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ABSTRACT 
 

 

NUMERICAL AND EXPERIMENTAL ANALYSIS OF FLAPPING MOTION IN 
HOVER. APPLICATION TO MICRO AIR VEHICLES. 

 
 
 

Kurtuluş, Dilek Funda 

 

Ph.D, Department of Aerospace Engineering (METU) 

Ph.D, LEA (ENSMA/Université de Poitiers)  

Supervisor     : Dr. Alain Farcy 

Supervisor : Prof. Dr. Nafiz Alemdaroğlu 

 

June 2005, 262 pages 
 
 

 

 

The aerodynamics phenomena of flapping motion in hover are considered in view of 

the future Micro Air Vehicle applications.  The aim of this work is to characterize the 

vortex dynamics generated by the wing in motion using direct numerical simulation 

and experimental analysis then to propose a simplified analytical model for 

prediction of the forces in order to optimize the parameters of the motion leading to 

maximum force. A great number of cases are investigated corresponding to different 

angles of attack, location of start of change of incidence, location of start of change 

of velocity, axis of rotation, and Re number. The airfoil used is symmetrical. The 

flow is assumed to be incompressible and laminar with the Reynolds numbers 

between 500 and 2000. The experimental results obtained by the laser sheet 

visualization and the Particle Image Velocimetry (PIV) techniques are used in 

parallel with the direct numerical simulation results for the phenomenological 

analysis of the flow. The model developed for the aerodynamic forces is an indicial 

iv 



method based on the use of the Duhamel Integral and the results obtained by this 

model are compared with the ones of the numerical simulations. 

 

Keywords: vortex (fluid mechanics), topology, visualization, unsteady aerodynamics, 

PIV, indicial method 
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ETUDE NUMERIQUE ET EXPERIMENTAL DE LA SUSTENTATION PAR 
VOL VIBRE. APPLICATION AUX MICRO-DRÔNES 

 
 
 

Kurtuluş, Dilek Funda 

 

Ph.D, Department of Aerospace Engineering (METU) 

Ph.D, LEA (ENSMA/Université de Poitiers)  

Superviseur     : Dr. Alain Farcy 

Superviseur : Prof. Dr. Nafiz Alemdaroğlu 

 

Juin 2005, 262 pages 
 
 
 

 
Les phénomènes aérodynamiques autour d’une aile vibrante dans un fluide au repos 

(vol stationnaire) sont étudiés en vue des applications aux micro-drônes. L’objectif 

de ce travail est de caractériser la dynamique tourbillonnaire générée par l’aile en 

mouvement par simulation numérique directe et analyse expérimentale puis de 

proposer un modèle analytique simplifié de prédiction des efforts en vue, à terme, 

d’optimiser les paramètres du mouvement conduisant à une force de sustentation 

maximale. Un grand nombre de cas ont été examinés correspondant à différentes 

incidences, lois de vitesse en translation et en rotation, axes de rotation et nombres de 

Reynolds. Le profil d’aile utilisé est symétrique. L’écoulement est incompressible, 

laminaire pour des nombres de Reynolds compris entre 500 et 2000. Les résultats 

expérimentaux, obtenus par visualisation par plan laser et technique anémométrique 

PIV, sont utilisés conjointement avec les résultats de simulation numérique directe 

pour l’analyse phénoménologique de l’écoulement. Le modèle développé pour les 

efforts aérodynamiques est une méthode indicielle basée sur l’utilisation d’intégrales 

vi 



de Duhamel ; les résultats obtenus par ce modèle sont comparés à ceux des 

simulations numériques. 

 
Mots-clés : tourbillon (mécanique des fluides), topologie, visualisation 

aérodynamique instationnaire, PIV, méthode indicielle 

vii 



viii 

 

 

ÖZ 
 

 

HAVADA ASILI KONUMDAKİ ÇIRPAN KANAT PROFİLİNİN SAYISAL VE 
DENEYSEL ANALİZİ. MİKRO HAVA ARAÇLARI’NA UYUGULAMASI. 

 
 
 

Kurtuluş, Dilek Funda 

 

Ph.D, Havacılık ve Uzay Mühendisliği Bölümü (METU) 

Ph.D, LEA (ENSMA/Université de Poitiers)  

Tez Yöneticisi : Dr. Alain Farcy 

Tez Yöneticisi : Prof. Dr. Nafiz Alemdaroğlu 

 

Haziran 2005, 262 sayfa 
 
 
 

 
Mikro Hava Araçları’nın geliştirilmesine yönelik havada asılı durumda çırpan kanat 

hareketinin aerodinamiği incelenmiştir. Bu çalısmadakı amaç, kanat hareketi ile 

oluşan girdap dinamiğinin direk sayısal simülasyon ve deneysel analizlerle 

karakterize edilmesi ve maximum kuvveti oluşturacak parametrelerin optimize 

edilmesi için aerodinamik kuvvetlerin hesaplanabileceği bir analitik modelin 

oluşturulmasıdır. Hücum açısı, hücum açısı değişme zamanı, hız değişme zamanı, 

dönme ekseni ve Re sayısı değişimleri gibi birçok durum incelenmiştir. Simetrik bir 

kanat kesiti kullanılmıştır. Akım sıkıştırılamaz ve laminar kabul edilmiş ve Reynolds 

sayısı 500 ile 2000 arasında alınmıştır. Akımın analizi için deneysel yöntemlerden 

hem lazer tabakası kullanılarak akımın görüntülemesi yapılmış hem de PIV tekniği 

kullanılmıştır. Aerodinamik kuvvetler için yaratılmış olan model, Duhamel integrali 

bazlı bir indisiel metoddur ve bulunan sonuçlar sayısal sonuçlarla karşılaştırılmıştır.  

 

Anahtar Kelimeler: girdap (akışkanlar mekaniği), topoloji, görüntüleme, zamana 

bağımlı aerodinamik, PIV, indisiel metod  
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CHAPTER 1 
 

 

INTRODUCTION 

 

 

1.1 Background and Objective 

 

Last ten years, the numerical and experimental studies of low Re number regime 

become very important due to the advances in micro-technologies enabling the 

development of Micro Air Vehicles (MAV’s). One of the main concerns of these 

studies is the flapping motion concept. Although, generally the forward flight regime 

studies are in majority in literature; one of the main objective of MAV applications, 

i.e. constant position surveillance, reveals the need for more research on hover mode.  

 

Additionally, the MAV's ability to operate in constrained environments like urban 

canyons and, eventually, even the interior of buildings gives these systems a level of 

uniqueness unmatched by other concepts. MAVs are not replacements for previously 

manned air vehicle missions; because of their size, they will be capable of 

completely new missions not possible with any existing systems [1]. 

 

There are three generation of MAV’s: Fixed wing, rotating wings (like helicopters) 

and micro technology (MEMS, flapping or vibrating wings). The definition 

employed in Defense Advanced Research Projects Agency (DARPA) program limits 

these craft to a size less than 15 cm (about 6 inches) in length, width or height. This 

physical size puts this class of vehicle at least an order of magnitude smaller than any 

missionized UAV developed to date (Figure 1.1). 
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a)  

 
b) 
 

Figure 1.1 MAV flight regime compared to existing vehicles   
a) in Reynolds number scale (from Ref. [1]) b) in time scale (from Ref. [2]). 

 

 

 

DGR-ONERA competition [3] reveals some examples for the base of the different 

MAV concepts (Table 1.1).  The different aerodynamic concepts are such as coaxial 

ducted rotors with cyclic and collective pitch, tilting wing and body, coaxial ducted 

rotors with fins, 4 tilting rotors, 4 rotors, flapping wings, fixed wings, ducted main 

and tail rotors helicopters and R/C helicopter. 
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Table 1.1 Different Micro Air Vehicle concepts in DGR-ONERA competition (from 
Ref.[3]) 

 
MAV type Examples 

Coaxial ducted rotors with 

cyclic and collective pitch 
 

Tilting wing and body 

 

Coaxial ducted rotors with 

fins 
 

4 tilting rotors 
 

4 rotors 

 

Flapping wings 

Fixed wings 
 

Ducted main and tail 

rotors helicopters  
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The most interesting part of the MAV researches, especially for small dimensional 

vehicles are to investigate the flapping wing phenomena. Ornithopters (mechanical 

birds (Fig.1.2)) are especially suited to this type of work [1]. 

 
 

 

  
Figure 1.2 Ornithopters (from Ref.[1]). 

 

 

 

The major aim of flapping motion research is based on the understanding of the 

relation between the temporal and the spatial changes of the wake structure and the 

resulting instantaneous aerodynamic forces over the flapping wings. In general 

unsteady aerodynamic effects are relatively local and are a consequence of the time 

history of the vorticity contained in the shed wake immediately behind the body 

(behind the blade for a rotor case) [4].  The essential physics of unsteady airfoil 

problems can be observed from simplified two-dimensional experiments, and the 

interpretations of the behavior can be supported by theoretical or numerical models.  

 

The aim of this study is to understand the aerodynamical mechanisms and vortex 

dynamics of flapping motion by using numerical methods, analytical models and 

experimental techniques.  
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1.2 Literature Survey  

 

1.2.1 Bio-aerodynamics and Related Studies 

 

The studies on flapping motion flight can be classified into two main parts as the 

zoological configurations and the simplified configurations. Zoological configuration 

studies are performed based on the study of the insects or birds. The simplified 

configurations are mostly the studies based on the aerodynamic studies. The models 

are simplified such that different airfoil profiles are used instead of the real 

insect/bird wing geometries.  

 

Zoological Configurations 

 

Weis-Fogh [5] analyzed how the dynamic and structural parameters of an oscillating 

wing system depended on the size of the animals. He used quantitative relationships 

and performs a dimensional analysis. Flight is a favorable biological activity for 

studies of scaling because active flapping flight is extremely common in nature and 

constitutes a large range of forms and sizes. It is demanding in energy and it imposes 

an absolute, size-dependent requirement in order to lift the body weight. The active 

flapping flight in terrestrial life has evolved independently at four different 

occasions: winged insects (Pterygota), pterosaurs (Reptilia, Pterosauria), birds (Aves) 

and bats (Mammalia, Chiroptera).  

 

The study of the wing motions of a variety of insects and calculation of the forces 

resulting from these motions are established by Maxworthy [6]. The fluid dynamics 

of flapping forward flight and hovering flight is summarized. Hovering flight is 

explained in 4 categories which are the normal hovering, the clap-and-fling 

mechanism, inclined wing stroke plane and vertical-stroke plane. Normal hovering is 

where the wing stroke is approximately horizontal.  Hummingbirds and the majority 

of insects are included in this group. 
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One of the aerodynamic mechanism for the hovering is the “clap and fling” 

mechanism explained by Weis-Fogh (1973) [7]-Lighthill (1973) [8]. Also, from a 

series of experiments using simplified mechanical models, explanation of the “clap 

and fling” mechanism  for the generation of large lift coefficients by insects in 

hovering flight are suggested by Maxworthy [9]. Vortex motion and in particular the 

motion of vortex pairs and rings are a central concern in any description of the 

dynamics of hovering flight (Fig.1.3-Ref.[10]).  

 

 

 

 
Figure 1.3 Clap-Fling mechanism (from Ref. [10]) Wings approaching each other to 
clap (A–C) and flinging apart (D–F). Black lines show flow lines, and dark blue 
arrows show induced velocity. Light blue arrows show net forces acting on the 
airfoil.  
 

 

 

Trantafyllou et al. [11] reviewed recent experimental and theoretical works 

identifying the principle mechanism for producing propulsive and transient forces in 

oscillating flexible bodies and fins in water, the formation and control of large scale 

vortices.  
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Dynamic stall or leading edge vortices form when the flow separates near the leading 

edge. High values of lift coefficient were associated with the formation of the 

leading-edge vortex (dynamic stall vortex) [6-14].  

 

Liu et al. [13] and Van Den Berg et al. [15] show the three-dimensional formation 

and evolution of a substantial leading-edge vortex in a wing-simulating hawkmoth 

hovering. 

 

Dickinson [16] observed by experimental results that four important parameters of 

stroke reversal influenced the generation of the force during the subsequent stroke. 

These are the position of the rotational axis, the speed of rotation, the angle of attack 

of the preceding stroke and the length of the preceding stroke.  The motion of the 

wing profile was divided into three temporally distinct phases: the first translation 

(downstroke), wing rotation; the second translation in the opposite direction from the 

first (upstroke). During the experiments carried by Dickinson, a 1mm thick 

aluminum wing section with a span of 15cm and a chord of 5 cm is used in a 200 

liters aquarium filled with 54% sucrose solution with a measured kinematic viscosity 

of 0.25 cm2/sec. The pattern of the fluid flow is visualized with aluminum particles 

and recorded from below with a video tape. A mechanical model which is 

dynamically scaled to the Reynolds number of the small insects such as Drosophila is 

used in experiments.  

 

Drosophila is a fruit fly, a little insect about 3mm long, of the kind that accumulates 

around spoiled fruit. The translational velocity of the profile is taken to be 12cm/sec 

in all experiments with a Re= 236. The rotational velocity is chosen by dynamic 

scaling of the reduced frequency parameter, k= ωc/U, U being the velocity during the 

translational phase. The model is translated and rotated through perpendicular axes 

by the action or two computer-operated stepper motors. In Sane and Dickinson [17], 

Birch and Dickinson [14] and Dickinson et al. [18], the dynamically scaled wing in 

mineral oil is investigated experimentally by using sensors to measure the 

aerodynamic forces and the digital particle image velocimetry (DPIV) to characterize 
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the flow around the wing [14]. The Dickinson et al. results for different papers are 

shown in Table 1.2.  

 

More detailed explanation of the experimental procedure is given in Dickinson and 

Götz [19] where a two-dimensional model measurement is done for lift and drag 

calculations with flow visualizations. Time dependency of forces produced by 

impulsively moved wings are also investigated. 

 

 
 
Table 1.2 Re number and reduced frequency similitude of Dickinson’s papers about 
Drosophila. (In the table U stands for translational velocity, c for chord, ν for 
kinematic viscosity, ω for angular velocity, Re for Reynolds number and k for 
reduced frequency). 
 

 U [cm/s] c [cm] ν [cm2/s] ω [deg/s]  Re=Uc/ν k=ωc/U 

Dickinson et al. 
[Ref.16] 12 5 

0.25 
(54% 

sucrose 
solution) 

625 
236 

(given) 
240 (calc.) 

4.5 
(given) 

Drosophila 
[Ref.16] 125 (given) 0.0085 (air) 

0.1454 

3.8*105 
(calc.) 
(3*105-
5*105) 

236 
(given) 

4.5 
(given) 

(3.5-6.0) 

Dickinson et al. 
[Ref.17] 15 or 25 

6.256 
(calcul
ated) 

1.15 
(mineral 

oil) 

145mHz 
(frequency) 136  

Drosophila 
[Ref.17], [Ref.18] 

280 
(mean 

velocity of 
the wing 

tip) 
 

   136  

Sane & 
Dickinson 
[Ref. 18] 

  
1.2 

(mineral 
oil) 

0.168 Hz 
(frequency) 

in the 
range of 

102 
 

Birch & 
Dickinson 
[Ref.14] 

  1.15 168 mHz 
160 ( mean 

Re 
number) 

 

Dickinson & 
Götz [Ref.19] 

4 to 12 
[translation 
from rest to 

fixed 
velocity by 
a constant 

acceleration 
62.5 cm/s2] 

5 

0.22-0.25 
(54% 

sucrose 
solution) 

 For 10m/s 
Re=192  
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Dickinson et al. [20] reviewed the motion and the creation of aerodynamic forces by 

a Drosophila wing during hovering flight measured on a dynamically scaled model 

insect (Fig1.4a). The wing of a hovering insect typically flaps back and forth at a 

high angle of attack during each stroke. The wing path is shown with a black dotted 

line. Black arrows indicate wing motion. Between strokes, the wing rapidly rotates so 

that the dorsal surface faces up during the downstroke and the ventral portion faces 

up during the upstroke. The total aerodynamic force (red) may be decomposed into 

lift (blue) and drag (green) components. Diagram of wing motion (Fig.1.4b) 

indicating magnitude and orientation of the total aerodynamic force vector (red) 

generated throughout the stroke. Black lines indicate instantaneous position of the 

wing at temporally equidistant points during each stroke. Small circles indicate the 

leading edge of the wing. Wing moves left to right during downstroke and right to 

left during upstroke [20]. 

 

 

 

 
Fig 1.4 Drosophila wing motion in hover mode (from Ref.[20]). 

 

 

 

Large animals such as birds appear to operate in the lower frequency regime, while 

the smaller ones, such as insects in the higher frequency regime. Wang [21] 

investigated especially the frequency selection in forward flight, the time scales 
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associated with the shedding of the trailing and leading-edge vortices and the forces 

corresponding to them. Among the three parameters (Reynolds number Re=Uoc/ν, 

Strouhal number or advance ratio Sta=f a/Uo and reduced frequency parameter Stc=f 

c/Uo where a is amplitude and c is the chord) Re dependence is expected to be very 

low for sufficiently high Re (Re≥103). He defined the optimal flapping to be the one 

which produced the maximum thrust per unit power input. The thrust exists only at 

or above a minimum angle of attack αmin=20o. Thrust only occurs in ts∈(0.2,1.5), 

where ts is the non-dimensional time defined as ts=tU0/c. Lower bound can be 

associated with the time scale governing the growth of the trailing edge vortex, hence 

the lift. The upper bound can be attributed to the time scale governing the shedding 

of the leading edge vortex which reduces the lift. The code developed was validated 

with an impulsively started flow past a cylinder [21]. 

 

Lissaman [22] states that it is not necessary to have a smooth airfoil surface for 

insects; in fact it is likely that discontinuities are desirable to delay the flow 

separation.  

 

Most of the studies about the flapping motion in the literature are done with a non-

zero freestream velocity. The present study is concerned with the hovering mode, 

where the freestream velocity is zero.  

 

Hovering is a flight mode where the body is assumed to be fixed in space and the 

freestream velocity is zero. The fluid motions are only due to the wing motions. In 

hovering, the main effect is to produce a vertical force in order to balance the weight. 

Whether a bird can hover or not depends on size, moment of inertia of the wings, 

degrees of freedom in the movement of the wings and the wing shape [23]. There are 

only few species which can hover. Hovering may be symmetrical or asymmetrical. 

Symmetrical hovering, also called normal or true hovering, is performed by 

hummingbirds (Fig.1.5) and insects like Drosophila that hover with fully extended 

wings during the entire motion which is the case investigated herein. Lift is produced 

during whole wing stroke. The wings are rotated and twisted at the end of the 

backstroke so that the leading edge of the wing remains the same throughout the 
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cycle, but the upper surface of the wing during the forward stroke becomes the lower 

surface during the backward stroke.  

 

 
 
 
 

 
 

Figure 1.5 A hummingbird in hover. 
 

 

 

Hummingbird and several insects use normal hovering where the wings are moving 

through a large angle in an approximately horizontal plane making a figure-of-eight 

motion with a symmetrical half-strokes. Birds, the most successful practitioners 

employing flapping wings, combine non-steady aerodynamics, variable geometry, 

flexible surfaces of non-uniform porosity, and rapid, adaptive biological systems to 

achieve their outstanding flight performance [23]. In order to avoid large drag forces 

and negative lift forces, these birds flex their wings during the upstroke. The stroke 

plane is more tilted and this hovering is named as asymmetrical hovering where most 

of the lift is generated during downstroke. 

 

Table 1.3 shows different parameters concerning hummingbird and some species of 

insects performing normal hovering. Feathering parameter in Table 1.3 is defined by 

Rayner [24] as the square ratio between the induced velocity on the wing disk and 

the mean tip velocity: 
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where the mean tip velocity, ut=6c/(T/2) is the distance carried by the wing tips 

during whole motion divided by the time for which a single vortex ring must support 

the animal. For Rayner [42], during each stroke two vortex rings are generated 

during normal hovering. 

 

 

 

Table 1.3 Dimensions and parameters calculated by actuator disk theory for some 
birds and insects performing normal hovering (from Ref. [24]). 
 

Normal Hovering Body mass 
[kg] 

Wing 
semi-span [m] 

Disk loading 
[Nm-2] 

Stroke 
Period [s] 

Feathering 
Parameter, f 

Fruit Fly, 
Drosophila virilis 2×10-6 0.003 0.69 0.004 0.0137 

Crane fly, 
Tipula paludosa 2.8×10-5 0.0173 0.29 0.018 0.0036 

Hover fly, 
Eristalis tenax 1.5×10-4 0.0127 2.90 0.0055 0.0056 

Bumble bee, 
Bombus terrestris 8.8×10-4 0.0173 9.18 0.0064 0.0130 

Hummingbird, 
Amazilia fimbriata 5.1×10-3 0.059 4.57 0.0285 0.0111 

 

 

 

Simplified Configurations 

 

The mean streamwise velocity field of the wake of a NACA 0012 airfoil oscillating 

in plunge at zero freestream velocity and at a zero angle of incidence at the neutral 

position was calculated by Lai and Platzer [25].  When the free stream velocity is 

zero, both k=2πfc / Uo (reduced frequency) and kh=2πfa /Uo goes to infinity and they 

are undefined so the only velocity scale is the peak plunge velocity Vp=2πfa, and the 

relevant length scales are the chord c and the amplitude of oscillation a. Non-

dimensional frequency parameter can be defined as 2πfc / Vp or 2πfa / Vp which 

reduces to c/a or 1, respectively thus implying that the wake of a plunging airfoil at 
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zero freestream velocity is independent of the frequency of oscillation. So Lai and 

Platzer concluded that there is a similarity for mean velocity profiles when non-

dimensionalized by Vp and the lateral distance is non-dimensionalized by a.  

 

The experiments of Lai and Platzer [25] were conducted in a closed-circuit 

continuous flow water-tunnel. A shaker was mounted on top of the test section to 

oscillate the airfoil sinusoidally in plunge within a frequency range of 2.5 to 10 Hz. 

Dye flow visualization and LDV measurement are carried during the experiments.  

LDV measurements of a plunging circular cylinder in hover is also done to show the 

no jet production contrary to airfoil plunging case which is a result obtained by 

Benett et al., claiming that the thrust generation in hover mode of a plunging airfoil is 

due to the asymmetry between the round leading and sharp trailing edges of the 

airfoil.  

 

Flow solutions about single foils are computed using an unsteady, 2-D panel code 

coupled with a boundary layer algorithm by Jones and Platzer [26]. Results for single 

mode (pitching and plunging) motions agree with the linear theory for low 

frequencies and amplitudes. For Strouhal numbers greater than 1, the non-linear 

wake losses symmetry. Propulsive efficiency of plunging airfoils could be greatly 

increased by decreasing the reduced frequency and increasing the amplitude while 

holding the Strouhal number constant. The effect of flapping wing flight near a 

ground plane was also shown by using the two airfoil code and potential-flow image 

theory [26]. Comparisons are made between the numerical and experimental wake 

structures behind airfoils undergoing rapid, oscillatory plunging motion using a low 

speed watertunnel [27]. A virtual wind tunnel is developed by combining a fast, 

time-stepping flow solver with an interactive animation interface and aeroelastic 

response is predicted by a 2-DOF spring/mass system modeling for the analysis of 

the structural dynamics of a flexible wing [28].  

 

The onset of dynamic stall was also predicted and evaluated due to rapid incidence 

changes or unsteady pitch and plunge motions [29]. The calculations are mostly 

carried out at Re=400000, 106 to 6×106 by using NACA 0012 and other NACA 
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profiles. A review paper about the application of flapping foils for boundary layer 

and flow separation control and water tunnel experiments on sinusoidally plunging 

foils is given in Ref. [30]. For the analysis of flapping wing propulsion, an 

investigation is undertaken to evaluate the relative merits and limitations of various 

numerical methods and experimental measurement techniques. A finite aspect-ratio 

configuration is investigated in a low-speed wind tunnel and direct force 

measurements are made. The experiment is numerically simulated using the flat-plate 

theory, two and three dimensional (CMARC) panel codes, and two and three 

dimensional Euler and Navier-Stokes solvers (Flower) [31]. The inclusion of tip 

plates was found to reduce the three-dimensional tip losses, showing an additional 

increase in total thrust, especially at low frequencies [32]. General kinematics , 

equations of motions, performance criteria of pure plunging, pure pitching, and 

pitch/plunge motions of single wing and multiple wing configurations that utilize 

some form of interference to enhance the performance are summarized and some 

historical perspectives are given in Ref. [33].  Jones et al. [34] investigated 

numerically and experimentally the ability of a sinusoidally plunging airfoil to 

produce thrust known as the Knoller-Betz or Katzmayr effect. They observed 

deflected wake patterns at Strouhal numbers greater than 1.  

 

An experimental and numerical investigation of flapping wing propulsion in ground 

effect is undertaken by Jones et al. [35]. Experiments were performed in a low speed 

wind tunnel with approximate flow speed range between 0m/s and 10m/s. 

Experimental results suggested a rather severe Reynolds number dependence. The 

Navier-Stokes solver is used with a three block, deforming grid and an unsteady 

panel code is also used for comparisons. 

 

Anderson et al. [36] showed the results of a series of tests to measure the force and 

the flow around a harmonically oscillating foil at zero average angle of attack. 

Conditions for optimal production of thrust are found such as: Operational Strouhal 

number between 0.25 and 0.4; large amplitude of heave motion-to-chord ratio (of 

order one); large maximum angle of attack between 15o-25o; phase angle between 
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heave and pitch (pitch leading heave) of about 75o when the reference point for 

heave motion is at the one-third chord length from the leading edge.  

 

Numerical simulations of dynamic stall phenomena around an airfoil oscillating in a 

coupled mode, in which the pitching and heaving oscillations have some phase 

difference, have been performed using a Navier-Stokes code by Isogai et al. [37]. 

The propulsive efficiency and the thrust are calculated for various combinations of 

the phase difference and the reduced frequency for two different amplitude ratios. 

The effects of the dynamic stall phenomena on the behaviors of the propulsion 

efficiency and thrust are examined. The highest efficiency has been observed for the 

case in which the pitching oscillation advances 90o ahead of the heaving oscillation 

and the reduced frequency is at some optimum value for which no appreciable flow 

separation appears, in spite of the large amplitude oscillations. 

