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,e complexity of providing timely and cost-effective distribution of finished goods from industrial facilities to customers makes
effective operational coordination difficult, yet effectiveness is crucial for maintaining customer service levels and sustaining a
business. Logistics planning becomes increasingly complex with growing numbers of customers, varied geographical locations,
the uncertainty of future orders, and sometimes extreme competitive pressure to reduce inventory costs. Linear optimization
methods become cumbersome or intractable due to the large number of variables and nonlinear dependencies involved. Here, we
develop a complex systems approach to optimizing logistics networks based upon dimensional reduction methods and apply our
approach to a case study of a manufacturing company. In order to characterize the complexity in customer behavior, we define a
“customer space” in which individual customer behavior is described by only the two most relevant dimensions: the distance to
production facilities over current transportation routes and the customer’s demand frequency.,ese dimensions provide essential
insight into the domain of effective strategies for customers. We then identify the optimal delivery strategy for each customer by
constructing a detailed model of costs of transportation and temporary storage in a set of specified external warehouses. In
addition, using customer logistics and the k-means algorithm, we propose additional warehouse locations. For the case study, our
method forecasts 10.5% savings on yearly transportation costs and an additional 4.6% savings with three new warehouses.

1. Introduction

Logistics is widely recognized as the most complex among
business processes. ,e challenge of coordinating with
multiple suppliers for raw materials and partially finished
goods, and the challenge of delivering next-stage finished
goods to customers, all in the correct amounts in a timely
fashion and in coordination with production processes, de-
spite uncertainty due to independent decision-making of
customers, is daunting. ,ese coordination processes are
particularly challenging because of the need to optimize costs
and maximize customer satisfaction. It is particularly difficult
to keep transportation networks optimized when operations
span thousands of miles and serve thousands of customers.
Logistics is known to be a highly complex challenge that is not
amenable to traditional linear optimization strategies due to

its high dimensionality and rigidity in the face of limited
accuracy and variation of conditions [1–3]. Optimizing a
nonlinear system is quite challenging as the output solution is
not unique and simply a linear combination of the inde-
pendent parts [4]. So while mathematical models should be
helpful to explore the space of possible strategies and propose
optimal solutions when operations become complex [5],
solving such models becomes more difficult as the number of
strategies and considered variables increases [6].

,e issue of complexity in supply chains has been ex-
plored from a number of perspectives [7–12]. ,e literature
on these problems, generally divided into the location-
routing problem (LRP) [13–15] and the warehouse location
problem (WLP) [16–18], provides a range of proposed so-
lutions. For both the LRP and the WLP, there is an objective
function to be minimized. ,e function may consider the
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freight cost from production facilities to customers, the
storage cost for storing goods in warehouses, and the cost for
opening new warehouses. Each approach involves imposing
constraints on the objective function to make the optimi-
zation more reliable, which makes the solution harder and
more time-consuming for large complex systems. ,erefore,
the LRP and WLP together remain open problems in the
field of supply chain management, requiring further im-
provements in analytical methods.

Solutions to the LRP typically are addressed with ca-
pacity constraints on warehouses and/or vehicles, called the
capacitated LRP (CLRP) [13, 14, 19, 20]. Capacity can refer
to the capacity of warehouses to store goods, the number of
vehicles for transport, or the carrying capacity of vehicles.
,e objective is to find an optimum set of routes that
minimizes the total transport distance so that each customer
is served with a compatible vehicle and the total demand by
customers per route is compatible with the capacity of ve-
hicles on that route [21]. ,e time window of deliveries is
another constraint that can be considered, which suggests a
hybrid multiobjective algorithm [22]. ,e multiechelon LRP
(LRP-2E) is another set of solutions to optimize freight costs
and delivery time by adding a new layer to the logistic
network [23–30], resulting in three layers: production fa-
cilities, external warehouses, and customers. Solutions to the
WLP typically recommend optimal new warehouse loca-
tions to more efficiently serve customers [17, 31]. In most of
the problems, a set of potential warehouses with known
opening or storage costs is considered. Decisions are made
about which warehouses (distribution centers or depots) to
keep open to minimize route costs. ,ese methods are
categorized into two classes, uncapacitated and capacitated
facility location problems [32–34]. For capacitated facility
location problems, one more constraint is added to the
objective function [35–37]. ,e uncapacitated facility lo-
cation problem simplifies to a k-means or k-medians
clustering problem [38–40] when the facility opening cost or
storage cost is considered to be zero [33].

