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Abstract

Using the experimental upper bound on the neutron EDM and

experimental result on b → sγ branching ratio we have calculated CP

asymmetry and Γ2HDM (b → sl+l−)/ΓSM (b → sl+l−). It is shown

that in the invariant dilepton mass q2 region (m2
ψ′ + 0.2 GeV 2) <

q2 < m2
b the CP asymmetry is maximal and quite detectable.
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1 Introduction

The experimental discovery of the inclusive and exclusive decays B → Xsγ

and B → K∗γ by the CLEO collaboration [1,2] has triggered a lot of theo-

retical and the experimental activity in the field of rare decays of B- mesons.

These decays are interesting for checking the predictions of SM at one-loop

level, for determining the CKM matrix elements, and for looking for the

”new physics” beyond the SM. From the experimental point of view another

promising decay in this direction is the semileptonic decay b → Xsl
+
l
−,

because this decay is easier to measure provided that we are given a good

electromagnetic detector and a large number of B hadrons. Theoretically this

decay has been the subject of many works in the framework of the SM [3,4,5,6]

and its extensions, particulary in Two Higgs Doublet Model (2HDM).

b → sl+l− decay is an FCNC process which appears only at the one-

loop level of pertubation theory. The basic thing about this decay is that

the penguin diagrams provide the two key ingredients needed for partial rate

asymmetries. Being a loop diagram, it involves all three generations, each

generation contributing with different elements of the CKM matrix. At the

same time the loop effects that involve on- shell particle rescatterings provide

the necessary absorbtive parts.

It is well known that in 2HDM, b → sl+l− decay receives significant

contributions from the charged Higgs (H±) exchange [7]. Another interesting

pecularity of 2HDM is the appearence of new sources of CP violation [8] in

addition to the one in SM. An interesting version of 2HDM, so called the

most general 2HDM, which was proposed in [9], has a new source of CP

violation, arising from the relative phase between the vacuum expectation

values of two Higgs scalars.
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In this work we shall work out b→ sl+l− decay. In particular we shall de-

termine the CP asymmetry A and the ratio r = Γ2HDM(b→ sl+l−)/ΓSM(b→
sl+l−) as functions of the charged Higgs mass.

In the calculation of the CP asymmetry we shall consider both the SM

and 2HDM contributions simultaneously. In determining r and A we shall

make use of the experimental results on BR(b → sγ) [1,2], and the neutron

electric dilpole moment (EDM).

Section 2 is devoted to the derivation of basic theoretical results and

Section 3 contains the numerical analysis of them.

2 Formalism

In the most general 2HDM [8,9] the couplings of H± with tR and bR is

characterised by the coefficients ξf defined by

ξf =
sinδf

sinβcosβsinδ
eiσf (δ−δf ) − cotβ (1)

where f= t or b, σf = + for b and - for t, and δf = h2/h1 where h2 and h1 are

the diagonal elements of the matrices Γu2 and Γu1 respectively. Here Γ
u are the

matrices in the flavour space, and determine the Yukawa couplings (for more

detail see [9]), and δ is the relative phase between the vacuum expectations

of the two Higgs scalars:

< φ0
1 > =

v√
2
cosβeiδ

< φ0
2 > =

v√
2
sinβ (2)

The most general 2HDM reduces to the well-known 2HDM’s in the current

literature, in certain limiting cases [9]. Namely, if δt = δb = 0, then ξt = ξb =
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−cotβ (Model I) and, if δb = δ, δt = 0, then ξt = −cotβ, ξb = tanβ (Model

II).

As mentioned above the penguin diagrams provide the necessary absorb-

tive parts for the calculation of the CP asymmetry. In this decay the dilepton

invariant mass q2 ranges from 4m2
l to m2

b ; therefore, u and c loops give rise

to nonzero absorbtive parts which are described, at the point µ = mb, by

F = i4
√
2GFλu

α

4π
A9s̄LγµbLl

+γµl
− (3)

where λi = VisV
∗

ib and the function A9 is given by

A9 = wu[Q(m
2
c/q

2)−Q(m2
u/q

2)] (4)

where

Q(x) =
2π

9
(2 + 4x)

√
1− 4xθ(1− 4x) (5)

and wu, having the numerical value of 0.3864, comes from the RGEmovement

of the Wilson coefficients from µ =MW to µ = mb point.