 

Neef and Hummel [38] showed the time accurate solution of the Euler equations for 

the inviscid flow around flapping wings in arbitrary motion and calculated the thrust 

output and propulsive efficiency in order to find the efficient motion parameters. 

NACA 0012 airfoil in plunging and pitching motions is investigated by focusing 

especially on phase shifts near 90o between the two motions where the highest 

efficiencies could be found. They use Mach number of 0.3 for the calculations. In 2-

D unsteady flows, the efficiency of the thrust generation is governed by the shedding 

of vorticity from the trailing edge. Also 3-D Euler equations have been solved for a 

rectangular wing in a sinusoidal flapping and twisting motion.  

 

The vortical flow patterns in the wake of a NACA 0012 airfoil pitching at small 

amplitudes are studied by Koochesfahani [39] in a low-speed water channel by 

considering the effect of both sinusoidal and non-sinusoidal shape of the waveform. 

Experiments were performed in a low speed water channel using a shaker coil 

mechanism in conjunction with a closed-loop feedback servo system in order to drive 

the airfoil to the desired angular position in pitch. Flow visualization pictures are 

used for qualitative analysis and Laser Doppler velocimetry for quantitative 

measurements of the mean streamwise velocity component. The structure of the 



  16 

wake of a pitching airfoil can be substantially modified by controlling the amplitude, 

frequency and shape of the oscillation waveform. It was found that the magnitude of 

the axial flow in the cores of the wake vortices increases approximately linearly with 

both the amplitude and frequency of oscillation. 

 

Water-tunnel tests of a NACA0012 airfoil oscillating sinusoidally in plunge are 

performed using dye flow visualization and single component LDV by Lai and 

Platzer [40]. Karman Vortex Street behind stationary airfoil and streamwise velocity 

profiles are visualized and shown in Ref. [40]. The generation of thrust by a single 

flapping airfoil and a flapping/stationary airfoil combination in tandem is studied 

parametrically in Ref. [41]. A multiblock Navier-Stokes solver is employed to 

compute the unsteady flowfield. The numerical solutions predicted the thrust 

generation by flapping airfoils and showed a significant augmentation of thrust for 

flapping/stationary airfoil in tandem configuration. The propulsive efficiency is 

found to be a strong function of reduced frequency and the amplitude of the flapping 

motion. 

 

Hovering flight is one of the most energetically demanding forms of animal 

locomotion. The experimental determination of the thrust generation by the hover-

apparatus over a limited parameter range and the visualization of the vertical 

signature caused by this thrust is analyzed by Freymuth [42]. Three modes are 

considered. Mode 1 is water trading mode with mean pitch angle αo=0o and phase 

difference between the pitching and plunging φ=90o.  Mode 2 is degenerate figure 

eight mode or normal hovering mode with αo=0o and φ= -90o. Mode 3 is the oblique 

mode of dragonfly mode where αo is oblique and φ= -90o. He concluded that large 

mean vertical force coefficient could be obtained and the force was related to a wake 

of vortex pairs which results a downward jet of stream. 

 

1.2.2  Unsteady Aerodynamic Models  

 

Earlier an aerodynamic theory was mainly based on small disturbance theory. Using 

this theory the non-linear aerodynamic equations were linearized making the solution 
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a possible task. This theory is valid for arbitrary unsteady incompressible motion of 

an airfoil. It has been proven quite applicable for unsteady flow in the attached 

region. A second approach for investigating arbitrary motion of subsonic airfoil flow 

is employing a superposition of indicial response functions, i.e. Fourier-integral 

superposition of theoretical results for simple harmonic oscillations. This method has 

also been extended to take non-linear aerodynamic effects into account. Finally, 

investigation of detailed non-linear aerodynamics has recently been possible using 

Direct Numerical Simulations (DNS). 

 

Rayner [24] explains the theory for the flight of a hovering animal based on the 

vorticity present in its wake. A common approach to the problem of hovering flight 

is the actuator disk and its associated Rankine-Froude momentum jet, as used in 

propeller theory. Some defects exist: This assumes that there is no vorticity present 

in the body of the way the geometrical assumptions used in applying conservation 

laws and the lack of consideration of the mechanism on the disk itself by which a 

pair of wings oscillating back and forth can generate a steady momentum jet.  Blade 

element theory has been widely applied in the study of propellers. Vortex-Ring 

theory, which is the classical small-cored circulation of Kelvin, is used to model the 

elements of the wake. Hovering is defined as the mode of flight in which the body is 

at rest relative to the undisturbed air, with the wake vertically beneath the animal and 

with all fluid motions induced by the beating wings. The wing disk is the 

approximately circular area mapped out by the leading edges of the wings as they 

oscillate back and forth, it is assumed to be planar and tilted such that the resulting 

wake momentum is vertical. 

 

Results for unsteady problems have been formulated in both in the time domain and 

in the frequency domain, primarily by Wagner (1925) [43], Theodorsen (1935) [44], 

Küssner (1936) [45], and von Karman & Sears (1938) [46]. These solutions are 

based on the unsteady thin airfoil theory. Theodorsen's approach gives a solution to 

the unsteady airloads on a 2-D harmonically oscillated airfoil in inviscid, 

incompressible flow and subject to small disturbance assumption. Theodorsen's by 

its oscillatory thin airfoil theory [44], used also by Garrick [47], showed that the 
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propulsive efficiency of a single harmonically plunging airfoil is only about 50 

percent for infinitely rapid oscillations and 100 percent for infinitely small flapping 

(which in turn requires a large airfoil in order to obtain significant thrust values). 

Theodorsen [44] showed that the effect of the unsteady circulation on the airfoil can 

be represented as a ratio of Hankel functions which is used for flutter problems. This 

ratio of Hankel functions was termed the Theodorsen function, popularly represented 

by the symbol C(k) where k is the reduced  frequency. Physically, the Theodorsen 

function is described as a lift deficiency factor since its effect is to reduce the net 

quasi-steady lift. The unsteady lift on an airfoil subjected to an impulsive change in 

the angle of attack in incompressible flow is analyzed using the Wagner function 

approach. The Wagner function [43] is the Fourier Transform of the Theodorsen 

function and it provides a measure of the circulation growth around the airfoil when 

the airfoil is impulsively given an angle of attack with respect to the free stream. Von 

Karman and Sears analyzed the problem of a thin airfoil moving in a sinusoidal 

vertical gust field with a frequency domain solution [46].  

 

Wagner [43] has obtained a solution for the indicial lift on a thin airfoil undergoing a 

step change in angle of attack in incompressible flow. The indicial function is the 

response to a disturbance that is applied instantaneously at time zero and held 

constant thereafter, that is a disturbance given by a step function. In Wagner's case, 

w=0 for t<0 and w=Vα for t>0, where w is the induced downward velocity.  

 

Beddoes [48] used an indicial response to a step change in the angle of attack leading 

to a more general approach towards the indicial lift function, which in turn lead to a 

more general transfer function relating unsteady angle of attack to the forcing 

experienced by the blades. Some analytical models based on the indicial approach for 

incompressible and compressible unsteady motions are recently done by Leishman 

[4], [49] and Zbikowski [50] and the Refs. [51] to [55] show applications and 

explications of the different unsteady models mostly based on the indicial approach. 
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1.3 Present Approach and Major Goals 

 

During the first phase of the flapping motion study, it was necessary to simplify the 

problem in order to understand the complex unsteady aerodynamics of the flapping 

motion. Therefore, the numerical simulations, analytical modeling and experimental 

setup are performed in 2-D.  

 

The aim of the present study is to understand the aerodynamics phenomena and the 

vortex topology of this highly unsteady motion. Instead of the use of real insect/bird 

wing geometries and motions which are highly complex and difficult to imitate by an 

exact modeling, a simplified model is used to understand the unsteady aerodynamics 

and vortex formation during the different phase of the flapping motion. 

 

The present document is composed of 6 chapters. Chapter 1 reviewed some works 

which has been carried out by the researchers on the flapping motion in view of the 

zoological configurations, simplified configurations and the unsteady models 

developed analytically. 

 

The following chapters will explain the results obtained; firstly numerically with a 

DNS code, secondly experimentally with both by laser sheet visualization and by 

Particle Image Velocimetry (PIV) measurements and thirdly analytically by 

developing a model for the simplified flapping motion study in hover. In this view, 

Chapter 2 explains the numerical tools used for the flapping motion study. Definition 

of the motion, the numerical tests carried out, different post-processing tools used for 

the vortex identification and aerodynamic force calculations are explained in the first 

part of the Chapter 2. The second part of this chapter is concerned to the 

experimental setup description and visualization techniques (laser plane visualization 

and PIV). A parametrical study has been performed numerically for the aim of the 

comparison of the aerodynamic force coefficients. The results are shown in Chapter 

3. After a parametrical study, a reference configuration is chosen (one of the 

configurations where the lift is positive all through the motion) to study the vortex 

dynamics of the flapping motion phenomena. Different vortex identification methods 
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such as Q and λ criterion in addition to the experimental visualizations and PIV 

measurements are compared. In Chapter 5, the description of the analytical model 

developed for the aerodynamic force coefficients is given in addition to the 

comparison of these results with the numerical calculations. Chapter 6 gives the 

conclusion of the present study and the future works which could be done further. 
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CHAPTER 2 
 

 

ANALYSIS OF NUMERICAL AND EXPERIMENTAL TOOLS  

 

 

2.1 Geometry and Motion Definition of the Flapping Motion 

 

The flapping motion is divided into 4 regions with the first region corresponding to 

the half of the downstroke where the leading edge is pointing in positive direction 

and second one to the half-upstroke. While the third and fourth regions, are the 

mirror images of these two regions, corresponding to the second half of upstroke and 

downstroke respectively. Figure 2.1 shows detailed description of the flapping 

motion in one period.  

 

 

 

 
Figure 2.1 Flapping motion definition. 
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Each region is composed of a translational phase and a rotational phase. In the 

translational phase, the airfoil translates with a constant velocity until the time tv and 

position xv, where a rotational motion around a point on the chordline is superposed 

to the translational motion at a predefined time ta and positon xa. Each half cycle 

starts from rest and comes to a stop. The rotation is such that the leading edge stays 

as leading edge during all phases of the motion. The semi chord is denoted by b and 

the position of the center of rotation with respect to the leading edge of the airfoil is 

denoted by ca where a=0 corresponds to the leading edge and a=1 to the trailing 

edge. 

 

A symmetrical NACA 0012 airfoil section is chosen for this study, so that the 

symmetry of the motion both during upstroke and downstroke is not lost (Figure 2.2). 

Total displacement of the airfoil is 6 chord length for all of the cases studied. 

 

 

 

 

  
a)  2-D cut of a wing section, 

 

 
 

b) NACA 0012 airfoil profile with the axis of rotation at 1/4c location, 
 

Figure 2.2 Definitions of parameters. 
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T is the period of the simulation. From the mid point until the position xv the airfoil 

has a constant velocity which corresponds to the time tv. During the time interval [tv 

,T/4], the airfoil decelerates where it reaches V=0 at t=T/4. At a time ta and position 

xa , the airfoil also start to rotate around the center of rotation where it reaches 90o 

angle of attack at the quarter period. 

 

The velocity V and the angular velocity variation ω are given in Eq.2.1 and Eq.2.2 

respectively. These type of motion is chosen to ensure that the continuity of the 

velocities and the accelerations between the two phases of the translational motion. 
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2.2 Two-dimensional Numerical Simulations 

 

2.2.1 Computational Domain  

 

O-type grids are used around the airfoil, with a rectangular region close to the profile 

(Fig.2.3). The flapping motion is implemented by user-defined subroutines by 

moving the computational domain. The grid domain consists of 57500 cells with a 

domain of 15c length diameter. The arbitrary mesh interface option is used to join 

dissimilar mesh structure, in order to decrease number of cells at the far-field 
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location. A finer grid domain is used close to the airfoil and a coarser grid is 

implemented at far-field. 

 

The influence of the radius of disc (meaning the influence of the far-field location) is 

also investigated with values of 10c, 15c and 20c. The relative error is found to be 

small and 15c case is chosen for the numerical calculations.  

 

 

 

 
a) Whole grid domain 

 
b) Grid domain close the airfoil 

Figure 2.3 Grid domain. 

Radius =15c 



25 

2.2.2 Boundary Conditions 
 

On the airfoil surface, the instantaneous flow velocity is set equal to the local surface 

velocity prescribed by user-defined subroutines defining translational and rotational 

velocities and the no-slip boundary condition is applied. At the farfield, the pressure 

boundary conditions are applied. In hover condition, the farfield pressure is assumed 

known and taken to be the standard air pressure. The velocities at the corresponding 

cell faces are linked to the local pressure gradients by special momentum equations, 

whose coefficients are equated to those at the cell centre. These equations, together 

with the continuity constraint, effectively allow the magnitude and direction of the 

local flow (which may be inwards or outwards) to be calculated. For 2-D 

calculations, the front and back side of the grid domain are defined as symmetric 

boundary conditions. 

 

2.2.3 Solver Description 

 

The unsteady viscous flowfields are computed using an industrial DNS code (Star-

CD). Computations are performed on a HP 4000 workstation. Star-CD has an 

interface named PROSTAR for use in pre and post processing. PROSTAR can be 

used as  a pre-processor to define the geometry, mesh, boundary conditions, initial 

conditions, fluid and solid material properties and analysis control. PROSTAR is also 

a post-processor by which the user can read and manipulate data files, draw graphs of 

calculated quantities, get 3-D graphical views and animated images.  

 

The code operates by solving the governing differential equations of the flow physics 

by numerical means on a computational mesh for quite general circumstances. For 

transient calculations efficient, optimized finite-volume solution algorithms are used. 

The mass and momentum conservation equations solved for general incompressible 

and compressible fluid flows (the ‘Navier-Stokes’ equations) are, in Cartesian tensor 

notation: 
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where for Newtonian fluid, the constitutive relation is: 
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Star-CD can handle general mesh motion and internal sliding mesh with an unsteady 

flow solution. User-defined subroutines can be used in conjunction with the program.  

 

PISO, SIMPLE and SIMPISO are the three alternative solution procedures available 

in Star-CD but PISO is mandatory for unsteady calculations where at each iteration 

(or time step) a predictor step is performed, followed by a number of corrector steps, 

during which linear equation sets are solved iteratively for each main dependent 

variable. Standard control parameter settings for Transient PISO Calculations that is 

used during the calculations are shown in Table 2.1. Scalar solver type and implicit 

temporal discretization is used during these calculations with an Upward Difference 

(UD) scheme. 

 

The analyses are done in terms of the flowfield parameters and aerodynamic loads. 

The equations solved for this study are unsteady, incompressible, laminar and two-

dimensional Navier-Stokes equations. The mesh can be made to translate, rotate or 

distort in any prescribed way, by specifying time-varying positions for some or all of 

the cell vertices. For this case, an additional equation called the ‘space conservation 

law’ is solved for the moving coordinate velocity components. 
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Table 2.1 Control parameters. 

 Used 
Solver Tolerance  
for Velocity 
for Pressure 

 
0.01 
0.001 

Sweep  (inner iteration )limit 
for Velocity 
for Pressure 

 
100 
1000 

Pressure correction relaxation factor 1.0 
Corrector step tolerance 0.25 

 

 

 

As a result of the decoupling of the equation for each dependent variable and 

subsequent linearization, large sets of linear algebraic equations are obtained. Each 

run carried out during this study approximately lasts 10 hours with HP 4000 

Workstation. The equations are solved either by Conjugate gradient (CG) type 

solvers or the algebraic multigrid (AMG) approach. 

 

2.2.4 First Numerical Tests 

 

First verification studies for the unsteady DNS calculations have been done on an 

impulsively starting flat plate (Stokes’s first problem) and sinusoidally oscillating 

flat plate (Stokes’s second problem) to understand the moving grid options of the 

program. Both cases have an exact analytical solution which allows for a preliminary 

validation of the numerical results and the analytical method explained in Chapter 5. 

The results are shown in Appendix A. It is important to emphasis that the validation 

is partial since both of the problems studied are linear. 

 

Numerical calculations give exactly same results as the exact analytical solution for 

the impulsively starting flat plate. For oscillating flat plate results, in addition to the 

numerical calculations, the analytical model with Duhamel integration is also 

compared (see Chapter 5 for detailed explanation of Duhamel Integral). Analytical 

model gives same results with the numerical calculations. For the analytical model, 

the solution for the impulsively starting flat plate is implemented in to the Duhamel 



28 

Integral. The difference between the exact solution of the oscillating flat plate 

problem (Stokes’s second problem) and the numerical solution and the Duhamel 

integration comes from the fact that the exact solution is not for the impulsive 

starting oscillating airfoil. The tests lead to a satisfactory conclusion for the 

validation of the numerical solutions and the analytical modeling with Duhamel 

integration. 

 

The verification of the numerical scheme used is also done by comparing the central 

difference and upward difference scheme solutions of an oscillating flat plate and the 

results are compared with the exact solution (Appendix A).   

 

The verification of the boundary conditions is also carried for 2 different boundary 

conditions (inlet/outlet and inlet/pressure). The steady state results of the airfoil are 

compared with the impulsively starting airfoil result at a time where the impulsive 

start effect disappears. The comparisons are also given in Appendix A.  

 

2.2.5 Post-Processing of DNS Results 

 

The aim of this study is to find optimum parameters to generate maximum lift during 

this motion and understand the unsteady aerodynamics behind the phenomena. A 

great number of cases are investigated involving the changes in the parameters such 

as angle of attack, location of start of change of incidence, location of start of change 

of velocity, axis of rotation, and Re number. The numerical study is investigated in 

three sub-section namely, numerical visualization, vortex identification via different 

methods and calculation of the instantaneous aerodynamic forces and the average lift 

and drag coefficient values. 

 

2.2.5.1 Numerical Visualization 

 

The numerical visualization are obtained based on the pressure, vorticity 

distributions, velocity vectors and streamlines. The influence of different parameters 

are discussed in following chapters via these visualisations. 
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2.2.5.2 Vortex Identification   

 

Vortex identification is performed by considering second invariant of velocity 

gradient (Q-criteria) and second eigenvalue λ2. The demonstrated results are obtained 

for Direct Numerical Simulations (DNS) for a 2-D, unsteady, laminar flapping 

motion. High positive values of Q and negative values of λ2 imply vortex regions 

where the rotation rate is dominant compared to the strain rate.  

 

Second Invariant of Velocity Gradient Q-Visualization:  

 

The velocity gradient is made of two parts: 
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where i,j (=1,2) are free indices, ui is corresponding velocity component and xj is the 

corresponding space coordinate in Cartesian system. The velocity gradient is 

summation of the symmetrical rate-of-strain (deformation) tensor Sij and the skew-

symmetrical rate-of- rotation tensor Ωij which are given by: 
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The vorticity vector ωi, which is twice the angular velocity vector ζi, is related to the 

rate-of-rotation tensor by 

 

     mjijmi e Ω=ω              (2.12) 

 

where eijm is the permutation symbol.  
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The strain-rate tensor Sij can be written as the summation of deviatoric and isotropic 

tensors which are measures of the rate-of-distortion and the rate-of-dilatation 

(volumetric expansion) respectively. The vorticity is defined as the curl of the 

velocity: 

     ζω
rrrr 2=×∇= V             (2.13) 

 

The second invariant of velocity gradient (also called as second invariant of the 

mean rate-of-displacement tensor) is given by Eq.2.14. 
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Once ui,j is known, Sij, Ωij, ζi, ωi and Q can be calculated from Eq.2.9 to Eq.2.14. Q 

criterion technique is used in vortex identification by Hunt et al. [56]. 

 

Non-dimensional Q is defined as: 
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where c is the chord length and V0 is the maximum velocity of the profile during the 

flapping motion.  

 

For the 2D motion: 
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Nondimensional vorticity is defined as 
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Q is the balance between the rotation rate and the strain rate. The implication of the 

latter observation is fairly straightforward: positive Q iso-surfaces isolate areas 

where the strength of rotation overcomes the strain rate, thus making those surfaces 

eligible as vortex envelopes. 

 

Since vorticity should increase as the centre of the vortex is approached, Q can be 

expected to remain positive in the core of the vortex. Q is equal to half the Laplacian 

of pressure for incompressible flow (ρ is the density of the fluid and is constant):    
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According to the maximum principle, the pressure maximum occurs only on the 

boundary if Q is strictly positive and the pressure minimum occurs only on the 

boundary if Q≤0. However, as stated by Jeong and Hussain [57], there is no 

necessary implication for the pressure to reach a minimum within a region of 

positive Q. Although it has been suggested that a minimum of pressure might not be 

appropriate within an agglomeration of vortices, it is important to check the 

correspondence of the pressure criterion with the Q criterion for an isolated vortex 

tube which contains a pressure low [57, 58].  

 

λ2 visualization:  

 

Another criterion has been developed by Jeong and Hussain [57] based on the 

following arrangement of the inviscid Navier-Stokes equations:    
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The Hessian of pressure (p,ij=∂i ∂j p) can provide information on the local extrema of 

pressure. Assuming that unsteady straining (DSij/Dt) is negligible, the study of 



32 

pressure minima can be performed with S2+Ω2. A local minimum of pressure exists 

if p,ij has two positive eigenvalues, i.e. S2+Ω2 has two negative eigenvalues. The λ2 

definition of Ref.[57] was named after the second eigenvalues with λ1 <λ2 <λ3. 

Cucitore et al [59] have shown that this definition is strongly related to the Q 

criterion, since, in the reference frame of the vortex, λ2 can be written as a balance 

between local straining and rotation.  

 

Jeong and Hussain [57] show that the second largest eigenvalue of the sum 

kjikkjikij SSA +ΩΩ=  (named as λ2) is generally a better parameter than Q in vortex 

identification. They define three eigenvalues λ1 < λ2 < λ3 to the corresponding tensor. 

The pressure attains a local minimum if and only if two eigenvalues are negative.  

For the definition of vortex core λ2 must be negative. 

 

High positive values of Q and negative values of λ2 imply vortex regions where the 

rotation rate is dominant compared to the strain rate.  

 

Non-dimensional eigenvalue is defined as: 
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After some manipulations for 2D flow: 
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Eigenvalues can be found as: 
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where 
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For 3-D calculations, λ1 < λ2 < λ3. In order to check the results, (Eq. 2.28) can be 

used. 

QSUM 2321 −=++= λλλλ                    (2.28) 

It is checked that for 2-D calculations Eq.2.29 also holds. 

    QSUM 221 −=+= λλλ                                   (2.29) 

In 2-D calculations, it is observed that the minimum eigenvalue when it is negative 

shows the vortices generated and the maximum eigenvalue when it is positive 

represents the shear regions.  

 

Circulation around iso-Q curves: 

 

Quantitative formula relating lift to circulation was developed by two researchers, 

Kutta (1902) and Joukowski (1906). In their work, a model of the flow over a lifting 

airfoil was conceived to consist of vortical motions; the bound circulation vortex was 

embedded along chord line. A relation for calculating the lift per unit span of an 

airfoil was mathematically expressed with Eq.2.30 and named as Kutta-Joukowski 

theorem. 

  

    Γ= VL ρ              (2.30) 
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Γ is the bound circulation expressed as line integral of the flow velocity taken around 

any closed curve encompassing the airfoil. 

 

    ∫ ⋅=Γ ldV
rr

             (2.31) 

By using Stokes theorem the circulation can also be written as: 

 

   ∫ ∫∫ ⋅=⋅=Γ AdldV
rrrr

ω             (2.32) 

Thus, the circulation around a closed contour is the total vorticity enclosed within it. 

A positive sense corresponds to a counterclockwise path of integration around the 

curve. 

 

In 2D flow, the circulation of a fluid element at location (xi ,yj) is given by 

 

   ∫ ∫∫ ⋅=⋅=Γ
ijA

ij AdldV
rrrr

ω             (2.33) 

within the infinitesimal area Aij, vorticity can be assumed as constant, hence 

 

   ijijij Aω≈Γ               (2.34) 

Thus the total circulation around the closed contour is: 

  ∑∑Γ=Γ
i j

ij  for all cells inside the contour                  (2.35) 

 

2.2.5.3 Aerodynamic Forces 

 

The total force is calculated as the sum of the shear force and the pressure force on 

the wall. 

pst FFF
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+=               (2.36) 

The shear force is: 
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where Ab is the elementary wall area and parν
r  is the velocity vector component 

parallel to the wall and τw is the wall shear stress. 
 

The pressure force is given by the Equation 2.38. 

bbbp nApF rr
=               (2.38) 

where pb is the pressure on the elementary wall area Ab and bnr  is the outward-

pointing unit area vector. 

 

Mean aerodynamic coefficients are calculated as the time average of instantaneous 

forces throughout one period [Eqs.2.39-2.40]. The integration is done during the 7th 

period region where the first impulsive start effects are highly cancelled. 
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The total mechanical power required to flap the wings is dominated by profile power, 

which is the power required to overcome the drag on the flapping wings [36]. This 

power does not include the power required for the rotational motion of the wings. 

The average profile power coefficient is calculated in one period as in Eq.2.41. 
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where proP '  is the profile power per unit span and n=1/T  is the wing beat frequency.  

 

Symmetrical hovering is not necessarily done in horizontal plane. There exists a 

plane named stroke plane making β angle relative to horizontal axis (Figure 2.4). All 

the calculations are done relative to this stroke plane. But if we take into 

consideration the hover of an insect or bird, there is a resultant force averaged in a 

stroke period which must balance the weight of the animal. The resultant force 

coefficient is: 
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   22
LDFtotal CCC +=              (2.42) 

 

The angle corresponding to resultant force relative to horizontal plane axis is called 

stroke plane inclination angle β given by Eq.2.43. 
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The value of stroke plane inclination is assumed to be between 20° and 40° for a 

dragonfly who is performing asymmetrical hovering [23]. It is observed that the drag 

coefficient is approximately the same order of magnitude as lift coefficient. By 

performing a flapping motion in required stroke plane, considerably high resultant 

force coefficients can be obtained to overcome the weight of the whole body. If 

sufficient profile power could be obtained the drag could be overcome in horizontal 

plane. As will be discussed later, the drag coefficient here is calculated with respect 

to the motion of the airfoil, the force opposing to the motion. In some circumstances, 

with respect to the body, this force turns out to be a thrust for the whole body. The 

first aim of this study is to estimate the lift or the normal force coefficient with 

respect to the airfoil position during the considered flapping motion. 
 

