6 fermion fields, and a pair of 27+ 27 split Higgs multiplets whose vev’s do not

require hierarchical separation.

A. The Discrete Symmetry Method

Following the above discussion, the Discrete Symmetry (DS) method is the most eco-

nomical. The symmetry transformation which is introduced should restrict the existence

of the Dirac mass term v3νLν
c
L at tree level in the Lagrangian (Eqs. (3.3) and (4.1)) while

allowing couplings so that one-loop radiative corrections can be used to generate naturally

small Dirac masses for neutrinos (although it may be necessary to put some upper limits for

products of some Yukawa couplings). The symmetry should also avoid rapid proton decay.

In the supersymmetric versions of both the ALR symmetric and the Inert model, there

exist leptoquark couplings mediated by hL and hcL particles and these couplings are needed

to induce nonzero one-loop neutrino mass. Since we do not consider the existence of the

11



Higgs fields carrying SU(3) color, there is no direct analogy in non-SUSY scenarios coming

from the supersymmetrized versions of the models. It should be noted that the rapid proton

decay is not an issue.

An example of such a symmetry, which was considered within the SUSY framework of

the general E6 model [29, 30] is Z2 ⊗ Z3. The Z2 in that case was related to SUSY, and

in this non-SUSY framework a simple Z3 will suffice. It is not difficult to see that such

symmetries must be able to differentiate between generations as long as a non-zero one-loop

Dirac neutrino mass is generated while at the same time eliminating the tree level mass term

(see [33, 34] for details).

In both models considered here, tree level masses of both the neutrinos and the up quark

are obtained from the Higgs field with vev v3. As we shall show shortly, eliminating the v3-

term will cause difficulty. Let us consider the ALR model. The Inert model has very similar

features. For a one-loop Dirac neutrino mass, as depicted in Fig. 1 for a specific choice, the

H0
1 SU(2)L Higgs singlet, H2 and H3 SU(2)L Higgs doublets must all participate. Restating

their particle content from Eq. (2.3)

H1 =
(

H+
1 H0

1

)

, H2 =





H0
2

H−
2



 , H3,1 =





H+
3

H0
3



 , (5.1)

where 〈H0
2 〉 = v1, 〈H0

3 〉 = v3, and 〈H0
1 〉 = N1. Here H3,1 represents the first column of the

H3 bi-doublet. Then the relevant terms in the Yukawa Lagrangian Eq. (3.3), including the

charged Higgs fields interactions are

∆LALR = λ1
[

H0
2eLe

c
L −H−

2 νLe
c
L −H+

1 ELνL +H0
1ELE

c
L

]

+λ2
[

H0
3νLν

c
L −H+

3 ν
c
LeL −H−

2 E
c
Lν

c
L

]

. (5.2)

We also need the trilinear Higgs interactions to compute the diagram given in Fig. 1.

The allowed interactions are

∆LH = −λHHT
2 ǫH3H

0
1

= λHH
−
2 H

+
3 H

0
1 − λHH

0
2H

0
3H

0
1 , (5.3)

where λH is a dimensionful constant.

Without specifying the charges of the fields under the discrete symmetry, let us consider

the one-loop mass diagram. One can assign suitable charges to both Higgs and fermion fields
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FIG. 1: The one-loop Dirac masses for ν
(α)
L ν

c(j)
L where α runs over only the second and the third

generations.

such that the H0
3νLν

c
L term, a tree level Dirac mass term for νL, is transformed to itself with

a nonzero phase factor and one is then required to set λ2 zero for all 3 generations. If the SM

charged leptons and H−
2 and H−

3 fields are circulating in the loop, the H+
3 ν

c
LeL interaction is

also proportional to λ2, thus this diagram vanishes. For the case when EL, E
c
L are circulating

in the loop instead of the SM charged leptons, it is still necessary to have a nonzero λ2 (clear

from Eq. (5.2)) to get a one loop Dirac mass for νL. Therefore, eliminating H0
3νLν

c
L by the

Z3 symmetry also prevents one-loop mass generation. This fact remains true for higher order

loops. The same conclusion applies for the Inert model as well.