Here, we show that a simplified parameterized space can
provide insight into the optimization challenge and a more
detailed quantitative modeling approach that focuses on the
relevant details can be successfully applied to real-world
optimization with substantial financial benefits for an in-
dustrial company. We propose two models to optimize
companies’ logistics networks, including the route from
production facilities to the customers, by using existing
warehouses and also recommending additional warehouse
locations. To address the LRP, we define a customer space to
better clarify the complexity in the logistics of customer-
warehouse routes. ,e space is classified with two strategies:
direct and indirect shipment strategies. In the direct strategy,
goods are sent to the customer directly from a production
facility using box or bulk trucks. In the indirect strategy, in
advance of an order by the customer, goods are shipped to an
external warehouse near the customer using trains and then
“last-mile” shipped by trucks when orders are placed. Our
methods identify the strategy for each customer that is most
cost-effective and enables delivery to the customer within a
predefined time interval. ,e choice of strategies and

vehicles depends on the frequency of orders and amount of
demand from customers. To address theWLP, in addition to
optimization over existing facilities, we identified potential
additional warehouse locations using the k-means algorithm
weighted by the customer demand quantity. With these new
warehouses, we estimate that savings can be further in-
creased. We apply these methods to a medium-sized
American manufacturing company with a particular logis-
tics network, consisting of multiple production facilities,
external warehouses, and customers along with three types
of shipment methods (box truck, bulk truck, and train).

,e rest of this paper is organized as follows: In Section
2, we describe our methodology, including the design of a
customer space, a mathematical model to characterize
customers and determine favorable strategies for each
customer type, and a method to optimize warehouse loca-
tions. In Section 3, we describe our results that demonstrate
effective optimization of shipment and storage costs. In
Section 4, we summarize our conclusions.

2. Methodology and Framework

2.1. Customer Space. In order to develop a general under-
standing of the assignment of strategies to customers and the
effectiveness of each strategy, we first created a descriptive
model of customer characteristics named the “customer
space” (see Figure 1). Each customer is characterized by two
variables: the distance of the most used shipment route from
the customer to the production facility and the customer
demand frequency. ,e demand frequency is the ratio of the
total quantity ordered by the customer to the customer life
span using historical corporate data. ,e expected rela-
tionship between these two variables and the choice of
strategies is as follows:

(i) ,e direct strategy is most effective for (1) cus-
tomers close to production facilities, regardless of
demand frequency, or (2) customers who order
rarely, regardless of distance, as illustrated by the
blue region in Figure 1(b). For close customers,
maintaining an external warehouse is unnecessary
given that the proximity of customers ensures rapid
delivery. For low-demand customers, the uncer-
tainty of order arrivals makes it inefficient to plan
ahead, and shipping directly is a practical solution.

(ii) ,e indirect strategy becomes optimal when the
customer’s distance to production facilities is long
and orders are frequent above a certain level, as
illustrated by the green region in Figure 1(b). When
both demand and distance are large enough, the
certainty of ordering behavior supports the re-
plenishment of inventory in external facilities before
the customer even places the next order. Cheaper,
slower transportation alternatives are possible be-
tween production facilities and external ware-
houses. When the customer places the next order,
the goods will already be at the external warehouse
and can be rapidly delivered to the customer. ,is
indirect strategy may reduce transportation-
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associated costs while preserving or even improving
customer satisfaction.

(iii) ,e best strategy for customers with intermediate
distance and intermediate demand will depend
upon details of the freight and storage cost infor-
mation, as illustrated by the yellow region in
Figure 1(b).

2.2. Optimization via Route Strategies. To solve the problem
of choosing the best storage and transportation strategy for
each customer, we first constructed a model of the costs of
shipment and storage to decide between direct and indirect
strategies. ,e better strategy depends on the direct delivery
time and on analysis of cost of shipment and storage. We
defined the direct delivery time as the time between the
shipment of a good and its delivery to the customer.
According to corporate policy, the maximum delivery time
for finished goods is set to two days for customer satis-
faction. Delivery time is calculated using truck speeds of 70
miles per hour and 8 hours of driving per day and railcar
speeds of 49 miles per hour and 24 hours of travel per day. If
the time of direct delivery is more than two days, adequate
customer satisfaction requires using the indirect strategy as
an imposed constraint.

