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Quantal diffusion description of multinucleon transfers in heavy-ion collisions
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Employing the stochastic mean-field (SMF) approach, we develop a quantal diffusion description of the
multi-nucleon transfer in heavy-ion collisions at finite impact parameters. The quantal transport coefficients
are determined by the occupied single-particle wave functions of the time-dependent Hartree-Fock equations.
As a result, the primary fragment mass and charge distribution functions are determined entirely in terms of the
mean-field properties. This powerful description does not involve any adjustable parameter, includes the effects
of shell structure, and is consistent with the fluctuation-dissipation theorem of the nonequilibrium statistical
mechanics. As a first application of the approach, we analyze the fragment mass distribution in 48Ca + 238U
collisions at the center-of-mass energy Ec.m. = 193 MeV and compare the calculations with the experimental
data.
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I. INTRODUCTION

The renewed interest in the study of ion-ion collisions
involving heavy systems is driven partially by the search
for new neutron-rich nuclei. For this purpose, a number of
experimental investigations of multinucleon transfer processes
have been carried out in heavy-ion collisions with actinide
targets near barrier energies [1,2]. Collisions of heavy systems
at low energies predominantly lead to dissipative deep-inelastic
collisions and quasifission reactions. In dissipative collisions
part of the bombarding energy is converted into internal excita-
tions and multinucleon transfer occurs between the projectile
and target nuclei. In particular, the quasifission reactions of
heavy ions provide an important tool for massive mass transfer
[2–22]. In quasifission, colliding ions attach together for a
long time but separate without going through a compound
nucleus formation. During the long contact time a substantial
nucleon exchange takes place between projectile and target
nuclei. A number of models have been developed for the
description of the quasifission reaction mechanism in terms of
the multinucleon transfer process [23–26]. The time-dependent
Hartree-Fock (TDHF) theory provides a microscopic alter-
native for describing the heavy-ion reaction mechanism at
low bombarding energies [27–29]. In recent years the TDHF
approach has been extensively used to study quasi-fission
reactions [16,19,20,30–35].

The TDHF theory provides a good description of the
average values of the collective reaction dynamics; however,
the approach is not able to describe the fluctuations of the
collective dynamics. In TDHF studies it is possible to calculate
the mean values of neutron and proton drifts. It is also
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possible to calculate fragment mass and charge distributions
by the particle number projection approach [36–40]. But this
description works best for few-nucleon transfer, and there-
fore dispersions of distributions of multinucleon transfers are
severely underestimated in dissipative collisions [41,42]. Much
effort has been devoted to improve the standard mean-field
approximation by including fluctuation mechanisms into the
description. These include the Boltzmann-Langevin transport
approach [43], the time-dependent random-phase approxi-
mation (TDRPA) approach of Balian and Vénéroni [44,45],
the time-dependent generator coordinate method (TDGCM)
[46], and the stochastic mean-field (SMF) approach [47]. The
applications of the time-dependent density matrix (TDDM)
approach on reactions of heavy system were also recently
reported [48–50]. Here, we present applications of the SMF
approach on multinucleon transfer reactions [51].

In essence there are two different mechanisms for the dy-
namics of density fluctuations: (i) The collisional mechanism
due to short-range two-nucleon correlations, which is incorpo-
rated in to the Boltzmann-Langevin approach. This mechanism
is important in nuclear collisions at bombarding energies
per particle around the Fermi energy, but it does not have
sizable effect at low energies. (ii) At low bombarding energies,
near the Coulomb barrier, long-range mean-field fluctuations
originating from fluctuations of the initial state become the
dominant source for the dynamics of density fluctuations. In the
SMF approach, these mean-field fluctuations are incorporated
into the description of the initial state. The standard mean-
field dynamics provides a deterministic description, in which
well specified initial conditions lead to a definite final state.
In contrast, in the SMF approach the initial conditions are
specified with a suitable distribution of the relevant degrees of
freedom [47]. An ensemble of mean-field events are generated
from the specified fluctuations of the initial state. In a number of
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studies, it has been demonstrated that the SMF provides a good
approximation for nuclear dynamics including a fluctuation
mechanism of the collective motion [47,51–55]. For these low-
energy collisions the dinuclear structure is largely maintained.
In this case, it is possible to define macroscopic variables with
the help of the window dynamics. The SMF approach gives
rise to a Langevin description for the evolution of macroscopic
variables [56,57] and provides a microscopic basis to calculate
transport coefficients for the macroscopic variables. In the
initial applications, this approach has been applied to the
nucleon diffusion mechanism in the semiclassical limit and by
ignoring memory effects [58–60]. In a recent work, using the
SMF approach, we were able to deduce the quantal diffusion
coefficients for nucleon exchange in the central collisions
of heavy ions. The quantal transport coefficients include the
effect of shell structure, take into account the full geometry
of the collision process, and incorporate the effect of Pauli
blocking exactly. Recently, we applied the quantal diffusion
approach and carried out calculations for the variance of
neutron and proton distributions of the outgoing fragments in
the central collisions of several symmetric heavy-ion systems
at energies slightly below the fusion barriers [61]. In another
work, we carried out quantal nucleon diffusion calculations and
determined the primary fragment mass and charge distributions
for the central collisions of 238U + 238U system [62].

In this work, we extend the diffusion description for col-
lisions to incorporate finite impact parameters, and deduce
quantal transport coefficients for the proton and neutron diffu-
sion in heavy-ion collisions. Since the transport coefficients
do not involve any fitting parameter, the description may
provide a useful guidance for the experimental investigations
of heavy neutron rich isotopes in the reaction mechanism.
As a first application of the formalism, we carry out quantal
nucleon diffusion calculations for 48Ca + 238U collisions at
the center-of-mass energy Ec.m. = 193 MeV and determine the
primary fragment mass distribution [1]. In Sec. II, we present
a brief description of the quantal nucleon diffusion mechanism
based on the SMF approach. In Sec. III, we present derivations
of the quantal neutron and proton diffusion coefficients. The
result of calculations for 48Ca + 238U collisions is reported in
Sec. IV, and conclusions are given in Sec. V.

II. QUANTAL NUCLEON DIFFUSION MECHANISM

We consider collisions of heavy ions in which the dinuclear
structure is maintained, such as in deep-inelastic collision or
quasifission reactions. In this case, when the ions start to touch,
a window is formed between the colliding ions. In collisions
with finite impact parameters, the window dynamics is more
complex than the central collisions. In order to incorporate
the vectorial character of the nucleon flux across the window
as well as the rotation dynamics of the dinuclear complex,
we derive the neutron and proton diffusion coefficients, and
determine the derivatives of the drift coefficients in an analo-
gous way to the central collisions discussed in Refs. [61,62].
We represent the reaction plane in a collision by the (x,y)
plane, where the x axis is the beam direction in the c.m. frame
of colliding ions. The window plane is perpendicular to the

symmetry axis and its orientation is specified by

y − y0(t) = −[x − x0(t)] cot θ (t). (1)

In this expression, x0(t) and y0(t) denote the coordinates of the
window center relative to the origin of the c.m. frame, and θ (t)
is the smaller angle between the orientation of the symmetry
axis and the beam direction. For each impact parameter b, as
described in Appendix A, by employing the TDHF solutions,
it is possible to determine time evolution of the rotation angle
θ (t) of the symmetry axis. The coordinates x0(t) and y0(t) of
the center point of the window are located at the center of the
minimum density slice on the neck between the colliding ions.
In the following, all quantities are calculated for a given impact
parameter b or the initial orbital angular momentum l, but for
the purpose of clarity of certain expressions, we do not attach
the impact parameter or the angular momentum label to the
quantities.