 
 
 

 

 
 

Figure 2.4 Stroke plane definition for hover. 
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2.3 Experimental Model 

 

In this subsection the experimental procedure carried out is described. The 

dimensional analysis for the air-water comparison, description of the displacement 

system, laser plane visualization and PIV measurement procedure are explained. 

 

2.3.1 Dimensional Analysis 

 

Dimensional analysis has been performed for this study and the parameters are 

tabulated in Table 2.2. Eight geometrical and flow parameters are found to be 

important to determine the force F. The force is dependent to the velocity of the 

airfoil (which is considered to be the maximum translational velocity during the 

flapping motion for dimensional analysis), the density of the fluid ρ, the chord of the 

airfoil c, the fluid viscosity µ, the period of the flapping motion T, the  distance 

carried out by the airfoil during a flapping motion xT, angle of attack α and the 

angular velocity α& . 

 

 

 

Table 2.2 Dimensional analysis. 

 
F=force/span 

[kg/s2] 

V 

[m/s]

ρ 

[kg/m3]

c 

[m]

µ 

[kg/ms]

T 

[s]

xT 

[m] 

α 

[rad] 

α&  

[rad/s] 

M 1 0 1 0 1 0 0 0 0 

L 0 1 -3 1 -1 0 1 0 0 

T -2 -1 0 0 -1 1 1 0 -1 

 

 

 

The dimensional parameters result three dimensions (M L T). The Buckingham Pi 

theorem can found a relation between the 6 non-dimensional parameters which 

characterize the physical problem (Eq. 2.44). 

  



38 

0),,,,,( 654321 =ΠΠΠΠΠΠf             (2.44) 

These parameters are given in Eq.2.45 to Eq.2.50. The detailed calculations are given 

in Appendix B.  

 

cV
F

21 ρ
=Π   (non-dimensional force)     (2.45) 

Re
1

2 ==Π
Vcρ
µ  (Reynolds number)          (2.46) 

c
TV

=Π 3   (non-dimensional time)      (2.47) 

c
xT=Π 4   (geometrical similitude)      (2.48) 

α=Π 5   (angle of attack)          (2.49) 

V
cα&

=Π 6    (reduced frequency)            (2.50) 

For the simulations in the water tank, the following similitude laws are used for 

conversions of the air data to the water data. For similitude calculations, subscript 1 

stands for air and subscript 2 stands for water. The comparison of the air and water 

data for different Re numbers and xv locations are represented in Table 2.3 and Table 

2.4. 
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Table 2.3 Similitude results for different Re numbers for air (1) and water (2). 
 

Re V1 [m/s] 
air 

V2 [m/s] 
water 

V2/V1 c2/c1 T2/T1 xT2/xT1 α& 2/ α& 1 

500 0.727 0.008 0.011 6 523.4 6 0.0019 
1000 1.454 0.017 0.011 6 523.4 6 0.0019 
1500 2.181 0.025 0.011 6 523.4 6 0.0019 
2000 2.908 0.033 0.011 6 523.4 6 0.0019 

 

 

 

Table 2.4 Comparison of the velocities and periods in air and water for different 
cases studied. 

 
Re xv V1 [m/s]  

air 
V2 [m/s] 
water 

T1 [s]  
air 

T2 [s] 
water 

500 2c 0.727 0.0083 0.196 102.84 
1000 2c 1.454 0.017 0.098 51.42 
1500 2c 2.181 0.025 0.065 34.28 
2000 2c 2.908 0.033 0.049 25.71 
500 2.5c 0.727 0.0083 0.1807 94.62 
1000 2.5c 1.454 0.017 0.0904 47.31 
1500 2.5c 2.181 0.025 0.0602 31.54 
2000 2.5c 2.908 0.033 0.045 23.65 

 

 

 

2.3.2 Displacement System for the Flapping Motion Study 

 

Dimensions of the airfoil: 

 

A rectangular wing with a NACA0012 airfoil section is displaced in a tank filled 

with water by associating a rotational and a translational motion.  The chord length is 

c=6 cm and the span is b=50 cm. The flapping motion investigated is described in 

detail in Section 2.1. Total displacement of the airfoil is 360mm. The center of 

rotation is at ¼ c location. The inertial frame of reference is used since the camera is 

fixed to the ground. The test section is located at the half of the span for whole 

experiments.  
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Definition of the flow: 

 

The flapping motion is carried out in zero free-stream velocity, so the flow is steady 

at the beginning of the motion. Before each experiment minimum 15 minutes is 

waited for a following experiment in order to achieve a steadiness of the flow in the 

water tank. A laminar flow is generated with a Reynolds number of 1000 relative to 

the chord and the maximum velocity of the motion. 

 

Experimental setup: 

 

The experimental setup used is a 1.5m×1m×1m water tank made of altuglas. The 

wing is delimited by two rectangular plates made of epoxy with 50 cm x 90 cm 

dimensions in order to obtain a 2D flow. The wing is free to rotate relative to the 

plates (Figure 2.5).  

 

 
Figure 2.5 Experimental setup in water tank. 

1.5m 

1 m 1 m

0.5 m
0.9 m

Airfoil 
(c=0.06m) 
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Motors: 

 

The schema for the electronics of the system is given in Figure 2.6. The solid lines 

correspond to the signal of the motors and the dashed lines correspond to the signal 

of the optocouplers. The system consists of 2 step motors (200 step/rev) controlled 

with a law having variable speed (Table C.1 in Appendix C). The first motor is a 

high torque brushless motor with integrated electronics (MAC 23 of Midi Ingénierie 

associated an endless screw (step of 4 mm/rev) allows the translational motion with a 

maximum linear velocity of 4 cm/s. The second one, associated with 2 pulleys (ratio 

14/81) allows the rotation of the profile (Fig. 2.7). The useful race of the translational 

motion is 600 mm and that of the rotational is of 360°. The second motor is used 

with two pulleys in order to give the angular velocity variation to the airfoil.  

 

 

 

 
Figure 2.6 Electronical part of the experimental setup. 
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Figure 2.7 Translational and rotational mechanism of the setup. 

 
 
 
Optocouplers: 
 
 
Two transmissive Optoschmitt sensors HOA2001 limit the angular displacement of 

the wing in rotation. The sensor consists of an infrared emitting diode facing an 

Optoschmitt detector encased in a black thermoplastic housing. The delay between 

each cycle creates zero values of voltage which is harmful for the continuity of the 

motion. The error of angular displacement during rotation is certainly due to this 

constraint.  The motor is at its maximum speed when the control signal is stopped 

(zero value). With the new beginning of the cycle, by following its instruction the 

voltage become again maximum.  Under this condition the motor loses steps. To 

prevent these errors which cumulate by each cycle, two optocouplers are positioned 

to the carriage (Figure 2.7). These sensors allow the detection of maximum and 

minimum positions of the rotational motion. Each sensor starts a temporization T1 of 

12s, then another temporization T2 of 2 s. T2, by the intermediary of a Power Driver 

(ULN 2003), command a Reed relay which cuts the signal coming from the ADWin 

to the motors during 2 seconds. If the relay is activated, the signal voltage coming 

from converter AD 654 is connected to ground.  The motor does not turn any more.  

A temporization prevents during 12 s a possible oscillation which can occur after 2 

seconds. For each case studied (ex:  rotation ± 45°), the position of the strips used to 

start the optocouplers must be adjusted. Their positions on the belt are moved 

accordingly. The basic working mechanism of one of the optocouples is given in 

Translational 
motor (1) 

Potentiometers

Rotational 
motor (2) 

Pulleys 
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Appendix C on Figure C.2. To avoid the mechanical resonance, a flexible nut using a 

silent-block is assembled to the endless screw (Figure 2.8).  

 

 

 

 
Figure 2.8 Step motor, potentiometer and optocouplers for rotational motion.  

 

 

Potentiometers: 

Two potentiometers are used to control displacements (Figure 2.8). The voltage of 

the potentiometer used for the rotational motion is measured by use of the controller 

at 0° and 360° angle of attacks. The same calculation is done for 0mm and 360mm 

displacements for translation (Appendix C, Table C.2). The preliminary observations 

show the need for the optocouplers during the rotational motion. 

 

Principle of the speed control: 

 

The step motors are controlled by drivers MI 904A of Midi Ingénierie. These are 

control precision microstep amplifiers. MI 904A control cards integrate the precision 

microstep amplifier function, based on a chopped current type regulation system, for 

Motor for 
rotation Potentiometer 

which copy the 
rotation 

Stript used 
for 

optocoupler 

optocoupler 

Silent-
block 

Endless screw 

Belt between 
two pulleys 
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two poles (4 or 8 wires) stepper motors (Appendix C, Table C.3).  

 

The two digital/analog channels are used to generate a variable output voltage.  Each 

channel attacks a voltage-to-frequency converter AD 654 which generates clock 

signals.  The frequency is proportional to the input voltage.   

 

Configuration of the step motors: 
 
 
The carriage in translation must move at a maximum linear speed of 4cm/s. The 

endless screw has a step of 4 mm/rev. The motors have 200 steps per revolution, the 

frequency of control command should thus be between 0 and 2000 Hz (10 rev/sec).  

The low frequency operation of the step motors is incorrect. Towards 200 Hz, the 

motors enter in resonance. To avoid this phenomenon, it is necessary to run the 

motors in microstep mode. For the present experiment, 10 microstep is chosen for 

step motors. The adjustments of the voltage-to-frequency converter must be renewed 

since each revolution of motor now corresponds to 2000 steps. The frequency of 

control signal must thus lie between 0 and 20000 Hz (10 rev/sec).   

 

 Step Motor 1 (translation) 5V → 20 kHz ⇔ 10 rev/sec 

 Step Motor 2 (rotation)   5V → 1.2 kHz ⇔ 0.6 rev/sec 

  

For translational motion, the voltage-to-frequency converter is adjusted in order to 

obtain 5V for 20 kHz. Each motor can perform 2000 step per revolution. The screw 

displaces 4mm during each revolution so: 

 

5V of PC ⇔ 20 kHz ⇔ 10 rev/sec ⇔ 40mm/s displacement of the airfoil where 

1m/s corresponds to 125V. 

 

For the rotational motion, the voltage-to-frequency converter is adjusted in order to 

obtain 5V for 1.2 kHz. Each motor can perform 2000 step/rev so: 

5V of PC ⇔ 1.2 kHz ⇔ 0.6×2π rad/s 

where 1rad/s corresponds to 1.326V. 
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Choice of the directions of rotation: 
 

To modify the direction of rotation of the motors, two input/output channels (DIO) of 

Real Time Control and Data Acquisition System (ADWin) is used.  Channel 1 

regulates the direction of the motor for translational motion.  Channel 2 regulates the 

direction of the motor for rotation. Table 2.5 shows the four possible commands sent 

to the driver with the directions defined in Figure 2.9.   
 

 

 

Table 2.5 Definition of different commands for both of the step motors. 

Command Motor 1 Translation 

(in Oxyz coordinate system) 

Motor 2 Rotation  

(in Oxyz coordinate system) 

0 Motion toward end of screw (+x direction) Counter-Clockwise 

1 Motion toward support (-x direction) Counter-Clockwise 

2 Motion toward end of screw (+x direction) Clockwise 

3 Motion toward support (-x direction) Clockwise 

 

 

 

 

 
Figure 2.9 Direction of the commands. 
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Control system: 

 

The two motors are controlled with velocity in open loop using a PC.  The PC sends 

an order in tension on a power stage. A converter of tension/ frequency generates the 

necessary clock signals for the displacement of the motors. By the use of a computer 

with a real time system of acquisition, the command of the electronic cart developed 

to make the voltage-frequency conversion is carried out. Clock signals are provided 

with variable frequency on power stages, on which two step motors are connected.  

 

To command the setup, a real time control and Data Acquisition system (ADWin) is 

used composed of A/D card of 16 bits, a direct input-output (DIO) channel and a 

D/A card of 16 bits (Figure 2.10). The system has its own clock, independent of 

Windows system.  Thus, it is possible to impose velocity signals with a constant 

frequency (f = 130 Hz).   

 

Knowing the relationship between the voltage of signal and the translational and 

angular velocities, it is possible to build the command file with the given frequency. 

A fortran program is developed for this usage. The program give an output of three 

columns where first column representing the direction of rotation (Table 2.5), second 

one being the voltage for the motor used for translational motion and the third one 

being the voltage for the motor used for rotational motion. The generated file with 

varying voltages are read by the Testpoint program and send to the ADBasic 

program for the real time data acquisition process which send signals to the motors. 

 

The TestPoint program is composed of two separate processes: Start Manual and 

Start Auto. With Start Manual option, a manual displacement of each motor can be 

performed. Start Auto option execute the output file obtained from fortran program 

for flapping motion. Acquisition of the voltages on the potentiometers is also done 

with this last option.  The number of cycle is a parameter (Nb of cycles) which could 

be changed in Start Auto program. The two processes are also implemented in 

ADBasic program (program of the real time data acquisition system ADWin). 
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Figure 2.10 Real-Time control and data acquisition system ADwin-PRO-mini. 
 

 

 

2.3.3 Laser Sheet Visualization  

 
The assembly has for objective the experimental analysis of the vortex dynamics and 

validation of the numerical simulations with the help of the visualizations. Figure 

2.11 shows the procedure carried out for the flow visualization. 

 

 

 

 
Figure 2.11 Flow visualization procedure. 

 

 

 

Seeding: 

 
For this study, micro-spherical hollow particles of glass silver plated on the surface, 

with an average diameter of 15 µm and a density of ρ=1.4 g/cm3 are used.  The 
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concentration of the particles in the whole volume of the water tank is 

Vparticle/Vtank=1.905×10-6. These particles have the advantage of having a 

sedimentation test low thus allowing their maintenance in suspension when there is 

no flow.  Moreover, their quasi-spherical form allows an isotropic diffusion of the 

light.  During the exposure time of the apparatus, each tracer describes a motion 

corresponding to the trajectory of the fluid particle which it replaces. 

 
Laser: 

 

The lighting system chosen for this experiment is a continuous laser system with 

argon SPECTRA-PHYSICS of 10 W of maximum capacity. The power can be 

changed by the control panel and during the experiment 1W-3W is used. To obtain 

the laser sheet, two spherical lenses of focal distance 50 mm are followed by cylinder 

lens of focal distance 25 mm and a mirror in order to obtain the direction of the 

luminous plan. This laser plane then is adjusted on the airfoil section perpendicular 

to the flapping motion direction. At the back side of the water tank, a mirror of 

100mm×1500 mm is inserted in order to illuminate the regions of the flow domain in 

the shadow of the airfoil (Figure 2.12). The whole laser system is shown in Figure 

2.13. 

 

 

 

  
a) Without mirror    b) With mirror 

 
Figure 2.12 The experimental visualization with and without mirror in the water 

tank. 
 

 

Shadow of the 
airfoil 
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a) Front view 

 

 
b) Side View  

 
Figure 2.13 Water tank with the whole experimental setup. 
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Camera: 

 

The camera used is a NIKON-MB-21, with model F4S. It allows a broad control 

range (opening, exposure time). It takes the photographs in the 24x36 of format by 

objective AF-MICRO-NIKOR of 60 mm. The films white-blacks used are ILFORD 

HP5+. Of a nominal sensitivity of 400 ASA, developments allow us to obtain a 

sensitivity of about 1600 ASA. The exposure time of 500 ms and F number of 8 are 

chosen after lots of trials for the whole visualization study. The camera is placed 

approximately 50 cm from the water tank perpendicular to the laser sheet. All 

negatives are processed in a dark-room with dark-room equipments. Then, the 

processed negatives are transmitted into the computer by the Nikon Scanner 

CoolScan V5. As a last step, the quality improvements of the images are done with 

Jasc Paint-Shop Pro 8.0 image editor. 

 

In continuation, a digital camera NIKOR-D1 is used with objectives of AF-MICRO-

NIKOR of 50 mm and 105 mm to investigate in more detail the flow topology in 

certain region zooming to a specific region and to investigate also the 3D effects.  

 

Some measurements have been also performed in a water tunnel (with infinite wall 

distance) to see the free surface and wall influence on the experimental results by 

using NIKOR-D1 digital camera. The laser plane is feed from the bottom of the 

water tunnel. It is concluded that there is no wall influence in the water tank. 

 

Definition of the non-dimensional time: 

 

The non-dimensional time is given by t* and defined in Eq.2.55. t*=1 when time is 

equal to one period. 

c
tVt P ⋅

=*              (2.55) 

The velocity VP is the input of the Testpoint program which commands the Nikon F4 

SLR film cameras and it can be calculated as: 

      
T
cVP =                         (2.56) 
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T  is the average period found experimentally by repeating the experiment three 

times with each lasting 12 periods. The measures of the real period are done by the 

use of an oscilloscope (The first two periods are not taken into consideration during 

averaging). Table 2.6 shows the periods calculated during experiment for the cases 

investigated. The difference comes due to the step motors which are not suitable for a 

sudden change from zero velocity to a given value which is the case for the 

kinematics of the flapping motion studied. For some of the cases, the displacements 

of cart are measured with respect to two reference point one at the beginning of the 

movement and one at the end of the motion. Total real displacement is six chords 

(i.e.360mm). It is observed that total displacement error is less than 3 mm. Due to the 

usage of the optocouplers, the angles are corrected at each half cycle so the error of 

the angles is less than ±1°, which is also observed from the protactor glued to the 

pulley of the airfoil. Non-dimensional t* error is less than 1.7%. 

 

 

 

Table 2.6 Experimental periods for Re=1000. 
 

α xv V1 
[m/s]  
air 

V2 
[m/s] 
water 

T1 [sec]  
air 

T2 [sec] 
water 

T [sec] 
(water-
exper.) 

VP [m/s] 
(camera)

45 2c 1.454 0.017 0.098 51.42 50.71 0.012 
45 2.5c 1.454 0.017 0.0904 47.31 46.72 0.013 

 

 

 

The photos are taken with constant increment ∆t* for two main cases xv=2c and 

xv=2.5c with α=45° by use of a Testpoint program. There is a time delay coming 

from the camera itself to start take photos (62 ms). The Testpoint program for Nikon 

F4 is adjusted such that each photo can be taken within the same intervals ∆t* 

(Fig.2.14). 
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Figure 2.14 Automatic photo taken times. A photo is taken each t* value. 

 

 

 

In Figure 2.15, the experimental values of velocity and angular velocity are shown in 

circles which corresponds to the shooting time of the photograph for ∆t*=0.05. The 

times are the values corresponding to given t*= t/Texp. The period of the experimental 

data is obtained by use of an oscilloscope and averaging 12 periods for 4 different 

measurements for α=45°, Re=1000 and xv=2c case. For non-dimensionalization of 

time, Treal is used for numerical part and Texp (experimental period) is used for 

experimental part. Flow at different periods is investigated to see when the flow 

reaches a quasi-steady state between different periods. In numerical calculations the 

results are found to be quasi-steady after 6th period and the computations are carried 

out in 7th period. The photos are taken during the 7th period so the 0 value on time 

axis corresponds to the beginning of this period. The labels near the points 

correspond to the non-dimensional time values. Figure 2.16 and Figure 2.17 show the 

velocity angle of attack distribution for α=45°, Re=1000, xv=2c and α=45°, 

Re=1000, xv=2.5c cases respectively for different xa parameters. 

 

 

 

0 0.05 0.1 

500ms 

t* 

t [ms] 
∆τ0>∆τ ∆τ 

500ms 500ms 

0.15

62ms delay 
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a) Velocity distribution 

 

 
b) Angular velocity distribution 

 
Figure 2.15 Velocity and angular velocity distribution comparison for numerical and 
experimental data.  
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a) Velocity distribution 

 
b) Angle of Attack distribution 

Figure 2.16 Velocity and angle of attack distribution for numerical and experimental 
data for α=45°, Re=1000, xv=2c, for different xa values. The values of the graph 
represent the velocity and angle of attack values at photo taking time. (The photos 
are taken during the 7th period so the 0 value on time axis corresponds to the 
beginning of 7th period.) 
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a) Velocity distribution 

 

 
b) Angle of Attack distribution 

Figure 2.17 Velocity and angle of attack distribution for numerical and experimental 
data for α=45°, Re=1000, xv=2.5c, for different xa values. The values of the graph 
represent the velocity and angle of attack values at photo taking time. (The photos 
are taken during the 7th period so the 0 value on time axis corresponds to the 
beginning of 7th period.) 
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Determination of the Flow Topology: 

 

During the visualizations, the photos are taken with an exposure time of 500ms and 

the displacement of the particles during this time interval draws a part of  trajectory 

giving an idea of the flow topology in the inertial reference frame for this specific 

experimental visualization. The flow topology and the trajectories are investigated 

during a whole period of the flapping motion. 

 

Pathline, streamline, streakline and timeline definitions are illustrated in Figure 2.18 

Pathline is the path of a particle P over a period of time. It is a long-term exposure of 

a tracer particle released into the flow field (Lagrange method). A streamline is a 

smoothly curved line that exists at an instantaneous time, along which the tangent at 

an arbitrary point coincides with the vector of a particle placed there, i.e., the local 

flow direction. Streamline give the flow directions of various particles at a particular 

time. It is the path through the vector field that is tangent to the vectors throughout 

(Euler method). Streakline is the connection of all particles passing through some 

point Q (such as a source). It is a simultaneous position of a set of particles released 

continuously from one or more sources. A streakline is a time-varying curved line 

(the smoothness depends on the particle release interval) connecting some particles 

successively released from a fixed position to reveal the change of the flow direction 

over time. Timeline is the connection of various particles at time t after injection 

from the source. It is the instant position of a batch of particles released 

simultaneously. 
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Figure 2.18 Pathline, streamline, streakline and timeline definitions (from Ref. [60]). 
 

 

 

Flow features may be extracted and briefly represented in terms of topology while 

the complete flow pattern is inferred from oriented streamlines connecting various 

kinds of critical points and separatrices. Critical points are those points at which the 

vector magnitude vanishes (Figure 2.19).  

 
 

 

 
Attachment node Detachment node 

 
         Saddle Point             Focus                      Center  

 
Figure 2.19 Singularities in the flow topology (from Ref. [61]). 

 
Particle path over time 

a) pathline 

 
Tangent path through the vector field 

b) streamline 

 
 
Particles released from fixed point 

c) streakline 

 
Particles released simultaneously at a 
time instant 

d) timeline 



58 

2.3.4 Particle Image Velocimetry (PIV) 

 

Particle Image Velocimetry (PIV) is a quantitative method for measuring the 

instantaneous velocity fields. It is based on the measurement of the displacement of 

group of particles between two frames. The procedure is summarized in Figure 2.20.  

Acquisition corresponds to the experimental visualization including the particle 

seeding, illumination with laser, imaging with CCD cameras and registration of the 

pictures to the buffer of the computer. Then pixelization and interrogation 

corresponds to the PIV processing of the double frames obtained from acquisition to 

obtain a unique velocity field.  

 

 

 

 
Figure 2.20 Partice Image Velocimetry (PIV) procedure.  

 

 

 

Seeding: 

 

The same particles as the flow visualization are used with same concentration of the 

particles in the whole volume of the water tank being 1.905×10-6. For the evaluation 

of the particle images it is assumed that the tracers follow the flow into the local flow 

velocity between the two illuminations (Figure 2.21).  
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Figure 2.21 Schematic representation of the experimental setup for PIV 

measurements. 
 

 

 

Laser: 

 

A check for the light sheet is done to be sure to position it vertically and also at the 

mid location of the working airfoil section. Laser used is 30mJ pulsed Quantel Twin 

Ultra Nd:YAG laser. To obtain the laser sheet, a spherical lens followed by a 

cylinder lens is used. A mirror of 4 cm is located at the bottom center of the water 

tank (Figure 2.21). The mirror is inserted in order to spread the light of the laser to 

the whole flow domain as wide as possible and to limit the shadow generated by the 

model. The experimental setup and the pulsed laser are shown in Figure 2.21 and 

2.22. 
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a) Side View 

   
b) Front view 

Figure 2.22 Experimental set-up for PIV measurements. 

PIV  
Nd : YAG 

2 CCD 
CAMERAS mirror 

CCD CAMERA 1 

PIV  
Nd : YAG  

Airfoil 
 (NACA 0012) 

CCD CAMERA 2
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Camera: 

 

Two intensified CCD cameras with 60 mm objectives are used in order to observe 

the entire flow domain with total displacement of 6c length. Each time, each camera 

takes two photos. The time is 81300 µs which corresponds to the separation between 

the two laser flashes to have a displacement of 8 pixel. The F numbers of both 

cameras are adjusted to 1.8. 

 

The first image that has recorded the 1st laser pulse is moved very quickly to a non-

light-sensitive storage area on the CCD. This process is called frame transfer. 

 

The two CCD camera viewing direction is perpendicular to the light sheet. Camera 

scaling is performed for all of the pictures before post-processing. The distance of 

the cameras to the water tank is approximately 1.20m. The image magnifications for 

both cameras are shown in Table 2.7. 

 

 

 

Table 2.7 Image magnification of two CCD cameras. 
 

 Image magnification 
Camera 1 0.038 
Camera 2 0.0383 

 
 

 

Registration and Sampling: 

 

The non-dimensional time definition is the same as the laser visualization t*=t/T. The 

evaluation of the particle images depends on the way these images have been 

recorded by the used camera. The scattered light from the first illumination is 

recorded in one frame and the scattered light from the second illumination in another 

frame. This is called double frame / double exposure. The trigger of the acquisition 

of each image is done by an external event. The trigger time is send via the new 
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program developed in fortran, Testpoint and ADBasic. For every image acquisition 

one external trigger signal is needed (Figure 2.23). At each ∆t*, the external trigger 

sends a signal of 5V to the cameras so that the first picture is taken at this time. The 

second frame of the picture is taken 81300µs later. The time interval ∆t*=0.0125 is 

chosen for external trigger time of the images which makes 80 double frames per 

period for each camera. 

 

 

 

 
Figure 2.23 Timing for double frame cameras.  

 

 

 

No pre-processing has been done to the PIV images since after first trials it is found 

that the shadow of the airfoil and the background does not influence so much the 

velocity vectors and the pictures are relatively good.  
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Correlation: 

 

The main objective of the image interrogation or statistical evaluation of PIV 

recordings is to determine the displacement between two patterns of particle images. 

