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Abstract

We show that nonlocal reductions of systems of integrable nonlinear partial differential equations are

the special discrete symmetry transformations.
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1 Introduction

Nonlocal reductions of systems of integrable nonlinear partial differential equations which were invented

first by Ablowitz and Musslimani [1]-[3], attracted many researchers in the field. Ablowitz and Musslimani

have first constructed nonlocal reduction for nonlinear Schrödinger (NLS) system of equations and obtained

nonlocal nonlinear Schrödinger (nNLS) equation [1], [2]. They showed that nNLS equation is integrable, i.e.,

it admits a Lax pair, and found soliton solutions by the use of the inverse scattering method. Ablowitz and

Musslimani have later extended their nonlocal reductions, corresponding to space reflection, time reflection,

and space-time reflection to modified Korteweg-de Vries (mKdV) system, sine-Gordon (SG) system, Davey-

Stewartson (DS) system and so on. After Ablowitz and Musslimani’s works there is a huge interest in

obtaining nonlocal reductions of systems of integrable equations and finding interesting wave solutions of

these systems. Specific examples are nonlocal NLS equation [1]-[14], nonlocal mKdV equation [2]-[4], [13], [15]-

[18], nonlocal SG equation [2]-[4], [19], nonlocal DS equation [3], [20]-[24], nonlocal Fordy-Kulish equations

[13], [25], nonlocal N -wave systems [3], [26], nonlocal vector NLS equations [27]-[30], nonlocal (2 + 1)-

dimensional negative AKNS systems [31], nonlocal coupled Hirota-Iwao mKdV systems [32]. See [33] for

the discussion of superposition of nonlocal integrable equations, and [34] for the nonlocal reductions of the

integrable equations of hydrodynamic type. The connection between local and nonlocal reductions is given in

[35], [36]. In all these works the soliton solutions and their properties were investigated by using the inverse

scattering method, by the Hirota bilinear method, and by Darboux transformations.
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In the last decade we observe that even as the number of systems of integrable nonlinear differential

equations possessing nonlocal reductions is increasing, there is no one so far explaining how or where such

nonlocal reductions come from. The origin of nonlocal reductions was mysterious. In this work we address

to this problem. We show that those systems possessing nonlocal reductions admit discrete symmetry trans-

formations which leave the systems invariant. A special case of discrete symmetry transformation turns out

to be the nonlocal reductions of the same systems. We show this fact for NLS, mKdV, SG, DS, coupled

NLS-derivative NLS, loop soliton systems, hydrodynamic type systems, and Fordy-Kulish equations, and

derive all possible nonlocal reductions from the discrete symmetry transformations of these systems.

2 Reductions

Let the dynamical variables qi(t, x) and ri(t, x) (i = 1, 2, · · · , N), in (1+1)-dimensions, satisfy the following

system of integrable evolution equations

qit = F i(qj , rj , qjx, r
j
x, q

j
xx, r

j
xx, · · · ), i, j = 1, 2, · · · , N, (2.1)

rit = Gi(qj , rj , qjx, r
j
x, q

j
xx, r

j
xx, · · · ), i, j = 1, 2, · · · , N, (2.2)

where F i and Gi (i = 1, 2, · · · , N) are functions of the dynamical variables qi(t, x), ri(t, x), and their partial

derivatives with respect to x. The above system of equations is integrable, so it has a Lax pair and a

recursion operator R. Some of these equations admit local and nonlocal reductions. Let us assume that the

above system of equations (2.1) and (2.2) admits the following reductions.

(a) Local reductions:

The local reductions are given by

ri(t, x) = κ1 q
i(t, x), i = 1, 2, · · · , N, (2.3)

and

ri(t, x) = κ2 q̄
i(t, x), i = 1, 2, · · · , N, (2.4)

where κ1 and κ2 are real constants. Throughout this paper a bar over a letter is defined as

1) for a complex number q = α+ iβ, q̄ = α− iβ, i2 = −1,

2) for a pseudo-complex number q = α+ iβ, q̄ = α− iβ, i2 = 1.

If a reduction is consistent the system of equations (2.1) and (2.2) is reduced to a system for qi’s

qit = F̃ i(qj , qjx, q
j
xx, · · · ), i, j = 1, 2, · · · , N (2.5)

for the reduction (2.3) and

qit = F̃ i(qj , q̄j , qjx, q̄
j
x, q

j
xx, q̄

j
xx, · · · ), i, j = 1, 2, · · · , N (2.6)
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for the reduction (2.4), where F̃ = F |ri=κ1qi or F̃ = F |ri=κ2 q̄i , respectively.