In the SMF approach, the collision dynamics is analyzed
in terms of an ensemble of mean-field events. In each event,
we choose the neutron Nλ

1 (t) and proton Zλ
1 (t) numbers of

the projectile-like fragments as independent variables, where
λ denotes the event label. The neutron and proton numbers can
be determined at each instant by integrating the neutron and
proton densities over the projectile-like side of the window for
each event λ by employing the expression(

Nλ
1 (t)

Zλ
1 (t)

)
=

∫
d3r �[(x − x0) cos θ + (y − y0) sin θ ]

×
(

ρλ
n (�r,t)

ρλ
p(�r,t)

)
. (2)

Here, the quantity

ρλ
α(�r,t) =

∑
ij∈α

�∗α
j (�r,t ; λ)ρλ

ji�
α
i (�r,t ; λ) (3)

denotes the neutron and proton number densities for the event
λ of the ensemble of the single-particle density matrices. Here
and in the rest of the article, we use the notation α = n,p for
the proton and neutron labels. According to the main postulate
of the SMF approach, the elements of the initial density matrix
have uncorrelated Gaussian distributions with the mean values
ρλ

ji = δjinj and the second moments determined by

δρλ
jiδρ

λ
i ′j ′ = 1

2δii ′δjj ′ [ni(1 − nj ) + nj (1 − ni)], (4)

where nj are the average occupation numbers of the single-
particle wave functions at the initial state. At zero initial
temperature, the occupation numbers are zero or one; at finite
initial temperatures the occupation numbers are given by
the Fermi-Dirac functions. Here and below, the bar over the
quantity indicates the average over the generated ensemble. In
each event the complete set of single-particle wave functions
is determined by the TDHF equations with the self-consistent
Hamiltonian h(ρλ) of that event,

ih̄
∂

∂t
�α

i (�r,t ; λ) = h(ρλ)�α
i (�r,t ; λ). (5)
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The rates of change of the neutron and the proton numbers of
the projectile-like fragment are given by

d

dt

(
Nλ

1 (t)

Zλ
1 (t)

)
=

∫
d3r δ(x ′)ẋ ′

(
ρλ

n (�r,t)
ρλ

p(�r,t)

)

+
∫

d3r �(x ′)
∂

∂t

(
ρλ

n (�r,t)
ρλ

p(�r,t)

)
, (6)

where x ′ = ê · (�r − �r0), ẋ ′ = �θ · [ê × (�r − �r0)] − ê · �̇r0 with �r0

and �̇r0 as the position and velocity vectors of the center of the
window plane in the c.m. frame. Here and below, ê denotes the
unit vector along the symmetry axis with components êx =
cos θ and êy = sin θ . Using the continuity equation,

∂

∂t
ρλ

α(�r,t) = −�∇ · �jλ
α (�r,t), (7)

we can express Eq. (6) as

d

dt

(
Nλ

1 (t)

Zλ
1 (t)

)
=

∫
d3r g(x ′)

(
ẋ ′ρλ

n (�r,t) + ê · �jλ
n (�r,t)

ẋ ′ρλ
p(�r,t) + ê · �jλ

p (�r,t)

)

=
(

vλ
n(t)

vλ
p(t)

)
. (8)

In this expression and below, for convenience, we re-
place the delta function δ(x) by a Gaussian g(x) =
(1/κ

√
2π ) exp(−x2/2κ2) which behaves almost like the delta

function for sufficiently small κ . In the numerical calculations,
dispersion of the Gaussian is taken to be of the order of the
lattice size κ = 1.0 fm. The right side of Eq. (8) defines the drift
coefficients vλ

α(t) for the neutrons and the protons for the event
λ. In the SMF approach the current density vector is given by

�jλ
α (�r,t) = h̄

2im

∑
ij∈α

[
�∗α

j (�r,t ; λ) �∇�α
i (�r,t ; λ)

−�α
i (�r,t ; λ) �∇�∗α

j (�r,t ; λ)
]
ρλ

ji

= h̄

m

∑
ij∈α

Im
(
�∗α

j (�r,t ; λ) �∇�α
i (�r,t ; λ)ρλ

ji

)
. (9)

Equation (8) provides a Langevin description for the stochastic
evolution of the neutron and the proton numbers of the
projectile-like fragments. Drift coefficients vλ

α(t) fluctuate
from event to event due to stochastic elements of the initial
density matrix ρλ

ji and also due to the different sets of the
wave functions in different events. As a result, there are
two sources for fluctuations of the nucleon drift coefficients:
(i) fluctuations those arise from the different set of single-
particle wave functions in each event, and (ii) the explicit
fluctuations δvλ

p(t) and δvλ
n(t) arising from the stochastic part

of proton and neutron currents.

A. Mean neutron and proton drift path

Equations for the mean values of proton Z1(t) = Zλ
1 (t)

and neutron N1(t) = Nλ
1 (t) numbers of the projectile-like

fragments are obtained by taking the ensemble averaging of the
Langevin equation (8). For small amplitude fluctuations, and
using the fact that average values of density matrix elements
are given by the average occupation numbers as ρλ

ji = δjinj ,
we obtain the usual mean-field result given by the TDHF
equations,

d

dt

(
N1(t)
Z1(t)

)
=

∫
d3r g(x ′)

(
ẋ ′ρn(�r,t) + ê · �jn(�r,t)
ẋ ′ρp(�r,t) + ê · �jp(�r,t)

)

=
(

vn(t)
vp(t)

)
. (10)

Here, the mean values of the densities and the current densities
of neutron and protons are given by

ρα(�r,t) =
∑
h∈α

�∗α
h (�r,t)�α

h(�r,t) (11)

and

�jα(�r,t) = h̄

m

∑
h∈α

Im
(
�∗α

h (�r,t) �∇�α
h(�r,t)), (12)

where the summation h runs over the occupied states origi-
nating both from the projectile and the target nuclei. The drift
coefficients vp(t) and vn(t) denote the net proton and neutron
currents across the window.

Since the uranium nucleus has large quadrupole deforma-
tion, the collision takes place in many different geometries.
In this work, we observe that the dominant contribution to
the fragment distributions in 48Ca + 238U collisions at Ec.m. =
193 MeV, reported in Ref. [1], come from the tip geometry of
the uranium nucleus. Therefore in analyzing the measured data
we incorporate only collisions involving the tip configuration
of the uranium nucleus. Figure 1 illustrates the density profile
of 48Ca + 238U collisions in the tip geometry of the uranium
nucleus with Ec.m. = 193 MeV at an impact parameter b =
2.8 fm, or equivalently at the initial orbital angular momentum
� = 54h̄, at several times during the collision. This computa-
tion and all other numerical computation in this work are car-
ried out by employing the three-dimensional TDHF program of
Umar et al. [63,64]. The SLy4d Skyrme interaction [65,66] is
used. Figure 2 illustrate neutron and proton drift coefficients
at the same energy and the same impact parameter. The
fluctuations of the drift coefficients as function of time are a
result of the shell structure of the population of different nuclei
during the evolution of the projectile-like and target-like nuclei.
A more interesting presentation of the results of the mean-field
evolution in the tip geometry is presented in Fig. 3 at the same
c.m. energy for a few different impact parameters. This figure
shows the mean-drift path of the di-nuclear system in the (N,Z)
plane. After touching, we observe a rapid charge equilibration,
which is not very visible due to the fact that the colliding
nuclei and the composite system have nearly the same charge
asymmetry. After touching, the dinuclear system drifts toward
symmetry along the valley of the beta stability line in a similar
manner for collisions with different impact parameters. The
neutron and proton numbers of the symmetric equilibrium state
are N0 = (NP + NT )/2 = 87 and Z0 = (ZP + ZT )/2 = 56.
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FIG. 1. The density profile of the 48Ca + 238U collisions in the tip
geometry of the uranium nucleus at Ec.m. = 193 MeV and at impact
parameter b = 2.8 fm, or equivalently the initial orbital angular
momentum � = 54 h̄, at times t = 300 fm/c (a), t = 1170 fm/c (b),
and t = 2070 fm/c (c).