It is well- known that in the range (4m2
l , m

2
b) one can create real low lying

charmonium states [10,11]. In this work we shall discard that portion of total

dilepton mass range including J/ψ and ψ′ poles and the region between them

to avoid the addition of new hadronic uncertainities to the decay amplitude.

Thus we restrict ourselves to the following kinematical regions [6]:

Region I : 4m2
l
≤ q2 ≤ (m2

ψ − τ)

Region II : (m2
ψ′ + τ) ≤ q2 ≤ m2

b (6)

where τ = 0.2GeV 2 is the cut- off parameter.
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Taking into account the 2HDM contributions and absorbtive part de-

scribed by F in (3), the amplitude for b→ sl+l− can be written as

Mb→sl+l− = 4
√
2GF

α

4π
×

{Ceff
9 (µ)s̄LγµbLl

+γµl
− +

C10(µ)s̄LγµbLl
+γµγ5l

− + (7)
qν

q2
× C7(µ)s̄σµν(mbR +msL)bl

+γµl
−}

The Wilson coefficients appearing in (7) are given by

C7(µ) = λt[C
SM
7 (µ) + C2HDM

7 (µ)]

Ceff
9 (µ) = λt[C

SM
9 (µ) + C2HDM

9 (µ)] + iλuA9 (8)

C10(µ) = λt[C
SM
10 (µ) + C2HDM

10 (µ)]

The explicit forms of CSM
i (µ), (i=7,9,10) including leading and next-to-

leading order QCD corrections can be found in [3,12,13,14]. The 2HDM

contributions, C2HDM
i (µ), in the framework of the most general 2HDM [9]

are given by

C2HDM
7 (µ) = | ξt |2 Ktt

7 + (Rtb + iItb)K
tb
7

C2HDM
9 (µ) = | ξt |2 Ktt

9 (9)

C2HDM
10 (µ) = | ξt |2 Ktt

10

where Rtb = Re[ξtξ
∗

b ], Itb = Im[ξtξ
∗

b ] and

Ktb
7 = η16/23[G(y)− 8

3
(1− η−2/23)E(y)]

Ktt
7 =

1

6
η16/23[A(y) +

8

3
(1− η−2/23)D(y)]

Ktt
9 = −−1 + 4s2W

s2W

x

2
B(y) + yF (y) (10)

Ktt
10 = − 1

s2W

x

2
B(y)
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with x = m2
t/M

2
W , y = m2

t/M
2
H , s

2
W = 0.2315, η = αs(MW )/αs(mb) and the

explicit expressions for functions A,B,D,E, F,G can be found in [12].

As noted in [9], ξt is expected to be of order of unity or less, if the Yukawa

couplings of the top quark is reasonable. We have shown that this happens

to hold also for the decay process under consideration. Thus, without loosing

generality, in what follows we set | ξt |2 = 0 (all the conclusions remain in

force for the case of | ξt |2 =1 as well).

Using (7), the differential decay rate for b→ sl+l− is obtained as

dΓ2HDM

ds
= λ0(1− s)2{4(2

s
+ 1) | C7(µ) |2 +(1 + 2s)(| Ceff

9 (µ) |2 + | C10(µ) |2)

+ 12Re[C7(µ)C
eff
9 (µ)]} (11)

where s = q2/m2
b , and λ0 =

α2G2
F

768π5 .

After integrating (11) over s we get

γ = γ0 + 4ρI2 + 2I(6I9 + 6a
(1)
9 Rtu)

+ 4ρR2 + 2R(6R9 + 6a
(1)
9 Itu + 4ρCSM

7 ) (12)

+ 12a
(1)
9 CSM

7 Itu + a
(2)
9 ftu + 2(ar9Itu + ai9Rtu)

where

γ =
Γ2HDM

λ0 | λt |2

γ0 = (
ΓSM

λ0 | λt |2
) |A9=0

I = ItbK
7
tb (13)

R = RtbK
7
tb

Itu =
Im[λtλ

∗

u]

| λt |2

Rtu =
Re[λtλ

∗

u]

| λt |2
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ftu =
| λu |2
| λt |2

and the other parameters in (12) are defined by the following integrals:

ρ =
∫

ds(1− s)2(
2

s
+ 1)

R9 =
∫

ds(1− s)2Re(CSM
9 )

I9 =
∫

ds(1− s)2Im(CSM
9 )

a
(1)
9 =

∫

ds(1− s)2A9 (14)

a
(2)
9 =

∫

ds(1− s)2(1 + 2s)A2
9

ar9 =
∫

ds(1− s)2(1 + 2s)Re(CSM
9 )A9

ai9 =
∫

ds(1− s)2(1 + 2s)Im(CSM
9 )A9

For the CP conjugate process, the analog of (12) can be obtained by the

following replacements:

γ̄ = γ(I → −I; Itu → −Itu) (15)

Now we introduce the parameter r that measures the relative strength of

2HDM and SM rates

r =
γ

γSM
(16)

where γSM is obtained by setting I = R = 0 in (12).