(b) Nonlocal reductions:

Recently, Ablowitz and Musslimani introduced new type of reductions [1]-[3]

ri(t, x) = τ1q
i(ε1t, ε2x) = τ1q

i
ε, (2.7)

and

ri(t, x) = τ2q̄
i(ε1t, ε2x) = τ2q̄

i
ε, (2.8)

for i = 1, 2, · · · , N . Here τ1 and τ2 are real constants and ε2
1
= ε2

2
= 1.

When (ε1, ε2) = (−1, 1), (1,−1), (−1,−1) the above constraints reduce the system (2.1) and (2.2) to nonlocal

space reflection symmetric (S-symmetric), time reflection symmetric (T-symmetric), or space-time reflection

symmetric (ST-symmetric) differential equations.

Since the reductions are done consistently the reduced systems of equations are also integrable. This means

that the reduced systems admit recursion operators and Lax pairs. We can obtain N -soliton solutions of

the reduced systems by the inverse scattering method [1]-[3], [10], [11], [14], [17], [19], [27], by the Darboux

transformation [9], [16], [18], [22], [23], and by the Hirota bilinear method [7], [13], [15], [21], [31]-[33].

3 Discrete Symmetries

In this section we will show that nonlocal reductions arise from scaling symmetries of integrable system of

equations. A scaling symmetry of a system of differential equations is the scale transformation which leaves

these equations invariant. Scaling symmetries group is a subgroup of the symmetry groups of differential

equations [37] and discrete symmetries are special cases of the scaling symmetries [38].

(a) NLS System: This system is given by

aqt = −
1

2
qxx + q2 r, (3.1)

art =
1

2
rxx − q r2, (3.2)

where a is any constant. This constant is the imaginary unit for the original NLS system but we change it

by redefining the t variable. We search for a symmetry transformations such that the NLS system is left

invariant. In general we choose the symmetry transformation as

T1 : (q(t, x), r(t, x)) → (q′(t′, x′), r′(t′, x′))

where primed system satisfies also the NLS system, i.e.,

aq′t′ = −
1

2
q′x′x′ + (q′)2 r′, (3.3)

ar′t′ =
1

2
r′x′x′ − q′ (r′)2. (3.4)
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We shall consider the real and complex dynamical systems separately. For the real case the symmetry

transformation that we are interested in is the scale transformations

t′ = β t, x′ = αx, (3.5)

q′ = γ1 q + δ1 r, (3.6)

r′ = γ2 r + δ2 q, (3.7)

where α, β, γ1, γ2, δ1, and δ2 are real constants. We have two possible cases:

(a) First type of real scale symmetry transformation is

t′ = −α2 t, x′ = αx, (3.8)

q′ = δ1 r, (3.9)

r′ =
1

δ1 α2
q, (3.10)

where α and δ1 are arbitrary constants.

(b) Second type of real scale symmetry transformation is

t′ = α2 t, x′ = αx, (3.11)

q′ = γ1 q, (3.12)

r′ =
1

γ1 α2
r, (3.13)

where α and γ1 are arbitrary constants. These two parameter transformations map solutions to solutions of

the NLS system.

From the above scale symmetry transformation we can obtain discrete symmetry transformations by letting

α = ǫ = ±1. In particular the first type produces a discrete symmetry transformation if α = ǫ and δ1 = k

then

q(t, x) = k r′(−t, ǫx), (3.14)

r(t, x) = k q′(−t, ǫx), (3.15)

where ǫ2 = k2 = 1. A special discrete symmetry transformation is obtained when we take q′ = q and r′ = r.

This special discrete symmetry is the well-known nonlocal reductions r(t, x) = kq(−t, x) and r(t, x) =

kq(−t,−x) [3], [4], [6], [10], [13], [14].