As seen from the mean-drift path, during the mean evolution,
the system separates before reaching the symmetric equilib-
rium state.

B. Covariances of fragment charge and mass distributions

Our task is to evaluate the fluctuations of the neutron and
proton numbers around their mean values. For this purpose,
we linearize the Langevin equation (8) around their mean
values Z1(t) and N1(t). There are two different sources of the
fluctuations. The first contribution arises from the different sets
of wave functions in different events. In the leading order, we
can express this effect as deviations of the drift coefficients
from their mean values in terms of fluctuations in neutron
and proton numbers. The second contribution arises from
the initial fluctuations of the elements of the density matrix.
As a result the linearized form of the Langevin equatoin (8)
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FIG. 2. The neutron and proton drift coefficients of 48Ca + 238U
collisions in the tip geometry of the uranium nucleus at Ec.m. =
193 MeV at an impact parameter b = 2.8 fm or equivalently at the
initial orbital angular momentum l = 54 h̄.

becomes

d

dt

(
Zλ

1 (t)

Nλ
1 (t)

)
=

(
∂vp

∂Z1

(
Zλ

1 − Z1
) + ∂vp

∂N1

(
Nλ

1 − N1
)

∂vn

∂Z1

(
Zλ

1 − Z1
) + ∂vn

∂N1

(
Nλ

1 − N1
)
)

+
(

δvλ
p(t)

δvλ
n(t)

)
. (13)

The linear limit provides a good approximation for small
amplitude fluctuations and it becomes even better if the
fluctuations are nearly harmonic around the mean values. The
derivatives of drift coefficients are evaluated on the mean
trajectory and the quantities δvλ

α(t) denote the stochastic part
of drift coefficients given by

δvλ
α(t) =

∫
d3r g(x ′)

(
ẋ ′δρλ

α(�r,t) + ê · δ �jλ
α (�r,t)), (14)

with the fluctuating neutron and proton current densities

δ �jλ
α (�r,t) = h̄

m

∑
ij∈α

Im
(
�∗α

j (�r,t) �∇�α
i (�r,t)δρλ

ji

)
(15)
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FIG. 3. The neutron and proton mean-drift path in the (N,Z)
plane, in 48Ca + 238U collisions in the tip geometry of the uranium
nucleus at Ec.m. = 193 MeV at the impact parameters b = 2.1 fm,
b = 2.6 fm, and b = 3.1 fm or equivalently at the initial angular
momenta � = 40 h̄, � = 50 h̄, and � = 60 h̄. Here n = N0 − N1 and
z = Z0 − Z1, with N1 and Z1 indicating the light fragments.
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and the fluctuating neutron and proton number densities

δρλ
α(�r,t) =

∑
ij∈α

�∗α
j (�r,t)δρλ

ji�
α
i (�r,t). (16)

The variances and the covariance of neutron and pro-
ton distribution of projectile fragments are defined as

σ 2
NN (t) = (Nλ

1 − N1)
2
, σ 2

ZZ(t) = (Zλ
1 − Z1)

2
, and σ 2

NZ(t) =
(Nλ

1 − N1)(Zλ
1 − Z1). Multiplying both sides of Langevin

equations (13) by Nλ
1 − N1 and Zλ

1 − Z1, and taking the en-
semble average, we find that the evolution of the covariances is
specified by the following set of coupled differential equations
[67,68]:

∂

∂t
σ 2

NN = 2
∂vn

∂N1
σ 2

NN + 2
∂vn

∂Z1
σ 2

NZ + 2DNN, (17)

∂

∂t
σ 2

ZZ = 2
∂vp

∂Z1
σ 2

ZZ + 2
∂vp

∂N1
σ 2

NZ + 2DZZ, (18)

and

∂

∂t
σ 2

NZ = ∂vp

∂N1
σ 2

NN + ∂vn

∂Z1
σ 2

ZZ + σ 2
NZ

(
∂vp

∂Z1
+ ∂vn

∂N1

)
.

(19)

In these expressions, DNN and DZZ denote the neutron and
proton quantal diffusion coefficients which are discussed in the
next section. It is well know that the Langevin equation (13) is
equivalent to the Fokker-Planck equation for the distribution
function Pb(N,Z,t) of the macroscopic variables [69]. In the
tip geometry there is a cylindrical symmetry for the distribution
function for each impact parameter. As a result, for each
impact parameter b (or the initial orbital angular momentum
�), the proton and neutron distribution function Pb(N,Z,t) of
the project-like or the target-like fragments is a correlated
Gaussian function described by the mean values and the
covariances as

Pb(N,Z,t) = 1

2πσNN (b)σZZ(b)
√

1 − ρ2
b

exp(−Cb). (20)

Here, the argument of the exponent Cb for each impact
parameter is given by

Cb = 1

2
(
1 − ρ2

b

)
[(

Z − Zb

σZZ(b)

)2

− 2ρb

(
Z − Zb

σZZ(b)

)(
N − Nb

σNN (b)

)

+
(

N − Nb

σNN (b)

)2
]
, (21)

with ρb = σ 2
NZ(b)/σZZ(b)σNN (b). The mean values Nb = Nb,

Zb = Zb denote the mean neutron and proton numbers of
the target-like or project-like fragments. The set of cou-
pled Eqs. (17)–(19) for covariances are familiar from the
phenomenological nucleon exchange model, and they were
derived from the Fokker-Planck equation for the fragment
neutron and proton distributions in deep-inelastic heavy-
ion collisions [67,68]. Equation (20) determines the joint
probability distribution at a given impact parameter. Then,
it is possible to calculate the cross section σ (N,Z) for
production of nuclei with neutron and proton numbers by

integrating the probability distributions over the range of the
impact parameters corresponding to the experimental data
as

σ (N,Z) =
∫ b2

b1

2πb Pb(N,Z) db, (22)

where Pb(N,Z) denotes the distribution functions at the sep-
aration instant of the fragments. Distribution Pb(A − Ab) of
the mass number of the fragments is obtained by substituting
Z = A − N in Pb(N,Z) and integrating over N . For a given
impact parameter this yields a Gaussian function for the
mass number distribution of the target-like or projectile-like
fragments,

Pb(A − Ab) = 1√
2πσAA(b)

exp

[
−1

2

(
A − Ab

σAA(b)

)2
]
, (23)

whereAb = Nb + Zb is the mean value of the mass number and
the variance given by σ 2

AA(b) = σ 2
NN (b) + σ 2

ZZ(b) + 2σ 2
NZ(b).