One could consider the possibility that v3 could be zero. Then λ2 doesn’t need to be zero

and one-loop Dirac neutrino mass generation is possible. In that case, however, all the up

quarks (u, c, t) become massless at tree level and generating the top quark mass from a loop

diagram is very unlikely, within the context of perturbation theory.

It still is possible to generate a one-loop Dirac neutrino mass if many additional fields

are introduced. For example, if one allows for “generations” of Higgs fields, then the λ

parameters above are all third rank tensors. In such a case, one can arrange the potential

so that some of the H3 vev’s vanish. Then the discrete symmetry can couple νLν
c
L to fields

that do not get vev’s, thus allowing a one-loop Dirac mass to be generated. To do that, let’s

assign the following charges for the matter fields under Z3

Z3 : [Q, dcL, hL, h
c
L, L, ν

c
L]

(i) → η [Q, dcL, hL, h
c
L, L, ν

c
L]

(i) ,

F
(1)
1 → η−1F

(1)
1 , F

(2)
1 → F

(2)
1 , F

(3)
1 → ηF

(3)
1 ,

H(1) → η−1H(1) , H(2) → ηH(2) , H(3) → H(3) ,

13



S
c(1)
L → η−1S

c(1)
L , S

c(2)
L → ηS

c(2)
L , S

c(3)
L → S

c(3)
L , (5.4)

where F1 is the first column of the bidoublet F , and similarly the Higgs fields as

Z3 : H
(1)
3,1 → η−1H

(1)
3,1 , H

(2)
3,1 → H

(2)
3,1 , H

(3)
3,1 → ηH

(3)
3,1 ,

H
(1)
2 → η−1H

(1)
2 , H

(2)
2 → ηH

(2)
2 , H

(3)
2 → H

(3)
2 ,

H
0(1)
1 → η−1H

0(1)
1 , H

0(2)
1 → ηH

0(2)
1 , H

0(3)
1 → H

0(3)
1 ,

H
(i)
3,2 → ηH

(i)
3,2 , H

(i)
S → ηH

(i)
S , (5.5)

where the rest of the fields are assumed to be invariant under Z3 and η3 = 1. In this

particular choice we take the vev of H3,1, v
(3)
3 , as zero. Then, the Lagrangian for the ALR

symmetric model, given in Eq. (3.2) reduces to

LY = −λ1αβ1

[

H
(1)
2 L(α)e

c(β)
L +H(1)H

(α)
3,2 e

c(β)
L +H(1)L(α)H

+(β)
1 +H

(1)
2 F

(α)
1 S

c(β)
L

+H(1)H
(α)
3,1 S

c(β)
L +H(1)F

(α)
1 H

0(β)
1

]

+ λ3ij2

[

H
(3)
3,1L

(i)ν
c(j)
L + F

(3)
1 H

(i)
3,2ν

c(j)
L

+F
(3)
1 L(i)H

(j)
S

]

+ λ1ij3

[

H
(1)
3,1u

c(i)
L Q(j) +H

(1)
3,2h

c(i)
L Q(j)

]

+ λ2ij4 H
(2)
2 Q(i)d

c(j)
L

+λ2ij5 H
(2)
1 h

(i)
L h

c(j)
L + λijk6 h

(i)
L d

c(j)
L H

(k)
S , (5.6)

where α and β run only over the second and third generations. Now, the only tree level Dirac

mass term for νL, λ
3ij
2 H

(3)
3,1L

(i)ν
c(j)
L , vanishes if all the particles are neutral due to zero vev

v
(3)
3 . Note that writing the Lagrangian for the Inert model can be done easily by applying

the following substitutions to Eq. (5.6); F1 ⇔ L′, ucL ⇔ dcL, e
c ⇔ νc, H3,1 ⇔ H2, H1 →

HD, HS → 0. The grouping of the terms in Inert case will be slightly different. We will

stick the ALR case in the rest of the subsection.