,e mathematical model evaluates the costs of the direct
and indirect strategies and includes a production facility (P),
external warehouse (W), and customer (C), as illustrated in
Figure 2. ,e potential costs include cd, the cost of shipment
from P to C; cw, the cost of shipment from P toW; cs, the cost
of storage at W; and co, the cost of shipment from W to C.
,e freight costs cd, cw, or co must also be multiplied by the
number of shipments nd, nw, or no, respectively. ,e number
of shipments depends on the demand from the customer.
,e customer’s expected demand over a year is estimated to
be the demand frequency multiplied by the days in a year.
We considered the number of shipments in a year to be the
ratio of total demand to the shipment carrying capacity of
trucks and railcars. ,e cost J for a given strategy π is then

determined for the direct strategy as J(πd) � ndcd and the
indirect strategy as J(πw) � nwcw + cs + noco.

Storage and freight costs depend on various parameters
in the model. We calculated these costs directly based upon
detailed descriptions of those costs that vary between
shippers and warehouses. ,e storage cost cs depends on (1)
the storage facility type s, (2) the quantity that is stored q
(inventory cost), (3) the time the quantity is stored t, and (4)
loading u and unloading w events, giving cs � S(s, q, t, u, w).
,e freight cost cf ∈ cd, cw, co􏼈 􏼉 depends on (1) the carrier
type s′, (2) the distance the goods are sent d, and (3) the
quantity of the goods q′, giving the relationship
cf � F(s′, d, q′). In order to calculate the actual cost based
upon the company data, we extracted existing routes along
with their associated distances from historical data and
incorporated specific storage costs.

Finally, we defined savings for strategies as follows: Each
customer i should have an optimal shipping cost, designated
Ci, which also includes storage costs if present. Each cus-
tomer has a current shipment route (designated route 0),
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Figure 1: Shipping strategies. (a) ,e direct strategy (left) consists of shipping goods from the production facility (blue circle) to customers
(green circle). ,e indirect strategy (right) delivers goods first to an external warehouse (orange circle), where goods are stored and
subsequently shipped to customers (green circle). (b) Overview of the customer space and the associated optimal transportation strategies.
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Figure 2: Shipping strategies of a product from a production
facility (P) to a customer (C), with an option to use an external
warehouse (W). Strategies are associated with freight and storage
costs. Costs cd, cw, and co represent the freight costs associated with
the respective labelled transportation links. ,e cost cs denotes the
storage cost of the material in the external warehouse (W). ,e
number n denotes the number of times the shipment is made. Every
strategy π is associated with a cost J(π).
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which has a known cost C0i. We then independently cal-
culated the lowest cost route (designated route 1), which has
a cost C1i. We calculated C1i by examining nearest ware-
houses and incorporating storage costs and transportation
costs. Finally, we compared the current cost to our calculated
costs, and if C1i <C0i, then the preferred cost, Ci, equals C1i

or otherwise Ci � C0i. From this, we calculated total percent
savings (S) for all customers as a percentage:
S � 100∗(1 − (􏽐

​
i�1

N Ci)/(􏽐
​
i�1

N C0i)). Here, N is the total
number of customers.

2.3. Optimization via Additional Warehouses. Aside from
the existing external warehouses, we identified prospective
locations for newwarehouses for additional savings. In order
to determine potential locations, we used the k-means al-
gorithm [38–40] to find the optimum locations for the
warehouses that best match the locations of customers to
minimize the freight cost across all customers, Cf. Freight
cost of transporting demands from the j-th warehouse to the
i-th customer, Aij, is the price of consumed fuel by the
vehicles shipping the goods, but here it was defined as direct
incurred shipping cost for the shipments in the database. It is
weighted based on the overall amount of demands by
customers shipped from a warehouse, Dij, and is a function
of the Euclidean distance, dij, between the i-th customer and
the j-th warehouse:

minimize

Cf � 􏽐
N

i�1
􏽐
M

j�1
Aijxij

Aij � Fp × R × Dij × dij

dij � wj − ci

�����

�����

subject to xij ∈ 0, 1{ }, ∀i ∈ C, j ∈W,

(1)