For the complex dynamical systems the scale symmetry transformation

T2 : (q̄(t, x), r̄(t, x)) → (q′(t′, x′), r′(t′, x′))

takes the following form

t′ = β t, x′ = αx, (3.16)

q′ = γ1 q̄ + δ1 r̄, (3.17)

r′ = γ2 r̄ + δ2 q̄. (3.18)
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where α, β, γ1, γ2, δ1 and δ2 are real constants. We have two possible cases:

(a) First type of complex scale symmetry transformation is

t′ = β t, x′ = αx, (3.19)

q′ = δ1 r̄, (3.20)

r′ = δ2 q̄, (3.21)

with

ā β = −aα2, δ1 δ2 α
2 = 1. (3.22)

(b) Second type of complex scale symmetry transformation is

t′ = β t, x′ = αx, (3.23)

q′ = γ1 q̄, (3.24)

r′ = γ2 r̄, (3.25)

with

ā β = aα2, γ1 γ2 α
2 = 1. (3.26)

These two parameter transformations map also solutions to solutions of the NLS system. From these scale

symmetry transformations we obtain discrete symmetry transformation by letting α = ǫ1 = ±1, β = ǫ2 = ±1,

γ1 = γ2 = k = ±1. In particular the first type produces a discrete symmetry transformation of the form

q(t, x) = k r̄′(ǫ2t, ǫ1x), (3.27)

r(t, x) = k q̄′(ǫ2t, ǫ1x), (3.28)

where ǫ2
1
= ǫ2

2
= k2 = 1 and āǫ2 = −a which follows from (3.22). A special discrete symmetry transformation

is obtained when we take q′ = q and r′ = r. This special symmetry is the well-known nonlocal reductions

r(t, x) = k q̄(−t, x) with ā = −a, r(t, x) = k q̄(t,−x) with ā = a, and r(t, x) = k q̄(−t,−x) with ā = −a [1],

[2], [4]-[9], [11]-[14].

The examples that we consider in the rest of the paper share similar real and complex scale symmetry

transformations and the associated discrete symmetry transformations. Since we are interested in nonlocal

reductions of the integrable systems of equations we will present only the first type real and complex discrete

transformations and the corresponding nonlocal reductions.

(b) MKdV System: This system is given by

aqt = −
1

4
qxxx +

3

2
q r qx, (3.29)

art = −
1

4
rxxx +

3

2
q r rx. (3.30)

We will write the discrete symmetry transformations directly. We have two different cases: Let (q, r) and

(q′, r′) satisfy the mKdV system of equations (3.29) and (3.30).
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For the real case we have

q(t, x) = kr′(ǫ2t, ǫ1x), r(t, x) = kq′(ǫ2t, ǫ1x), (3.31)

where k2 = 1 and ǫ1ǫ2 = 1. When we take q′ = q and r′ = r we obtain the nonlocal reduction r(t, x) =

k q(−t,−x) [2]-[4], [13], [15]-[17].

For the complex case we have

q(t, x) = kr̄′(ǫ2t, ǫ1x), r(t, x) = kq̄′(ǫ2t, ǫ1x), (3.32)

where ā ǫ1ǫ2 = a and k2 = 1. These special discrete transformations produce different nonlocal reductions

when q′ = q and r′ = r with different values of ǫ1 = ±1 and ǫ2 = ±1; r(t, x) = k q̄(−t, x) with ā = −a,

r(t, x) = k q̄(t,−x) with ā = −a, and r(t, x) = k q̄(−t,−x) with ā = a [2]-[4], [13], [15], [18].

(c) SG System: This system is given by

qxt + 2s q = 0, (3.33)

rxt + 2s r = 0, (3.34)

sx + (q r)t = 0, (3.35)

where q = q(t, x), r = r(t, x), and s = s(t, x). We have the following two discrete symmetry transformations.

For the real case,

q(t, x) = kr′(ǫ2t, ǫ1x), r(t, x) = kq′(ǫ2t, ǫ1x), s(t, x) = s′(ǫ2t, ǫ1x), (3.36)

where ǫ1 = ǫ2 = ±1 and k2 = 1. If we take q′ = q and r′ = r these special discrete transformations produce

the nonlocal reductions: r(t, x) = kq(−t, x), r(t, x) = kq(t,−x), and r(t, x) = kq(−t,−x) [2]-[4], [19].

For the complex case,

q(t, x) = kr̄′(ǫ2t, ǫ1x), r(t, x) = kq̄′(ǫ2t, ǫ1x), s(t, x) = s̄′(ǫ2t, ǫ1x), (3.37)

where ǫ1 = ǫ2 = ±1 and k2 = 1. When q′ = q and r′ = r these special discrete transformations produce the

nonlocal reductions: r(t, x) = kq̄(−t, x), r(t, x) = kq̄(t,−x), and r(t, x) = kq̄(−t,−x) [4].

