
ar
X

iv
:1

70
4.

02
97

6v
2 

 [
qu

an
t-

ph
] 

 2
8 

A
pr

 2
01

7

Feinberg-Horodecki Equation with Pöschl-Teller
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Abstract. We obtain the quantized momentum solutions, Pn, of the Feinberg-Horodecki
equation. We study the space-like coherent states for the space-like counterpart of the
Schrödinger equation with trigonometric Pöschl-Teller potential which is constructed by
temporal counterpart of the spatial Pöschl-Teller potential.

1. Introduction

It is well known that the basic equation for non-relativistic quantum mechanical systems is
the Schrödinger equation which is a time-like equation writing for space-dependent potentials.
This equation describes the dynamics of quantal systems. Actually, the time- and space-like
equations are symmetric according to time and spatial coordinates, and it is possible to construct
a ”generalized quantum theory” including the above space-like quantum states [1]. Such a
relativistic theory has been introduced by Feinberg [2], and it’s non-relativistic version has been
obtained by Horodecki [3] who wrote the following space-like counterpart of the Scrödinger
equation in one-dimension

(

i~
∂

∂x
+

~
2

2m0c

∂2

∂x20
− V

c

)

Ψ = 0 , (1)

which is the Feinberg-Horodecki equation. Here, V denotes a vector potential, m0 is the mass
of particle and x0 = ct with the speed of light c. By considering Ψ = ψ(t)e−iPnx/~, the space-
independent form of this equation is written as [1]

{

d2

dt2
+

c

M(c)
P − 1

M(c)
V (t)

}

ψ(t) = 0 . (2)

for stationary states with quantized momentum Pn (n = 0, 1, 2, . . .), where M(c) = ~
2/2m0c

2.
The space-like quantum systems with the Feinberg-Horodecki equation receive a great

attention especially in some branches of physics, such as in extended special relativity and in

http://arxiv.org/abs/1704.02976v2


extended quantum mechanics [1, 4-6]. For example, they are used to explain the mass in a stable
particle, the source of electric charge, and the force between electric charges [1, 7]. Among these
works, Molski has also constructed the space-like coherent states of a time-dependent Morse
potential with the help of Feinberg-Horodecki equation and showed that the obtained results
for space-like coherent states can be used for Gompertzian systems [1]. Recently, only the
quantized momentum solutions of the Feinberg-Horodecki equation for different time-dependent
exponential potentials have been studied in literature [8, 9]. In the present work, we study the
solutions of the Feinberg-Horodecki equation and extend the subject of coherent states to the
space-like coherent states for the temporal counterpart of the Pöschl-Teller potential [10].

In view of practical ground, the Pöschl-Teller potential is a more reliable approximation
of quantum dots confinement potential, especially in axial direction [11]. The quantum wells
having nonlinear optical properties (optical rectification, electrooptic effect and so on) provide
useful opportunities for device applications in photodetectors, etc. It seems that Pöschl-Teller
potential has a successful use in semiconductors because of its tunable asymmetry degree [12].
Recent results based on nanophysics show that it is needed to construct the quantum states
for infinite wells and these can be built by Pöschl-Teller potential. Another property of it is
that the Pöschl-Teller potential has a rich quadratic spectrum structure for its coherent states
[13]. Within the experimental solid state physics, spin dependent effects in a neutron beam with
opposite spins have been explained by taking the magnetic field strength as a form of Pöschl-
Teller potential [14]. Within the theoretical applications, it is clear that many other potentials
can be obtained from Pöschl-Teller potential by some transformation and limiting procedures
[13], so this potential is an interesting one in path-integral formalism serving as a testing ground
for new evaluaiton methods [15].

The coherent states within quantum mechanics have been first constructed by Schrödinger
in 1926 for the harmonic oscillator [16]. Later, Klauder-Glauber-Sudarshan have studied the
coherent states as appropriate one for description of intense beam of photons [17]. Barut
and Girardello have proposed another definition for coherent states (Barut-Girardello coherent
states) which are the eigenstates of a lowering (annihilation) group operator with complex
eigenvalues z [18, 19]. The coherent states features that the expectation values of momentum
and position are described by the classical equations of motion of a harmonic oscillator. The
coherent states for the oscillator can be seen as the most classical of states which include also
the squeezed states [20]. Nowadays, the coherent and squeezed states within the context of
the continuous wave packets (as nonclassical states) become a fundamental point in quantum
information theory and quantum computation. It seems also that the nonclassical states are a
milestone for modern quantum optics [21, 22].