􏽘

N

i�1
xij � 1, ∀j ∈W, (2)

where the variable xij equals 1 if the customer i is served by
the warehouse j and equals 0 if it is not and N andM are the
number of customers and warehouses. We assigned cus-
tomer demand weights according to Wi � 􏽬􏽐

ni

k�0Qk/Q0􏽭,
where ni is the number of orders by the customer i, Qk is the
quantity of the order k by the customer i, and Q0 is an
industry standard measure for a significant customer vol-
ume.,e brackets ⌈x⌉ � ceil(x) indicate the smallest integer
greater than x. In fact, Q0 corresponds to the average
shipment size by standard vehicles. So, Dij � Wi if xij � 1;
otherwise, it is 0. In the calculation of dij, ci and wj refer to
the geographical location of customers and warehouses,
respectively. Equation (2) indicates that each customer is
only connected to one warehouse. Here, Fp refers to the fuel
price and R refers to the average fuel consumption rate by
vehicles. For simplicity, we considered one type of vehicle
with a fixed shipment size.

We use the k-means algorithm to aggregate the customer
locations into k disjoint groups or clusters and find a
centroid Ck for each group to minimize the average squared

distance between the centroid and customer locations within
each group. To consider the weight of customer demands, we
assigned Wi points to the location of each customer i. ,e
number of groups to be found is a parameter of the analysis.
,e algorithm is an iterative refinement technique that starts
from random locations for centroids and updates the lo-
cation of centroids in each iteration until reaching an op-
timum location for all the centroids. We considered the
centroid to be an approximate optimum location for a
warehouse assigned to the customers of a group. ,e freight
cost from warehouses to customers inside the groups de-
creases as the number of centroids increases and slowly
converges to zero. We determined the optimum number of
centroids from the deceleration in the freight cost. We
compared the location of currently active warehouses with
the location of centroids, identifying the best locations for
the additional warehouses to decrease the transportation
costs.,e k-means analysis dramatically reduces the number
of candidate locations to be considered for cost
optimization.

We added the new warehouse locations proposed by our
analysis to the system. Since we cannot know the storage cost
of a theoretical warehouse, we used three representative
storage costs (high, medium, and low cost) based on existing
warehouses to model storage costs for the proposed ware-
houses. We calculated potential savings for each proposed
warehouse using the three cost levels.

3. Results

We tested our model on a dataset from a medium-sized
manufacturing company with more than fifteen years of
customer orders.,e company and its customers are located
primarily in the US. ,e logistics network has about 15
production facilities and more than 30 external warehouses
and serves more than 2000 customers. ,e majority of the
customers have not ordered more than 10 times, and due to
the lack of data on these customers’ ordering patterns, the
direct shipment method is always chosen by the company (as
discussed in Section 2.1). ,erefore, we excluded customers
with 10 or fewer orders from our analysis. Customers who
have ordered more than 10 times may benefit from either the
direct or the indirect strategy, so we chose these customers
(≈300 customers) for analysis. Our goal was to find the
strategy that minimizes the total cost for each customer.
First, we estimated the total cost of each strategy from freight
costs of each shipment and associated storage costs, where
present. In addition to estimating the total cost of each
strategy for existing warehouses, we proposed additional
warehouse locations by performing clustering on the geo-
graphical location data of customers weighted by the total
quantity ordered.

In order to estimate freight costs, we observed the freight
costs of direct and indirect strategies used for each customer
including the freight options and location data. ,e indirect
strategy is associated with multiple shipments: one shipment
from the production facility to the external warehouse and
one or multiple subsequent shipments from the warehouse
to the customer. Each shipment is made with one of the
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following three types of vehicles: box truck, bulk truck, and
train.,e costs of each type are given in Figures 3(a)–3(c) for
box truck, bulk truck, and train shipments, respectively.
High variance in freight costs is due to different carriers
having different pricing structures. Carriers may charge by
distance, quantity, or both. For better classification, we
obtained the freight costs of carriers by performing multiple
linear regression analysis on each carrier’s historical data to
extrapolate the freight costs for possible routes. We con-
strained the parameters of the regression model to be
positive. ,e decomposition of the freight costs by carriers is
shown in Appendix in Figures 7–9 for box truck, bulk truck,
and train shipments, respectively. ,e plots indicate that
different carriers may be specialized for different distances,
different quantities, and particular customers.

In the indirect strategy, the storage cost of external
warehouses is a key factor in addition to the freight cost. ,e
benefit of using an external warehouse depends on (1)
distances from the warehouse to the production facility and
the customer and (2) storage costs. ,e shipping distance
affects associated freight costs. ,e storage pricing is unique
to each individual warehouse and is determined based upon
the quantity stored, the duration of the storage, and the
number of loading and unloading events that occur. Detailed
cost specifications were provided by the company for each
external warehouse in use. ,ese were used for calculating
the cost of the indirect strategy.