(d) DS System: This system is given by

aqt +
1

2
[γ2qxx + qyy] + q2r = φq, (3.38)

−art +
1

2
[γ2rxx + ryy] + r2q = φr, (3.39)

φxx − γ2φyy = 2(qr)xx, (3.40)

where q = q(t, x, y), r = r(t, x, y), φ = φ(t, x, y), γ2 = ±1, and a is a constant. We have the following discrete

symmetry transformations. For the real case,

q(t, x, y) = kr′(ǫ1t, ǫ2x, ǫ3y), (3.41)

r(t, x, y) = kq′(ǫ1t, ǫ2x, ǫ3y), (3.42)

φ(t, x, y) = φ′(ǫ1t, ǫ2x, ǫ3y), (3.43)
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where ǫ1 = −1 and k2 = 1. These special discrete transformations produce the nonlocal reductions when

q′ = q and r′ = r with different values of ǫ1 = −1, ǫ2 = ±1, ǫ3 = ±1; r(t, x, y) = k q(−t, x, y), r(t, x, y) =

k q(−t,−x, y), r(t, x, y) = k q(−t, x,−y), and r(t, x, y) = k q(−t,−x,−y) [3].

For the complex case,

q(t, x, y) = kr̄′(ǫ1t, ǫ2x, ǫ3y), (3.44)

r(t, x, y) = kq̄′(ǫ1t, ǫ2x, ǫ3y), (3.45)

φ(t, x, y) = φ̄′(ǫ1t, ǫ2x, ǫ3y), (3.46)

where k2 = 1 , ǫ2
1
= ǫ2

2
= ǫ2

3
= 1, and āǫ1 = −a. We observe that these discrete transformations produce

many different nonlocal reductions when q′ = q, r′ = r, and φ′ = φ with different values of ǫ1 = ±1, ǫ2 = ±1,

and ǫ3 = ±1; r(t, x, y) = k q̄(−t, x, y), r(t, x, y) = k q̄(−t,−x, y), r(t, x, y) = k q̄(−t, x,−y), r(t, x, y) =

k q̄(−t,−x,−y) with ā = a; r(t, x, y) = k q̄(t,−x, y), r(t, x, y) = k q̄(t, x,−y), r(t, x, y) = k q̄(t,−x,−y) with

ā = −a [3], [20]-[24].

(e) Coupled NLS-derivative NLS System: This system [39] is given by

aqt = iqxx + α(rq2)x + iβrq2, (3.47)

art = −irxx + α(rq2)x − iβr2q, (3.48)

where α, β ∈ R, and a is any constant. We have the following discrete symmetry transformations. For the

real case,

q(t, x) = kr′(ǫ2t, ǫ1x), r(t, x) = kq′(ǫ2t, ǫ1x), (3.49)

where ǫ1 = ǫ2 = −1 and k2 = 1. When q′ = q and r′ = r, these discrete transformations produce the nonlocal

reduction r(t, x) = kq(−t,−x) [3].

For the complex case,

q(t, x) = kr̄′(ǫ2t, ǫ1x), r(t, x) = kq̄′(ǫ2t, ǫ1x), (3.50)

where ǫ1 = 1, āǫ2 = a, and k2 = 1. From these discrete transformations we have different nonlocal reductions

when q′ = q and r′ = r with different values of ǫ1 = ±1 and ǫ2 = ±1; r(t, x) = k q̄(−t, x) with ā = a,

r(t, x) = k q̄(t,−x) with ā = −a, and r(t, x) = k q̄(−t,−x) with ā = −a.

(f) Loop-soliton System: This system [39], [40] is given by

aqt +
∂2

∂x2

[ qx

(1− rq)3/2

]

= 0, (3.51)

art +
∂2

∂x2

[ rx

(1 − rq)3/2

]

= 0. (3.52)

We have the following discrete symmetry transformations.

For the real case,

q(t, x) = kr′(ǫ2t, ǫ1x), r(t, x) = kq′(ǫ2t, ǫ1x), (3.53)

where ǫ1 = ǫ2 = −1 and k2 = 1. When q′ = q and r′ = r, these discrete transformations produce the nonlocal

reduction r(t, x) = kq(−t,−x) [3].
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For the complex case,

q(t, x) = kr̄′(ǫ2t, ǫ1x), r(t, x) = kq̄′(ǫ2t, ǫ1x), (3.54)

where āǫ1ǫ2 = a, and k2 = 1. These discrete transformations produce different nonlocal reductions when

q′ = q and r′ = r with different values of ǫ1 = ±1 and ǫ2 = ±1; r(t, x) = k q̄(−t, x) with ā = −a,

r(t, x) = k q̄(t,−x) with ā = −a, and r(t, x) = k q̄(−t,−x) with ā = a.