Due to the radiative corrections based on the remaining interactions given in Eq. (5.6),

ν
(i)
L ν

c(j)
L Dirac masses are induced through one-loop diagram shown in Fig. 1. If we assume

that the product λHN1 is of the same order as the charged Higgs masses, which are further

assumed degenerate and much heavier than any fermion in the loop, the magnitudes of the

Dirac masses are roughly estimated as

Mαj
ννc =

mττc

16π2
λ1α31 λ33j2 . (5.7)

In order for such radiative masses to be of the order of 10−1 eV, the product of the relevant

Yukawa couplings λ1α31 λ33j2 should be less than O(10−8). It is further possible to generate
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very light Majorana masses for both Sc
L and νcL through one-loop.5 Majorana masses for Sc

L

are obtained by replacing the tau lepton in Fig. 1 with the E lepton, but are very supressed

(∼ λ21m
2
H−/mEEc) and similarly for νcL. If we include these Majorana masses, this opens

up the possibility of having so-called pseudo-Dirac neutrinos when MScSc,Mνcνc ≪ Mννc is

satisfied [41].

Such models have far too many parameters to be predictive and are very contrived. We

thus turn to the HDO and ANF schemes, which are much more predictive.

B. The HDO Method in the ALR and the Inert Models

This method has been discussed in the framework of rank-6 version of the LR symmetric

model [28] where it has been shown that the higher dimensional operators (HDO), specifically

dimension-5 operators, give sizable contributions to the neutral sector of the fermion mass

matrix. The method requires the existence of an intermediate scale at which the group is

broken to the SM gauge group. Two of the Higgs fields (for our discussion, H1 and HS in

the ALR case, and HD in the Inert case) will acquire vev’s of the order of the intermediate

scale (∼ 1011 GeV).

The leading HDO Yukawa interactions are the dimension-5 operators. If we neglect the

contributions coming from operators with dim > 5,6 the non-renormalizable dimension-5

operator is

L(5)
Y =

f

Mc

ψT (27) ǫH(27)C HT (27) ǫ ψ(27) , (5.8)

where the Higgs fields H are from the 27 representation of E6 and their quantum numbers

are taken as the opposite of the ones listed in Table II. Here, Mc is the compactification

scale, or 1018 GeV. The inclusion of the above dimension-5 interactions will modify all entries

in the fermion sector (both the charged and the neutral fields). However, from Table I, it

is possible to show that except the νcL − Sc
L submatrix in the neutral sector all entries get

contributions which are negligible compared to with their dimension-4 entries.7

5 Neither NL nor N c
L can get such one-loop Majorana masses in this framework.

6 It is safe to neglect them since they are suppressed by some quadratic, cubic or higher powers of the

compactification scale, Mc(∼ 1018 GeV).
7 Negligible contributions are either 0, or

fvivj
Mc

, or
fviNj

Mc
form to the appropriate entries, but not

fNiNj

Mc
.
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The νcL − Sc
L submatrix, a null 2 × 2 matrix at the dimension-4 level, becomes, in the

ALR model

Mνc−Sc =





K1 K12

K12 K2



 , (5.9)

where K12 ≡ 2f N1N2

Mc
and Ki ≡ f

N2

i

Mc
. Obviously, Ki ∼ K12 ≃ 104 GeV for an intermediate

scale 1011 GeV and the coupling constant f is of order of unity. The nonzero 2×2 submatrix

with large entries gives a new “see-saw-like” structure to the 5 × 5 matrix. The submatrix

in the (νcL, S
c
L) basis will induce small but non-zero entries in the upper-left 2× 2 submatrix

spanned by (νL, NL). The mass eigenvalues for the matrix in Eq. (3.4) with the above

modification become

R1 ≃ (λ1λ2v3
√
K1N2 +mννcMEEc

√
K2)

2 + λ1λ2v3N2mννcmEEcK12

(m2
EEc + λ22N

2
2 )(K

2
12 −K1K2)

,

R2,3 ≃ ±
√

m2
EEc + λ22N

2
2 ,

R4,5 ≃ 1

2

[

K1 +K2 ±
√

(K1 −K2)2 + 4K2
12

]

, (5.10)

where we use the assumptions vi ≪ Ki ∼ K12 ≪ mEEc ∼ λ2N2 and neglect all the m2
i terms.