The cross section for production of nuclei with a mass number
A = N + Z is calculated in a manner similar to Eq. (22).

III. TRANSPORT COEFFICIENTS

A. Quantal diffusion coefficients

Stochastic part of the drift coefficients δvλ
p(t) and δvλ

n(t) are
specified by uncorrelated Gaussian distributions. Stochastic
drift coefficients have zero mean values δvλ

p(t) = 0, δvλ
n(t) = 0

and the associated correlation functions [56,57],∫ t

0
dt ′δvλ

α(t)δvλ
α(t ′) = Dαα(t), (24)

determine the diffusion coefficients Dαα(t) for proton and
neutron transfers. As seen from Eq. (14), there are two different
contribution to the stochastic part of the drift coefficients:
(i) density fluctuations in vicinity of the rotating window
plane which involves collective velocity of the window and
(ii) current density fluctuation across the rotating window.
Since nucleon flow velocity through the window is much larger
than the collective velocity of the window, the current density
fluctuations make the dominant contribution. Therefore in our
analysis, we retain only the current density fluctuations in the
stochastic part of the drift coefficients,

δvλ
α(t) = h̄

m

∫
d3r g(x ′)

∑
ij∈α

Im
(
�∗α

j (�r,t)ê · �∇�α
i (�r,t)δρλ

ji

)
.

(25)

Furthermore, in the stochastic part of the drift coefficients,
we impose a physical constraint on the summations of single-
particle states. The transitions among the single-particle states
originating from the projectile or target nuclei do not contribute
to the nucleon exchange mechanism. Therefore in Eq. (25)
we restrict summation as follows: when the summation i ∈ T
runs over the states originating from the target nucleus, the
summation j ∈ P runs over the states originating from the
projectile, and vice versa. Using the main postulate of the SMF
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approach given by Eq. (4), we can calculate the correlation
functions of the stochastic part of the drift coefficients. At zero
temperature, since the average occupation factor is zero or one,
we find the correlation function is expressed as

δvλ
α(t)δvλ

α(t ′)

= Re

⎛
⎝ ∑

p∈P,h∈T

Aα
ph(t)A∗α

ph(t ′) +
∑

p∈T ,h∈P

Aα
ph(t)A∗α

ph(t ′)

⎞
⎠.

(26)

Here, and below, p and h indices denote the particle and hole
states originating from the projectile and target, and the matrix
elements are given by

Aα
ph(t) = h̄

2m

∫
d3r g(x ′)

(
�∗α

p (�r,t)ê · �∇�α
h(�r,t)

−�α
h(�r,t)ê · �∇�∗α

p (�r,t)). (27)

We note that by employing partial integration we can put this
expression in the following form:

Aα
ph(t) = h̄

m

∫
d3r g(x ′)�∗α

p (�r,t)

×
(

ê · �∇�α
h(�r,t) − x ′

2κ2
�α

h(�r,t)
)

. (28)

In order to evaluate the correlation function (26) of the stochas-
tic drift coefficient, we introduce the following approximate
treatment. In the first term of the right-hand side of Eq. (26),
we add and subtract the hole contributions to give∑

p∈P,h∈T

Aα
ph(t)A∗α

ph(t ′) =
∑

a∈P,h∈T

Aα
ah(t)A∗α

ah(t ′)

−
∑

h′∈P,h∈T

Aα
h′h(t)A∗α

h′h(t ′). (29)

Here, the summation a run over the complete set of states
originating from the projectile. In the first term, we cannot use
the closure relation to eliminate the complete set of single-
particle states, because the wave functions are evaluated at
different times. However, we note that the time-dependent
single-particle wave functions during short time intervals
exhibit nearly a diabatic behavior [70]. We introduce, during
short time τ = t − t ′ evolution, on the order of the correlation
time, a diabatic approximation into the time-dependent wave
functions by shifting the time backward (or forward) according
to [61,62],

�a(�r,t ′) ≈ �a(�r − �uτ,t), (30)

where �u denotes a suitable flow velocity of nucleons through
the window. Now, we can employ the closure relation to obtain∑

a

�∗
a(�r1,t)�a(�r2 − �uτ,t) = δ(�r1 − �r2 + �uτ ), (31)

where the summation index a runs over the complete set of
states originating from target or projectile, and the closure

relation is valid for each set of the spin-isospin degrees of
freedom. The flow velocity �u( �R,T ) may depend on the mean
position �R = (�r1 + �r2)/2 and the time mean T = (t + t ′)/2.
Employing the closure relation in the first term of the right-
hand side of Eq. (29), we find

∑
a∈P,h∈T

Aα
ah(t)A∗α

ah(t ′) =
∑
h∈T

∫
d3r1d

3r2δ(�r1 − �r2 + �uhτ )

×Wα
h (�r1,t)W

∗α
h (�r2,t

′). (32)

The closure relation in Eq. (31) is valid for any choice of the
flow velocity. The most suitable choice is the flow velocity of
the hole state �uh(�r,T ) in each term in the summation, which
is taken in this expression. In this manner the complete set of
single-particle states is eliminated and the calculations of the
quantal diffusion coefficients are greatly simplified. In fact, in
order to calculate this expression, we only need the hole states
originating from the target, which are provided by the TDHF
description. The local flow velocity of each wave function is
specified by the usual expression of the current density divided
by the particle density as given in Eq. (B8) in Appendix B. The
quantity Wα

h (�r1,t) is given by

Wα
h (�r1,t) = h̄

m
g(x ′

1)

(
ê · �∇1�

α
h(�r1,t) − x ′

1

2κ2
�α

h(�r1,t)

)
,

(33)

and W ∗α
h (�r2,t

′) is given by a similar expression. A detailed
analysis of Eq. (32) is presented in Appendix B. The result of
this analysis, as given by Eq. (B19) is,

∑
a∈P,h∈T

Aα
ah(t)A∗α

ah(t ′) =
∫

d3rg̃(x ′)GT (τ )J T
⊥,α(�r,t − τ/2).

(34)

Here J T
⊥,α(�r,t − τ/2) represents the sum of the magnitudes of

current densities perpendicular to the window due to each wave
function originating from target,

J T
⊥,α(�r,t − τ/2)

= h̄

m

∑
h∈T

∣∣Im[
�∗α

h (�r,t − τ/2)
(
ê · �∇�α

h(�r,t − τ/2)
)]∣∣.

(35)

The quantity GT (τ ) is given by Eq. (B20), and it is the average
value of the memory kernels Gh

T (τ ) of Eq. (B13). It is possible
to carry out a similar analysis in the second term in the right
side of Eq. (13) to give

∑
a∈T ,h∈P

Aα
ah(t)A∗α

ah(t ′) =
∫

d3r g̃(x ′)GP (τ )JP
⊥,α(�r,t − τ/2).