The input signal consists of two frames (upper and lower part). The upper part of the 

image contains the first exposure. The lower part contains the second exposure. The 

PIV recordings are divided in small sub-areas (interrogation windows). The local 

displacement vector for the images of the first and second illumination is determined 

for each interrogation area by means of cross-correlation via a 2D FFT calculation 

(Figure 2.24). Essentially the cross correlation function statistically measures the 

degree of match between the two samples. The highest value in the correlation plane 

can then be used as a direct estimate of the particle image displacement. For good 

results the number of particles within one interrogation cell should be at least ten. 

 

 

 

 
Figure 2.24 Double frame/double exposure and cross correlation. 
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The cross-correlation function is defined as: 

( ) ( )∫ ∫
∞

∞−

∞

∞−
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Since the images recorded are digitalized and are not continuous the integration 

become summation over the discrete samples with an image size of (M, N) 
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m, n can be positive of negative indicating shifts with respect to sampling location. 

FFT based correlation function is used for the PIV measurements with no zero-

padding since it is quicker compared to the equation (2.58). 
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where I1and I2 are the image intensity of the first and second interrogation window 

and the 2D-array C gives the correlation strength for all integer displacements 

(dx,dy) between the two interrogation windows, while n is the size of the 

interrogation window and usually also the size of the correlation plane, i.e. ±n/2 is 

the maximum displacement computed. 

 

This function is the standard cyclic FFT-based algorithm that calculates a cyclic 

correlation of the interrogation window which is similar but not exactly the same as 

the mathematical true correlation as given by the above equation. ‘Cyclic’ means that 

the correlation is computed as if the two interrogation windows of size n×n are 

repeated again in 2D-space and on this pattern the true correlation is computed. 

Mathematically from the two n×n interrogation windows the complex 2D-FFT is 

calculated, they are multiplied complex conjugated, and the inverse FFT is 

computed, which yields the cyclic correlation function. 

 

For this study, the Adaptive multi-pass with decreasingly smaller sizes with an initial 

interrogation window size of 64 ×64 pixels and final interrogation window size of 32 
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× 32 pixels each with two iterations with a 50% overlap of the final window option is 

used. The evaluation starts in the first pass with the initial interrogation window size 

and calculates a reference vector field. In the next pass the window size is half the 

previous size and the vector calculated in the first pass is used as a best-choice 

window shift for the second pass. In this manner the window shift is adaptively 

improved to compute the vectors in the following steps more accurately and more 

reliably as this ensures the same particles are correlated with each other even if you 

use small interrogation windows as less particles move inside or outside the 

interrogation window. 

 
 
Deformation of the grid domain: 

 

As a velocity region with a vortex is present, the cells of grid domain are deformed 

by considering the velocity directions of each node of the cell (Figure 2.25). The 

effect of the deformed interrogation window is a better signal to noise ratio of the 

correlation function, and increases the accuracy of the velocity measurements. 

 

 

 

 
Figure 2.25 Interrogation window deformation. 
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Second order difference: 

 

Each interrogation window is shifted by the half of the velocity vector (du/2, dv/2) 

calculated in a previous iteration so that the location of the interrogation window in 

the second frame is shifted by (du/dv) with respect to the interrogation window in the 

first frame. The vector computed this way represents an average vector at a time 

something like dt/2 in the middle between the laser pulses. This ensures a second 

order interpolation. The time values represented for all PIV measurements in this 

study correspond to the middle of the two frame times.  
 

 

 

 

 
Figure 2.26 Velocity vector located at the center of the interrogation window 

(second order interpolation). 
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Validation of the velocities: 

 

During processing the values Q>1.3 removed (Eq. 2.60). Also a median filter, an 

interpolation to fill the empty spaces which are removed and fill-up all options are 

used.  The peak ratio factor Q is defined as: 

 

1
min2
min1

>
−
−

=
P
PQ              (2.60) 

where min is the lowest value of the correlation plane and P1 and P2 are the peak 

heights of the first and second highest correlation peak. 

  

The empty spaces due to the Q>1.3 criteria is 1% of the all vectors which is a very 

low ratio. So the three filters applied namely medial filter, fill-up empty spaces 

interpolation and fill-up all options do not influence at all the results.  

 

The median filter computes a median vector from the 8 neighboring vectors and 

compares the middle vector with this median vector ± deviation of the neighboring 

vectors (RMS value of the neighboring vectors). The center vector is rejected when it 

is outside the allowed range of the average vector ± deviation of the neighbor 

vectors. Once the bad vectors are removed the left over empty spaces can be filled up 

with the interpolated vectors. 

 

The photos obtained from two CCD cameras are put together in Tecplot to form a 

single domain (Figure 2.27). Then a rectangular grid domain is formed for each time 

step over this domain. The rectangular grid is adjusted to have the closest grid 

domain as the original images obtained from the cameras. Velocity at each airfoil 

position corresponding to each time step is calculated and imported to the top of the 

PIV vector domain. All the PIV domain and airfoil boundary velocities are 

interpolated by kriging on to the rectangular domain. The airfoil point by point 

velocity is also implemented in order to enforce the streamlines coming parallel to 

the airfoil boundary during the whole period at each time step.  
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Kriging is a spatial interpolation technique that assumes that the spatial variation of 

an attribute may consist of three components: a spatially correlated component, 

representing the variation of the regionalized variable; a ‘drift’ or structure, 

representing a trend; and a random error term. Linear drift is used for the 

calculations. A semivariogram is a function that determines the relationship between 

distance and the variance of the data. For each variable selected to krig, the variance 

σ2   is calculated across all source zones. Then, Tecplot calculates the box that will 

hold the entire source by finding a minimum and maximum x, y.  Using this box, the 

length of the diagonal across the box, L, is determined. 

 

The semivariogram model used by Tecplot is given in Equation 2.61. 

 

   γ(h)  = 0.5 * σ2 * h/a * ( 3 - (h/a)2 )  for h < a           (2.61) 

           = σ2      for h >= a  

 

where a = L * range_fraction_entered_in_kriging_dialog (=0.3L) is the actual range 

and h is the distance between points. 

 

 

 

 
Figure 2.27 Kriging for PIV measurements. 
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Estimation of the PIV accuracy: 

 

Accuracy of the images are relative to the lots of parameters such as the 

perpendicularity of the cameras, scale factor, processing algorithm, particle 

size…which are very difficult to evaluate. One of the ways of trying to calculate the 

accuracy of the images is to translate one of the pictures of the measurement in very 

small pixels and to compare the calculated and translated values. The PIV image 

selected takes into account all the imperfections. The image is translated in both x 

and y directions with the very small displacements of ∆x=0.05 px and ∆y=0.05 px 

until a total displacement of x=1 px, y=1 px. (i.e, first photo is translated with a 

displacement of x=0.05px, y=0.05px; second photo is translated with a displacement 

of x=0.1 px, y=0.1 px; …). The cross-correlation of each displaced photos with the 

original photo is performed one by one. The velocities are calculated only in the 

rectangular region selected shown in Figure 2.28. Total number of vectors in the 

rectangular region is 1476.  

 

 

 
Figure 2.28 The original photo which is correlated with the displaced photos.  
Each photo is translated with a displacement of ∆x=0.05 px and ∆y=0.05 px.  

(The displacements x and y are exaggerated in the figure for visualization purpose).  



70 

The mean and rms values of the displacement vectors in x direction, in y direction 

are computed in pixels and given in Figure 2.29. Both the average values and the 

RMS values in Figure 2.29 are non-diminsionalized with respect to the real 

displacements x and y. It is found that the translation imposed to the images and the 

displacements calculated are very close (Fig.2.29a). The maximum RMS value is 

less than 0.011 px.  

 

 

 

 
a) Non-dimensional average velocities in x and y directions 

 
b) Non-dimensional RMS values of the Vx and Vy 

Figure 2.29 Average velocities and root mean squares for different translational 
displacements. 
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The velocity field computation could have a bias toward integer velocity values, 

which is called peak locking effect and this could be checked by the probability 

density function (PDF).  PDF computes a histogram of a vector field where the x and 

y components of the velocity vectors are separated in certain velocity intervals 

(Figure 2.30). Peak locking can occur when the used seeding particles are too small 

and produce particle images on the CCD of less than one pixel in diameter. It is 

concluded that there is no peak locking at the images of the PIV measurements 

performed. 

 

 

 

 
a) PDF of the velocities for 1st photo 

 
b) PDF of velocities for 11th photo 

 
c) PDF of velocities for 20th photo 

Figure 2.30 Probability density function for different PIV images. 
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The experimental conditions for PIV measurements are summarized in Table 2.8. 

 

 

 

Table 2.8 Overview of PIV measurements. 

 

Airfoil type NACA 0012 
 chord c=6cm 
Flow fluid water 
 Reynolds number range 1000 
 Temperature 18.3°C 
Motion Period 51.4195s 
 Visualization period [ ]7,6*∈t  
 Parameters α =45°, xv=2c, xa=2c 
 Max. translational 

velocity 
1.666cm/s 

 Max. Angular velocity 0.2778 rad/s 
Seeding type micro-spherical hallow particles of glass silver 
 Concentration 1.905×10-6 
 diameter 15µm 
Laser type Nd:YAG 
 Maximum power 30mJ/puls 
Recording Camera type CCD LaVision intense 
 Number of camera 2 
 Viewing angles  90° 
 Lens focal length 60 mm 
 F number 1.8 
 Frame rate 10 Hz 
 Dynamic Range 12 bit 
 ∆t* 0.0125 (80 photo/period) 
 resolution 1374 px × 1040 px 
 Image magnification 0.038 
 Exposure delay time 81300µs 
 Max.particle 

displacement 
8 px 

 synchronization Via Testpoint and ADBasic 
Interrogation method Double Frame/Double Exposure & Cross 

Correlation 
 resolution Adaptive multi-pass with decreasingly smaller 

sizes  
initial interrogation window :64 ×64 pixels 
final interrogation window :32 × 32 pixels each 
with two iterations with a 50% overlap of the 
final window 
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CHAPTER 3 
 

 

NUMERICAL STUDY FOR THE INFLUENCE OF DIFFERENT 

PARAMETERS 

 

 

3.1 Configurations 

 

The aim of this study is to analyze the influence of the different parameters to 

aerodynamic forces and to find optimum parameters for flapping motion studied 

which generate maximum force, by using numerical methods. A great number of 

cases are investigated involving the changes in the parameters such as angle of 

attack, location of start of change of incidence, location of start of change of velocity, 

axis of rotation, and Re number. In addition to the instantaneous aerodynamic forces, 

pressure distributions and vorticity contours, the average lift and drag coefficient 

values are also calculated. 

 

In the calculations, air is used as the fluid, and constants used in the calculations are 

given in Table 3.1. Cases investigated for parametrical study are tabulated in Table 

3.2 which makes approximately 216 cases. Each run is performed in three steps (i.e., 

two restart has been done) to get the entire calculation domain in the 7th period. The 

Table 3.3 shows the period and the maximum velocity during translational phase of 

the motion for the parametrical studies carried out for different Re numbers. The 

Reynolds number is based on the maximum velocity and the chord length. The 

quarter period is prescribed directly by defining the time tv, displacement xv, 

translational velocity Vo and maximum amplitude xT/4.  

 

( ) vvT
o

txx
V

T
+−

⋅
= 4/24

π                (3.1) 
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Table 3.1 Constants used in the numerical calculations. 
 

 Air Water (for experiment) 
µ [kg/m.s] 0.00001781 0.001 

ρ [kg/m3] 1.225 1000 

ν [m2/s] 1.454*10-5 10-6 

c[m] (chord) 0.01 0.06 

a (rotation center) ¼  or ½ or ¾ ¼  

 

 

 

Table 3.2 The matrix of the parameter study. 
 

 Center of rotation, a 

 ¼c ½c ¾c 

Re 500, 1000, 2000 500, 1000, 2000 500, 1000, 2000 

xv 2c, 2.5c 2c 2c 

xa 1c, 1.5c, 2c, 2.5c 1c, 1.5c, 2c, 2.5c 1c, 1.5c, 2c, 2.5c 

α 
5°, 10°, 15°, 30°, 

45°, 60° 
5°, 30°, 45°, 60° 5°, 30°, 45°, 60° 

 
 
 
 

Table 3.3 Case studies (results for configurations in air). 
 

 Re Vo[m/s] T [sec] 
500 0.727 0.1965 

1000 1.454 0.098 
xT/4=3c 

xv=2c 
2000 2.908 0.049 

500 0.727 0.180 

1000 1.454 0.090 
xT/4=3c 

xv=2.5c 
2000 2.908 0.045 
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Fig. 3.1 shows the x position, velocity, angle of attack and angular velocity of the 

airfoil at the center of rotation. 

 

 

 

 

 
a) Translational displacement 

 
b) Velocity 

Figure 3.1 Kinematics of the flapping motion. 
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c)  Angle of Attack 

 

 
d) Angular Velocity 

 
Figure 3.1 (continued) Kinematics of the flapping motion. 

 

 

 

Table 3.4 shows the maximum angular velocity during the flapping motion of the 

studied cases. The maximum frequency and angular velocities for some cases studied 

are also given in the same table. 
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Table 3.4 Some specifications of the case studies for Re=1000, xT/4=3c. (The table is 

applicable for all three center of rotations a= ¼c , ½c and ¾c)  
 

α xv xa Vo[m/s] T [s] T/4 [s] tv=xv/Vo 
[s] 

ta[sec] Max. 
ω[rad/s] 

Frequency
f=ω/2π 

[Hz] 
1c 1.454 0.098 0.025 0.014 0.0069 167.8 26.71 

1.5c     0.0103 208.3 33.15 
2c     0.0138 274.6 43.71 

2c 

2.5c     0.0172 402.9 64.12 
1c 1.454 0.090 0.023 0.017 0.0069 188.8 30.04 

1.5c     0.0103 241.6 38.45 
2c     0.0138 335.6 53.41 

5 

2.5c 

2.5c     0.0172 549.2 87.41 
1c 1.454 0.098 0.025 0.014 0.0069 118.4 18.85 

1.5c     0.0103 147.0 23.40 
2c     0.0138 193.9 30.85 

2c 

2.5c     0.0172 284.4 45.26 
1c 1.454 0.090 0.023 0.017 0.0069 133.2 21.21 

1.5c     0.0103 170.5 27.14 
2c     0.0138 236.9 37.70 

30 

2.5c 

2.5c     0.0172 387.7 61.70 
1c 1.454 0.098 0.025 0.014 0.0069 88.8 14.14 

1.5c     0.0103 110.3 17.55 
2c     0.0138 145.4 23.14 

2c 

2.5c     0.0172 213.3 33.94 
1c 1.454 0.090 0.023 0.017 0.0069 99.3 15.90 

1.5c     0.0103 127.9 20.36 
2c     0.0138 177.7 28.28 

45 

2.5c 

2.5c     0.0172 290.8 46.28 
1c 1.454 0.098 0.025 0.014 0.0069 59.2 9.43 

1.5c     0.0103 73.5 11.70 
2c     0.0138 96.9 15.43 

2c 

2.5c     0.0172 142.2 22.63 
1c 1.454 0.090 0.023 0.017 0.0069 66.6 10.60 

1.5c     0.0103 85.3 13.57 
2c     0.0138 118.4 18.85 

60 

2.5c 

2.5c     0.0172 193.9 30.85 
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3.2 Effects of Starting Angle of Attack α and Start of Change of Incidence 

Position xa 

 

Figure 3.2 shows the values of the lift and drag coefficients for 5° starting angle of 

attack case where the rotation is at quarter chord location. This case is particularly 

used for comparison of analytical model where small angle of attack assumption is 

applied and has no other practical interest because of the low value of the mean lift 

generated. 

 

 

 
      

 
a) Lift coefficient 

 
 

b) Drag coefficient 
 

Figure 3.2 Lift and drag coefficients for α=5°, xv=2c, Re=1000 at 1/4c rotation at 7th 
period. 
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The lift and drag coefficients for 30° angle of attack are compared for different xa 

locations having xv=2c with a Re=1000 (Figure 3.3). As the angle of attack increases 

to 30°, the negative lift values disappear and during the whole motion, positive lift 

values are obtained.  

 

 

 

 
      

 
a) Lift coefficient 

 
 

b) Drag coefficient 
 

 
Figure 3.3 Lift and drag coefficients for α=30°, xv=2c, Re=1000 at 1/4c rotation at 
7th period. 
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Same comparison is done for 45° and 60° starting angle of attack in Fig.3.4 and 

Fig.3.5 respectively. It is observed that as the starting angle of attack increases the 

drag coefficient increases as well. Also, with further increase of the angle of attack 

from 30°, the start of half-stroke locations gives a second positive peak lift values. 

The peak value gets bigger as the angle of attack increases to 60°.  

 

 

 

 
 

 
a) Lift coefficient 

 

 
b) Drag coefficient 

 
Figure 3.4 Lift and drag coefficients for α=45°, xv=2c, Re=1000 at 1/4c rotation at 
7th period. 
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a) Lift coefficient 

 

 
b) Drag coefficient 

 
Figure 3.5 Lift and drag coefficients for α=60°, xv=2c, Re=1000 at 1/4c rotation at 
7th period. 
 

 

 

As the angle of attack increase, the first peak value at the end of the first region for 

lift coefficients decreases but the second peak value at the beginning of the 2nd region 

increases. At 5° angle of attack, this second peak is negative but at 30° we obtain a 

positive value and this become to be a peak at 45° and 60° angle of attacks. As xa 

increase, these peaks approaches to the times corresponding to T/4 and 3T/4 , where 

the velocity is zero and the airfoil is at 90° angle of attack at  x=xmax.  
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For normal hovering, where the strokes are symmetrical, the wing strokes produce 

two periodic pressure pulses and these symmetric pulses are observable for all cases 

studied. The vortex attached to the airfoil’s leading edge increases the production of 

lift during the translational phase of the motion. When the angle of attack is very 

small in translational phase as in 5°,  negative lift peak values are obtained at the 

beginning of a half-stroke and a positive peak value at the end of the half-stroke 

(both for upstroke and downstroke).  

 

For 5° angle of attack cases (Figure 3.2), it is observed that the lift distribution is 

variable especially during the rotational phase so this is the influence of the angular 

velocity change for this angle of attack regime. However, it is observed that for 60° 

angle of attack cases (Figure 3.5), the different xa parameters do not influence the lift 

coefficient distribution. This comes from the fact that, for 60° angle of attack there is 

small angular velocity changes in order to reach 90° angle of attack at the end of the 

stroke. 

 

For 5° angle of attack, it is also observed that the rotational phase and translational 

phase are two different phases. They do not influence each other in terms of the 

aerodynamic force coefficients. They are separate phenomena. During translational 

phase the Wagner function, step response on a 2-D wing in incompressible flow 

resulted from the impulsively changing velocity, is highly visible in an increasing 

manner. As the rotation starts, a peak is generated in lift and drag coefficient 

distributions (Figure 3.2). However as the starting angle of attack increases to 30°, 

45° and 60°, it is considered that the rotational phase and translational phase cannot 

be investigated separately, one influence the other one  considerably. The widths of 

the peaks widen up towards the translational region in view of the lift and drag 

coefficient distributions.  
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Vorticity contours with velocity vectors are drawn approximately at quarter period of 

7th stroke for 30° starting angle of attack in Fig.3.6 for different xa locations. For this 

case the starting location of velocity change is at xv=2c. For xa=2.5c where the 

rotational motion starts at 2.5c distance from the origin, at this time minimum CL 

value is obtained in the whole stoke, however for xa locations corresponding to 1c, 

1.5c and 2c a negative value of lift coefficient is observed. Same contours are shown 

for half period of 7th stroke of the flapping motion in Fig.3.7 for different starting 

angle of attacks.  For small angles of attack, the trace of the vortices generated in the 

previous stroke is very small and the airfoil is entered to a weak, approximately zero 

velocity vector field. However, as the starting angle of attack increases, the induced 

velocity region due to these vorticities become more important  and stronger so the 

profile pass through  a highly induced velocity region.  As a result, for 30° and 45° 

starting angle of attacks, the lift coefficients, as well as, the CD values increase 

compared to the small angle of attack cases. As the angle increase to 60°, a decrease 

of lift is observed due to clockwise vorticity region (blue trace in Fig.3.7) remained 

from the previous stroke. The influence of this clockwise vorticity starts at 45°. In 

the vorticity contours, warm tones (reds) correspond to counter-clockwise vorticity 

and cool tones (blues) correspond to clockwise vorticity. 

 

 

 

a) xa=1c b) xa=1.5c 

c) xa=2c d) xa=2.5c 

vorticity 

 

 
Figure 3.6 Vorticity contours with velocity vectors for α=30°, xv=2c, Re=1000 at 
1/4c rotation during 7th stroke at the end of 1st region; t=0.614532s (at approximately 
quarter period, x≈-xT/4). 
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a) α=5° 

 
b) α=30° 

 
c) α=45° 

 
d) α=60° 

vorticity 

 

 
Figure 3.7 Vorticity contours with velocity vectors for different angle of attack (α) 
values, xv=2c, xa=2c, Re=1000 at 1/4c rotation during 7th stroke at the end of 2nd 
region, t=0.639089s (at approximately half period, x≈0). 
 

 

 

It is also observed from Fig.3.2 that the sign of the drag coefficient does not oppose 

the motion direction only for xa=2.5c where the rotational motion starts after the 

change of velocity position (i.e. xa>xv). 

 

The definition of thrust is a bit confusing in this case, since if we are defining thrust 

relative to the motion of the wings, we can say that only for 5° angle of attack values, 

we obtained some thrust data (Fig.3.2) at the beginning of the upstroke. For this 

definition, the drag is the force opposing to the airfoil motion and thrust is the force 

in the direction of motion. So during the downstroke negative CD means thrust and 

during upstroke positive CD means thrust. But if we define the thrust relative to the 

body of the insect/bird in hover, the thrust can also be defined as the force directing 

the front of the body. In this case, during both downstroke and upstroke positive CD 

corresponds to thrust.  
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In Figure 3.8, the lift coefficients are demonstrated for same xa locations having 

different angles of attack. It is obvious that as the starting angle of attack gets bigger, 

the negative lift region disappears. The lift peaks start just at time ta, where the 

angular change occurs. At the end of 1st and 3rd regions, the amplitude of these peaks 

increase as the α value decreases since the airfoil must reach 90° at the end of the 

stroke in the same time interval. So big angular velocities result high peaks in lift 

coefficients.  

 

 

 

  
a) xa=1.0c 

 
 b) xa=1.5c 

 
Figure 3.8 Lift coefficients for different α at Re=1000, 1/4c rotation during 7th 
stroke (each graph represent different xa locations). 
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c) xa=2c 

 
d) xa=2.5c 

 
Figure 3.8 (continued) Lift coefficients for different α at Re=1000, 1/4c rotation 
during 7th stroke (each graph represent different xa locations). 

 
 

 
 

 
At the beginning of 2nd ad 4th regions, there exists a negative peak of lift coefficient 

for α=5° case. As the angle of attack increases to 30°, this peak disappears and with 

more increase of α, it transforms to a positive peak of lift coefficient. It is observed 

that for 60° angle of attack, although the maximum lift coefficient value is bigger 

than all other cases, in translational region the lift coefficient value drops abruptly.  
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The width of the peaks occurring in lift coefficient decreases also as xa value 

increases, and they become sharper in amplitude at the end of 1st and 3rd regions. But 

the width of the peaks forming at the beginning of 2nd and 4th regions for lift 

coefficient data is increasing for the same decrease of xa value. For 60° angle of 

attack, the peak for lift coefficient at the end of 1st region in relatively small and 

change of xa does not influence so much. For other α values, as the xa location 

increases, the peak value shifts toward the quarter-period location. Fig.3.9 shows the 

drag coefficients for same configurations as Fig.3.8. 

 
 
 

 

 
a) xa=1c 

 
b) xa=1.5c 

 
Figure 3.9 Drag coefficients for different α at Re=1000, 1/4c rotation during 7th 
stroke (each graph represent different xa locations). 
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c) xa=2c 

 
d) xa=2.5c 

 
Figure 3.9 (continued) Drag coefficients for different α at Re=1000, 1/4c rotation 
during 7th stroke (each graph represent different xa locations). 
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Figure 3.10 shows vorticity distribution with velocity vectors. Different time instants 

are represented for xa=1c (A), xa=1.5c (B), xa=2c (C), xa=2.5c (D). It is observed 

that, as the xa location increase, the cores of the translational vortices are located 

toward upwards (Fig.3.10a). The angle between the core of the counter rotating 

vortices are also shifting from the vertical axis as xa increases. The trace of the 

translational vortex from the previous stroke disappears more as the rotation of the 

airfoil is done quicker, more distinguishable in Figure 3.10f.  

 
 
 
 

   

  
a) t=0.5924s 

   

  
b) t=0.6023s 

 
Figure 3.10 Vorticity contours with velocity vectors for α=30°, xv=2c, Re=1000 
with rotation axis at ¼c during 7th stroke. A) xa=1c, B) xa=1.5c, C) xa=2c, D) xa=2.5c 
[Vorticity contours have the same scale as Fig.3.6 or 3.7] 
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c) t=0.6145s 

   

  
d) t=0.6268s 

   

  
e) t=0.6391s 

   

  
  f) t=0.6514s 
Figure 3.10 (continued) Vorticity contours with velocity vectors for α=30°, xv=2c, 
Re=1000 with rotation axis at ¼c during 7th stroke. A) xa=1c, B) xa=1.5c, C) xa=2c, 
D) xa=2.5c [Vorticity contours have the same scale as Fig.3.6 or 3.7] 
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  g) t=0.6636s 

   

  
h) t=0.6759s 

Figure 3.10 (continued) Vorticity contours with velocity vectors for α=30°, xv=2c, 
Re=1000 with rotation axis at ¼c during 7th stroke. A) xa=1c, B) xa=1.5c, C) xa=2c, 
D) xa=2.5c [Vorticity contours have the same scale as Fig.3.6 or 3.7] 
 
 
 
 

Table 3.5 shows maximum force coefficients (lift, drag and normal force 

coefficients) in comparison with the maximum angular velocity values during the 

flapping motion of the corresponding case. The 16 case shown are also represented 

in Figure 3.11. For a fixed angle of attack case, it is obvious that for all of the cases 

studied maximum lift occurs when the maximum angular velocity is highest. For 5° 

angle of attack case, the increasing behavior of the maximum angular velocity is 

exactly observable on the aerodynamic force coefficients, which validate the fact that 

for 5° angle of attack the rotational and translational phase does not influence each 

other. For the other angle of attacks, although the maximum angular velocity at 

xa=1.5c is bigger than the xa=1c case, there is a decrease of the aerodynamic force 

coefficients. Same decrease also continue for xa=2c. At xa=2.5c, the angular velocity 

become more important as in the case of 5° angle of attack. There is an increase of 

lift and drag coefficients for all of the xa=2.5c cases.  