(g) Hydrodynamic type of systems: Shallow water waves

Recently we studied the reductions in equations of hydrodynamic type [34] and obtained several examples

of nonlocal version of these equations. An example of equations of hydrodynamic type is the shallow water

waves system [41]

aqt = (q + r)qx + q rx, (3.55)

art = (q + r)rx + r qx. (3.56)

Here a is a nonzero constant. The discrete transformations which leave this system invariant are following.

For the real case,

r(t, x) = k q′(ǫ2t, ǫ1x), (3.57)

q(t, x) = k r′(ǫ2t, ǫ1x), (3.58)

where k = ǫ1ǫ2. For the complex case

r(t, x) = k q̄′(ǫ2t, ǫ1x), (3.59)

q(t, x) = k, r̄′(ǫ2t, ǫ1x), (3.60)

where ā k ǫ1ǫ2 = a. In both cases k2 = ǫ2
1
= ǫ2

2
= 1 [34].

If we let q′ = q and r′ = r we get the special discrete symmetry transformations which lead to the local

and nonlocal reductions. When q and r are real variables we have r(t, x) = k q(ǫ2t, ǫ1x) then the reduced

equation is

aqt(t, x) = (q(t, x) + kq(ǫ2t, ǫ1x))qx(t, x) + kq(t, x) qx(ǫ2t, ǫ1x), (3.61)

provided that k = ǫ1ǫ2 and a is real.

When q and r are complex variables we have r(t, x) = k q̄(ǫ2t.ǫ1x) then the reduced equation is

aqt(t, x) = (q(t, x) + kq̄(ǫ2t, ǫ1x))qx(t, x) + kq(t, x) q̄x(ǫ2t, ǫ1x), (3.62)

provided that āk ǫ1ǫ2 = a [34].

(h) Fordy-Kulish Equations

Let qα(t, x) and rα(t, x) be the complex dynamical variables where α = 1, 2, · · · , N , then the Fordy-Kulish

(FK) integrable system is given by [42]
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aqαt = qαxx +Rα
βγ−δ q

β qγ rδ, (3.63)

−arαt = rαxx +R−α
−βγδ r

β rγ qδ, (3.64)

where Rα
βγ−δ, R

−α
−β−γδ are the curvature tensors of a Hermitian symmetric space with

(Rα
βγ−δ)

⋆ = R−α
−β−γδ, (3.65)

and a is a complex number. Here we use the summation convention, i.e., the repeated indices are summed

up from 1 to N . These equations are known as the FK system which is integrable in the sense that they are

obtained from the zero curvature condition of a connection defined on a Hermitian symmetric space. The

FK equations (3.63) and (3.64) are invariant under the discrete transformations

rα(t, x) = k q̄′α(ǫ1t, ǫ2x), (3.66)

qα(t, x) = k r̄′α(ǫ1t, ǫ2x), (3.67)

where k2 = ǫ2
1
= ǫ2

2
= 1 and āǫ2 = −a. If we let r′α = rα and q′α = qα we obtain the special discrete

symmetry transformations and hence the nonlocal reductions rα(t, x) = k q̄α(ǫ1t, ǫ2x) [25]. Then the reduced

nonlocal FK equations are

aqαt (t, x) = qαxx(t, x) + k Rα
βγ−δ q

β(t, x) qγ(t, x) q̄δ(ǫ1t, ǫ2x). (3.68)

4 Conclusion

In this work we showed that the discrete symmetries of systems of integrable equations are important in

finding the nonlocal reductions. For this reason we started first with the scale symmetry transformations

of real and complex dynamical systems. Discrete symmetry transformations are special cases of the scale

transformations. There are two different types of discrete symmetry transformations both for real and com-

plex dynamical variables. Using this fact we can find all discrete symmetry transformations of the system

of equations. Among these discrete symmetry transformations the first types are the origins of the nonlocal

reductions of these systems. We showed that a special discrete symmetry transformation of the first type

produces all the well known nonlocal reductions.
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[41] M. Gürses and K. Zheltukhin, Recursion operators of some equations of hydrodynamic type, J.

Math. Phys. 2001; 42(3), 1309–1325.

[42] A.P. Fordy and P.P. Kulish, Nonlinear Schrödinger equations and simple Lie algebras, Commun.

Math. Phys. 1983; 89: 427-443.

12


	1 Introduction
	2 Reductions
	3 Discrete Symmetries
	4 Conclusion
	5 Acknowledgment