The study of coherent states for harmonic oscillator and other types of potentials has received
great attention in literature, such as the coherent states for power-law potentials [23, 24], Morse
potential [25, 26], pseudoharmonic oscillator [27], the coherent states with Kepler-Coulomb
problem [20], and Pöschl-Teller potential and it’s different forms [10, 28-31]. In this letter, we
study the coherent states based on the definition given by Barut and Girardello of a space-like
Pöschl-Teller potential which can be constructed by the temporal counterpart of the spatial
Pöschl-Teller potential. In the present work, we tend to discuss the coherent states for a
particular quantum system with the underlying symmetry. So, this study maybe bring more
insights about the space-like quantum systems within the quantum mechanics.

The organization of this work is as follows. In the first part of Section 2, we present the
quantized momentum values with the corresponding normalized solutions for the time-dependent
Pöschl-Teller potential. We obtain briefly the lowering and raising operators including the
Casimir operator, which belong to su(1, 1) algebra, of the system under consideration. In next
subsection, we study the space-like coherent states according to definition of Barut-Girardello.
We give our conclusions in Section 3.



2. Feinberg-Horodecki Equation with Pöschl-Teller Potential

2.1. Solutions

Taking the space-like Pöschl-Teller potential as [10]

V (t) =
A(A− 1)

cos2(c1t)
, (3)

and using a dimensionless parameter τ = c1t, Eq. (2) gives us

{

c21
d2

dτ2
+

c

M(c)
P − 1

M(c)

a(a− 1)

cos2(τ)

}

ψ(t) = 0 . (4)

For finding out the quantized momentum Pn, we define a new variable s = 1
2(1 − sin(τ)), and

writing the wavefunction as ψ(s) = (1− s)psqφ(s) in (4)

s(1− s)
d2φ(s)

ds2
+

[

2p +
1

2
− (1 + 4p)s

]

dφ(s)

ds
+

(

−4p2 +
cPn

c21M(c)

)

φ(s) = 0 . (5)

The last equation is then a hypergeometric-type equation if the parameters satisfy

p = q =
A′

4
; A′ = 1 +

√

1 +
16A(A − 1)

c21M(c)
. (6)

Comparing Eq. (5) with the hypergeometric equation [33]

x(1− x)
d2φ(x)

dx2
+ [c− (a+ b+ 1)x]

dφ(x)

dx
− abφ(x) = 0 , (7)

we write the solution of Eq. (5) in terms of the hypergeometric functions 2F1(a, b; c;x)

φ(s) ∼ 2F1(a, b; c; s) , (8)

with

a =
1

2

[

A′ −
√

4cPn

c21

]

; b =
1

2

[

A′ +

√

4cPn

c21

]

; c =
1

2
(1 +A′) . (9)

In order to obtain a physical solution, we write a = −n which gives the quantized momentum

Pn =
c21M(c)

c

(

n+
A′

2

)2

. (10)

By using the above condition, we obtain the wavefunctions corresponding to quantized
momentum of the system

ψ(τ) = N2−A′/2 cosA
′/2(τ) 2F1(−n, n+A′;

1

2
+
A′

2
;
1− sin τ

2
) . (11)

For the normalization constant in Eq. (11), we change the variable as y = 1 − 2s
(0 < y < 1), and use the relation between the hypergeometric functions and the associate
Legendre polynomials P ℓ

k(x) [33]

P ℓ
k(x) =

(−1)ℓΓ(ℓ+ k + 1)

2ℓΓ(k − ℓ+ 1)ℓ!
(1− x2)ℓ/2 2F1(ℓ− k, ℓ+ k + 1; ℓ+ 1;

1− x

2
) , (12)



which gives us from Eq. (11)

ψ(y) = N
Γ(n+ 1)L!√

2(−1)LΓ(n+A′)
(1− y2)1/4PL

n+L(y) . (13)

Writing the normalization condition as
∫ π/2
0 |ψ(t)|2dt = 1 gives the normalized wavefunctions

ψL
n (y) = NL

n (1− y2)1/4PL
K(y) ;NL

n =

√

(2n+ 2L+ 1)Γ(n + 1)

Γ(n+ 2L+ 1)
. (14)

where L = −1/2 + A′/2, K = n + L, and used the orthogonality equation for the assosicate
Legendre polynomials [32]

∫ 1

0
Pm
ℓ (x)Pm

ℓ′ (x)dx =
1

2ℓ+ 1

(ℓ+m)!