The first apparent modification from the mass eigenvalues is that the states with masses

R4,5, which previously had masses of the order of the up quark mass, now get modified

at the scale K1,2,12 ∼ 104 GeV. After the diagonalization, the transformation matrix (the

analogous to the dimension-4 case (Eq. (3.6)) in the dimension-5 level) is




























|νL〉

|NL〉

|N c
L〉

|νcL〉

|Sc
L〉





























=





























a1mEEc 0 0 a1λ2N2√
2

a1λ2N2√
2

−a1λ2N2 0 0 a1mEEc√
2

a1mEEc√
2

0 0 0 1√
2

− 1√
2

0 a2K12 a3K12 0 0

0 a2(R4 −K1) a3(R5 −K1) 0 0

























































|ν1〉

|ν2〉

|ν3〉

|ν4〉

|ν5〉





























, (5.11)

where a1 ≡ 1√
m2

EEc+λ2N
2

2

, a2 ≡ 1√
K2

12
+(R4−K1)2

, a3 ≡ 1√
K2

12
+(R5−K1)2

. The above matrix ele-

ments are derived in the same limit as we used before to get the mass eigenvalues. Now, the

spectrum consists of one light state, ν1, and four heavy states, ν2,3,4,5. Moreover, the light

state is formed by the flavor states νL and NL of the form

ν1 ≃
1

√

m2
EEc + λ22N

2
2

[mEEc|νL〉 − λ2N2|NL〉] , (5.12)
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which is an acceptable physical state as both νL and NL are members of two different

SU(2)L doublets. Therefore our physical neutrino state can now couple with the electron

and the other SM particles in a desired way. The mass of the state is still as light as

m2
ννc/K1,2,12 (or (λ1v3)

2/K1,2,12) ∼ 0.02 eV when we take the mννc around the mass of the

up quark.

One can repeat the same calculation for the Inert model. The features are very similar.

Except the νcL − Sc
L submatrix, all other entries get negligible contributions from Eq. (5.8)

and in the submatrix, the corresponding SU(2)I Higgs doublet HD from the 27-plet of E6

is involved and the submatrix will be the same as the one in Eq. (5.9). The eigenvalues are

slightly different from the ones given in Eq. (5.10)

R′
1 ≃ m′2

ννc(λ
′2
1N2K1 +m′2

EEcK2 + 2λ′1N2m
′
EEcK12)

(m′2
EEc + λ′22N

2
2 )(K

2
12 −K1K2)

,

R′
2,3 ≃ ±

√

m′2
EEc + λ′22N

2
2 ,

R4,5 ≃ 1

2

[

K1 +K2 ±
√

(K1 −K2)2 + 4K2
12

]

, (5.13)

under the same assumptions as previously stated. Then the transformation matrix can be

formed by finding the corresponding mass eigenstates and it has the same form as the one

in the ALR model given in Eq. (5.11). Note that the results differ from each other when we,

for example, keep terms in the O(vi/Ni, vi/K1,2,12) order. The lightest state ν ′1 is composed

of νL and NL of the form

ν ′1 ≃
1

√

m′2
EEc + λ′21N

2
2

[m′
EEc|νL〉 − λ′1N2|NL〉] , (5.14)

where the flavor states νL and NL mix, like in the ALR model. From these results we see

that the HDO method solves the problems in both models, under the assumption that there

exists an intermediate scale at the order of 1011 GeV and both N1 and N2 get vev’s at that

scale.