A 

C 

B

D

A 

C 
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Table 3.5 Maximum lift and drag coefficients and the maximum angular velocity 
values corresponding to different  angles of attack for Re=1000, xv=2c. 
 

Case α xv xa Max. 
ω[rad/s] 

CL MAX CD MAX CN MAX 

1 1c 167.7979 2.67891 1.72444 3.0641 
2 1.5c 208.3132 2.73298 1.81429 3.12447 
3 2c 274.6213 3.10807 2.40271 3.64208 
4 

5 2c 

2.5c 402.8536 4.73188 5.07541 6.06383 
5 1c 118.4456 2.03744 2.01151 2.78457 
6 1.5c 147.0446 1.81121 1.71208 2.42593 
7 2c 193.8503 1.61307 1.63792 2.22139 
8 

30 2c 

2.5c 284.3672 1.91435 2.55142 3.00906 
9 1c 88.8342 1.76451 3.29291 3.69017 

10 1.5c 110.2834 1.50634 2.45035 2.83103 
11 2c 145.3878 1.57313 1.79558 2.31802 
12 

45 2c 

2.5c 213.2754 1.86831 1.75627 2.48647 
13 1c 59.2228 1.88982 3.9588 4.3682 
14 1.5c 73.5223 1.50634 2.45035 2.83103 
15 2c 96.9252 2.04132 3.78376 4.29013 
16 

60 2c 

2.5c 142.1836 2.29159 4.07758 4.67711 
 
 
 
 
 

 

 
Figure 3.11 Maximum force coefficients and angular velocity of the airfoil during 

the flapping motion. 
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3.3 Effects of the Translational Acceleration/Deceleration Position xv  

 

In addition to the position of the angle of attack change (xa), the position of the 

velocity decrease/increase (xv) is also investigated as a parameter. From Figure 3.12 

to Figure 3.15, the lift and drag coefficients for different xa locations are shown for 

comparison of xv=2c and xv=2.5c cases.  

 

 
 

 

 

 
Figure 3.12 Lift and drag coefficients comparing different xv locations for α=45°, 
Re=1000, 1/4c rotation during 7th stroke for xa=1c.  
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The gray regions in the Figures 3.12 to 3.15 correspond to the quarter period of the 

xv=2.5c cases and the vertical dashed lines correspond to the quarter-periods of 

xv=2c cases. The diamond signs on the x-axis are the positions of the time tv location 

for cases xv=2c (black) and xv=2.5c (white). As the xv location gets closer to the 

maximum amplitude location (end of the stroke), for the same Reynolds number, the 

period gets smaller in order to obtain same velocity at the end of 

acceleration/deceleration region. 

 

 
 

 

     
      

Figure 3.13 Lift and drag coefficients comparing different xv locations for α=45°, 
Re=1000, 1/4c rotation during 7th stroke for xa=1.5c.  
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The first observation is that the peak values for lift and drag coefficients are bigger as 

the velocity deceleration/acceleration is done close to the end of the stroke. However, 

when xa increase, the maximum lift coefficient for xv=2.5c decreases and tends 

towards the xv=2c case.  

 

 
 
 

       

      
 

 
Figure 3.14 Lift and drag coefficients comparing different xv locations for α=45°, 
Re=1000, 1/4c rotation during 7th stroke for xa=2c.  
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At the beginning of translation, there is a sudden decrease of CL for slow rotational 

velocities (Fig.3.12) but the decrease of the lift coefficient values is gradual for high 

angular velocities expending to a bigger time interval (Fig.3.15). The peak observed 

in drag coefficient value where the angular displacement is slow (Fig.3.12) is due to 

the circulation effect. This is a drag due to an airfoil in translation with a constant 

velocity by changing its angle of attack. In the mean time, the drag coefficient for 

Figure 3.15, where the angle of attack is changing very quickly, the drag can be 

explained as the drag due to the inertia of the fluid. 

 

 

 

 

     
 

Figure 3.15 Lift and drag coefficients comparing different xv locations for α=45°, 
Re=1000, 1/4c rotation during 7th stroke for xa=2.5c. 
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3.4 Effects of the Position of Axis of Rotation 

 

Three different axis of rotation positions are investigated namely ¼, ½ and ¾ chord 

locations. At ½ chord rotation, two positive peak values are observed at the 

beginning and at the end of each stroke (Fig. 3.17). For ¼ chord position (Fig.3.16), 

this lift peak is at the end of a stroke and for the ¾ c position (Fig.3.18), it is at the 

beginning of the stroke. For this last case, at the end of the stroke a negative peak 

forms. On Figures 3.16 to 3.18 in addition to the axis of rotation change, different 

position of change of angular displacement, xa are also demonstrated to show their 

influence on aerodynamic force coefficients for a constant xv=2c parameter.  

 

 

 
 

 

 
 

 
Figure 3.16 Lift and drag coefficients for α=30°, xv=2c, Re=1000 with an axis of 

rotation at a=¼c during 7th stroke. 
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Figure 3.17 Lift and drag coefficients for α=30°, xv=2c, Re=1000 with an axis of 

rotation at a= ½ c during 7th stroke. 
 
 
 
 

The drag coefficient values for three axis of rotation during the translational phase 

are almost constant for ¼ c and ½ c cases but there is a visible slope (increasing or 

decreasing according to the period) for ¾ c axis of rotation. Always positive values 

for lift coefficient obtained for ¼ c and ½ c is not observed for ¾ c case during whole 

period. Especially for xa=2.5c in Figure 3.18, highly big negative values for lift 

coefficient are obtained. 
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Figure 3.18 Lift and drag coefficients for α=30°, xv=2c, Re=1000 with an axis of 

rotation at a= ¾ c during 7th stroke. 
 

 

Figure 3.19 show the vorticity contours with velocity vectors for ¼ c, ½c and ¾c 

position of rotation axis during the 7th stroke. For 30° case, the symmetry of the 

aerodynamic forces is obtained for all of the cases studied so the half of the motion is 

represented in Figure 3.19. The induced velocity at the leading edge for ½ c is more 

important than the case of ¼ c axis of rotation and ¾ c leading edge velocity is more 

important than the ½c case. So at t=0.6170, at the beginning of upstroke, the counter-

clockwise leading edge vortex is highly important for ¾ c axis of rotation and its 

importance decrease as the center of rotation gets closer to the leading edge. This 

leading edge vortex is detached from the airfoil surface after a while. The trace of the 

detached vortex is highly visible for ¾ c center of rotation case (t=0.6121 in Figure 

3.19). The rotational stopping vortex at the trailing edge of the airfoil becomes less 

important as the center of rotation displaced toward the trailing edge. 
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     a) ¼ c center of rotation      b) ½ c center of rotation c) ¾ c center of rotation 

Figure 3.19 Vorticity contours with velocity vectors for α=30°, xv=2c, xa=2c, 
Re=1000 during 7th stroke. (The numbers in the lower left-hand corners represent the 
time in second).  

0.5924 0.5924 0.5924 

0.5973 0.5973 0.5973 

0.6023 0.6023 0.6023 

0.6072 0.6072 0.6072 

0.6121 0.6121 0.6121 

0.6170 0.6170 0.6170 

0.6219 0.6219 0.6219 

0.6268 0.6268 0.6268 

0.6317 0.6317 0.6317 

0.6366 0.6366 0.6366 
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3.5 Effects of Reynolds Number 

 

The calculations have been performed for Re=500, 1000 and 2000 cases. It is found 

that in this regime of Reynolds number the force coefficients are not affected. For an 

example, lift coefficient for α=30°, xv=2c, a=¼c case is shown in Figure 3.20 for 

Re=500 and Re=2000 which are also the same as the Re=1000 studied earlier. The 

force coefficients are non-dimensionalized with respect to maximum velocity 

corresponding to each Re number. 

 

 

 

 

 
a) Re=500 

 
b) Re=2000 

 
 

Figure 3.20 Lift coefficients for α=30°, xv=2c, a=¼c for different Re numbers at 7th 
stroke. 
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3.6 Conclusion 

 

The mean force coefficients for different configurations studied are represented in 

Table 3.6 to 3.8. Figure 3.24 shows the comparison of the data in these tables. It is 

observed that the drag coefficient and lift coefficients are approximately the same 

order of magnitude for most of the cases and they increase with angle of attack. In 

the tables, average stroke plane value β, and the profile power and its coefficient are 

also tabulated. For a=½c case the average drag coefficient is highly big compared to 

the other two center of rotations ¼c and ¾c.  

 

 

 

Table 3.6 DNS average force and force coefficient results for different cases for 
Re=1000 during 7th period with center of rotation at a=1/4c. 
 

α 
[°] xv xa ⎯CD ⎯CL ⎯CFtotal β ⎯CPpro 

5 2c 1c 0.2847 0.2266 0.3639 51.48 0.1584 
5 2c 1.5c 0.2524 0.1662 0.3022 56.64 0.1328 
5 2c 2c 0.2282 0.094 0.2468 67.61 0.1142 
5 2c 2.5c 0.1993 0 0.1993 90.14 0.1017 

30 2c 1c 0.714 0.7273 1.0192 44.47 0.4936 
30 2c 1.5c 0.6422 0.7083 0.9561 42.2 0.4492 
30 2c 2c 0.6244 0.7205 0.9534 40.91 0.4344 
30 2c 2.5c 0.6452 0.7466 0.9868 40.83 0.43 
45 2c 1c 1.2062 0.8301 1.4642 55.46 0.8758 
45 2c 1.5c 1.1291 0.8536 1.4155 52.91 0.8428 
45 2c 2c 1.0778 0.8806 1.3918 50.75 0.8322 
45 2c 2.5c 1.1745 1.0078 1.5476 49.37 0.9211 
60 2c 1c 1.7386 0.8107 1.9183 65 1.3494 
60 2c 1.5c 1.6852 0.849 1.887 63.26 1.3384 
60 2c 2c 1.6941 0.88345 1.9106 62.46 1.3558 
60 2c 2.5c 1.7793 0.9502 2.0171 61.9 1.4163 
45 2.5c 1c 1.5771 0.9708 1.8520 58.3838 1.3130 
45 2.5c 1.5c 1.4028 0.9572 1.6983 55.6930 1.1746 
45 2.5c 2c 1.3323 1.0099 1.6718 52.8372 1.1255 
45 2.5c 2.5c 1.4328 1.1872 1.8608 50.3569 1.1668 
60 2.5c 1c 2.0926 0.9183 2.2852 66.3070 1.8485 
60 2.5c 1.5c 2.0294 0.9583 2.2443 64.7220 1.7787 
60 2.5c 2c 2.0397 1.0292 2.2846 63.2246 1.7843 
60 2.5c 2.5c 2.2440 1.2222 2.5552 61.4243 1.9605 
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Table 3.7 DNS average force and force coefficient results for different cases for 
Re=1000, xv=2c with a stroke period of 0.09824 sec during 7th period with center of 
rotation at a=1/2c. 
 

α [°] xa ⎯CD ⎯CL ⎯CFtotal β ⎯CPpro 

5 1c 0.2554 0.1917 0.3193 53.1101 0.1550 
5 1.5c 0.2186 0.1233 0.2510 60.5816 0.1254 
5 2c 0.1966 0.0651 0.2071 71.6626 0.1092 
5 2.5c 0.1750 0.0023 0.1750 89.2420 0.1009 
30 1c 0.6577 0.6419 0.9190 45.6938 0.4507 
30 1.5c 0.5655 0.6097 0.8316 42.8461 0.3992 
30 2c 0.5270 0.6199 0.8136 40.3671 0.3871 
30 2.5c 0.5122 0.6470 0.8252 38.3657 0.3962 
45 1c 2.4903 1.2383 2.7812 63.5612 1.9737 
45 1.5c 1.9744 1.1271 2.2734 60.2801 1.6152 
45 2c 2.2220 1.3362 2.5928 58.9797 1.8438 
45 2.5c 2.2978 1.4690 2.7272 57.4095 1.9566 
60 1c 1.7343 0.8162 1.9168 64.7986 1.3720 
60 1.5c 1.6672 0.8352 1.8647 63.3896 1.3192 
60 2c 1.6308 0.8571 1.8423 62.2755 1.3030 
60 2.5c 1.6272 0.8862 1.8528 61.4275 1.3222 

 
 
Table 3.8 DNS average force and force coefficient results for different cases for 
Re=1000, xv=2c with a stroke period of 0.09824 sec during 7th period with center of 
rotation at a=3/4c. 
 

α 
[°] xa ⎯CD ⎯CL ⎯CFtotal β ⎯CPpro 

5 1c 0.2905 0.1101 0.3106 69.2467 0.1478 
5 1.5c 0.2270 0.0194 0.2278 85.1101 0.1085 
5 2c 0.1681 -0.0964 0.1938 119.8200 0.0827 
5 2.5c 0.1202 -0.2814 0.3059 156.8710 0.0730 
30 1c 0.6024 0.5828 0.8381 45.9491 0.4235 
30 1.5c 0.4709 0.5026 0.6887 43.1376 0.3415 
30 2c 0.3647 0.4366 0.5689 39.8725 0.3044 
30 2.5c 0.2472 0.3338 0.4154 36.5177 0.2871 
45 1c 0.1042 -0.0887 0.1368    130.4 0.0034 
45 1.5c -0.013 -0.0932 0.0946 7.6086 -0.064 
45 2c 1.2063 1.1218 1.6472 47.0794 0.8479 
45 2.5c 1.6953 0.9020 1.9194 62.0321 1.4993 
60 1c 1.4779 0.7092 1.6393 64.3636 1.2387 
60 1.5c 1.3645 0.6829 1.5259 63.4125 1.1548 
60 2c 1.2360 0.6543 1.3985 62.1066 1.0634 
60 2.5c 1.1283 0.6341 1.2943 60.6647 1.0242 
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a) Average Lift coefficient ⎯CL  b) Average Drag coefficient ⎯CD 

 
c) Average Total Force coefficient ⎯CFtotal  d) Average Profile power coef. ⎯CPpro 

Figure 3.21 Aerodynamic force coefficients averaged during the 7th stroke for xv=2c, 
Re=1000 for a=¼c, ½c and ¾c. 

 
 
 
It can be concluded that in order to obtain maximum average total force the most 

important parameter for the flapping motion studies is the angle of attack. As the 

angle of attack is bigger than 30°, positive lift values are obtained during the whole 

period of the motion. And as the angle of attack is increased, it is observed from 

Fig.3.21 that the average lift coefficient is bigger for 45° angle of attacks and total 

force coefficients are bigger for 60° angle of attack. The average drag coefficient is 

highly big for 60° angle of attack which contributes so much to the total force 

coefficient. From 5° to 60° angles of attack, for a= ¼c center of rotation, there is an 

approximately linear increasing trend for average total force and average profile 

power coefficient values (Fig.3.21c and Fig.3.21d). The second important parameter 

is the axis of rotation. It is observed that at a= ½c axis of rotation at 45° angle of 

attacks there exist high values of total force coefficient which is due to the high drag 

coefficient values.  It is observed that xa parameter has very small influence on 

average force coefficients for a given angle of attack. 
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CHAPTER 4 
 

 

VORTEX DYNAMICS ANALYSIS OF A REFERENCE 

CONFIGURATION 

 

 

4.1 Introduction 

 

The vortex dynamics and the aerodynamics phenomena are investigated for a 

reference configuration. The studied case is Re=1000, α=45°, xv=2c, xa=2c with the 

rotation center at ¼c.  In addition to the numerical studies, laser sheet visualization 

and PIV measurements are also performed for this reference study. This case is a 

first, fundamental step toward understanding the more complicated flow of hovering 

flight. Characteristics of the flow and the motion are summarized in Table 4.1. 

 

 

 

Table 4.1 Characteristics of the numerical and experimental data for case study 
Re=1000 and α=45°. 
 

 Air data Water Data 

V0 [m/s] 1.454 0.017 

xv [m] 0.02 0.12 

xa [m] 0.02 0.12 

tv [s] 0.014 7.20 

ta [s] 0.014 7.20 

T/4 [s] 0.025 12.85 

T [s] 0.098 51.42 

α& max [rad/s] 145.39 0.28 
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Numerical calculations are beginning from the half amplitude position, however the 

experimental visualization are started from the one end of the cycle. Therefore, there 

exist a one-half period of shift between the time definitions. All of the measurements 

are carried out during the 7th cycle. In order to compare both results, the non-

dimensional times below are started from t*=0 instead of t*=6 but one must have in 

mind that the results are for the 7th period (Figure 4.1). 

 

 

 

 

Figure 4.1 Lift and drag coefficient for study case starting from the rest. 

 

 

 

For the numerical simulations, the 15c radius length grid domain and 20c radius 

length grid domain are also compared in terms of force coefficients. The grid for 15c 

is sufficient for the solutions so the different configuration’s numerical solutions are 

done with the 15c radius grid domain. The study case results are shown for 20c 

solution (Figure 4.2). 
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a) Lift coefficient    b) Drag coefficient 

Figure 4.2 Comparison of the lift and drag coefficients for the numerical results 
using 15c length and 20c length radius of grid domain for study case. 

 
 
 
 
4.2 Comparison of the Different Investigation Techniques 

 

In this section, firstly the experimental visualizations are compared to ensure that 

both the visualization with particles and PIV measurements give the same results 

since the experiments are done separately. Then the experimental results are 

compared with the numerical simulations in order to comment the results in view of 

aerodynamic forces and pressure distributions. The angle of attack and velocity 

distribution for all different measurement techniques investigated are shown in 

Figure 4.3. The points represent the times corresponding to each technique for 

comparison with each other.  
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Figure 4.3 Velocity and angle of attack distribution for the numerical simulations 
(white points), experimental visualization (blue points) and the PIV measurements 
(orange points). The force coefficients are the numerical results.  

 

 

 

4.2.1 Experimental Visualization 

 

The two experiments namely visualization with discrete tracers using laser sheet and 

Particle Image Velocimetry (PIV) are compared in this section in view of streamlines 

and vortex identification. In visualization, the closed streamlines are visible with 

respect to the inertial reference frame.  

 

It is checked that all the vortices observed at the time t*=1.00 corresponding to the 

beginning of the 8th period and are also observable at the time t*=0, corresponding to 

the beginning of the 7th period, which implies that the motion is periodical.  
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The vortices are better distinguished via the non-dimensional Q contours for the PIV 

measurements. The streamlines are drawn to see if the closed curves obtained from 

the laser sheet visualization are also observable from the velocity component 

measurements of the flow field via PIV measurements. 

 

During the whole period, three types of vortices are generated: Leading Edge Vortex 

(LEV) at the leading edge of the airfoil, Translational Vortex (TV) at the trailing 

edge of the airfoil and Rotational Stopping Vortex (RSV) at the trailing edge of the 

airfoil also. The LEV and TV are the vortices generated during the translation of the 

airfoil and RSV is generated due to the rotation of the airfoil and detached from the 

airfoil at the return. During experimental visualizations it is observed that some 

vortices are also generated due to the interaction of different vortices and shear 

between these vortices. The cores of the vortices are represented with points at the 

particle visualization photos. The blue colors represent the clockwise vortices and the 

red colors represent the counter-clockwise vortices. Nomenclature of the vortices is 

given in Table 4.2. 

 

 

 
Table 4.2 Nomenclature of the vortices generated during the flapping motion. 

 
Vortex Explanation Vortex Generation Phase 

LEV1 Leading Edge Vortex 1 Before translational phase starts 
LEV2 Leading Edge Vortex 2 At the beginning of translational phase 
TV1 Translational Vortex 1 Before translational phase starts 

LEV3 Leading Edge Vortex 3 During pure translation 
TV2 Translational Vortex 2 During pure translation 

TV3 Translational Vortex 3 
At the mid-of the translational phase (it rest 
attached to the airfoil until the rotational phase 
starts) 

LEV4 Leading Edge Vortex 4 At the beginning of rotational phase 
LEV5 Leading Edge Vortex 5 At the end of the rotational phase 
RSV1 Rotational Stopping Vortex 1 At the end of the rotational phase 
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The explanation of the motion is started from the end of the rotational phase and the 

beginning of translational phase. During rotation there is a formation of a counter-

clockwise leading edge vortex LEV1 which detaches very quickly from the surface 

of the airfoil when a new LEV2 is generated. At the beginning of the translation 

(t*=0.08), a counter-clockwise leading edge vortex starts to form (LEV2). In the 

mean time there is a newly generated translational vortex TV1 which is clockwise. 

All the other vortices (written in yellow color) shown in Figure 4.4 are the trace of 

the vortices generated during the previous period. 

 

 

 

 

  

 
Figure 4.4 Comparison of the laser sheet visualization with PIV non-dimensional Q 

values and streamlines in inertial reference frame (t*=0.08). 
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At t*=0.12, LEV2 which is always attached to the airfoil grows as shown in the 

Figure 4.5. The LEV1 is separated from the airfoil. The translational vortex TV1 is 

started to detach from the airfoil. As the airfoil translates, the translational vortex 

TV1 stretches. There is always a wake left behind the airfoil which is the trace of 

TV1 until the mid-amplitude of the motion.  

 

 

 

 

 

 

 
Figure 4.5 Comparison of the laser sheet visualization with PIV non-dimensional Q 

values and streamlines in inertial reference frame (t*=0.12). 
 

 

 

There exists a highly visible separation line in front of the airfoil both in 

experimental visualization and PIV measurements. It is surrounded with 4 vortices. 
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At the left side of the singularity, there is the clockwise leading edge vortices 

generated during previous stroke (LEV2); at the bottom side, there is the translational 

vortex (TV3) which is counter-clockwise. At the top, the newly generated leading 

edge vortex LEV2 (ccw) is observable and at the right side there is the influence of 

the new clockwise translational vortex (TV1). The type of singularity is the 

detachment separation point since the flow is detaching from the airfoil (Figure 4.6), 

it does not flow towards the wall of the airfoil but in the opposite direction.  

 

 

 

  

Figure 4.6 Detachment type separation point is observed close to the airfoil at 
t*=0.12. 

 
 
 
It is known that the streamlines are dependent on the choice of the coordinate system, 

as it is shown in Figure 4.7; the separation point highly visible in inertial frame 

disappears completely in body fixed reference frame. For this reason, the vortex 

identification is carried out mostly with vorticity and Q contours. 

 
 
In Figure 4.7, PIV measurements are represented with the QND contours and 

streamlines both in inertial frame and body fixed frame at t*=0.12 . It is observed 

that the LEV2 is attached to the airfoil and its core velocities is the same as the 

velocity of the airfoil since it is forming closed curves of streamlines in body fixed 
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coordinate frame. Trailing vortex TV1 which is detached from the airfoil has 

approximately zero core velocity since it is visible in closed contours in inertial 

reference frame.  

 

 

 

  
a) PIV (inertial frame)   b) PIV (body-fixed reference frame) 

Figure 4.7 PIV measurement represented with non-dimensional Q values and 
streamlines in inertial and body-fixed reference frames (t*=0.12). 

 
 
 
 
A new leading edge vortex LEV3 is generated at t*=0.20 approximately (Figure 4.8). 

This new leading edge vortex generated during pure translation of the airfoil pushes 

the LEV2 towards the trailing edge of the airfoil. A new translational vortex TV2 is 

also formed at the same time. Non-dimensional vorticity values obtained from PIV 

measurements are also shown in Figure 4.8b. TV2 is in continuation with TV1 which 

forms a form of wake at the trailing edge of the airfoil. So it could be noted that Q 

contours are important for the detection of the cores of the vortices (Figure 4.8c). 

The different vortices can not be detected so easily from the vorticity contours when 

there is a continuous shear region behind the airfoil. 
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Figure 4.8 Comparison of the laser sheet visualization (A) with PIV non-
dimensional vorticity ωND (B) and non-dimensional QND values (C) at t*=0.20. 

 

 

 

Negative Q values imply a shear region and the positive Q values shows vortex 

regions. There is a very thick shear region in front of the airfoil at t*=0.2, which 

seems to be due to the interaction between the airfoil and the vortices generated 

during previous stroke (visible on Fig.4.7). 
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LEV2 gets bigger and bigger during the translational phase of the motion at t*=0.24 

(Figure 4.9). At the same time a new translational vortex TV3 is formed. A big trace 

of the vortices is formed at the back side of the airfoil from the combination of the 

vortices TV1 and TV2.  

 

 

 

  
Figure 4.9 Laser sheet visualization at t*=0.24. 

 

 

 

It is also observed that in body fixed frame LEV2 displaced toward the trailing edge 

of the airfoil at t*=0.24 (Figure 4.10b) and it detaches completely from the airfoil 

surface at t*=0.28 (Figure 4.10d). Since the close contour of the streamlines is 

obtained in body fixed frame for LEV2, it is concluded that at these instants the 

LEV2 is displacing with a core velocity equal to the translational velocity of the 

airfoil (Figure 4.10). 
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a) PIV (inertial frame) (t*=0.24)  b) PIV (body-fixed ref. frame) (t*=0.24) 
 

  
c) PIV (inertial frame) (t*=0.28)  d) PIV (body-fixed ref. frame) (t*=0.28) 
 

Figure 4.10 PIV measurements represented with non-dimensional Q values and 
streamlines in inertial and body-fixed reference frames a)  t*=0.24, b) t*=0.28. 

 

 

 

The vortex detachment observed in the body-fixed frame in Figure 4.10 over the 

surface of the airfoil is also observable in literature in impulsively starting airfoils at 

high angles of attack. 