We have identified a change in strategy by the company
over time in the customer space, as shown in Figure 4.
Figure 4(a) shows strategy decisions for all years of the

dataset, and Figure 4(b) shows decisions for only the last two
months. Green x’s denote customers for which the indirect
strategy has been used at least once, while blue dots denote
customers for which only the direct strategy has been used.
As shown in Figure 4(a), for many customers, the indirect
strategy has been used at least once regardless of demand
frequency, except for demand frequency below 600 lbs/day,
in which case only the direct strategy is used. For customers
with large distances from production facilities, the company
has used the indirect strategy for customers with high de-
mand frequency but not for customers with low demand
frequency. Meanwhile, the data for the last two months in
Figure 4(b) show a change in corporate strategy, with a
significant drop in the number of customers serviced by the
indirect strategy. We can infer from the graph that the key
variable used for strategy selection is still demand frequency,
with a higher demand frequency increasing the chance of
using the indirect strategy.

After fitting our model to the historical company data,
we extracted optimal strategies for servicing customers.
,en, we identified which strategy should optimally be used
across the customer space (Figure 5). Blue dots denote
customers correctly serviced with the direct strategy. Yellow
triangles denote customers serviced with the direct strategy
that would benefit from the indirect strategy. Green x’s
denote customers correctly serviced with the indirect
strategy. Magenta squares denote customers serviced with
the indirect strategy that would benefit from changing ex-
ternal warehouses. Finally, red stars denote customers ser-
viced with the indirect strategy that would benefit from using
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Figure 3: Cost versus shipping distance using actual data for three transportation options: (a) box truck; (b) bulk truck; (c) train.
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the direct strategy. We calculated the potential savings by
comparison of the historical strategies with the proposed
ones. In total, the model predicts 10.5% savings if shipments
and warehouses are optimized over the current options.

In addition to the analysis of the existing warehouses, we
incorporated optimum locations for extra warehouses to
increase the savings. Figure 6 shows the results of warehouse
optimization using the k-means algorithm. ,e algorithm
identifies warehouse locations that minimize the freight
costs, Cf, from customers to their nearest warehouse

(Figure 6(a)).,e algorithm takes as the input the number of
warehouses to be determined. When the number of ware-
houses is below 10, adding any new warehouses leads to a
sharp decrease in the value of Cf, but the effect slows down
for larger numbers of warehouses. ,e orange line shows the
actual freight cost for the demands by customers which is
comparable with the freight cost from a single warehouse to
the customers. Note that the total number of the company’s
production facilities and warehouses is more than 45. In
many of the shipments, the company served a customer
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Figure 4: Distance versus demand frequency. Green x’s denote customers that were serviced by the indirect strategy at least once, and blue
dots denote customers that were only serviced by the direct strategy. Red dotted lines represent a demand frequency of 600 lbs/day;
customers with a lower demand frequency only received goods by the direct strategy, per company policy. (a) All historical company data.
(b) ,e last two months of data.

Demand frequency (lbs/day)

2500

2000

1500

1000

500

0

D
ist

an
ce

 (m
ile

s)

Two-day delivery boundary

Direct
Direct, use indirect

Indirect, change warehouse
Indirect, use direct

Indirect

103 104

Figure 5: Optimal strategies for the customers shown on the customer space (distance versus demand frequency). Blue circles and green x’s
show customers correctly serviced by direct and indirect strategies. ,e rest shows the serviced strategies that must be changed to optimize
the freight cost.

6 Complexity



C f
 (×

10
11

)

25

20

15

10

5

0

Cf of transfers from nearest warehouse

Number of warehouse
2 4 6 8 10 12 14 16 18 20

Cf of real transfers

(a)

N
um

be
r o

f c
us

to
m

er
s

2000

1600

1200

800

400

0

Distance from nearest warehouse (miles)
250 500 750 1000 1250 1500 1750

1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20

(b)

(c)

Figure 6: Optimal warehouse locations proposed by the k-means algorithm. (a) Freight cost decreases by increasing the number of
optimized warehouses. Orange and green lines show the actual freight cost and the freight cost of transfers from the current nearest
company warehouses. (b) Distribution of customers based on their distance from the nearest warehouse. (c) A network of customers (blue
circles) and current (orange triangles) and optimized (red triangles) warehouse locations. Yellow circles denote geographical areas where
candidate warehouses should be placed but that currently have inactive warehouses (Locations 1 and 2) or no warehouse (Location 3).