(36)

In a similar manner, JP
⊥,α(�r,t − τ/2) is determined by the sum

of the magnitudes of the current densities due to wave functions
originating from the projectile. In Eqs. (35) and (36) we use
lowercase �r instead of the capital letter. As a result, the quantal
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FIG. 4. The neutron and proton diffusion coefficients as a function
of time in 48Ca + 238U collisions in the tip geometry of the uranium
nucleus at Ec.m. = 193 MeV and impact parameter b = 2.8 fm, or
equivalently at the initial orbital angular momentum � = 54 h̄.

expressions of the proton and neutron diffusion coefficients
take the form

Dαα(t) =
∫ t

0
dτ

∫
d3r g̃(x ′)

[
GT (τ )J T

⊥,α(�r,t − τ/2)

+GP (τ )JP
⊥,α(�r,t − τ/2)

]
−

∫ t

0
dτ Re

( ∑
h′∈P,h∈T

Aα
h′h(t)A∗α

h′h(t − τ )

+
∑

h′∈T ,h∈P

Aα
h′h(t)A∗α

h′h(t − τ )

)
. (37)

These quantal expressions for the nucleon diffusion coeffi-
cients for heavy-ion collisions at finite impact parameters
provide an extension of the result published in Ref. [62] for
the central collisions. In general, we observe that there is a
close analogy between the quantal expression and the classical
diffusion coefficient in a random walk problem [56,57,71]. It
is important to note that the quantal diffusion coefficients are
entirely determined in terms of the occupied single-particle
wave functions obtained from the TDHF solutions.

In our previous investigations we estimated the memory
time of the average memory kernel GP (τ ) given by Eq. (B20)
and similarly GT (τ ) [61,62]. We find that the average memory
times τT = τP ≈ 25 fm/c are much shorter than the typical
interaction times, which are around 1000 fm/c. Therefore, we
can neglect the memory effect in the first term of the diffusion
coefficients. For the same reason, the memory effect is not
very effective in the Pauli blocking terms in Eq. (37) as well,
however, in the calculations we keep the memory integrals
in these terms. As an example, Fig. 4 shows the neutron and
proton diffusion coefficients as a function of time in 48Ca +
238U collisions in the tip geometry of the uranium nucleus
at Ec.m. = 193 MeV and impact parameter b = 2.8 fm, or
equivalently at the initial orbital angular momentum � = 54 h̄.
As seen from the figure, the neutron diffusion coefficient is
nearly a factor of 2 larger than the proton diffusion coefficient.

B. Derivatives of drift coefficients

In order to determine the co-variances from Eqs. (17)–(19),
in addition to the diffusion coefficients DZZ and DNN , we need
to know the rate of change of drift coefficients in the vicinity of
their mean values. In order to calculate rates of change of the
drift coefficients, we should calculate neighboring events in the
vicinity of the mean-field path. Here, instead of such a detailed
description, in order to determine the derivatives of the drift
coefficients, we employ the fluctuation-dissipation theorem,
which provides a general relation between the diffusion and
drift coefficients in the transport mechanism of the relevant
collective variables, as is often used in phenomenological
approaches [71,72]. Proton and neutron diffusion in the N -Z
plane are driven in a correlated manner by the potential
energy surface of the dinuclear system. As a consequence
of the symmetry energy, the diffusion in the direction per-
pendicular to the mean-drift path (the beta stability valley)
takes place rather rapidly, leading to a fast equilibration of
the charge asymmetry, and the diffusion continues rather
slowly along the beta stability valley. In Fig. 3, the calculations
carried out by the TDHF equations illustrate very nicely the
expected mean-drift paths in the collision of the 48Ca + 238U
system with several impact parameters. Since the charge
asymmetries of 48Ca and 238U are very close to the charge
asymmetry of the composite system, a rapid equilibration
of the charge asymmetry is not very visible in this system.
We observe that the dinuclear system drifts toward symmetry
during the long contact time, but separates before reaching
symmetry. Following this observation and borrowing an idea
from Refs. [68,72], for each impact parameter, we parametrize
the N1 and Z1 dependence of the potential energy surface of
the dinuclear system in terms of two parabolic forms,

U (N1,Z1) = 1
2a(z̃ cos φ − ñ sin φ)2

+ 1
2b(z sin φ + n cos φ)2. (38)

Here, the first term describes a strong driving force perpen-
dicular to the mean-drift path. The quantity z̃ cos φ − ñ sin φ
denotes the perpendicular distance of a dinuclear state with N1,
Z1 from the mean drift, with z̃ = Zf − Z1 and ñ = Nf − N1.
The angle between the mean-drift path and the N axis is
indicated by φ. Here Nf and Zf are the mean values of
neutron and proton numbers of the light fragment just after
the separation. The second parabola describes a relative weak
driving force toward symmetry along the stability valley.
The quantity z sin φ + n cos φ indicates the distance of the
dinuclear state with the N1, Z1 state along the mean-drift
path from symmetry, with z = Z0 − Z1 and n = N0 − N1.
The quantities N0 and Z0 denote the equilibrium values of
the neutron and proton numbers, which are determined by the
average values of the neutron and proton numbers of the projec-
tile and target, N0 = (NP + NT )/2 and Z0 = (ZP + ZT )/2.
The parameters of the driving potential depend on the impact
parameter. We can determine the values of Zf and Nf from
the mean-drift path for each impact parameter. Also, we
observe from Fig. 3 that the slope of the mean-drift paths is
nearly the same for different impact parameters. Therefore
the angle φ ≈ 32◦ is approximately the same for different
impact parameters. Following from the fluctuation-dissipation
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FIG. 5. Curvature parameters α and β as a function of time in
48Ca + 238U collisions in the tip geometry of the uranium nucleus at
Ec.m. = 193 MeV and impact parameter b = 2.8 fm.

theorem, it is possible to relate the proton and neutron drift
coefficients to the diffusion coefficients and the associated
driving forces, in terms of the Einstein relations as follows
[71,72]:

νn = −DNN

T

∂U

∂N1

= DNN [−α sin φ(z̃ cos φ − ñ sin φ)

+β cos φ(z sin φ + n cos φ)] (39)

and

νz = −DZZ

T

∂U

∂Z1

= DZZ[+α cos φ(z̃ cos φ − ñ sin φ)

+β sin φ(z sin φ + n cos φ)]. (40)

Here the temperature T factor is absorbed into curvature
coefficients, α = a/T and β = b/T , consequently tempera-
ture does not appear as a parameter in the description. We can
determine α and β by matching the mean values of neutron and
proton drift coefficients obtained from the TDHF solutions.
In this manner, a microscopic description of the collision
geometry and details of the dynamical effects are incorporated
into the drift coefficients. As an example, Fig. 5 illustrates
the curvature parameters α and β as a function of time in
48Ca + 238U collisions in the tip geometry of the uranium
nucleus at Ec.m. = 193 MeV and impact parameter b = 2.8 fm.

The curvature parameters are positive as expected from
the potential energy surface, but, as a result of the quantal
effects arising mainly from the shell structure, they exhibit
fluctuations as a function of time. Time dependence can also
be viewed as a dependence on the relative distance between
ions. In differential equations (17)–(19) for covariances, we
need the derivatives of drift coefficients with respect to proton
and neutron numbers of projectile-like fragments. As a great
advantage of this approach, we can easily calculate these
derivatives from drift coefficients, to yield

∂νn

∂N1
= −DNN (α sin2 φ + β cos2 φ), (41)
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FIG. 6. Covariances as a function of time in 48Ca + 238U colli-
sions in the tip geometry of the uranium nucleus at Ec.m. = 193 MeV
and impact parameter b = 2.8 fm.