 

Trailing vortex TV3 also highly visible at t*=0.32 (Figure 4.11).  TV3 is in closed 

streamline form in body fixed reference frame (Fig.4.11c). LEV2 is situated at the 

top of the TV3. Q contours for LEV3 is visible at PIV measurements and closed 

streamline for LEV3 is much more visible in inertial reference frame.  
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Figure 4.11 Laser sheet visualization (A) and PIV measurements represented with 
non-dimensional Q values and streamlines in inertial reference frame (B) and body- 
fixed reference frame (C) at t*=0.32. 

 

 

The rotation of the airfoil is started at t*=0.4 (Figure 4.12). A new leading edge 

vortex LEV4 is formed at this time. LEV3 and LEV4 are shown coupled in the 

streamlines of PIV measurement and laser sheet visualization. The translational 

vortex TV3 and the sum of LEV3-LEV4 are positioned half by half on the airfoil 
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upper surface and they are translating with the airfoil velocity (Figure 4.12c). LEV2 

is more visible at inertial reference frame. So, the core velocity of the LEV2 goes to 

zero since it is detached from the airfoil. It is observed that the trace of this LEV2 

will influence this mid-amplitude location of the flapping motion domain. 

 
 
 
 

  

 

 
Figure 4.12 Laser sheet visualization (A) and PIV measurements represented with 
non-dimensional Q values and streamlines in inertial reference frame (B) and body-
fixed reference frame (C) at t*=0.4 (start of rotation and deceleration of the airfoil). 
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Figure 4.13 Laser sheet visualization (A) and PIV measurements represented with 
non-dimensional Q values and streamlines in inertial reference frame (B) and body 
fixed reference frame (C) at t*=0.44 (during rotation and deceleration of the airfoil). 
 

 

At t*=0.44, a new LEV5 is formed (Figure 4.13). The velocity of the airfoil is 

decreased to 77% of the maximum velocity. It is observed that the body fixed frame 

and inertial frame streamlines are observed approximately similarly concerning the 

vortex structures. The translational vortex TV3 is detached from the airfoil surface 
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(Fig. 4.13c). There is a big leading edge vortex covering the entire upper surface of 

the airfoil. LEV4 and LEV5 are the small continuations of the LEV3 but are visible 

in Q distribution of PIV measurements and experimental visualisation. LEV5 

disappears very quickly due to the rotation of the airfoil towards on it. At the end of 

the rotational phase, a Rotational Stopping Vortex (RSV1) is formed (Figure 4.14a). 

Both RSV1 and the leading edge vortices are separated from the airfoil surface at the 

end when the airfoil is at 90° angle of attack. The RSV1 forms a big vortex by 

interacting with the trace of the TV3 at the return of the airfoil at t*=0.52 (Figure 

4.14c). 

 

 

  
a) PIV (inertial frame) (t*=0.48)  b) PIV (body-fixed ref. frame) (t*=0.48) 
 

   
c) PIV (inertial frame) (t*=0.52)  d) PIV (body-fixed ref. frame) (t*=0.52) 
 
Figure 4.14 PIV measurements represented with non-dimensional Q values and 
streamlines in inertial and body-fixed reference frames. 
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e) PIV (inertial frame) (t*=0.56)  f) PIV (body-fixed ref. frame) (t*=0.56) 
 
Figure 4.14 (continued) PIV measurements represented with non-dimensional Q 
values and streamlines in inertial and body-fixed reference frames. 

 
 

When the new rotational phase is started at the opposite direction at t*=0.56 (Figure 

4.14e), the airfoil pushes these combined trailing edge vortices towards downward. 

All the vortices which are not attached to the airfoil during the return of the airfoil 

are not visible in the body fixed coordinate system, implying that their velocity is 

close to zero.  

 

At t*=0.56, the new counter-clockwise translational vortex TV1 and the clockwise 

leading edge vortex LEV2 are formed (Figure 4.15). The non-dimensional vorticity 

contours are also drawn in order to distinguish between the clockwise and counter-

clockwise vortices (Figure 4.15c). The newly generated vortices LEV1 and TV1 are 

more visible in vorticity contours. The trace of the leading edge vortices from the 

previous stoke (LEV4 and LEV5) are pushed toward upwards. The trace of the 

LEV2 (ccw) is always visible at the mid location of the domain. At the left end of the 

domain the trace of the TV1 (cw) is also visible.  

 

 

TV1 
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Figure 4.15 Laser plane visualization (A),  PIV measurements represented with non-
dimensional Q values and streamlines in inertial reference frame (B) and PIV 
measurements represented with non-dimensional vorticity contours (C) at t*=0.56. 

 

 

 

The motion is performed in similar way in the opposite direction. The vortices 
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main features are the development of the lots of vortices attached or detached to the 

airfoil, in interaction with each other and with the airfoil itself.  

 

4.2.2. Comparison of the Experimental (PIV) and Numerical vorticity/Q values 

 

Same rectangular grid domain is used for numerical solutions as the experimental 

PIV data in order to compare the results. An interpolation of the circular numerical 

domain to the rectangular region in concern is done with kriging. The velocity 

contours are represented before (red lines) and after kriging (black lines) in Figure 

4.16 to validate the interpolation. The value at each source zone data point is 

weighted by the inverse of the distance between the source data point and the 

destination data point. The closest 8 points are selected so they are distributed as 

evenly as possible throughout the eight octants. This reduces the chance of using 

source points which are all on one side of the destination point. Kriging generally 

produces superior results to the inverse-distance algorithm but requires more 

computer memory and time.  

 

 

 

 
Figure 4.16 Interpolation with krigging of the numerical grid domain with a 

rectangular grid domain. 
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With a general point of view, the same principle structures of vortices and their 

general topology are distinguishable both in experiment and numerical solutions but 

it is observed that there exist big abundance of the topology in view of Q and 

vorticity in experiments. Figure 4.17 shows the PIV measurements and numerical 

solutions during the translational phase of the motion. The LEV2 has the same 

behavior both in inertial reference frame and body fixed frame of references in the 

numerical and experimental data.  

 

 

 

  
a) PIV (inertial frame)   b) PIV (body-fixed reference frame) 

  
c) DNS (inertial frame)   d) DNS (body-fixed reference  frame) 

Figure 4.17 PIV measurement and numerical solutions represented with non-
dimensional Q values and streamlines in inertial and body-fixed reference frames 
(t*=0.24). 

 
 
 
Translational vortex TV3 is also visible in both reference frames in numerical and 

PIV measurements where the QND contours are drawn with streamlines. The trace of 
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the translational vortex is observed only in inertial reference frame both in numerical 

and experimental solutions. The aerodynamic forces are mostly dependent on the 

vortices close to the airfoil, since these are the one that influences the pressure values 

on the airfoil surface. 

 
Figure 4.18 shows the position where a counter-rotating vortex is generated on the 

airfoil surface which is only visible on the body fixed coordinate system and the Q 

and vorticity contours. The formation of this vortex could be responsible of the 

decrease in the aerodynamic forces.  

 

 
 

  
a) PIV (inertial frame)   b) PIV (body-fixed reference frame) 

  
c) DNS (inertial frame)   d) DNS (body-fixed reference frame) 

Figure 4.18 PIV measurement and numerical solutions represented with non-
dimensional Q values and streamlines in inertial and body-fixed reference frames 
(t*=0.28). 

 
 

LEV3

LEV2 

TV3 
LEV2 

(cw) 
trace TV2 

LEV2

LEV2LEV3

LEV2 

TV3 

LEV3 

LEV3 

LEV counter-
rotating 

LEV counter-
rotating 



  126 

Figure 4.19 shows the numerical results, experimental visualization and PIV 

measurements at t*=0.5.  

 
 
 

  

  

           
Figure 4.19 Comparison of numerical data, experimental visualisation and PIV 
measurements at t*=0.50. A. DNS Vorticity contours with streamlines t*=0.508106. 
B. Experiment visualization  of particles t*=0.5. C. DNS QND contours with 
streamlines t*=0.508106. D. PIV measurements with QND contours with streamlines 
t*=0.5. E. DNS λ1 contours with streamlines t*=0.508106. F. DNS λ2 contours with 
streamlines t*=0.508106. 
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In addition to the vorticity and QND contours, λ1 and λ2 contours are also shown in 

Figure 4.19-E and 4.19-F respectively for numerical simulations. It is concluded that 

Q contours are sufficient for the identification of the vortices in 2D simulations. It is 

also verified that λ1+ λ2=-2Q. 

 

With regard to the experimental solutions, we are not sure that the structures stay 

two-dimensional. This can cause a splitting up of the vortices. The numerical 

simulations are strictly two-dimensional. 

 

The diffusion of vortices in numerical results is too fast and this phenomenon is 

highly visible during translational phase. The trace of the rotation stays visible in 

experimental visualizations but disperses in numerical solutions. But also in the 

numerical solutions, it is observed that the pressure is more persistent.  

 

The vortices which are more energetical are highly visible both in numerical 

solutions, experimental visualizations and PIV measurements, in particular near the 

airfoil. They are also influencing the aerodynamic forces on the airfoil. The two-

dimensional analysis of numerical solutions reveals obviously the presence of these 

most energetical vortices which are close to the airfoil, so this is a validation of the 

numerical simulations.  

 

4.3 Identification of the Vortices in terms of Pressure and Aerodynamic 

Forces 

 

The PIV measurements and the laser sheet visualizations are compared with  

numerical results in order to identify the vortices generated during the flapping 

motion and to interpret the results in terms of the pressure and aerodynamic force 

coefficients.  

 

Q values are the laplacian of the pressure. So the centres of the vortices are the center 

of suction peaks. At the end of the rotation (t*=0.08), on the upper surface of the 

airfoil there is two suction regions resulted from the LEV1 and TV1 (Figure 4.20).  
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Lower surface of the airfoil is surrounded with a shear region where the Q values are 

negative (Fig.4.20b). Stagnation point is at the lower surface of the airfoil and is very 

close to the leading edge. Lift coefficient is approximately equal to the drag 

coefficient at this time so the resultant force is approximately normal to the airfoil. 

 

  

 

    
 
     a) Laser sheet visualization at t*=0.08 b) DNS results QND contours at t*=0.083 

 
c) DNS results Pressure Coefficient CP contours at t*=0.083 

Figure 4.20 Comparison of the laser sheet visualization and numerical results at 
t*=0.08. 

 

 

 

At t*=0.1330, during translational phase, there is a slight diminution of the lift and 

drag coefficients. From the visualization, it is observed that the trailing edge vortex 
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(Translational Vortex TV) moves away from the airfoil (Figure 4.21). The lift 

coefficient is also approximately equal to the drag coefficient.  

 

 

 

 
a) QND 

 
b) CP 

Figure 4.21 DNS results with non-dimensional Q and pressure coefficient CP 
contours at t*=0.1330. 

 

 

 

At t*=0.3581, a separation phenomena during the translational phase is observed. A 

weak counter rotating vortex is generated on the upper surface of the airfoil. 

Negative pressure region on the upper surface of the airfoil also moves from the 
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leading edge toward to the trailing edge (Figure 4.22). Lift coefficient is minimum at 

this time.  

 
 
 
 

 
a) QND 

 
b) CP 

Figure 4.22 DNS results with non-dimensional Q and pressure coefficient CP 
contours at t*=0.3581. 

 

 

 

At the beginning of the rotation, there is also an abrupt reduction of the velocity. The 

rotation reinforces the vortex at the trailing edge and weakens the vortex at leading 

edge since there is an increase of the rotational velocity at the trailing edge and a 

decrease of the rotational velocity at the leading edge (Figure 4.23).  
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Figure 4.23 Velocity distributions on the airfoil for two time values after the 
rotational phase is started. 

 

 

 

At the end of a stroke, when the airfoil is 90° angle of attack, there is an annulation 

of the influence of the two big vortices on the airfoil. The airfoil is moving away of 

these two vortices resulting with zero lift and drag coefficient values in numerical 

simulations, which is seen also on the pressure contours close to the airfoil (Figure 

4.24). This phenomenon is also visible in PIV measurements. The lift and drag 

coefficients are equal to zero at the end of the stroke.  

 

At the beginning of rotation (Fig.4.24a), the suction region is situated at the trailing 

edge of the airfoil. As the angular velocity increases and angle of attack approaches 

to 90°, this suction peak gets bigger and spread out toward the leading edge. The 

suction region on the upper surface of the airfoil becomes stronger. After a while, the 

pressure regions are detached from the airfoil upper surface. Firstly, the leading edge 

vortex region moves away from the airfoil seen from the pressure contours at 

t*=0.4581 (Figure 4.24d) and then the trailing edge suction region moves away from 

the airfoil surface at t*=0.4831 (Figure 4.24e).  
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At the beginning of the second stroke (Figure 4.24f and Figure 4.25), the traces of 

the two big vortices are always present and could be seen by the two levels of suction 

regions. The airfoil is accelerating in this region. The pressure on the lower surface 

of the airfoil starts to increase. This overpressure helps to eject the two suction zones 

one towards downwards and the other one toward upwards. As a result, there is a 

very small interaction between these two suction regions and the airfoil. As going 

from Figure 4.24a to Figure 4.24f, the lift and drag coefficients decreases until zero 

value at the end of the stroke. 

 
 

 

 

 
Figure 4.24 Pressure coefficient CP contours during rotation of the airfoil at the end 

of the first half period. 
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The two suction center of the vortex created during the previous stroke is ejected by 

the newly created overpressure region. This results a positive lift during the whole 

flapping motion (Figure 4.25). From Figure 4.25a to Figure 4.25b, the lift and drag 

coefficients increase and the lift coefficient is maximum at the time corresponding to 

Figure 4.25b. Then the lift and drag coefficients decreases until t*=0.8 

approximately. 

 

 

 

 

 

Figure 4. 25 Pressure coefficient CP contours during rotation of the airfoil at the 
beginning of the second half period. 
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The comparison of laser sheet visualizations, PIV measurements and numerical 

results during a period at different time values are represented in Appendix D from 

Figure D.1 to Figure D.24. Each figure represents the experimental visualization with 

laser sheet, non-dimensional vorticity contours for PIV measurements, non-

dimensional vorticity contours for numerical simulations, non-dimensional Q 

contours for PIV measurements, non-dimensional Q contours for numerical 

simulations, pressure coefficient for the numerical simulations and the aerodynamic 

force coefficients for numerical simulations. 

 

4.4 Conclusion 

 

There is a good agreement between different types of visualizations in 

phenomenological point of view. Numerical simulations give significant values with 

respect to the forces calculated. This allows the perspective for the optimization of 

the aerodynamic forces. The time of the rotation ta is an important parameter for the 

formation of detachment (dynamic stall). If the rotation starts earlier, there will be 

less time for the formation of the counter-rotating vortex on the upper surface of the 

airfoil which is created during translation. 

 

PIV give more complicated topology compared to numerical simulations. We are not 

sure that the flow is 2-D throughout the motion. There is also a certain, very quick 

numerical diffusion in terms of the vortices due to the moving grid system. When the 

airfoil is moved away, the grid domain becomes coarser. Since the grid domain is not 

uniform, it is finer close to the airfoil and enlarges as it goes far away. The vortices 

could enter to a domain where the grid is coarser. 

 

The vortices which are more energetical are very similar to each other for both the 

experimental results (laser sheet visualization and PIV) and the numerical 

simulations. The analysis of the forces in DNS is significant. 
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CHAPTER 5 
 

 

ANALYTICAL MODEL OF FLAPPING MOTION 

 

 

5.1 Introduction 
 
The analytical model developed for the analysis of the flapping motion is described 

in the present chapter. Brief description of the unsteady models has been done in 

Section 1.1.2. The model presented in this chapter is compared with the parametrical 

study performed in Chapter 3 with numerical simulations.  

 
The indicial response of a quantity (e.g. lift, drag) with respect to any of its 

influencing parameters (e.g. angle of attack α or pitch rateα& ) is the response to a 

step input of the influencing parameter. Given this indicial response for a linear 

system, the indicial approach provides a methodology for computing the response of 

the system to any arbitrary input using the principle of superposition. This 

methodology is based on the fact that any arbitrary input can be approximately 

reconstructed by superimposing a series of step functions as shown in Figure 5.1. 

The response of the system to this arbitrary input is then approximated by linearly 

superimposing the system response to each step function making up the 

reconstructed input. 

 

By decreasing the time interval ∆t a more accurate function can be obtained and at 

the limit letting ∆t→0, the exact response of the system could be computed using 

Duhamel’s integral (Eq.5.1). 

 

∫ −+=
τ

τττ
τ0

)()()()0()( dtAf
d
dtAftx                         (5.1) 
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A(t) is the response of linear system to a unit step function and called "indicial 

admittance". Then the response x(t) to an arbitrary forcing function f(t) is found from 

Duhamel's Integral. Equation (5.2) is in terms of the indicial admittance and the 

derivatives of the forcing function but in some cases the analytical form of it can not 

be available so an alternative form is obtained using integration by parts. 

∫ −+=
τ

τττ
0

)(')()()0()( dtAftfAtx                          (5.2) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1 Superposition of step functions to form an arbitrary input. 

 

 

 

The indicial lift on a 2-D wing in incompressible flow was first derived by Wagner 

[43]. He has obtained a solution for the indicial lift on a thin airfoil undergoing a step 

change in angle of attack in incompressible flow. The indicial function is the 

response to a disturbance that is applied instantaneously at time zero and held 

constant thereafter, that is a disturbance given by a step function. In Wagner's case, 

w=0 for t<0 and w=Vα for t>0, where w is the induced downward velocity. 

 

t 

f(t) 

∆t 
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Küssner function [45] represents the dimensionless lift development due to a sharp-

edged gust striking the leading edge of the airfoil at t=0.  Both Wagner and Küssner 

functions are represented in Figure 5.2.  

 

In this study, φw is taken to be the Wagner Function with 

 
ss

w ees 3.00455.0 335.0165.00.1)( −− −−=φ              (5.3) 

 

and ψ is the Küssner Function which is approximated with exponential form as: 

 

   ss ees 0.113.0 5.05.00.1)( −− −−=ψ                (5.4) 

 

where s is the reduced time defined as: 

 

∫=
t

Vdt
b

s
0

1
               (5.5) 

 

which represents relative distance traveled by the airfoil through the flow in terms of 

the airfoil semi-chords during a time interval t and is called as reduced time.  

 

 

 

 
Figure 5.2 Wagner and Küssner functions. 
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One important parameter used in the description of unsteady aerodynamics and 

unsteady airfoil behavior is the reduced frequency. This parameter is used to 

characterize the degree of unsteadiness of the problem. The reduced frequency in 

turn is expressed as k=ωb/V where ω is the frequency of oscillation of the airfoil 

with b as the semi-chord and V as the free-stream velocity or the maximum velocity 

of the airfoil during translation for the hover case. For more transient problems, the 

concept of a single reduced frequency in terms of characterizing the degree of 

unsteadiness of the problem begins to lose its significance. For these cases, the 

reduced time s is defined. 

 

The indicial functions can be used to calculate the lift and moment on a wing 

undergoing an arbitrary motion by means of Duhamel’s Integral assuming inviscid, 

potential flow conditions and based on the linear superposition assumption. Arbitrary 

variations in free-stream are mostly implemented by use of Eq.5.6. In this equation φ 

can be replaced by either Wagner function φw or Küssner function ψ according to the 

problem considered. 

 

⎥
⎦

⎤
⎢
⎣

⎡
−⋅+⋅⋅= ∫ σσφσ

σ
φπρ ds

d
dwswStVL

s
c

cycirculator
0

4/3
4/3 )()()()0()(             (5.6) 

 

In the literature it is observed that, even for high angle of attack values (as helicopter 

aerodynamics or MAV applications) ¾c location is used as position of downwash 

velocity (Theodorsen [44], Leishman [4], Zbikowski [50]). So we handle the same 

approach during this study and use the induced velocity value at ¾c location (w3/4c).  

 

The non-circulatory or apparent mass terms arise from the t∂Φ∂ /  term contained in 

the unsteady Bernouilli equation and account for the pressure forces required to 

accelerate the fluid in the vicinity of the airfoil. . It is the results of instantaneous 

local accelerations.  

 

For example, for a thin airfoil of chord c=2b, moving normal to the surface at 

velocity w(t), the noncirculatory fluid force FNC, acting on the surface is: 
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dt
dwMF aNC −=               (5.7) 

 

The term Ma is known as the apparent mass and in this case is given by Ma=πρb2. 

 

Thin airfoils oscillating in incompressible flow problem is explained in detail in 

Ref.62. The small-disturbance theory is considered and the Laplace equation is 

solved for the disturbance velocity potential 'φ along the airfoil of chord length 2b 

subjects to two dimensional boundary condition of zero normal velocity across the 

body's solid boundaries. Kutta’s hypothesis of finite, continuous velocities and 

pressure at the trailing edge is also applied in the equations. Theodorsen’s solution is 

such that to satisfy the boundary condition, he put an appropriate distribution of 

source and sinks above and below the chordline. In addition, a pattern of vortices is 

put on this line with counter-vortices along the wake to infinity to satisfy the Kutta 

condition. The calculations are done by using the Joukowski’s conformal mapping 

transformation to map a circle of radius b/2 onto the airfoil’s projection (Figure 

5.3a). The normal velocity on the surface of the chordline (z=0) is named wa. 

 

 

 

 
a) Conformal mapping 

Figure 5.3 Conformal mapping and the velocities induced at a point P on the circle 
by a source-sink pair located at φ above and below the horizontal (reproduced from 

Ref.[62]). 
 



140 

 
b) Velocity induced at point P by source-sink pair 

Figure 5.3 (continued) Conformal mapping the velocities induced at a point P on 
the circle by a source-sink pair located at φ above and below the horizontal 
(reproduced from Ref.[62]). 
 

 

The tangential velocity θq  is found from the integration of θdq  resulted from all 

possible source-sink pairs by varying φ from 0 to π (Figure 5.3b) 

 

∫=′−′
π

θ
θ θθφπφ dbqtt U 2

),(),(               (5.8) 

 

The disturbance velocity potential U'φ  at an arbitrary point on the upper half of the 

circle, and at the corresponding point on top of the chordline is given by Equation 

5.9. It is assumed that 0),( =′ tπφ  (at the leading edge).The detailed explanation of 

the calculations can be found in Ref.[62] 

 

∫ ∫ −
−=

π

θ

π

θφ
θφφ

π
θφ

0

2

)cos(cos
sin),(' ddwbt a

U              (5.9) 

 

Because of the anti-symmetry with respect to X-axis (axis of the circle) of the flow 

pattern due to the source-sink sheet, the value of θq  is the same at symmetrically 

located points on the upper and lower halves of the circle. Therefore, the change in 
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'φ  going from any upper point around to π=θ  must be equal to the change of 'φ  

going from π=θ  to the corresponding lower point. That is, 

 

),('),('),('),(' tttt LU πφθφθφπφ −−=−            (5.10) 

 

from which it follows, because of the vanishing of )t,(' πφ , that 

 

),('),(' tt UL θφθφ −=−             (5.11) 

 

This equation is useful for calculating the pressure distribution on the slit 

representing the airfoil. The linearized Bernouilli equation for unsteady flow is: 

 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
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−=
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−−=− ∞ tx
U

t
Uupp '''' φφρφρρ            (5.12) 

 

Since we can replace the lower limit θ  in Eq.(5.10) by the equivalent value of 

x=bcosθ , then the equations (5.11) and (5.12) gives the pressure difference between 

the upper and lower surfaces: 
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       (5.13) 

 

By integration Eq.(5.13), the lift and per unit span, due to source-sink part of the 

flow, are found to be: 

 

∫ ∫
− ∂

∂
=−−=

b

b
ULUNC d

t
bdxppL

π

θθφρ
0

sin'2)(           (5.14) 

 

The total force is the summation of the non-circulatory force and the circulatory 

force obtained from the Duhamel Integral.  
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5.2 Choice of the Coordinates 
 
It is useful to describe the unsteady motion of the surface on which the zero normal 

flow boundary condition is applied in a body-fixed coordinate system (x,y,z). The 

motion of the origin O of this coordinate system (x,y,z) is then prescribed in an 

inertial frame of reference (X,Y,Z) and is assumed to be known (Fig.5.4). 

 
 
 

 
 

Figure 5.4 Coordinates of the problem. 
 
 
 
 
 

For simplicity, assume that at t=0, the inertial frame (X, Y, Z) coincides with the 

frame (x,y,z). Then at t>0, the relative motion of the origin of the body fixed frame 

of reference is prescribed by its location )z,y,x(r =
r

. The rate of rotation of the 

body's frame of reference is ),,( ψθφ &&&
r
=Ω . For a 2-D flow, Ω

r
 reduces to )0,,0( θ& . 

 

5.3 Formulation of the Problem  

 

The fluid surrounding the body is assumed to be inviscid, irrotational, and 

incompressible over the entire flowfield, excluding the body's solid boundaries and 

its wakes. A velocity potential ),,( ZYXΦ can be defined in the inertial frame and the 

continuity equation, in this frame of reference becomes: 
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02 =Φ∇    (in X,Y,Z coordinates)          (5.15) 

 

and the first boundary condition requiring zero normal velocity across the body's 

solid boundaries is  

 

0)( =⋅+Φ∇ nv rr  (in X,Y,Z coordinates)          (5.16) 

 

Here vr−  is the surface's velocity and ),,,( tZYXnn rr
= is the vector normal to this 

moving surface, as viewed from the inertial frame of reference. Since the Eq. (5.15) 

does not depend directly on time, the time dependency is introduced through this 

boundary condition (e.g. the location and orientation of n
r

 can vary with time) [63].  

 

The second boundary condition requires that the flow disturbance, due to the body's 

motion through the fluid, should diminish far from the body (or wing). 

 

For the unsteady flow case the use of the Kelvin condition will supply an additional 

equation that can be used to determine the streamwise strength of the vorticity shed 

into the wake. In general, it states that in the potential flow region the angular 

momentum cannot change, thus the circulation Γ around a fluid curve enclosing the 

wing and its wake is conserved: 

 

0=
Γ

dt
d   (for any t)             (5.17) 

 

The solution of this problem, which becomes time-dependent because of the 

boundary condition (Eq.5.16), is easier in the body-fixed coordinate system. The 

kinematic velocity vr  of the surface due to the motion of the wing, as viewed in the 

body frame of reference, is given by [63]: 

 

)(v rV rrrr
×Ω+−=              (5.18) 
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where V
r

 is the velocity of the (x,y,z) system's origin. As explained before, 

),,( zyxr =
r  is the position vector and ),,( ψθφ &&&

r
=Ω is the rate of rotation of the 

body's frame of reference. To an observer in the (x,y,z) frame, the velocity direction 

is opposite to the flight direction (as observed in the X,Y,Z frame) and therefore the 

minus sign appears in Eq. 5.18. 