Since there is only one light state (per generation, of course), there is no sterile neutrino

in the model. The NL only couples to the E, and which is very heavy, the net effect of

the mixing (in either the ALR or Inert model) will be to lower the coupling of the electron

neutrino to the electron and WL-boson. For the ALR case (the Inert case is basically the

same), the coupling is reduced by a factor of λ1N1√
λ2

1
N2

1
+λ2

2
N2

2

. Since the mixing must be small,

λ2N2 ≪ λ1N1, and this factor then becomes 1− λ2

2
N2

2

2λ2

1
N2

1

.
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This reduction would give a very clear signature for the model. The electron neutrino

would not oscillate into a sterile neutrino (ignoring inter-generational mixing), and yet its

coupling is reduced relative to the standard model. Similar reductions would occur for the

muon and tau neutrino interactions. The phenomenological implications of this reduction

will be discussed in the next Section.

C. The Additional Neutral Fermion Method

In some E6-based superstring-based models, such as those with Calabi-Yau compactifi-

cation, in addition to the 27 and 27 representations of E6 for the matter multiplets, there

typically exist split multiplets, parts of the 27 + 27 representations, as well as some E6

singlets 1 [44, 45, 46]. We have already considered the existence of such Higgs multiplets by

considering 27 components of the above 27+27 representation inducing dimension-5 terms

(of the form discussed in the previous subsection). In addition to the (27)3 and the higher-

dimensional (27 · 27)2 types of interactions, we may have 27 · 27 · 1 type of interactions as

well. The Additional Neutral Fermion (ANF) method follows this approach. The existence

of E6 singlets (and thus the 27 ·27 ·1 interactions) has been discussed in different context of

the superstring models [38, 39, 40] to tackle the rapid proton decay problem, large neutrino

mass problem and others. In order to give light neutrino masses consistent with present

experimental observations, the additional Higgs fields are required to have vev’s chose in

a strong hierarchical way, which seems unnatural. Such an odd pattern, however, is not

necessary in the non-SUSY versions of the models discussed here. We discuss the method

in the ALR symmetric model and later point out the difference with the Inert model.

In the ALR model, we consider one additional E6 neutral fermion singlet8 φ, and one pair

of 27 + 27 Higgs multiplets H +H (the Betti-Hodge number b1,1 = 1). We do not include

a corresponding 27+ 27 chiral fermion multiplet relevant for supersymmetrized versions of

the models considered in future studies.9 Let us assume that both H and H have νc-like

and Sc-like components Hνc,Sc, Hνc,Sc. Since we don’t want to alter the interactions in the

8 For simplicity, we assume one additional field φ even when we extend our discussion to the three generation

case later in this section.
9 In principle, one can add such new fields and the corresponding interactions. We would like to be as

conservative as possible as far as the number of new parameters are concerned.
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(27)3 sector discussed earlier, we assume that only Hνc,Sc get nonzero vev’s and further, that

there is a Z2 discrete symmetry under which all fields except φ,Hνc,Sc and Hνc,Sc have even

charges. Therefore, two additional gauge invariant interactions for one generation survive

of the form

∆Lφ
ALR = λSS

c
LHScφ+ λνν

c
LHνcφ . (5.15)

Then, the mass matrix in the neutral fermion sector in the (νL, NL, N
c
L, ν

c
L, S

c
L, φ) basis can

be obtained directly by adding a column and a row for φ field to the one given in Eq. (3.4)

Mneutral =





































0 0 λ2N2 λ2v3 0 0

0 0 −λ1N1 0 −λ1v3 0

λ2N2 −λ1N1 0 λ2v2 −λ1v1 0

λ2v3 0 λ2v2 0 0 λνV

0 −λ1v3 −λ1v1 0 0 λSµ

0 0 0 λνV λSµ 0





































, (5.16)

where we define 〈HSc〉 ≡ µ and 〈Hνc〉 ≡ V .