∂νz

∂Z1
= −DZZ(α cos2 φ + β sin2 φ), (42)

∂νn

∂Z1
= −DNN (β − α) sin φ cos φ, (43)

∂νz

∂N1
= −DZZ(β − α) sin φ cos φ. (44)

The curvature parameter α perpendicular to the beta stability
valley is much larger than the curvature parameter β along the
stability valley. Consequently, β does not have an appreciable
effect on the derivatives of the drift coefficients. We determine
the covariances σ 2

NN (t), σ 2
ZZ(t), and σ 2

NZ(t) for each impact
parameter by solving the coupled differential equations (17)–
(19) with the initial conditions σ 2

NN (0) = 0, σ 2
ZZ(0) = 0, and

σ 2
NZ(0) = 0. As an example, Fig. 6 shows the covariances as a

function of time in 48Ca + 238U collisions in the tip geometry of
the uranium nucleus at Ec.m. = 193 MeV and impact parameter
b = 2.8 fm. The variance of the fragment mass distribution
σ 2

AA(t) is determined as

σ 2
AA(t) = σ 2

NN (t) + σ 2
ZZ(t) + 2σ 2

NZ(t). (45)

IV. FRAGMENT MASS DISTRIBUTION
IN 48Ca + 238U COLLISIONS

In the computation of the production cross sections of
fragments as a function of the charge and mass of the fragments,
we need to include all relevant impact parameters (or the initial
orbital angular momenta) as well as an average of fragment
probabilities over all possible orientations of the target nucleus
238U. In the experimental investigations of Kozulin et al.
[1] for the 48Ca + 238U system, the detectors are placed
between the angles +64◦ and −64◦ with ±10◦ acceptance
range in the laboratory frame. We consider the data collected
at Ec.m. = 193 MeV which corresponds to Elab = 232 MeV.
In order to determine the dominant geometry of the target
nucleus, we consider three perpendicular configurations of the
target, which include “tip,” “side-p,” and “side-s” orientations.
In the “tip” orientation the symmetry axis of uranium is
parallel to the beam direction. In the “side-p” and “side-s”
orientations the symmetry axis of uranium is perpendicular
to the beam direction as well as parallel and perpendicular to
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TABLE I. The impact parameter bi , the final orbital angular
momentum lf , the final average total kinetic energy TKE, the average
total excitation energy E∗, and scattering angles corresponding to the
initial orbital angular momentum �i .

�i (h̄) bi (fm) �f (h̄) TKE (MeV) E∗(MeV) θc.m. θ lab
1 θ lab

2

40 2.10 36.3 200.6 76.0 100.5 73.6 47.5
42 2.20 35.8 198.4 78.2 100.2 73.2 47.6
44 2.31 38.3 193.5 82.3 96.0 69.4 49.6
46 2.41 36.8 194.2 81.6 92.3 66.3 52.2
48 2.51 38.1 195.3 80.5 90.5 65.0 53.2
50 2.62 40.5 193.0 78.7 87.5 62.4 54.9
52 2.72 45.0 195.4 80.4 83.1 59.0 58.3
54 2.82 46.8 199.2 76.6 80.8 57.3 60.2
56 2.93 46.1 198.2 77.6 76.8 54.2 62.7
58 3.03 47.6 190.6 81.1 73.5 51.4 64.1
60 3.14 50.5 184.1 80.9 78.7 55.1 59.1
62 3.24 49.8 180.4 76.8 88.1 62.4 52.4

the reaction plane, respectively. For a given impact parameter,
the laboratory scattering angles θ lab

1 , θ lab
2 of the fragments are

related to the center-of-mass scattering angle θc.m. according to

tan θ lab
1 = sin θc.m.√

Ai
1A

f
1

Ai
2A

f
2

Ec.m.
TKE + cos θc.m.

(46)

and

tan θ lab
2 = sin θc.m.√

Ai
1A

f
2

A
f
1 Ai

2

Ec.m.
TKE − cos θc.m.

. (47)

Here, Ai
1, Ai

2 and A
f
1 , A

f
2 denote the initial and final mass

numbers of the fragments, and TKE is the total kinetic energy
of the fragments after the collision. We calculate the scattering
angles at Ec.m. = 193 MeV with different impact parameters
for different geometries employing the TDHF description.
We find that, at this c.m. energy, “side-p” and “side-s”
configurations do not lead to the experimental scattering angle
range with any impact parameter. Therefore, we assume that
the dominant contribution to the experimental range arises
from the “tip” configuration of the uranium nucleus. This
assumption is supported by the recent investigation of [13]. We
find that the collisions in the “tip” orientation with the initial
orbital angular momenta interval 40 h̄ � � � 62 h̄ reaches the
experimental acceptance range. In order to save computation
time, we introduce a coarse-grained approximation by
carrying out the calculations only for even values of the
orbital angular momentum and taking a range �� = 2h̄
as the angular momentum interval. As seen from Tables I
and II, the observable quantities are monotonically changing
with the angular momentum, which indicates that this is a
reasonable approximation. Tables I and II present the results of
the TDHF calculations in the “tip” orientation. Table I shows
the initial orbital angular momentum �i , the corresponding
impact parameter bi , the final orbital angular momentum �f ,
the final average total kinetic energy TKE, the average total
excitation energy E∗, the center-of-mass scattering angle θc.m.,

TABLE II. The mass and charge numbers A
f
1 , A

f
2 , Z

f
1 , Z

f
2 of the

final fragments and covariances σ 2
NN , σ 2

ZZ , σ 2
NZ for each initial orbital

angular momentum �i .

�i (h̄) A
f
1 Z

f
1 A

f
2 Z

f
2 σ 2

NN σ 2
ZZ σ 2

NZ

40 78.4 31.5 207.6 80.5 159.3 67.4 75.2
42 77.6 31.3 208.4 80.7 144.8 58.4 77.2
44 76.7 31.0 209.3 81.0 147.4 62.3 63.0
46 77.3 31.1 208.7 80.9 139.6 57.7 75.0
48 76.6 30.8 209.4 81.2 149.1 66.4 59.7
50 76.2 30.6 209.8 81.4 135.9 54.3 71.7
52 77.4 31.1 208.6 80.9 154.3 65.5 64.5
54 77.7 31.3 208.3 80.7 116.8 46.3 72.4
56 76.8 31.0 209.2 81.0 116.0 45.7 72.1
58 76.3 30.7 209.7 81.3 112.4 44.1 70.0
60 73.5 29.8 212.5 82.2 100.5 40.0 60.9
62 71.7 29.0 214.3 83.0 76.8 30.1 47.2

and scattering angles θ lab
1 , θ lab

2 of the fragments in the laboratory
frame. We calculate the mean excitation energies employing
the expression E∗ = Ec.m. + Q − TKE, where Q represents
the Q value of the channel. Table II shows the mass and charge
numbers A

f
1 , A

f
2 , Z

f
1 , Z

f
2 of the final fragments and covari-

ances σ 2
NN , σ 2

ZZ , σ 2
NZ for each orbital angular momentum.