Next we define the CP asymmetry by

A =
γ̄ − γ

γ̄ + γ
(17)

Substituting the expressions for γ and γSM into (16) we obtain a circle

for fixed values of r:

(R +R0)
2 + (I + I0)

2 = t(r − 1) +R2
0 + I20 (18)
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where the parameters R0 and I0 are given by

R0 =
3

2ρ
(R9 +

2

3
ρC7

SM) + r0

I0 =
3

2ρ
(I9 + a

(1)
9 Rtu) (19)

and the quantity r0 =
3
2ρ
a
(1)
9 Itu is introduced for later use.

On the other hand, insertion of (12) and (15) into (17) yields another

circle

(R +R′

0)
2 + (I + I ′0)

2 = −t + ǫ(1 − 1

A
) +R′2

0 + I ′20 (20)

where

I ′0 =
I0
A

R′

0 =
3

2ρ
(R9 +

2

3
ρCSM

7 ) +
r0
A

(21)

The parameters ǫ and t in (19) and (20) are given by

ǫ =
Itu
4ρ

(12a
(1)
9 CSM

7 + 2ar9)

t = −(1 −As)

As
ǫ (22)

where As is the CP asymmetry in SM which is obtained from (17) by:

As = A |I=R=0 (23)

Up to this point, our analysis of b→ sl+l− decay parallels that of b → sγ

in [9] except for the definition of A. We shall, however, analyze the circles in

(18) and (20) in a different context by exploiting the relation between I and

neutron EDM, and experimental results on b→ sγ branching ratio [1,2].
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First we obtain the expression for the CP asymmetry in (17) by subtract-

ing (20) from (18) and solving for A:

A =
1

1− a
(24)

where

a =
tr

ǫ+ 2II0 + 2Rr0
(25)

Now we turn to the determination of I with the use of the experimental

upper bound on neutron EDM. Weinberg has proposed a CP violating 6

dimensional gluonic operator [15]

O6 ∼ fabcG
µρ
a G

ν
bρG̃cµν (26)

which has been shown to give very large contribution to neutron EDM, dn by

the neutral [15] or charged [16] Higgs exchange. Weinberg, after relating the

hadronic matrix elements of O6 to dn, predicts the value of dn on the basis

of a Naive Dimensional Analysis (NDA). However a detailed analysis by Bigi

and Uraltsev [17] reports a different value for dn which equals 1
30

of that of

Weinberg’s. The big difference between the results of these analyses is an

indication of the existence of hadronic uncertainities which are mainly intro-

duced by the matrix elements of O6 between the nucleon states. In addition

to these theoretical uncertainities, we have also problems with experimen-

tal data (in that experiment yields only an upper bound on neutron EDM).

These can be summarized as

dtheorn = ctheor × ItbK(y)10−25 e cm (27)

dactualn = cexp × dmaxn (28)

where ctheor and cexp are constants and | cexp | is known to be less than unity.

Let us note that ctheor is related to the theoretical uncertainities and cexp
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to the experimental uncertainities. Experiment yields dmaxn = 1.1 10−25e cm

[18]. The function K(y) in (27) is given by [16,17]:

K(y) =
y

(y − 1)3
[3/2− 2y + y2/2 + ln(y)] (29)

The common point for the analyses in [16] and [17] is the presence of the

function K(y) which is equal to 1
3
as y → 1.

Equating (27) to (28) and defining β = 1.1 cexp
ctheor

, we obtain

I = βf(y) (30)

where

f(y) =
K7
tb(y)

K(y)
(31)

Note that the constant β in (30) includes now both theoretical and exper-

imental undeterminicies. We shall not make any assumption concerning the

value of β; instead we are going to fix it through the use of the experimental

results on b → sγ branching ratio.