The eigenvalues can be found by following the same methodology as before and under

the assumption vi, meec , mννc ≪ N1, N2, µ, V (we assume Ni ∼ µ, V ) giving

R1,2 ≃ ± mννcmeec(λ2N2)(λSµ)(λνV )

(λ22N
2
2 +m2

EEc) (λ2Sµ
2 + λ2νV

2)
,

R3,4 ≃ ±
√

λ2Sµ
2 + λ2νV

2 ,

R5,6 ≃ ±
√

λ22N
2
2 +m2

EEc . (5.17)

Now, we have two light eigenvalues R1,2. The masses of these states can be approximated as

(mννcmeec)/mEEc and could possibly be in the experimentally favored region while obeying

the the experimental bounds on νL − NL mixing. It is straightforward to get the mass

eigenstates corresponding to the above eigenvalues. The transformation matrix equation
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from mass to flavor eigenstates is given by























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


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















=



































mEEc cos θ
R5

mEEc sin θ

R5
0 0 1√

2
λ2N2

R5

1√
2
λ2N2
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−λ2N2 cos θ
R5

−λ2N2 sin θ
R5
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2

mEEc

R5

1√
2

mEEc

R5

0 0 0 0 1√
2

−1√
2

−λS µ sin θ
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λS µ cos θ
R3

1√
2
λνV
R3

1√
2
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0 0

λνV sin θ
R3

−λνV cos θ
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2
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2
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2
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
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


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






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























,(5.18)

where R3 and R5 are given in Eq. (5.17). The parameter θ is arbitrary in the model, but it

would be fixed both by the requirement that the coupling of WL to neutrinos and leptons

must be in agreement with the experimental data and by the required mixing angle between

active and sterile neutrinos. The mass eigenstates |ν3〉, |ν4〉, |ν5〉, and |ν6〉 corresponding to

eigenvalues R3,4,5,6 respectively are heavy and irrelevant to our discussion at low energies.

There are two light mass eigenstates of the form

|ν1〉 = cos θ

(

mEEc

R5

|νL〉 −
λ2N2

R5

|NL〉
)

+ sin θ

(

λνV

R3

|Sc
L〉 −

λS µ

R3

|νcL〉
)

,

|ν2〉 = sin θ

(

mEEc

R5
|νL〉 −

λ2N2

R5
|NL〉

)

− cos θ

(

λνV

R3
|Sc

L〉 −
λS µ

R3
|νcL〉

)

. (5.19)

The above results apply to the Inert group, with an additional constraint coming from

SU(2)I symmetry. Since νL and Sc
L form an SU(2)I doublet, the couplings λν and λS are

required to be equal.

Thus, we have two interesting features of the model. The slight suppression of the coupling

of the active neutrino discusssed in the last subsection is present. However, now we also

have a sterile neutrino with an arbitrary mixing angle with the active neutrino. This model

could then easily accommodate the LSND result (if confirmed by MiniBooNE).

With the addition of only one singlet, for simplicity, there are three active neutrinos.

In this case, λS and λν have generation indices. Each active neutrino has a light mass,

and will mix with an arbitrary mixing angle with the sterile neutrino. Note that in the

single-generation case, the two light mass eigenstates are, to leading order, identical. Thus,

if the mixing angle is small for two of the three generations, we will have a 2 + 2 structure,

whereas if it is sizeable for all three generations, there will be a 3+ 1 structure. Of course,

one could introduce several singlet fields, giving more complicated structures.
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VI. DISCUSSION OF THE RESULTS

If the LSND result is confirmed by MiniBooNE, the existence of sterile neutrino(s) at low

energies might be unavoidable. Thus is it important to analyze extensions of the Standard

Model which predict the existence of extra neutral fermions, and verify that they have the

desired experimental features. Though we have explicitly considered here the E6 subgroups,

SU(3)C⊗SU(2)L⊗SU(2)R′⊗U(1)V (ALR) and SU(3)C⊗SU(2)L⊗SU(2)I⊗U(1)Y (Inert),

and concentrated on the neutrino spectrum in non-SUSY framework, our work is valid for

the SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)V (LR) group as well.

These models predict several exotic neutral fermions. We have shown that both the ALR

and Inert models generally predict neutrino sectors inconsistent with current observations.

The lightest state turns out to contain only SU(2)L singlets (νcL and Sc
L) which do not interact

with SM particles. Additionally, in contradiction with present experimental observations,

two more light neutrino states with masses around the up quark mass exist. The main

reason for such a spectrum is the existence of tree level Dirac mass term in the Lagrangian.