We evaluate the mass distributions of the primary fragments
as the initial angular momentum weighted average of the
Gaussian functions given in Eq. (23),

P (A) = η∑
�(2� + 1)

∑
�

(2� + 1)

× [P�(A − A1,�) + P�(A − A2,�)], (48)

where the first and second Gaussians describe the mass distri-
bution of the projectile-like and the target-like fragments with
the same dispersions σAA(�) and the mean values A1,�, A2,�, re-
spectively. In this expression η is a normalization constant and
the summations run over the angular momentum range shown
in Table I, 40 � � � 62, which approximately corresponds to
the data collected in the experiment reported by Kozulin et al.
[1]. We determine the normalization constantη by matching the
peak value of the experimental yield at A = 210 to give a value
η = 214 for the normalization. The normalization constant
η determines the integrated yield between the peak values
76 � A � 210 of the calculated distribution function. In order
to make a comparison with the data, we calculate the area
under the data curve within the same interval 76 � A � 210,
which gives a value of 280 for the experimental yield. This
experimental yield includes the totally relaxed events within
the interval 76 � A � 210 and also includes the fusion-fission
events. Since the deep inelastic events are excluded, there are
no data points outside the range 70 � A � 220 in Fig. 7. On
the other hand, the quantal diffusion calculations presented
here includes the totally relaxed as well as the deep-inelastic
events, but not the fusion-fission events.

Comparing the integrated yield with the experimental yield
in the interval 76 � A � 210, the calculation predicts an
integrated yield of 280 − 214 = 66, which is about 23% of
the total yield, for the fusion-fission events. It is also possible
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FIG. 7. Primary fragment yield in 48Ca + 238U collisions at
Ec.m. = 193 MeV and comparison with data. The solid line is the
result of Eq. (48).

to calculate the cross sections for the primary fragments as a
function of neutron and proton numbers by employing Eq. (22)
in discrete form,

σ (N,Z) = πh̄2

μEc.m.

∑
�

(2� + 1)P�(N,Z). (49)

Since the sum runs over even � values, there is no factor of 2 in
the denominator. Here, we express the cross section in terms
of the initial orbital angular momenta, rather than the impact
parameters. The summation is over the initial orbital angular
momenta listed in Table I and μ is the reduced mass of the
projectile and target nuclei. Figure 8 shows the contour plots
of the calculated cross-section for producing primary target-
like fragments, in the (N,Z) plane in units of millibarn, in
48Ca + 238U collisions with the c.m. energy Ec.m. = 193 MeV.
Experimental data is not available in [1] to compare with the
calculated cross sections.

V. CONCLUSIONS

We present a quantal diffusion description for the multinu-
cleon exchange mechanism in dissipative heavy-ion collisions
in the dnuclear regime. The diffusion description is deduced
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FIG. 8. Calculated primary fragment production cross section for
48Ca + 238U collisions at Ec.m. = 193 MeV in the (N,Z) plane in units
of millibarn.

by employing the relevant macroscopic variables in the SMF
approach. In the SMF approach the collision dynamics is
described by an ensemble of mean-field events. The initial
conditions for the events are specified by the quantal and
thermal fluctuations in the initial state. In the dinuclear regime
of the collision, the reaction predominantly occurs by nucleon
exchange through the window between the projectile and target
nuclei. It is possible to define the neutron and the proton
numbers of projectile-like and target-like fragments, relative
momentum, and other macroscopic variables in each event with
the help of the window dynamics by integrating the relevant
quantities on both side of the window over the TDHF density.
The SMF approach gives rise to a Langevin description for the
evolution of macroscopic variables. The Langevin description
is equivalent to the Fokker-Plank transport equation for the dis-
tribution function of the macroscopic variables. The transport
approach is characterized by diffusion and drift coefficients
for macroscopic variables. In this study, we consider charge
and mass asymmetry as the macroscopic variables and drive
analytical quantal expressions for the associated transport
coefficients. These transport coefficient are determined entirely
in terms of the mean-field properties provided by the solutions
of the TDHF equations. The description of mean values and
the fluctuation of the macroscopic variables are determined
by the set of occupied single-particle wave functions of
the TDHF approach. This important result is a reflection
of the fluctuation-dissipation relation of the nonequilibrium
quantum statistical mechanics. Quantal diffusion description
includes the full geometry of the collision dynamics and does
not involve any adjustable parameter other than the Skyrme
parameters of the TDHF.

As a first application, we applied the quantal diffusion ap-
proach to study multinucleon transfer in 48Ca + 238U collisions
at Ec.m. = 193 MeV. During the long interaction times, of
the order of 2000 fm/c, the dinuclear system drifts toward
symmetry by transferring nearly 20 neutrons and 10 protons
to the projectile. The large drift is accompanied by a broad
charge and mass distribution, with a mass dispersion on the
order of 18 atomic mass unit. We have calculated the cross
sections for produced fragments as a function of neutron and
proton number, as well as the mass distributions of the primary
fragments. In this work, we do not carry out the deexcitation
calculations. However, because of the relatively low excitation
energies of the fragments, we expect the deexcitation mecha-
nism to notalter the primary fragment distributions appreciably.
We analyze the data for 48Ca + 238U collisions at Ec.m. = 193
MeV published by Kozulin et al. [1]. The calculations provide
a good description of the measured fragment mass distribution.
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APPENDIX A: WINDOW DYNAMICS

We can determine the orientation of the symmetry axis
of the dinuclear system with the help of the mass quadruple
moment of the dinuclear system. In the center-of-mass system,
the element of the quadrupole matrix is given by

Qij = 3σij −
(∑

k

σkk

)
δij , (A1)

where i,j,k indices take values 1,2,3 and x1,x2,x3 → x,y,z.
In this expression the elements of the sigma matrix are defined
in terms of the position covariances as

σij (t) =
∑

h

〈φh(t)|xixj |φh(t)〉

−
∑
h,h′

〈φh(t)|xi |φh(t)〉〈φh′(t)|xj |φh′(t)〉. (A2)

We can determine the direction of the symmetry axis, with the
elements of the quadrupole matrix in the reaction plane, which
is defined by z = 0. In this case, we just need to diagonalize
the 2 × 2 reduced quadrupole matrix on the reaction plane
with elements Qxx , Qxy , Qyx , Qyy . The eigenvectors �E+ and
�E− of the quadrupole matrix specify the principal axes of
the dinuclear mass distribution in the reaction plane. These
eigenvectors have the following form:

�E± =
(

Q±
1

)
, (A3)

with components given by

Q± =
Qxx − Qyy ±

√
(Qxx − Qyy)2 + 4Q2

xy

2Qxy

. (A4)

The eigenvalues �± corresponding to Q± are given by

�± =
Qxx + Qyy ±

√
(Qxx − Qyy)2 + 4Q2

xy

2
. (A5)

The beam direction as taken to be in the x direction in the fixed
coordinate system (x,y). The eigenvectors of the quadrupole
matrix define a rotated orthogonal system in the reaction
plane with axes pointing along �E+ and �E− directions. We
note that the eigenvalue �+ is larger than the eigenvalue �−.
The eigenvector �E+ associated with the large eigenvalue �+
specifies the direction of the symmetry axis of the dinuclear
system. The angle θ between the positive direction of the x
axis and the direction of �E+ = (Q+,1) is determined by

tan θ = 1

Q+
= 2Qxy

Qxx − Qyy +
√

(Qxx − Qyy)2 + 4Q2
xy

.

(A6)

Using the trigonometric identities

tan θ = tan 2θ

1 + √
1 + tan2 2θ

, −π

2
< θ < +π

2
(A7)

and

tan θ = tan 2θ

1 − √
1 + tan2 2θ

, +π

2
< θ < +3π

2
(A8)

we can express the angle θ symmetry axis in terms of the
elements of the elements of the quadrupole or the elements of
the sigma matrix as

tan 2θ = 2Qxy

Qxx − Qyy

= 2σxy

σxx − σyy

, (A9)

which applies to the entire range specified in Eqs. (A7)
and (A8).