 

At any moment the continuity equation is independent of the coordinate system 

orientation and the mass should be conserved. Therefore, the quantity Φ∇ 2  is 

independent of the instantaneous coordinate system and the continuity equation in 

terms of (x,y,z) remains unchanged. Also the boundary conditions should state the 

same physical conditions 

 

Therefore, the zero-velocity normal to a solid surface boundary condition, in the 

body frame becomes: 

 

0)( =⋅+Φ∇ nv rr  (in x,y,z coordinates)           (5.19) 

 

where n
r

 is the normal to the body's surface, in terms of the body coordinates (x,y,z). 

So by using Eq.5.18, Eq.5.19 becomes: 

 

0)( =⋅×Ω−−Φ∇ nrV rrvr
 (in x,y,z coordinates)          (5.20) 

Each region of the flapping motion, represented in Figure 2.1, is investigated 

separately in terms of the calculation of the downwash velocity at 3/4 c location, 

circulatory lift and the non-circulatory lift.  

 

1st region: 

 

1. Calculation of Downwash: 

The velocity components of the airfoil expressed in body-fixed coordinate system 

are:  

)sin,0,cos( αα UUV −−=
r

                (5.21) 
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The position vector of the airfoil center of rotation is given by ),,( zyxr =
r  and 

angular velocity is given by )0,,0(),,( θψθφ &&&&
r

==Ω  . 

 

))(,0,(00 baxz
zybax

kji
r −−=

−
=×Ω θθθ &&&rr

           (5.22) 

 

In analytical part, the definition of a is different from the numerical DNS part. The 

range of a is -1 ≤ a≤ 1. At the leading edge a=-1 and at trailing edge a=1. The center 

of rotation for the calculations are at quarter chord (a= -0.5). The normal direction of 

the linearized body surface in body fixed coordinate system is )1,0,0(=nr  .  

 

As a result, equation 5.20 becomes: 
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            (5.23) 

 

So the local downwash is given by: 

 

)(sin baxUwa −⋅−−= θα &              (5.24) 

 

It must be paid attention that the signs of U and θ&  are already taken into 

consideration. So they are treated as in absolute value. 

 

The calculations for circulatory lift are always carried out relative to the 3/4 chord 

location. So downwash at this location is: 

 

2/sin4/3 bUw c ⋅−−= θα &                         (5.25) 

 



146 

2. Calculation of the Circulatory Lift: 

 

[ ])()()(               

)()()()0()(

4/3

0

4/3
4/3

sYsXwspanctV

ds
d

dwswspanctVL

c

s

w
c

wcycirculator

−−⋅⋅⋅=

⎥
⎦

⎤
⎢
⎣

⎡
−⋅+⋅⋅⋅= ∫

πρ

σσφσ
σ

φπρ
(5.26) 

where 
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 ∫ −−⋅=
s

sbc de
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2

2)()( σσ
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Numerically, the recursive integrations of the Eq.5.27 and Eq.5.28 give: 
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3. Calculation of the Non-Circulatory Lift: 
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So for the 1st region, the disturbance velocity potential U'φ  is: 
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with local downwash wa given by Eq.5.24.  
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By using the equalities in Equation 5.33, 
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0

2

2
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π
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2 0cossin d            (5.33) 

 

The non-circulatory lift at the first region can be calculated as: 
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The total force is the summation of the circulatory lift (Eq.5.26) and the non-

circulatory lift (Eq.5.35). 

 

2nd region: 

 

1. Calculation of Downwash: 

 

The components of the translational velocity and the angular velocity of the airfoil 

for the second region are: 
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)0,,0(),,( θψθφ &&&&
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==Ω             (5.37) 

Then, 
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So the local downwash is given by: 

 

)(sin baxUwa −⋅−= θα &              (5.39) 

 

The downwash at 3/4c location is: 

 

2/sin4/3 bUw c ⋅−= θα &                         (5.40) 

 

2. Calculation of the Circulatory Lift : 
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3. Calculation of the Non-Circulatory Lift: 

 

For the 2nd region the lower surface is now at the top and upper surface is at the 

bottom. So the non-circulatory lift must be defined such that: 
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So for the 2nd region, the disturbance velocity potential U'φ  is: 
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with local downwash wa given by Eq.5.39. 
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The total force is the summation of the circulatory lift (Eq.5.41) and the non-

circulatory lift (Eq.5.45). 

 

3rd region: 

 

1. Calculation of Downwash: 

 

The components of the translational velocity and the angular velocity of the airfoil 

for the third region are: 
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Then, 
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So the local downwash is given by: 

 

)(sin baxUwa −⋅+= θα &              (5.49) 
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The downwash at 3/4c location is: 

2/sin4/3 bUw c ⋅+= θα &                         (5.50) 

 

2. Calculation of the Circulatory Lift : 
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3. Calculation of the Non-Circulatory Lift: 

 

For the 3nd region the lower surface is now at the top and upper surface is at the 

bottom. So the non-circulatory lift must be defined such that: 
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So for the 3rd region, the disturbance velocity potential U'φ  is: 
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with local downwash wa given by Eq.5.49. 

 

The non-circulatory lift is: 
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The total force is the summation of the circulatory lift (Eq.5.51) and the non-

circulatory lift (Eq.5.56). 

 

4th region: 

 

1. Calculation of Downwash: 

 

The components of the translational velocity and the angular velocity of the airfoil 

for the fourth region are: 
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So the local downwash is given by: 

)(sin baxUwa −⋅+−= θα &              (5.60) 

 

The downwash at 3/4c location is: 

2/sin4/3 bUw c ⋅+−= θα &                         (5.61) 
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2. Calculation of the Circulatory Lift: 
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3. Calculation of the Non-Circulatory Lift: 

 

For the 4th region, the disturbance velocity potential U'φ  is: 
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with local downwash wa given by Eq.5.60. 

 

Then, the non-circulatory lift is: 
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The total force is the summation of the circulatory lift (Eq.5.62) and the non-

circulatory lift (Eq.5.66).  The results are tabulated as a summary for all four regions 

in Table 5.1 where U and θ&  are in absolute value since their signs are already 

included in the calculations.  

 

 
 

Table 5.1 Summary of the calculations for local downwash and non-circulatory lift. 

 
 

 

5.4 Results 

 

5.4.1  Duhamel Integral with Wagner Function 

 

Aerodynamic forces, especially instantaneous normal force coefficient, are 

calculated assuming the flow around the airfoil to be governed by the linearized 

partial differential equation and the linearized boundary conditions for a given 

unsteady motion. The approach used was to superimpose indicial aerodynamic 

responses, by use of a superposition integral, named as Duhamel integral in 

literature, so that the specified boundary conditions are satisfied throughout time and 

space.  Arbitrary variations in free-stream are mostly implemented by use of Eq.5.67. 
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In this study, φw is taken to be the Wagner Function with s being the reduced time. 

For most of the studies in literature, the αLC  term is taken to be equal to 2π, the 

curve slope of the ideal fluid. 

  

The non-circulatory or apparent mass terms are the results of instantaneous local 

accelerations. 
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Figure 5.5 shows the results obtained by the above approach for a small starting 

angle of attack value of 5° by using Eq.5.67 and Eq.5.68 in order to calculate total 

normal force. The aerodynamic force coefficients are calculated with respect to the 

constant translational velocity. 

 

 

 

 

 

 
a) xa=1c 

Figure 5.5 Lift coefficient, normal force coefficient and Duhamel Integral solution 
with Wagner function for α=5°, xv=2c, Re=1000 at 1/4c rotation during 7th stroke 
using 2π as curve slope. 
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b) xa=1.5c 

 
c) xa=2c 

 
d) xa=2.5c 

 
Figure 5.5 (continued) Lift coefficient, normal force coefficient and Duhamel 
Integral solution with Wagner function for α=5°, xv=2c, Re=1000 at 1/4c rotation 
during 7th stroke using 2π as curve slope. 
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Since the angle of attack increase during the rotational region (which goes to 90° at 

the end of the stroke), the method does not respond very well in these regions and it 

is also observed that multiplication of this region with V(t) is not correct (V(t) goes 

to zero as the angle of attack goes to 90°). The first part of the circulatory lift is the 

steady state value at t=0. The Duhamel Integral calculates the lift by use of varying 

velocity and incidence data compared to this initial result. Since the lift is multiplied 

by V(t), the steady state lift value at s=0 is lost for V(t)≠Vo so this value (named as 

L3 in Eq.5.69) is added to the total circulatory lift value. The non circulatory lift is 

always taken to be as Eq.5.68. So the same configuration for Fig.5.5 is drawn with 

new correction term in circulatory lift in Fig.5.6 for always α=5°. The difference is 

observable only during the rotational region.  
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with Lss being the steady state value at initial position t=0 given by: 
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The lift slope is taken to be equal to 2π in this section. The results are highly good 

for 5° angle of attack for all xa values during the translational phase. The results of 

the analytical model for the rotational region are similar to the DNS results mostly 

for small xa values. 
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a) xa=1c 

 
b) xa=1.5c 

 
c) xa=2c 

Figure 5.6 Lift coefficient, normal force coefficient and Duhamel Integral solution 
with Wagner function for α=5°, xv=2c, Re=1000 at 1/4c rotation during 7th stroke 
using 2π as curve slope. 
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d) xa=2.5c 

Figure 5.6 (continue) Lift coefficient, normal force coefficient and Duhamel 
Integral solution with Wagner function for α=5°, xv=2c, Re=1000 at 1/4c rotation 
during 7th stroke using 2π as curve slope. 
 

 

 

The results for α=30° with different xa values are shown in Fig.5.7 by using the 

correction term L3 in circulatory lift calculations. It is always observed that the 

results are not so close to the DNS results for high angles of attack where small angle 

of attack assumption is no longer valid during the translational phase. 

 

 

 

 
a) xa=1c 

Figure 5.7 Lift coefficient, normal force coefficient and Duhamel Integral solution 
with Wagner function for α=30°, xv=2c, Re=1000 at 1/4c rotation during 7th stroke 
using 2π as curve slope. 
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b) xa=1.5c 

 
c) xa=2c 

 
d) xa=2.5c 

Figure 5.7 (continued) Lift coefficient, normal force coefficient and Duhamel 
Integral solution with Wagner function for α=30°, xv=2c, Re=1000 at 1/4c rotation 
during 7th stroke using 2π as curve slope. 
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5.4.2 Duhamel Integral with Wagner Function using DNS results 

 

Since the results are not satisfactory for high starting angles of attack, the curve slope 

2π in the circulatory lift calculations is replaced by the DNS curve slope values since 

for high angle of attacks this curve slope is no longer valid. The curve slope 

implemented in Eq. 5.69 is the averaged normal force coefficient found from 

impulsive motion divided by sinα. (It is checked that starting location for averaging 

the normal force coefficient corresponds to a time value where the impulsive start 

effect on aerodynamic forces diminish its influence.)  The non-circulatory equation 

(Eq.5.68) is always used in the calculations. Fig.5.8 and Fig.5.9 show the comparison 

of normal force coefficients obtained from the addition of these circulatory part and 

the non-circulatory part for 5° and 30° angle of attack values respectively. The 

results for high angles of attack are ameliorated as can be seen from Fig.5.9.  

 

 

 

 
a) xa=1c 

Figure 5.8 Lift coefficient, normal force coefficient and Duhamel Integral solution 
with Wagner function for α=5°, xv=2c, Re=1000 at 1/4c rotation during 7th stroke 
using DNS curve slope values. 
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b) xa=1.5c 

 
c) xa=2c 

 
d) xa=2.5c 

Figure 5.8 (continued) Lift coefficient, normal force coefficient and Duhamel 
Integral solution with Wagner function for α=5°, xv=2c, Re=1000 at 1/4c rotation 
during 7th stroke using DNS curve slope values. 
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a) xa=1c 

 
b) xa=1.5c 

 
c) xa=2c 

Figure 5.9 Lift coefficient, normal force coefficient and Duhamel Integral solution 
with Wagner function for α=30°, xv=2c, Re=1000 at 1/4c rotation during 7th stroke 
using DNS curve slope values. 
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d) xa=2.5c 

Figure 5.9 (continued) Lift coefficient, normal force coefficient and Duhamel 
Integral solution with Wagner function for α=30°, xv=2c, Re=1000 at 1/4c rotation 
during 7th stroke using DNS curve slope values. 

 

 

However, the results are not always satisfactory since we do not yet take into account 

the induced velocity region which is due to the previous semi-stroke. The airfoil 

enters to an induced velocity region caused by a previous semi-stroke which alters 

distribution of downwash velocity on the airfoil. In the following section, this 

velocity is assumed to be a constant vertical gust that the airfoil is subjected to. 

 

5.4.3 Duhamel Integral with Wagner and Kussner Function by use of 

Rankine-Froude Momentum Jet Using DNS Results 

 

The hovering flight problem is commonly solved in literature by the actuator disk 

and its associated Rankine-Froude momentum jet. The theory assumes no vorticity in 

the body of the wake and also a well defined boundary with a thin vortex sheet where 

the mass and momentum is conserved. But for the case of flapping wings, the 

boundary of the wake is likely to break up which could not result a steady 

momentum jet. So, in the literature the actuator disk theory is mostly used to predict 

the induced fluid velocities predicted by momentum jet and the results are combined 

with other theories such as blade element theory [24]. For an insect of hummingbird 

the usual momentum-jet estimate may be between 10 and 15% too low [24]. So in 
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addition to the Wagner impulsive function, the sudden gust velocity change (Küssner 

function) is implemented into the program developed where the induced velocities 

for each case are approximated by use of the actuator disc theory. The weight is 

taken to be average lift during a period per unit span obtained from the DNS code 

(Table 5.2). 

 

Feathering parameter, f, in Table 5.2 is defined in Section 1.2.1 and the values for 

different insects and birds are given in Table 1.3. It is found that the feathering 

parameter is very close to the values in Table 1.3 

 

 

 

Table 5.2 Induced velocity calculated by actuator disk theory using DNS average lift 
results for different cases for Re=1000 and wing beat frequency, n=1/T=10.18 Hz. 
 

α [°] xv xa wg [m/s] f 
5 2c 1c 0.14 0.013 
5 2c 1.5c 0.12 0.001 
5 2c 2c 0.01 0.006 
5 2c 2.5c 0 0 

30 2c 1c 0.25 0.043 
30 2c 1.5c 0.25 0.043 
30 2c 2c 0.25 0.043 
30 2c 2.5c 0.26 0.044 
45 2c 1c 0.27 0.049 
45 2c 1.5c 0.27 0.05 
45 2c 2c 0.28 0.052 
45 2c 2.5c 0.30 0.06 
60 2c 1c 0.27 0.048 
60 2c 1.5c 0.27 0.05 
60 2c 2c 0.28 0.052 
60 2c 2.5c 0.29 0.056 

 

 

 

The circulatory lift is given in Eq.5.72 with the summation of the Wagner function 

response and the Kussner function response. L3 is the correction term for the 

Duhamel integral with Wagner function and L3k  is the correction term corresponding 
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to the Duhamel integration with Küssner function defined similarly to L3 by 

replacing wg_3/4c instead of w3/4c in equation 5.71. 
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where the area A is taken to be rectangular region covered by the airfoil during its 

overall motion. The calculated wg value is taken to be constant all over the motion, 

where it is assumed that all the time the airfoil enters to a constant gust with a 

velocity of wg. The effect of this velocity in normal direction of the airfoil at ¾c 

location is wg_3/4c=wgcosα(t) and this gust velocity is implemented in circulatory lift 

calculations with Küssner function. It must be paid attention that although the gust 

velocity where the airfoil is assumed to be entered during the motion is taken to be a 

constant value through the motion, the wg-3/4c value changes as the angle of attack 

change.  

 

This gust velocity also has influence in non-circulatory lift which is also 

implemented in the program written in Fortran90. But it is observed that, order of 

magnitude of this effect is very small and can be neglected since the time derivative 

of cosα implement αα sin⋅& term where when the angular velocity is increasing sinα 

term goes to zero, since angle of attack goes to 90° and all other times mostly the 

angle of attack remains constant so angular velocity is zero or very small. 
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The total normal force coefficient obtained by sum of Eq.5.79 and Eq.5.81 are shown 

for α=5° in Fig.5.10 and for α=30° in Fig.5.12. The results are especially good for 

small xa values. For xa=2.5c the rotational velocity is too big since in 0.5c it is 

expected to have a rotation of a constant α value to 90° angle of attack so the non-

linearities are much bigger for these cases during rotational phase and Duhamel 

Integral does not respond very well for this situation for both small and high angle of 

attack values. This case is also the only case between four cases of xa where the 

translational velocity change position xv=2c is smaller than the change of the angular 

velocity position xa=2.5c. The program responds well for xv≥xa. 

 

 

 

 

 
a) xa=1c 

Figure 5.10 Lift coefficient, normal force coefficient and Duhamel Integral solution 
with Wagner and Küssner function for α=5°, xv=2c, Re=1000 at 1/4c rotation during 
7th stroke using DNS curve slope values. 
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b) xa=1.5c 

 
c) xa=2c 

 
d) xa=2.5c 

Figure 5.10 (continued) Lift coefficient, normal force coefficient and Duhamel 
Integral solution with Wagner and Küssner function for α=5°, xv=2c, Re=1000 at 
1/4c rotation during 7th stroke using DNS curve slope values. 



168 

Fig.5.11 is drawn for the same configurations as Fig.5.12 but without correction 

terms L3 and L3k for 30° angle of attack for comparison purpose. It is observed that 

for the regions where translational acceleration and deceleration occurs (i.e. 

V(t)≠V0),  the normal force coefficients are closer to DNS results when correction 

terms are added. 
 
 
 
 
 
 
 

 
a) xa=1c 

 
b) xa=1.5c 

Figure 5.11 Lift coefficient, normal force coefficient and Duhamel Integral solution 
with Wagner and Küssner function for α=30°, xv=2c, Re=1000 at 1/4c rotation 
during 7th stroke using DNS curve slope values without additional correction terms 
L3 and L3k.. 
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c) xa=2c 

 
 

 
d) xa=2.5c 

 
Figure 5.11 (continued) Lift coefficient, normal force coefficient and Duhamel 
Integral solution with Wagner and Küssner function for α=30°, xv=2c, Re=1000 at 
1/4c rotation during 7th stroke using DNS curve slope values without additional 
correction terms L3 and L3k. 
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a) xa=1c 

 
b) xa=1.5c 

 
c) xa=2c 

Figure 5.12 Lift coefficient, normal force coefficient and Duhamel Integral solution 
with Wagner and Küssner function for α=30°, xv=2c, Re=1000 at 1/4c rotation 
during 7th stroke using DNS curve slope values. 
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d) xa=2.5c 

 Figure 5.12 (continued) Lift coefficient, normal force coefficient and Duhamel 
Integral solution with Wagner and Küssner function for α=30°, xv=2c, Re=1000 at 
1/4c rotation during 7th stroke using DNS curve slope values. 
 

 

This improvement has a very big inconvenience due to the necessity of the 

estimation of the average lift which results the loss of the autonomy of the model. 

One possibility is to estimate this corrective term wg from a first estimation of the lift 

(or normal force) using only the results with the Wagner function. This method could 

eventually be implemented in the model in an iterative way. 

 

5.4.4 Discussion of the Results for High Angles of Attack 

 

The Duhamel integral approach given in section 5.4.3 is also applied to angle of 

attacks higher than 30° where the airfoil enters to a region of highly energetical 

vortices in return.  

 

Figure 5.13 shows the results for 45° angle of attack and Figure 5.14 represents the 

results for 60° angle of attack for different xa values.  
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a) xa=1c 

 
b) xa=1.5c 

 
c) xa=2c 

Figure 5.13 Lift coefficient, normal force coefficient and Duhamel Integral solution 
with Wagner and Küssner function for α=45°, xv=2c, Re=1000 at 1/4c rotation 
during 7th stroke using DNS curve slope values. 



173 

 
d) xa=2.5c 

Figure 5.13 (continued) Lift coefficient, normal force coefficient and Duhamel 
Integral solution with Wagner and Küssner function for α=45°, xv=2c, Re=1000 at 
1/4c rotation during 7th stroke using DNS curve slope values. 
 
 

 

 
a) xa=1c 

 
b) xa=1.5c 

Figure 5.14 Lift coefficient, normal force coefficient and Duhamel Integral solution 
with Wagner and Küssner function for α=60°, xv=2c, Re=1000 at 1/4c rotation 
during 7th stroke using DNS curve slope values. 
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c) xa=2c 

 
d) xa=2.5c 

Figure 5.14 (continued) Lift coefficient, normal force coefficient and Duhamel 
Integral solution with Wagner and Küssner function for α=60°, xv=2c, Re=1000 at 
1/4c rotation during 7th stroke using DNS curve slope values. 
 

 

 

Although 1st and 3rd regions are similar to the numerical simulations, the peak of the 

2nd and 4th regions cannot be found by the analytical model. Wagner function is an 

increasing function, so it cannot capture the peak at the 2nd and 4th regions of the 

flapping motion. The results are not satisfactory for these hihg incidences in 

particular for the second part of the rotation. Another trial has been done by using the 

impulsive solution obtained from the DNS calculations instead of the Wagner 

function for these high angles of attack.  
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It is found that although this second peak is captured in rotational phase, the 

analytical model is not good in this way compared to the Wagner solution during the 

translational phase. Figure 5.15 shows the comparison of the Wagner solution and 

the numerical impulsive solution for α=60°, xv=2c, xa=2c, Re=1000 at 1/4c rotation 

case. Figure 5.16 shows different solutions with analytical model for 45° angle of 

attack with xv=2c and xa=1c. Impulsive solution capture the slope of the lift force 

coefficient with time during rotation phase of 2nd and 4th regions but the decrease of 

the force coefficient during the translational phase cannot be captured. 

 

 

 

 
 

Figure 5.15 Lift coefficient, normal force coefficient and Duhamel Integral solution 
comparisons function for α=60°, xv=2c, xa=2c, Re=1000 at 1/4c rotation during 7th 
stroke using DNS curve slope values. 
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a) Duhamel Integral with Wagner and Kussner function  

 
b) Duhamel Integral with DNS impulsive solution and Kussner function  

(without correction term L3 and L3k) 

 
c) Duhamel Integral with DNS impulsive solution and Kussner function  

 
d) Duhamel Integral with DNS impulsive solution without Kussner function  

 
Figure 5.16 Lift coefficient, normal force coefficient and Duhamel Integral solution 
comparisons function for α=45°, xv=2c, xa=1c, Re=1000 at 1/4c rotation during 7th 
stroke using DNS curve slope values. 
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During the beginning of 2nd and 4th regions, the airfoil enters to trace of the leading 

edge vortex, translational vortex and rotational vortex that was generated before the 

return (Figure 5.17). Although this effect is implemented in the model via the 

Küssner function with an very approximate way of constant induced velocity, at 

angles of attack higher than 30° the effect of the downwash due to the leading edge 

vortex is stronger and this result a peak on lift coefficient graphs in 2nd and 4th 

regions. The instantaneous points corresponding to the pictures in Fig.5.17 are shown 

on aerodynamic forces versus time graph in Fig. 5.18.  

 

 

 

 

  
a) Beginning of the second region, t=0.614532 s (point A) 

  
b) Maximum lift coefficient at 2nd region t=0.621899 s (point B) 

 
Figure 5.17 Vorticity contours (1st row) and Pressure contours (2nd row) for α=60°, 
xv=2c°, xa=2c, Re=1000 at 1/4c rotation during 7th stroke. 
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c) End of the rotation and variable velocity region (xa=xv) t=0.624355 s (point C) 

  
d) End of 2nd region during pure translation (x=0 location) t=0.639089 s (Point D) 

Figure 5.17 (continued) Vorticity contours (1st row) and Pressure contours (2nd row) 
for α=60°, xv=2c, xa=2c, Re=1000 at 1/4c rotation during 7th stroke. 
 
 
 

 
Figure 5.18 Aerodynamic force coefficients obtained numerically and analytically 
(Wagner-Kussner) for α=60°, xv=2c, xa=2c, Re=1000 at 1/4c rotation during 7th 
stroke using DNS curve slope values. (Location of the points A, B, C, D of Figure 
5.14 are represented). 
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As the angle of attack increases the counter-clockwise leading edge vortex (blue) 

gets bigger. There is also formation of a second leading edge vortex clockwise (red) 

near the leading edge which is more distinguishable as the starting angle of attack 

increases. The clockwise translational vortex gets bigger with increase of α. 

 

The lift and drag coefficients for different angles of attack are represented in Figure 

5.19 and Figure 5.20 respectively where four different time instants (A, B, C, D) are 

emphasized and the vortex contours are drawn in Figure 5.21 to Figure 5.24. It is 

previously stated that the lift coefficient becomes positive throughout the period after 

30° and there is a formation of a second peak in 2nd region at higher angle of attack 

values. Point B represent a time instant where the lift coefficient is zero for the 5° 

however is a very big value for 60° angle of attack. The difference between these two 

cases comes from the formation of a strong opposite clockwise leading edge vortex 

inside a counterclockwise vortex (Figure 5.22). As seen also from Figure 5.23 during 

the pure translation this clockwise leading edge vortex is detached from the airfoil 

for 45° and 60° angles of attack.  