Table 1: Potential cost savings if additional warehouses are utilized.

Location
Storage cost (%)

High Medium Low
Location 1 10.5 10.5 11.0
Location 2 10.5 10.5 10.7
Location 3 10.7 11.5 14.4
All 10.7 11.5 15.1
,e first three rows represent the total corporate savings of optimized delivery with the addition of one warehouse. ,e final line is the total savings with all
three of the additional warehouses. ,e labels high, medium, and low denote the reference values used to calculate storage costs for the additional locations.
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Figure 7: Distance versus quantity scatter plots for box truck carriers. Color indicates freight cost (key on right), normalized to [0, 1] for
each carrier to have a minimum cost of 0 and a maximum cost of 1. Cost equations are obtained by performing regression analysis on each
carrier. Weights are constrained to have positive values. In each cost equation (inset), L indicates the cost equation of the carrier, x denotes
the distance in miles, q denotes the quantity in pounds, and E denotes the absolute error of the cost regression in dollars and as a percentage.
Carrier names are omitted to preserve anonymity.
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from a very large distance. ,e green line shows the freight
cost if the customers have been served from their nearest
warehouse which is comparable with the freight cost of
shipping from 20 optimally located warehouses. In
Figure 6(b), we indicate the distribution of customers based
on their distance from the nearest optimized warehouse. In
the presence of one optimized warehouse, most of the
customers have a distance larger than 250 miles. However,
adding the second and third optimized warehouses drasti-
cally reduces the distance between customers and nearest
warehouses. ,e distances change gradually for higher
numbers of warehouses.

Figure 6(c) shows the locations of all company facilities
and external warehouses (orange triangles) and customers
(blue circles) around the US. We randomized the location of

actual warehouses and customers for confidentiality. ,e
size of the circles is proportional to the total order quantity
by each customer, such that the more the orders a customer
has placed, the larger the size of the circles. ,e figure shows
the optimum warehouse locations (red triangles) recom-
mended by the k-means algorithm for 20 warehouses. Some
of the k-means recommended locations are not located near
active warehouses, revealing significant potential cost
savings.

After examining recommended warehouse locations, we
identified three as particularly relevant for cost savings. ,e
areas for the optimal warehouses are shown as yellow circles
in Figure 6(c). Two of these areas (Locations 1 and 2) include
previously active but currently inactive warehouses, and a
third one (Locations 3) does not have either a current or a
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Figure 9: Distance versus quantity scatter plots for train carriers. Color indicates freight cost (key on right), normalized to [0, 1] for each
carrier to have aminimum cost of 0 and amaximum cost of 1. Cost equations are obtained by performing regression analysis on each carrier.
Weights are constrained to have positive values. In each cost equation (inset), L indicates the cost equation of the carrier, x denotes the
distance in miles, q denotes the quantity in pounds, and E denotes the absolute error of the cost regression in dollars and as a percentage.
Carrier names are omitted to preserve anonymity.
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Figure 8: Distance versus quantity scatter plots for bulk truck carriers. Color indicates freight cost (key on right), normalized to [0, 1] for
each carrier to have a minimum cost of 0 and a maximum cost of 1. Cost equations are obtained by performing regression analysis on each
carrier. Weights are constrained to have positive values. In each cost equation (inset), L indicates the cost equation of the carrier, x denotes
the distance in miles, q denotes the quantity in pounds, and E denotes the absolute error of the cost regression in dollars and as a percentage.
Carrier names are omitted to preserve anonymity.
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previously active warehouse. Since we do not know the
storage costs associated with the new warehouses, we used
cost information of three actively used warehouses that are
known to have high, medium, and low storage pricing rates
for the same amount of goods being stored for the same
amount of time. As a general example, storing 1,000 lbs of
goods for a month would cost at a high-cost warehouse, at a
medium-cost warehouse, and at a low-cost warehouse. ,e
potential total savings including the new warehouse loca-
tions range from 10 to 15%, as shown in Table 1.