We have discussed three possible remedies to this problem.

The most attractive one is the Discrete Symmetry (DS) method which only requires

imposing an extra symmetry. The aim is to eliminate the tree level Dirac mass term by

assigning suitable charges to the fields under some discrete symmetries, and generate Dirac

neutrino masses through radiative corrections. The discrete symmetry needs to distinguish

generations. As discussed earlier, there is no way to induce a non-zero one-loop Dirac mass

while eliminating the tree level term. The only way out is to have a SU(2)L Higgs doublet

(a part of the bidoublet) with vanishing vev. For this, we considered the simplest symmetry,

Z3. It leads to Dirac masses from one-loop diagrams which are estimated around 10−1 eV,

by imposing an upper bound to the product of the Yukawa couplings of the order of 10−8.

It is also possible to generate very light Majorana masses for Sc
L and νcL. Since these masses

are much smaller than the Dirac mass term for νL, a spectrum with pseudo-Dirac neutrinos

is obtained.

The Higher Dimensional Operators (HDO), the second method, requires additional Higgs

fields from 27-plet of E6 and the existence of some intermediate scale. We introduce interac-

tions which are suppressed by one power of the compactification scale, through dimension-5

operators. The method solves the mass problems but does not predict any sterile neutrino
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component(s) in the lightest neutrino state, which is an admixture of νL and NL. The effect

of the mixing will be to lower the electron neutrino coupling to the electron and the WL

boson by a factor of 1 − 1
2
∆2

e, where ∆e = λ2N2/λ1N1. The reduction for the muon and

tau neutrino interactions will be given by the same expression, with ∆e being replaced by

∆µ and ∆τ (which depend on different λi and Ni). The phenomenological implications are

interesting. If the ∆i are different, then e − µ − τ universality will be violated in neutrino

interactions. By comparing the muon decay rate and the rate for leptonic tau decays, one

finds [42, 43] that the reductions of 1 − 1
2
∆2

i cannot differ by more than 0.005. Even if the

∆i are all the same, however, one would still find a discrepancy in, for example, τ → πντ vs.

τ → µνµντ , which would depend on ∆µ, with a similar dependence on the electronic decay.

Comparing all of these bounds, we find that none of the reductions can exceed 0.005, leading

to a bound, for each generation, of λ2N2/λ1N1 < 0.1, which is not particularly fine-tuned.

A more detailed study comparing many hadronic decays with the leptonic decays of the τ

could lead to a somewhat more precise bound (or, better yet, an indication of a discrepancy).

The last method we have discussed is the Additional Neutral Fermion (ANF), which

requires the existence of both new particles and discrete symmetries. If one considers an E6

singlet field, the additional interactions will be of the type 27 · 27 · 1, which further require

additional Higgs doublets from the 27 + 27 representation. In order not to alter already

existing couplings, the vev’s of the new fields need to be chosen suitably, together with an

additional Z2 symmetry. Under these circumstances we obtain two light states given in

Eq. (5.19). The neutrino states have an active neutrino part of exactly the form predicted

by the HDO method, but this time they mix with a sterile flavor state (formed by νcL and

Sc
L). The mixing is completely arbitrary. If we extend the picture to three generations, the

model contains two structures, 2+ 2 and 3+ 1, which have been discussed extensively in

the literature [47]. When the above mixing is sizable only for one generation, only the 2+ 2

structure arises naturally, since the states in Eq. (5.19) are degenerate in the leading order.

Otherwise, 3+ 1 is possible. More realistically, when we include three generations of νcL and

Sc
L, we obtain a 3+ 3 structure.

Recent analyses show that neither 2+ 2 nor 3+ 1 provide a good description of the

combined atmospheric, solar, reactor, and accelerator data even though it appears that

3+ 1 works better. However, there is no consensus about whether the scenarios with four

neutrinos are ruled out or not [15, 47]. From our considerations, the ANF method allows
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both 3 + 2 or 3+ 3 structures, which enhance the effects in favor of LSND data [15].
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