The b→ sγ decay amplitude is given by

M =
4GF√

2

α

4π
C7(µ)s̄(p

′)σµν(mbR +msL)b(p)F
µν (32)

where C7(µ) is defined in (8). Using the experimental result on the braching

ratio of b→ sγ decay [1,2] we get the following circle

(CSM
7 +R)2 + I2 = (Cex

7 )2 (33)

where Cex
7 is the experimental value of C7(µ)

0.22 ≤| Cex
7 |≤ 0.30 (34)
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We shall determine the central values of β, r and A which are defined in

equations (20), (16) and (17) respectively. In doing this, we will make use

of circles in equations (18), (20) and (33) together with equation (30). Let

us note that (30) is obtained by the use of the experimental upper bound on

neutron EDM [18], and (33) is constructed with the use of the experimental

data on b→ sγ branching ratio [1].

Let us first determine β. For this purpose we consider the circle in (33)

in the limit of infinitely large MH or equivalently y → 0. As y → 0, R → 0

and through (30), I → βf0, where numerically f0 = 0.2706. Then equation

(33), which is valid for any value of MH , yields

β = ±{(C
ex
7 )2 − (CSM

7 )2

f 2
0

}1/2 (35)

With (35), I in (30) has now become a completely known function ofMH .

Now we solve (33) for R, yielding

R = −CSM
7 +

√

(Cex
7 )2 − I2 (36)

where the choice of plus sign is necessary to satisfy asymptotic condition on

R.

Using (36) for R, and (30) for I we can solve equation (18) for r

r = 1 +
(R +R0)

2 + (I + I0)
2 −R2

0 − I20
t

(37)

whose MH dependence shall be discussed in the next section.

Finally, taking r from (37), R from (36) and I from (30) we determine

the CP asymmetry A in (24) whose dependence on MH shall also be studied

in the next section.
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3 Numerical Analysis

In the numerical analysis we shall use mu = 10MeV, mc = 1.5GeV, mb =

4.6GeV . For the top quark mass we rely on the CDF data [19] and for the

W mass we use MW = 80.22GeV [18].

In calculating Itu and Rtu we use the parametrisation in [18], and in doing

this we take the mid values of the quantities. For the phase δ13 of CKM

matrix in [18] we shall use the the mid value of cosδ13 = 0.47± 0.32 given in

[20] which icludes a large uncertainity. A straightforward calculation shows

that corresponding to the uncertainity in cosδ13, Rtu and Itu are uncertain

by 3.87% and 23.75% respectively. Thus, the standard model asymmtery

As in (23) is uncertain by 23.75%, and we shall use its central value in our

calculations. This choice is justified by the closeness of Itu and Rtu calculated

in this way to that obtained by the use of Wolfenstein parametrisation [21].

Fig. 1 shows the variation of f(y) in (29) with MH for the lowest, central

and the highest values of mt permitted by the CDF data [19]. As we see

from Fig. 1 dependence of f(y) on mt is very weak; thus, insensitivity of

results to the variation of y with mt is guaranteed. In what follows we shall

use therefore the central value of CDF data mt = 176GeV .

For mt = 176GeV we obtain CSM
7 = −0.2686. The b → sγ branching

ratio has approximately 50% error [1] which is tranferred into a range of

values that Cex
7 may take, as described by (34).

With the use of above-mentioned data we calculate SM CP asymmetry

in (23) to be As = 0.0714% in Reg. I, and As = 0.0223% in Reg. II.

In the second column of Table 1 we give the values of β as | Cex
7 | moves

from its maximum value 0.30 towards | CSM
7 |= 0.2686. We see that | β |

decreases gradually with decreasing | Cex
7 |. Moreover, it is seen that the
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maximum value that | β |≈ 0.5.

Regarding the present calculations in [16] and [17] as the possible candi-

dates for ctheor in (27), we can make certain predictions for cexp in (28). A

simple calculation yields ctheor = 9.9 and ctheor = 0.33 for Weinberg’s NDA

and Bigi-Uraltsev calculations respectively. In the case of NDA, a solution

for cexp exist only for | β |<∼ 0.27 at which dactualn turns out to be very

close to its experimental upper bound. On the other hand, for Bigi-Uraltsev

calculation, being a more detailed analysis, for all values of | Cex
7 | ranging

from | CSM
7 | to 0.30 there exists a solution for cex with the help of which,

through (28), one determine the value dactualn . In the third column of Table

1 we give the values of dactualn as | Cex
7 | moves from its maximum value 0.30

towards | CSM
7 |= 0.2686. We observe that for | Cex

7 |= 0.3 | dactualn | reaches
its maximum value of 1.63 10−26 which is one order of magnitude less than

the present experimental upper bound.