(ℓ−m)!
δℓℓ′ . (15)

and we take c1 → 1 for simplicity.
We are now ready to find the raising and lowering operators for our system which are needed

to study the Barut-Girardello coherent states. For this aim, we use the following expression for
associate Legendre polynomials [33]

(1− x2)
dPµ

ν

dx
= (ν + 1)Pµ

ν − (ν − µ+ 1)Pµ
ν+1 , (16)

which gives

[

−(1− y2)
d

dy
+ y(n+ L+

1

2
)

]

ψL
n =

NL
n

NL
(n+1)+L

(n+ 1)ψL
n+1 , (17)

introducing the explicit form of the normalization constant

[

−(1− y2)
d

dy
+ y(n+ L+

1

2
)

]

√

2n+ 2L+ 1

2n+ 2L+ 3
ψL
n =

√

(n+ 1)(n + 2L+ 1)ψL
n+1 . (18)

The left hand side of the equation can be identified as the raising operator based on the Feinberg-
Horodecki equation for the time-dependent Pöschl-Teller potential

Γ+ =

[

−(1− y2)
d

dy
+ y(n+ L+

1

2
)

]

√

2n+ 2L+ 1

2n+ 2L+ 3
. (19)

Using the identity for the associate Legendre polynomials [33]

(1− x2)
dPµ

ν

dx
= −νxPµ

ν + (ν + µ)Pµ
ν−1 , (20)

we write
[

(1− y2)
d

dy
+

3y

2

]

ψL
n =

NL
n

NL
(n−1)+L

(n+ 2L)ψL
n−1 , (21)

and by writing the explicit form of the normalization constant we obtain

[

(1− y2)
d

dy
+

3y

2

]

√

2n+ 2L+ 1

2n+ 2L− 1
ψL
n =

√

n(n+ 2L)ψL
n−1 . (22)



So, we give the lowering operator of our system

Γ− =

[

(1− y2)
d

dy
+

3y

2

]

√

2n+ 2L+ 1

2n+ 2L− 1
. (23)

We summarize the eigenvalue equations of the adjoint operators as

Γ+ψL
n =

√

(n+ 1)(n + 2L+ 1)ψL
n+1 ,

Γ−ψL
n =

√

n(n+ 2L)ψL
n−1 . (24)

With the help of Eq. (24), it is easy to write the commutator

[

Γ−,Γ+
]

ψL
n = 2Γ0ψ

L
n , (25)

with the operator [10]

Γ = n̂+ L+
1

2
, (26)

where we used the eigenvalue as Γ0 = n+L+1/2 [34]. It is also possible to give the commutation
relations between the above operators as

[

Γ,Γ+
]

= +Γ+ ,
[

Γ,Γ−
]

= −Γ− , (27)

which means that the operator algebra of these operators belongs to su(1, 1) algebra. Finally,
the operator with the following action on the states ψL

n

[

Γ2 − 1

2

(

Γ−Γ+ + Γ+Γ−
)

]

ψL
n = L̃(L̃− 1)ψL

n , (28)

can be identified as the Casimir operator

C = Γ2 − 1

2

(

Γ+Γ− + Γ−Γ+
)

. (29)

with the eigenvalue L̃ = L− 1/2 [10].
In the next section, we study the Barut-Girardello coherent states for time-dependent Pöschl-

Teller potential based on the solutions of Feinberg-Horodecki equation and some basic points
related with coherent states such as normalization, it’s orthogonality and expectation values of
a physical observable O with respect to the coherent states.