APPENDIX B: ANALYSIS OF THE CLOSURE RELATION

We rewrite Eq. (32) as∑
a∈P,h∈T

Aα
ah(t)A∗α

ah(t ′)

=
∑
h∈T

∫
d3Rd3rδ(�r + �uhτ )Wα

h (�r1,t)W
∗α
h (�r2,t

′), (B1)

in which we introduce the coordinate transformation

�R = (�r1 + �r2)/2, �r = �r1 − �r2 (B2)

and its reverse

�r1 = �R + �r/2, �r2 = �R − �r/2. (B3)

For clearness, we present quantities Wα
h (�r1,t) and W ∗α

h (�r2,t
′)

here again:

Wα
h (�r1,t) = h̄

m
g(x ′

1)

(
ê · �∇1�

α
h(�r1,t) − x ′

1

2κ2
�α

h(�r1,t)

)
(B4)

and

W ∗α
h (�r2,t

′) = h̄

m
g(x ′

2)

(
ê · �∇2�

∗α
h (�r2,t

′) − x ′
2

2κ2
�∗α

h (�r2,t
′)
)

.

(B5)

Because of the delta function in the integrand of Eq. (B1), we
make the substitution �r = −�uα

h( �R,T )τ in the wave functions
and introduce the backward diabatic shift to obtain

�α
h( �R + �r/2,t) = �α

h

( �R − �uα
hτ/2,t

) ≈ �α
h( �R,T ) (B6)

and

�α
h( �R − �r/2,t ′) = �α

h

( �R + �uα
hτ/2,t ′

) ≈ �α
h( �R,T ). (B7)

The local flow velocity of the wave function �α
h( �R,T ) is

calculated in the standard manner,

�uα
h( �R,T ) = h̄

m

1∣∣�α
h( �R,T )

∣∣2 Im
(
�∗α

h ( �R,T )∇�α
h( �R,T )

)
, (B8)

with T = (t + t ′)/2 = t − τ/2. We write the product of
Gaussian factors as

g(x ′
1)g(x ′

2) = g̃(X′)G̃(x ′), (B9)

with

g̃(X′) = 1√
πκ

exp

[
−

(
X′

κ

)2
]

(B10)
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and

G̃(x ′) = 1√
4πκ

exp

[
−

(
x ′

2κ

)2
]
. (B11)

In these Gaussians, following the transformations below
Eq. (4), the coordinates in the rotating frame are expressed
in terms of the coordinates in the fixed frame as X′ = (X −
x0) cos θ + (Y − y0) sin θ and x ′ = x cos θ + y sin θ . Carry-
ing out the product of the factors and making the substitution
�r = −�uα

h( �R,T )τ , Eq. (B1) becomes∑
a∈P,h∈T

Aα
ah(t)A∗α

ah(t ′)

=
(

h̄

m

)2 ∑
h∈T

∫
d3Rg̃(X′)

Gh
T (τ )

|uh
⊥( �R,T )|

×
[∣∣ê · �∇�α

h( �R,T )
∣∣2 + X′2 − (uh

⊥τ/2)2

4κ4

∣∣�α
h( �R,T )

∣∣2

− X′

2κ2
ê · �∇(∣∣�α

h( �R,T )
∣∣2)

]
. (B12)

Here, uh
⊥( �R,T ) represents the component of the nucleon

(proton or neutron) flow velocity perpendicular to the window
uh

⊥( �R,T ) = ê · �uh
T ( �R,T ) and Gh(τ ) indicates the memory ker-

nel,

Gh
T (τ ) = 1√

4π

1

τh
T

exp
[−(

τ/2τh
T

)2]
, (B13)

with the memory time τh
T = κ/|�uh

⊥|. In this expression g̃(X′) is
a sharp Gaussian smoothing function centered on the window
with a dispersion κ = 0.5 fm; due to the fact that g̃(X′) is
centered at X′ = 0, the third term in Eq. (B12) is nearly zero. In
the second term, after carrying out an average over the memory,
the factor in the middle becomes

X′2 − (
uh

xτ/2
)2 → X′2 − (κ/2)2. (B14)

Since Gaussian g̃(X′) is sharply peaked around X′ = 0 with a
variance (κ/2)2, the second terms in Eq. (B12) is expected to
be very small, as well. Neglecting the second and third terms,
Eq. (B1) becomes

∑
a∈P,h∈T

Aα
ah(t)A∗α

ah(t ′) =
(

h̄

m

)2 ∑
h∈T

∫
d3R g̃(X′)

Gh
T (τ )

|uh
⊥( �R,T )|

× ∣∣ê · �∇�α
h( �R,T )

∣∣2
. (B15)

In the continuation, we express the wave functions in terms
of its magnitude and its phase as [73],

�α
h( �R,T ) = ∣∣�α

h( �R,T )
∣∣ exp

(
iQα

h( �R,T )
)
. (B16)

The phase factor Qα
h( �R,T ) behaves as the velocity potential

of the flow velocity of the wave. Using the definition given
by Eq. (B8), we observe that the flow velocity is given by
�uα

h( �R,T ) = (h̄/m) �∇Qα
h( �R,T ). In the vicinity of the window,

in the perpendicular direction, the phase factors vary faster than
the magnitude of the wave functions. Neglecting the variation
of the magnitude |�h( �R,T )| in the vicinity of the window, we
can express the gradient of the wave function in Eq. (B12) as

ê · �∇�α
h( �R,T ) ≈ i�α

h( �R,T )
(
ê · �∇Qα

h( �R,T )
)
, (B17)

where the quantity inside the parentheses is the component of
the nucleon flow velocity perpendicular to the window. As a
result, Eq. (B1) becomes

∑
a∈P,h∈T

Aα
ah(t)A∗α

ah(t ′) =
∫

d3Rg̃(X′)J̃ T
⊥,α( �R,t − τ/2).

(B18)

Here, J̃ T
⊥,α( �R,t − τ/2) represents the magnitude of the current

densities perpendicular to the window due to each wave
function originating from the target and each term multiplied
by the memory kernel,

J̃ T
⊥,α( �R,T ) = h̄

m

∑
h∈T

Gh
T (τ )|Im[�∗

h( �R,T )(ê · �∇�h( �R,T ))]|.

(B19)

In Eq. (33) we introduce a further approximation by replac-
ing the individual memory kernel Gh

T (τ ) by its average value
taken over the hole states,

GT (τ ) = 1√
4πτT

exp[−(τ/2τT )2], (B20)

with the memory time determined by the average speed
uT using τT = κ/|uT (t)|. The average value uh

T (t) of the
flow speed for each hole state across the window is calcu-
lated as uh

T (t) = ∫
d3Rg̃(X′)ê · �jh

T ( �R,t)/
∫

d3Rg̃(X′)ρh
T ( �R,t),

where �jh
T ( �R,t) and ρh

T ( �R,t) denote the current density and
density of the hole state originating from target, respectively.
The average |uT (t)| is then calculated by taking the mean value
of all the flow speeds |uh

T (t)| of the hole states. It is possible
to calculate the average speed from uT (t) = ∫

d3R g̃(X′)ê ·
�jT ( �R,t)/

∫
d3R g̃(X′)ρT ( �R,t), where ρT ( �R,t) and �jT ( �R,t) are

the total density and the total current density of the states
originating from the target. We expect the two average speeds
to have nearly the same magnitude.
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