 

 

 
Figure 5.19 Lift coefficient for different α having xv=2c, xa=2c, Re=1000 at 1/4c 
rotation during 7th stroke. (Location of the points A, B, C, D of Figures 5.20 to 5.23 
are represented). 
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Figure 5.20 Drag coefficient for different α having xv=2c, xa=2c, Re=1000 at 1/4c 
rotation during 7th stroke. (Location of the points A, B, C, D of Figures 5.20 to 5.23 
are represented). 
 

   
a) α=5°          b) α=30°      

  
c) α=45°          d) α=60° 
Figure 5.21 Vorticity contours for different α values with xv=2c, xa=2c, Re=1000 at 
1/4c rotation at the beginning of the second region, t=0.614532 s, during 7th stroke 
(point A). 
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a) α=5°          b) α=30°     

  
c) α=45°          d) α=60° 
Figure 5.22 Vorticity contours for different α values with xv=2c, xa=2c, Re=1000 at 
1/4c rotation at the maximum lift coefficient location for 60° angle of attack at 2nd 
region, t=0.621899 s during 7th stroke (point B). 

  
a) α=5°          b) α=30°     

  
c) α=45°          d) α=60° 
Figure 5.23 Vorticity contours for different α values with xv=2c, xa=2c, Re=1000 at 
1/4c rotation at the end of the rotation and variable velocity region (xa=xv), 
t=0.624355 s, during 7th stroke (point C). 
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a) α=5°          b) α=30°     

  
c) α=45°          d) α=60° 
Figure 5.24 Vorticity contours for different α values with xv=2c, xa=2c, Re=1000 at 
1/4c rotation at the end of 2nd region during pure translation (x=0 location), 
t=0.639089 s, during 7th stroke (point D). 
 

 

 

5.4.5 Conclusion 

 

The models which are existing in the literature as Zbikowski [50], Leishman [4, 49], 

are improved by taking into account the realistical curve slope αLC , the correction 

terms and the introduction of an induced velocity from a previous stroke. We could 

consider that the results are acceptable until 30° angles of attack. For higher angles, 

the translational phase and the first rotational phase are captured but the second part 

of the rotational region cannot be obtained satisfactorily. The effects of the vortex 

interactions at high incidences could not be captured by the analytical model. 
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CHAPTER 6 
 

 

CONCLUSION 

 

 

6.1 Objective of the Study and the Analysis Tools 

 

In this study, the flapping motion aerodynamics is considered for a symmetrical 

hovering case in the use of future Micro Air Vehicle applications. The inspiration 

from the bio-aerodynamics results an idea for the researches to have MAV’s 

resembling to insects and small birds such as hummingbird with flapping wings. The 

complexity of the problem raises the necessity of a simplified model. So a two-

dimensional model is investigated with a symmetrical airfoil with variable velocity 

and angular velocity laws. 

 

The objective of this simplified model is to describe the physics of the phenomena 

and to develop an analytical model which could be usable for an optimization 

purpose.  

 

The analysis tools used for the description of the phenomena are the numerical 

simulations and the experimental investigations. The numerical simulations are 

performed with a DNS code with a capability of moving grid option. The 

experimental results are performed separately, one with the laser sheet visualization 

and the other one with Particle Image Velocimetry (PIV) measurements.  
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6.2 General Conclusion 

 

Firstly, a numerical simulation for the parametrical study is performed to get a first 

idea of the parameters which influence the flapping motion study. It is concluded that 

the most influencing parameter is the starting angle of attack. For small angles, the 

lift coefficient has both negative and positive values which give average force 

coefficients close to zero. As the angle of attack is increased to 30°, these negative 

peaks disappear and at 45° positive peaks are observable. The second important 

parameter is the center of rotation. The other parameters as the change of position of 

the velocity and angle of attack and Re number are found to be less important. It is 

observed that at a= ½ c axis of rotation at 45° angle of attacks there exist high values 

of total force coefficient which is due to the high drag coefficient values.  The total 

force coefficient is on the order of 2.5 in average on a period, which is approximately 

three times bigger than the maximum aerodynamic force coefficients in steady state 

for this airfoil at the same Reynolds number. The numerical part of this study is 

presented in different conferences [65-67]. 

 

The experimental visualizations with laser sheet are firstly performed to see if the 

vortices generated in the numerical simulations are also observable in real flows. It is 

concluded that they have the same appearance especially the more energetical 

vortices close the airfoil are highly visible both in numerical simulations and 

experimental visualizations. After concluding that the results are highly comparable, 

PIV measurements are performed to obtain quantitative data of the flow domain. 

Different vortex identification techniques such as Q and λ criterions in addition to 

the vorticity distribution are used. The vortices generated are classified for the whole 

motion. Since the Q contours are the laplacian of the pressure, the vortices observed 

experimentally are correlated with the pressure distribution and aerodynamic force 

coefficients of the numerical results for each time instants.  The numerical and 

experimental visualizations are compared in order to better understand the vortex 

generation mechanism during the motion in consideration and to reason the unsteady 

effects generated by these vortices on the airfoil in terms of the aerodynamic force 

coefficients and pressure distribution. The experimental results are a part the 
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validation of the numerical simulations. The visualizations and Q contours are the 

indirect validation of the aerodynamic force calculations of these numerical 

simulations. 

 

Lastly, an analytical model is developed with the Duhamel Integral and using 

Wagner and Küssner functions by implementation of the actuator disk theory for the 

circulatory term. The total normal force is calculated as the summation of the 

circulatory term and the non-circulatory term due to the added mass effect. The 

results are compared with the numerical simulation aerodynamic force coefficients. 

The model is highly satisfactory for the angles of attack until 30°. However, the 

model which is defined cannot take into account the interactions of the vortices 

around the airfoil so it gives poor results at the second part of the rotation for high 

angles of attack. 

 

6.3 Perspective 

 

The analytical model can be more developed by taking into account the Translational 

Vortex TV, Rotational Stopping Vortex RSV and Leading Edge Vortex LEV 

observed in front of the airfoil during rotational motion. For this purpose a literature 

survey of vortex-wall interaction is also carried out from the References [68]-[75]. 

This point is difficult but very important to improve the model for high angles of 

attack. So, it is a necessity for the use of our model in an optimization process as a 

genetic algorithm. 

 

Hummingbird and several insects use normal hovering where the wings are moving 

through a large angle in an approximately horizontal plane making a figure-of-eight 

motion with a symmetrical half-strokes. In hovering bats and birds the stroke plane is 

more tilted and this hovering is named as asymmetrical hovering where most of the 

lift is generated during downstroke. Always in the case of two dimensional problems, 

a third degree of freedom could be added with a figure-of-eight. This allows 

changing the plane of the upstroke and the downstroke. Some first calculations are 

performed for this purpose. The same angular velocity and the translational velocity 



  186 

laws could be used for the calculations by adding a displacement law in the normal 

direction which could be out of phase with the rotation. This motion will allow using 

the total force as the lift due to the ability of the change of the stroke plane angle and 

position during the whole motion. This could also be implemented in the analytical 

model in a straight forward manner. 

 

At long terms, if we want to build a system of flapping motion, the 3D effects must 

be taken into consideration. For three dimensional simulations, the velocity at the tip 

of the airfoil is very high and important. A 3D model is more realistic so three 

dimensional simulations and experiments have to be done. The behavior of the 

vortices in 3D views must be compared to the 2D solutions to have a better idea of 

the flow. 2D results represented here could be a base for understanding the flapping 

motion mechanism with three-dimensional experiments and numerical results. 

Analytical model developed could also be modified for three dimensional 

simulations. 
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APPENDIX A 
 

 

PRELIMINARY TESTS 
 

 

A.1 Impulsively Started Flat Plate 

 

The motion of a viscous fluid caused by the suddenly accelerated plane wall is 

termed as Stokes's first problem by Schlichting (Ref.[64], pg. 90). The motion is 

started impulsively from rest and moves in its own plane with a constant velocity U0. 

Selecting the x-axis along the wall in the direction of U0, one gets the simplified 

Navier-Stokes equation (Eq.A.1). 
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The pressure in the whole space is constant, and the boundary conditions are: 

 

    u=0 for all y   t≤0 

u=U0 for y=0; u=0 for y=∞ t>0               (A.2) 

 

The partial differential equation (A.1) can be reduced to an ordinary differential 

equation by the substitution: 
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Assuming  

u= U0 f(η)                (A.4) 
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one gets the ordinary differential equation for f(η): 

 

f"+2 ηf'=0                          (A.5) 

 

with the boundary conditions f=1 at η=0 and f=0 at η=∞.   

 

The solution is: 

 

u= Uo erfc(η)                         (A.6) 

where  

 

ηη
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ηηη
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22 )exp(21)(1)exp(2)(              (A.7) 

 

is the complementary error function. 

 

The boundary conditions shown in Figure A.1 are set such that the blue sides are 

symmetric boundary conditions, the cyan color representing the flat plate at the 

bottom of the grid domain is defined by the wall boundary condition. The top side of 

the grid domain is represented by the pressure boundary conditions and the left and 

right sides are defined as the cyclic boundary conditions. Different velocity profiles 

for different time values are represented in Figure A.2. The velocity profiles for 

varying times are similar meaning that they can be reduced to the same curve by 

scaling η. Central differencing scheme is used in the calculations of Star-CD with an 

implicit time discretization. The time increment used is ∆t=0.5×10-5 sec with a 5000 

time steps. The comparison of the numerical results obtained by Star-CD and Eq. 

(A.6) is shown in Figure A.3. 

 

By using the definition of η (Eq.A.3), (Eq.A.6) and the complementary error 

function (Eq.A.7), the shear stress at the wall of the impulsively starting flat plate is: 
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For a flat plate, the drag is calculated by the product of the shear stress with the area 

S of the plate. So the drag coefficient is: 
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Figure A.4 shows the comparison of the results obtained by the Navier-Stokes code 

and the exact solution (Eq.A.12). 
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Figure A.1 Boundary conditions of the grid domain for a flat plate. 

 

 

 

Velocity Profiles for an Impulsively Started Flat Plate 
with a velocity of Uo=1m/s 
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Figure A.2 Dimensional velocity profile of an impulsively started flat plate with 

Uo=1m/s for different time steps. 
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Velocity Profile for a Impulsively Started Flat Plate 
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Figure A.3 Non-dimensional velocity profile of an impulsively started flat plate with 

Uo=1m/s for different time steps. 
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Figure A.4 Comparison of the drag coefficient Cd between the numerical and exact 
solutions of impulsively started flat plate with Uo=1m/s. 
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A.2 Oscillating Flat Plate 

 
The exact solution, the numerical solution obtained by the Navier-Stokes code and 

the Duhamel's integral solution by analytical integration are calculated for an 

oscillating flat plate. The velocity profiles for the Navier-Stokes code are given in 

Figure A.5. The drag coefficient is compared in Figure A.6 for all calculations. The 

same grid domain is used as case of the impulsively started flat plate case.  

 

For this case, the boundary conditions are given as: 

 

   u=0 for all y    t≤0 

u=ωAcos(ωt) for y=0; u=0 for y=∞ t>0                     (A.13) 

 

Exact solution is given in Ref.[64] as: 

 

u(y,t) =ωA e-ky cos(ωt-ky)                       (A.14) 

with 
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where T is the period and A is the amplitude of the oscillation. 

 

In the numerical calculations carried in Star-CD, amplitude of oscillation is taken to 

be 0.02m and the period is 0.1sec. 

 

By doing similar calculations for shear stress and by differentiating the velocity with 

respect to y: 
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Analytical Duhamel Integration from impulsively starting flat plate in order to obtain 

oscillating flat plate result: 
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If we do a change of variables with  
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then we have 

 



202 

[ ]( )∫ ∫ ⋅−⋅−=
−

t

t

duut
t

t

0

0
2 )2(sinsin ω

τ
ω    where  t>τ         (A.23) 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅

+⋅⋅−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⋅+⋅⋅−= ∫∫

tFresnelSttFresnelCt
U
A

tU
A

duutduut
U
A

tU
AtC

o

o

tt

oo
Dosc

π
ω

ω
π

ω
π
ω

ω
π

ω
π
νω

π
ν

ω

ωωωω
π
νω

π
ν

ω

22
2
1)cos(222

2
1)sin(22

12

)sin()cos(2)cos()sin(2212)(

2

0

2

0

2
2

 (A.24) 

 

 

 

Velocity Profiles for an Oscillating Flat Plate 
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Figure A.5 Velocity profile of an oscillatory flat plate for different time steps. 
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Cd versus time for an Oscillating Flat Plate 
with u(y=0,t)=ωAcos(ωt)
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Figure A.6 Drag coefficient Cd between the numerical and analytical compared to 
exact solutions of oscillating flat plate. 
 

 

 

A.3 Choice of the Difference Scheme  

 

The velocity distribution over the oscillating flat plate for central difference and 

upward different schemes are compared with the exact solution (Fig.A.7) and the L1, 

L2 and L∞ norms are calculated at t=0.5sec for period T=0.1 sec and the amplitude of 

oscillation A, being equal to 0.02m (Table A.1).  

 

Both difference schemes give good results compared to the exact solution of the 

oscillating flat plate problem. For the numerical calculations, the upward difference 

scheme is used. 
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Table A.1 Oscilating flat plate velocity error norms on the flat plate relative to the 
exact solution at t=0.5s for the comparison of central and upward diffence schemes 
used in numerical calculations. 
 

 Central Difference 
Scheme 

Upward Difference 
scheme 

L∞ norm  0.00972605 0.00972745 
L1 norm 0.00345752 0.00345785 
L2 norm 0.03387375 0.0338781 

 

 

 

 

 
 

Figure A.7 Velocity profiles for oscillating flat plate for central and upward 
difference schemes and comparison with exact solution. 
 

 

 

A.4 Verification of Boundary Conditions 

 

Pressure coefficient values along the airfoil surface for the steady solutions of Star-

CD for 2 different boundary conditions (inlet/outlet & inlet/pressure) are compared 

with XFOIL results (Fig. A.8). Steady results are also compared with the impulsive 

start run (at iter=5000 where impulsive start effect was disappeared much earlier) of 

the same configuration and it is concluded that the impulsive start goes to its steady 

state value correctly (Fig.A.9). Table A.2 shows the force coefficients and the lift to 

drag ratio for these calculations. 
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Figure A.8 Steady state solutions. 

 

 

 

Comparison of Pressure Coefficient at α=5°, Re=1000
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Figure A.9 Comparison of steady state solutions with impulsive start result.  
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Table A.2 Lift and Drag coefficients for steady state results and impulsive motion 
result. 

Program CL CD L/D 

Xfoil 0.2414 0.1280 1.886 

Star-CD (BC: inlet-outlet) 0.2512 0.1415 1.775 

Star-CD  (BC: inlet-pressure) 0.2548 0.1421 1.793 

Star-CD (impulsive) 0.2485 0.1411 1.761 
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APPENDIX B 
 

 

DIMENSIONAL ANALYSIS AND SIMILITUDE 
 

 

B.1 Buckingham Pi Theorem 

 

• 1111*31

2

1111*31

2

1111 yzyxxzyyxxzyx TLM
MT

LTLLM
MT

cV
F

−++−

−

−−

−

===Π
ρ

               

x1=1    x1=1 

-y1=-2    y1=2 

-3*x1+y1+z1=0     z1=1 

cV
F

21 ρ
=Π   (non-dimensional force)      (B.1) 

 

• 2222*32

11

2222 yzyxxzyx TLM
TML

cV −++−

−−

==Π
ρ

µ  

x2=1    x2=1 

-y2=-1    y2=1 

-3*x2+y2+z2=0     z2=1 

Re
1

2 ==Π
Vcρ
µ  (Reynolds number)           (B.2) 

 

• 3333*33

1

3333 yzyxxzyx TLM
T

cV
T

−++−==Π
ρ

 

x3=0    x3=0 

-y3=1    y3=-1 

-3*x3+y3+z3=0     z3=1 

c
TV

=Π 3   (non-dimensional time)       (B.3) 



208 

• 4444*34

1

4444 yzyxxzyx
T

TLM
L

cV
x

−++−==Π
ρ

 

x4=0    x4=0 

-y4=0    y4=0 

-3*x4+y4+z4=1     z4=1 

 

c
xT=Π 4   (geometrical similitude)       (B.4) 

•                                    α=Π 5   (angle of attack)           (B.5) 

• 6666*36

1

6666 yzyxxzyx TLM
T

cV −++−

−

==Π
ρ

α&  

 

x6=0    x6=0 

-y6=0    y6=1 

-3*x6+y6+z6=0     z6=-1 

V
cα&

=Π 6    (reduced frequency)             (B.6) 

0),,,,,( 654321 =ΠΠΠΠΠΠf              (B.7) 

 

For similitude calculations, subscript 1 stands for air and subscript 2 stands for water. 

 
For air: 
The STP (Standard temperature and pressure) conditions are used in the calculations 
Temperature  : T=15°C=288.15K 
Pressure  : p=101325 Pa 
Density  : ρ1=1.225 kg/m3 
Dynamic viscosity  : µ1=1.781*10-5 kg/ms 
Kinematic viscosity : ν1=1.45388*10-5 m2/s 
Chord of the airfoil : c1=0.01m 
 

For water: 

Density  : ρ2=1000 kg/m3 
Dynamic viscosity  : µ2=10-3 kg/ms 
Kinematic viscosity : ν2=10-6 m2/s 
Chord of the airfoil : c2=0.06m 
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APPENDIX C 
 

 

EXPERIMENTAL SETUP DETAILS 
 

 

C.1 Specifications of the Setup 

 

 

Table C.1 Specifications of the step motors used for the setup. 

 

 Motor 1 (Translation) 
MAC 23 of midi ingenieurie 

Motor 2 (Rotation) 
6600-20 version R034BIP of 
Sonceboz 

Power supply 12 to 45 VDC 12 to 60 VDC 

Holding torque 1.4 N.m 0.93 N.m 

Maximum speed 4500 rpm at 45 VDC 4000 rpm 

Resolution 200 positions per rotation 200 positions per rotation 

Rotor inertia 0.44 kg.cm2 0.248 kg.cm2 

 5V → 20 KHz ⇔ 10 rev/sec 5V → 1.2 KHz ⇔ 0.6 rev/sec 

 

 

Table C.2 Potentiometer readings. 

Angle turned 0° 360° 

Voltage 4.77 V 1.907 V 

Voltage corresponding to 360° turning 2.863 V 

Degree corresponding to 1 V 360/2.863=125.742° 

 

Position 0mm 360mm 

Voltage 1.685V 2.25 V 

Voltage corresponding to 360mm turning 0.565 V 

mm corresponding to 1 V 360/0.565=637.168mm 
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Table C.3 Specifications of the driver controlling the step motors. 

 

Product MI 904A 
Power supply 22 V to 90 VDC 
Rms current by phase 0.5A to 4A 
Type of motor Two-pole wiring (4 or 8 wires) 
Microstep resolution 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 

64 µstep/step 
Maximum input clock 
frequency 

500 kHz 

Size (in mm) 160 x 100 x 45 
 

 

 

 

The power stages move the motor one step for each received clock signal (Figure 

C.1). 

 

 

 
 

 

Figure C.1 Clock Signal for drivers controlling step motors. 
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The frequency of the reading of the computer at for each line of the file created is 

measured as 130 Hz by sending only zero and one values to the computer. The 

controller measures the high and low signals and by sending only 0 and 1 values, so 

two data is implemented in a period (Figure C.3). The time corresponding to reading 

of one signal is the half of the period seen by the controller. So, in order to obtain the 

signal of the PC, the frequency (fPC=

2

1
rcontorolleT

=2fcontroller) read from the controller 

must be multiplied by 2.  

 

 

 

 

 

 

 

 

Figure C.3 Signal send to computer to find the frequency of the PC. 

 

 

 

The step motors consume 2 amps and in spite of the shielding of the cables, they 

radiate enormously.  These situations disturb the voltage-to-frequency converters in 

the absence of significant voltage signal. It was necessary to correct the input voltage 

file in order to impose minimum voltage instead of zero value to the converters.  So 

the minimum voltages are 0.005V and 0.01V for translation and rotation 

respectively. To avoid the parasites, the power supply (50V) and power driver (15V 

and 5V) are separated.  Only the cables coming from module ADWin are not 

connected to the ground since in this case parasites coming from the ground would 

be induced on the mass of the signal. The emergency stop of the system is ensured by 

a knob connected on the cards MI 904A put to the ground connection of the input. To 

get the full power of the motors, the voltage supply of MI 904A card is carried with 

30V (50V max).   

1 

0 

1 

T 

T/2 
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APPENDIX D 
 

 

VISUALIZATIONS OF THE CASE STUDY 
 

 

The comparison of laser sheet visualizations, PIV measurements and numerical 

results during a period at different time values are represented in Figures from D.1 to 

D.24. Each figure represents:  

 

A. The experimental visualization with laser sheet,  

B. Non-dimensional vorticity contours for PIV measurements,  

C. Non-dimensional vorticity contours for numerical simulations,  

D. Non-dimensional Q contours for PIV measurements,  

E. Non-dimensional Q contours for numerical simulations, 

F. Pressure coefficient for the numerical simulations, 

G. Aerodynamic force coefficients for numerical simulations.  

 

(The yellow texts on Figure A’s correpond to the trace of vortices generated during 

the previous half-stroke. The white texts correspond to the vortices generated during 

the half-stroke in consideration.) 
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Figure D.1 Experimental visualization at t*=0.08, comparison with the numerical 
solution and PIV measurements. 
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Figure D.1 (continued) Experimental visualization at t*=0.08, comparison with the 
numerical solution and PIV measurements. 
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Figure D.2 Experimental visualization at t*=0.12, comparison with the numerical 
solution and PIV measurements. 
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Figure D.2 (continued) Experimental visualization at t*=0.12, comparison with the 
numerical solution and PIV measurements. 
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Figure D.3 Experimental visualization at t*=0.16, comparison with the numerical 
solution and PIV measurements. 
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Figure D.3 (continued) Experimental visualization at t*=0.16, comparison with the 
numerical solution and PIV measurements. 
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Figure D.4 Experimental visualization at t*=0.20, comparison with the numerical 
solution and PIV measurements. 
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Figure D.4 (continued) Experimental visualization at t*=0.20, comparison 

with the numerical solution and PIV measurements. 
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Figure D.5 Experimental visualization at t*=0.24, comparison with the numerical 
solution and PIV measurements. 
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Figure D.5 (continued) Experimental visualization at t*=0.24, comparison with the 

numerical solution and PIV measurements. 
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Figure D.6 Experimental visualization at t*=0.28, comparison with the numerical 
solution and PIV measurements. 
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Figure D.6 (continued) Experimental visualization at t*=0.28, comparison with the 

numerical solution and PIV measurements. 
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Figure D.7 Experimental visualization at t*=0.32, comparison with the numerical 
solution and PIV measurements. 
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Figure D.7 (continued) Experimental visualization at t*=0.32, comparison with the 

numerical solution and PIV measurements. 
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Figure D.8 Experimental visualization at t*=0.36, comparison with the numerical 
solution and PIV measurements. 
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Figure D.8 (continued) Experimental visualization at t*=0.36, comparison with the 
numerical solution and PIV measurements. 
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Figure D.9 Experimental visualization at t*=0.40, comparison with the numerical 
solution and PIV measurements. 
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Figure D.9 (continued) Experimental visualization at t*=0.40, comparison with the 

numerical solution and PIV measurements. 
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Figure D.10 Experimental visualization at t*=0.44, comparison with the numerical 
solution and PIV measurements. 
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Figure D.10 (continued) Experimental visualization at t*=0.44, comparison with the 

numerical solution and PIV measurements. 
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Figure D.11 Experimental visualization at t*=0.48, comparison with the numerical 
solution and PIV measurements. 
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Figure D.11 (continued) Experimental visualization at t*=0.48, comparison with the 

numerical solution and PIV measurements. 
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Figure D.12 Experimental visualization at t*=0.52, comparison with the numerical 
solution and PIV measurements. 

TV3 (cw) 

LEV2 (ccw)

TV1 (cw) 

LEV4 (ccw) LEV5 (ccw) 

LEV3 (ccw) 

RSV1 (cw) 
LEV1 (cw)

A 

B 

C 



237 

 

 

 

 
 
Figure D.12 (continued) Experimental visualization at t*=0.52, comparison with the 

numerical solution and PIV measurements. 
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Figure D.13 Experimental visualization at t*=0.56, comparison with the numerical 
solution and PIV measurements. 
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Figure D.13 (continued) Experimental visualization at t*=0.56, comparison 
with the numerical solution and PIV measurements. 
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Figure D.14 Experimental visualization at t*=0.60, comparison with the numerical 
solution and PIV measurements. 
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Figure D.14 (continued) Experimental visualization at t*=0.60, comparison with the 

numerical solution and PIV measurements. 
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Figure D.15 Experimental visualization at t*=0.64, comparison with the numerical 
solution and PIV measurements. 
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Figure D.15 (continued) Experimental visualization at t*=0.64, comparison with the 

numerical solution and PIV measurements. 
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Figure D.16 Experimental visualization at t*=0.68, comparison with the numerical 
solution and PIV measurements. 
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Figure D.16 (continued) Experimental visualization at t*=0.68, comparison with the 

numerical solution and PIV measurements. 
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Figure D.17  Experimental visualization at t*=0.72, comparison with the numerical 
solution and PIV measurements. 
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Figure D.17 (continued) Experimental visualization at t*=0.72, comparison with the 

numerical solution and PIV measurements. 
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Figure D.18 Experimental visualization at t*=0.76, comparison with the numerical 
solution and PIV measurements. 
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Figure D.18 (continued) Experimental visualization at t*=0.76, comparison with the 

numerical solution and PIV measurements. 
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Figure D.19 Experimental visualization at t*=0.80, comparison with the numerical 
solution and PIV measurements. 
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Figure D.19 (continued) Experimental visualization at t*=0.80, comparison with the 

numerical solution and PIV measurements. 
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Figure D.20 Experimental visualization at t*=0.84, comparison with the numerical 
solution and PIV measurements. 
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Figure D.20 (continued) Experimental visualization at t*=0.84, comparison with the 

numerical solution and PIV measurements. 
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Figure D.21 Experimental visualization at t*=0.88, comparison with the numerical 
solution and PIV measurements. 
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Figure D.21 (continued) Experimental visualization at t*=0.88, comparison with the 

numerical solution and PIV measurements. 
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Figure D.22 Experimental visualization at t*=0.92, comparison with the numerical 
solution and PIV measurements. 
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Figure D.22 (continued) Experimental visualization at t*=0.92, comparison with the 

numerical solution and PIV measurements. 
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Figure D.23 Experimental visualization at t*=0.96, comparison with the numerical 
solution and PIV measurements. 
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Figure D.23 (continued) Experimental visualization at t*=0.96, comparison with the 

numerical solution and PIV measurements. 
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Figure D.24 Experimental visualization at t*=1.00, comparison with the numerical 

solution and PIV measurements. 
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Figure D.24 (continued) Experimental visualization at t*=1.00, comparison with the 

numerical solution and PIV measurements. 
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