4. Conclusions

In summary, we have developed a method of characterizing
the customer space and a mathematical model that provides
recommendations for optimizing shipment routes of a lo-
gistics network. ,is is a multiscale approach to the logistics
high-dimensional optimization problem. Firstly, we begin
by projecting onto a low-dimensional space. We then
identify a first-order boundary between strategies. Secondly,
we incorporate details due to other dimensions to refine the
solutions. Customer spaces also help give an aggregate view
of customer behaviors and characteristics. ,ey allow pol-
icymakers to compare customers and develop strategies
based on the aggregate behavior of the system as a whole.

In particular, based on the customer space of demand
frequency versus distance from the production facility, we
analyzed two strategies: direct and indirect shipments. Each
strategy applies to an area of the customer space with an
indeterminate boundary between them. Specific company
policies determine the location of the boundary generally.
Moreover, detailed properties of each customer can affect
the specific strategy used for that customer.

We also used the k-means algorithm to find the opti-
mized location of warehouses based on the location of
customers and their demands. ,e accuracy of the opti-
mization can be improved by updating the conventional k-
means algorithm to consider the capacity of warehouses and
further details about customers. Still, using this optimization
method, companies are able to define the locations of next
potential warehouses even without details that can be de-
termined only once they are in operation.

We have applied this analysis to a case study of a
manufacturing company with particular constraints. We
showed that these optimizations can provide considerable
cost savings and improved service quality and customer
satisfaction for the company.

Many papers have been published in location-routing
problem (LRP) and warehouse location problem (WLP)
fields; a few are mentioned in Introduction, but they are still
open problems. It has been challenging to find solutions that
are applicable to large companies with thousands of cus-
tomers. While considering more constraints in the calcu-
lation of freight cost can improve the accuracy of the
outputs, it would increase the complexity and make the
solutions much more difficult if not impossible for large
systems. Our approach has been shown to work for a
company with more than 2000 customers. ,e future work
may further improve the optimization by adding additional

constraints such as a limitation on the number of customers
assigned to each facility in addition to a limitation on
distance. Overall, we showed that, through a targeted ap-
proach to data analysis, we can build a heuristic under-
standing of the customer space and develop specific
descriptive and prescriptive models to yield significant
savings.

Appendix

In this section, we show company data on freight costs for a
year of box truck, bulk truck, and train shipments.
Figures 7–9 show freight costs of the individual shipment
types decomposed by the carrier. In total, there are 45 box
truck carriers, 15 bulk truck carriers, and 4 train carriers.
Figure 7 shows scatter plots of individual freight events by
distance and quantity. ,e color represents cost normalized
by the maximum freight cost for that carrier (yellow denotes
the maximum freight cost and black denotes the minimum
freight cost). Figures 8 and 9 show similar plots for bulk
truck and train carriers. ,e plots indicate that carriers are
selected based on the quantity shipped and the freight
distance. Regression results for cost functions are shown in
the legend of each subplot. ,e symbol x denotes the dis-
tance, and q denotes the quantity.

Data Availability

Data are available at http://www.necsi.edu/customer/data.
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[32] D. B. Shmoys, É. Tardos, and K. Aardal, “Approximation
algorithms for facility location problems,” in Proceedings 29th
ACM Symposium on 6eory of Computing, pp. 265–274, El
Paso TX, USA, May 1997.

[33] J. Vygen, “Approximation Algorithms for Facility Location
Problems (Lecture Notes),” 2005.

[34] Z. Drezner and H. W. Hamacher, Facility Location: Appli-
cations and 6eory, Springer, New York, NY, USA, 2014.

[35] E. H. L. Aarts and J. Karel Lenstra, Local Search in Combi-
natorial Optimization, Princeton University Press, Princeton,
NJ, USA, 2003.

[36] B. Manthey and M. B. Tijink, “Perturbation resilience for the
facility location problem,”Operations Research Letters, vol. 46,
no. 2, pp. 215–218, 2018.

[37] B. Korte and J. Vygen, “Facility location,” in Combinatorial
Optimization, pp. 629–665, Springer, NewYork, NY, USA, 2018.

[38] S. Lloyd, “Least squares quantization in pcm,” IEEE Transac-
tions on Information 6eory, vol. 28, no. 2, pp. 129–137, 2006.

[39] D. Arthur and S. Vassilvitskii, “K-means++: the advantages of
careful seeding,” in Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms, New Orleans, LA,
USA, 2007.

[40] J. B. MacQueen, “Somemethods for classification and analysis
of multivariate observations,” in Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Proba-
bility, vol. 1, pp. 281–297, University of California Press,
Berkeley, Calif, 1967.

Complexity 11