2.2. Barut-Girardello Coherent States

According to Barut and Girardello [18], the coherent states are written as the eigenstates of the
lowering operator Γ−

Γ−|z, L >= z|z, L > , (30)

where z is a complex number. In the rest of computation, we denote the eigenstates of the
temporal counterpart of the Pöschl-Teller potential as ψL

n ≡ |n,L > which construct a complete
orthonormal basis

< n,L|n′, L >= δnn′ ;
∞
∑

n=0

|n,L >< n,L| = 1 . (31)



The eigenstates |z, L > can be represended as the superposition of the above complete
orthonormal set

|z, L >=
∞
∑

n=0

< n,L|z, L > |n,L > . (32)

Acting the lowering operator on |z, L > with Eq. (30), using Eq. (24) and orthonormalization
in Eq. (31) gives

< n,L|z, L >= z
√

n(n+ 2L)
< n− 1, L|z, L > , (33)

which turns into

< n,L|z, L >= zn

√

Γ(2L+ 1)

n!Γ(n+ 2L+ 1)
< 0, L|z, L > , (34)

where used a recurrence procedure.
From the normalization condition for coherent states, < z,L|z, L >= 1, we obtain

< 0, L|z, L >=

√

|z|2L
I2L(2|z|)Γ(2L + 1)

, (35)

where Im(x) is the modified Bessel function of order m satisfying [27]

∞
∑

n=0

xn

n!Γ(n+m+ 1)
=

1

xm
Im(2x) . (36)

The Barut-Girardello coherent states for a potential which is the temporal counterpart of the
Pöschl-Teller potential with a normalization factor are written as

|z, L >=
√

|z|2L
I2L(2|z|)

∞
∑

n=0

zn

n!Γ(n+ 2L+ 1)
|n,L > . (37)

Let us now discuss briefly the appropriate measure dσ(z, L) by which the resolution of the
identity is realized for the coherent states |z, L > [22, 24]

∫

dσ(z, L)|z, L >< z,L| = 1 . (38)

Here, the complex variable z can be written in polar coordinates as z = reiθ and the related
integrals are performed over the whole complex plane which means 0 ≤ θ ≤ 2π, 0 ≤ r < ∞. It
is possible to suggest that [25, 27]

dσ(z, L) =
2

π
I2L(2|z|)K2L(2|z|)rdrdθ , (39)

where the functions K2L(2|z|) are the modified Bessel function of the second kind. By using the
following equation [33]

∫

∞

0
xµKν(ax)dx =

2µ−1

aµ+1
Γ

(

µ+ ν + 1

2

)

Γ

(

µ− ν + 1

2

)

. (40)



could be showed that Eq. (38) is satisfied. For the last identity, Re (µ+1± ν) > 0 and Re a > 0
should be noted.

In order to complete the discussion, we want to give the expectation value of a physical
observable O with respect to the Barut-Girardello coherent states which are based on the
solutions of the Feinberg-Horodecki equation. With the help of (37), the expectation value
of a physical observable O can be given as

< z,L|O|z, L > ≡ < O >

=
|z|2L

I2L(2|z|)

∞
∑

n,n′=0

(z∗)n
′

zn
√

n′!n!Γ(n′ + 2L+ 1)Γ(n + 2L+ 1)
< n,L|O|n,L > ,

(41)

for which one needs to evaluate a sum as following [24]

∞
∑

ℓ=0

(x2)ℓ

ℓ!Γ(ℓ+m+ 1)
ℓn . (42)

For example, we have with n = 0

∞
∑

ℓ=0

xℓ

ℓ!Γ(ℓ+m+ 1)
=

1

xm
Im(2x) . (43)

With this result, we complete our discussion about the space-like coherent states which based
on the definition of Barut and Girardello for the temporal counterpart of the Pöschl-Teller
potential with the solutions of the Feinberg-Horodecki equation.

3. Conclusion

We have extended the subject of coherent states to the space-like coherent states which are based
on the solutions of the space-like counterpart of the Schrödinger equation called as Feinberg-
Horodecki equation, namely. We have constructed the space-like coherent states according
to definition of Barut-Girardello for a time-dependent Pöschl-Teller potential and discussed
some basic points related with the coherent states such as normalization, the resolution of the
identity satisfied by the coherent states, and possibility to find the expectation value of a physical
observable O.
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