In our numerical analysis we use the range of values of MH from 44GeV

[18] to 10mt [15]. In Fig. 2 and Fig.3 we show the variation of r in (37) with

MH in Regions I and II respectively. We observe that in both figures r is

fairly high at lowMH and lands rapidly to a lower value afterMH ∼ 500GeV .

As we see from Fig.2, dependence of r on the sign of β in Region I is very

weak. Moreover, for MH >∼ 1TeV , r attains the values ∼ 1.056, ∼ 1.0050,

∼ 1.020, and ∼ 1.016 for β = +0.4938, −0.4938, 0.2922, and −0.2922

respectively.

From Fig.3 we observe that in Region II dependence of r on the sign

of β is large. Specificially, we see that, for large MH , r becomes practically

independent of MH and attains the values ∼ 1.021, ∼ 0.998, ∼ 1.01, and

∼ 0.9996 corresponding to β = +0.4938, −0.4938, 0.2922 and −0.2922

respectively.
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In Fig.4 and Fig.5 we show the variation of A in (24) withMH in Regions

I and II respectively. What we observe to be common between them is the

saturation of CP asymmetry A to a certain value after MH ∼ 500GeV .

From Fig.4 we observe that the 2HDM CP asymmetry A, practically for

allMH , is of the same order as the SM CP asymmetry As. Indeed, especially

for largeMH , corresponding to the values of β, β = +0.4938, −0.4938, 0.2922

and −0.2922, A attains the percentage values of ∼ −0.27, ∼ 0.40, ∼ −0.14,

and ∼ 0.28.

In Fig. 5 we observe that asymmetry A, as compared to the previous

figure, is completey different in that it is positive and takes higher values for

all values of MH . Actually, we see that for small MH , 2HDM CP asymme-

try is larger than the SM CP asymmetry by approximately three orders of

magnitude. For large MH , however, A gets values which are larger than SM

asymmetry by two orders of magnitue. Indeed, for large MH , corresponding

to the values of β, β = +0.4938, −0.4938, 0.2922 and −0.2922, A gets the

following percentage values ∼ 1.1, ∼ 3.25, ∼ 0.2, and ∼ 1.5

The last point to be noted about the Figs. 2-5 is that negative β gives

rise to larger r and A than positive β does.

To decern a CP asymmetry A at the σ significance level with only statis-

tical errors, the number of B hadrons NB needed to demonstrate the asym-

metry is given by[22]

NB ≈ σ2

BR ×A2
(38)

Now denoting the number of B hadrons to observe As, A in I and A in II

by N s
B, N

I
B and N II

B respectively, we get, using the values of r and A we have
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obtained already, the following ratios

N I
B

N s
B

≈ 1

N II
B

N s
B

≈ 10−4 (39)

which clearly prove that Region II is more suitable for experimental inves-

tigations on A.

In conclusion we have determined the 2HDM CP asymmetry A, ratio of

2HDM decay rate to SM decay rate r and actual value of neutron EDM. In

doing these we have utilized the experimental results on b → sγ branching

ratio, and on the upper bound of neutron EDM. Both r and A relax to

constant values after MH ∼ 500GeV . This saturation property of quantities

shows that if charged Higgs mass happens to be large (∼ 1TeV ) then the

most general 2HDM merely shifts the SM values of r and A to some other

value which may be important for establishing 2HDM. Boldly speaking, in

the high dilepton mass region (Region II) r is closer to unity and asymmetry

is very large as compared to those in low dilepton mass region (Region I).

Thus on the basis of the order of magnitude analysis carried out for NB, we

conclude that the high dilepton mass region is important and appropriate

for experimental check of the quantities under concern. Region II [6] is

accessible to the B experiments which will be carried out with hadron beams

in CDF, HERA and LHC.
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Figure Captions

Figure 1: The MH dependence of f(y) for mt = 194GeV (with circles ),

mt = 176GeV (bare solid curve) and mt = 158GeV (with squares).

Figure 2: The MH dependence of r in Region I. Here labes 1, 2, 3 and 4

correspond to β = 0.4938, −0.4938, 0.2922 and −0.2922 respectively.

Figure 3: The same as in Fig. 2 but for Region II.

Figure 4: The MH dependence of A in Region I. Labels have the same

meaning as in Fig.1. Here the unlabled solid line shows the SM asym-

metry.

Figure 5: The same as in Fig. 4 but for Region II.
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