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Abstract

In a simple finite-horizon overlapping-generations model where the government has the power
to levy commodity taxes and to implement uniform lump-sum transfers, and individuals as
well as the government can purchase units of a storable good in order to transfer resources
from the present to the future, we derive the equations that implicitly define the taxes and
subsidies that are part of the second-best Pareto optima. In this context we first show
that there is production efficiency. We then show that taxes on capital income/savings are
required at almost all Pareto optima. Finally we show that there are no restriction on prefer-
ences or technologies that are consistent with a general exemption of capital income/savings
from the tax base.

Journal of Economic Literature Classification Numbers: D5, D6, D91, H2.

Keywords: overlapping generations, capital taxes, tax-reform.



Capital Income/Savings Taxation in a Finite-Horizon OLG Model

by
Charles Blackorby and Craig Brett

1. Introduction

The study of optimal taxation has been used to shed light on many problems in policy
design, among them, capital income taxation. That is, when should capital income form part
of the direct income tax base? A main theme of this literature is that distortionary taxation
of capital income is unwarranted because the production efficiency result of Diamond and

Mirrlees [1971] implies that there should be no taxes within the production sector.1However,
capital income is also a form of savings for consumers and this aspect of the issue is addressed
in the arguments in favor of a consumption tax as opposed to an income tax. The putative
advantage of a consumption tax is that before-tax and after-tax returns on savings are equal.
This absence of distortion in the capital market is seen as a prerequisite for overall efficiency

and the enhancement of economic growth.2

Our view is that a proper examination of the capital taxation hypothesis requires several
tests. First, the model must be intertemporal and have some second-best feature in order that
commodity taxes are part of almost all Pareto optima. Otherwise, an exemption for capital
from taxation is an immediate consequence of the suboptimality of any form of commodity
taxes. Second, individuals should have life-times that are shorter than the horizon of the
economy in order to avoid intertemporal neutrality results and there should be more than
one consumer in each time period so that intertemporal transfers are not tantamount to
individual lump-sum transfers. Lastly, the horizon should be finite in order prevent the
government from engaging in some sort of Ponzi scheme.

The model we adopt satisfies these conditions and is conceptually simple. There are

three periods: a start-up generation, and two generations that live for two periods each.3

We allow the government to transfer abstract purchasing power to the old individual alive at
time t, but we restrict these transfers to be of the same magnitude for all generations. This
rules out the presence of lump–sum taxation, and makes our model second–best; that is,

1 See Auerbach [1989] and Feldstein [1978, 1990]. In the overlapping generations context, Ordover and
Phelps [1979] show that a zero marginal tax rate on savings income is a feature of an optimal nonlinear
income tax when future consumption is separable from (current) labour supply in the direct utility function.

2 See Auerbach [1994], Aurerbach and Kotlikoff [1987], Bradford [1987], Browning and Burbidge [1990],
Kesselman [1994], and Meade [1978], for example. See also Chamley [1986], and Judd [1987,1999]. These
models range from steady-state analysis of OLG models to infinitely-lived representative agent paradigms.
An in-depth survey of these results is available in Bernheim [2002].

3 There is nothing special about three; any finite horizon would do as long as the generations have lifetimes
less than the horizon of the model.
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some commodity taxes are optimal at almost all Pareto optima.4 Both individuals — there
is but one per generation — and the government can buy a storable good, capital, in order

to transfer resources to the future.5 There is a competitive firm that uses capital, labour,
and potentially other inputs, to produce a vector of outputs and the storable commodity.

The government levies a one-hundred per cent profit tax on these firms.6 Thus, just as
in the standard Ramsey optimal taxation problem, tax changes may have distributional
consequences which cannot be neutralized by compensating adjustment in individual lump–
sums. We shall see that capital taxes are no exception to this general rule.

In this context we show that there is production efficiency — the shadow prices in
the economy are proportional to producer prices — but that there is non-zero taxation of
capital income/savings at almost all Pareto optima. In addition, we show that there are no
restrictions on preferences or technologies that would entail zero capital taxation along any
segment of the Pareto frontier.

The intuition for these results is reasonably straightforward. Consider period one: ex-
cept for labour, generation zero and generation one are consuming the same goods and pro-
viding the same services and hence facing the same prices. Because the lump-sum transfer is
uniform the government cannot distinguish between the generations using either commodity
taxes or the lump-sum tax. However, the storable good is purchased only by generation one
(Generation zero has no reason to save.) and generation zero does not work. Hence the
consumer price of the storable good and the after-tax wage rate are personalized prices to
generation one. Thus, in principle, the tax on either could be used to distinguish generation
one from generation zero. However, because labour enters the utility function, changing
its after-tax price generates substitution effects within period one as well as intertemporal
substitution effect by changing the first period budget constraint. Because the storable good
is not consumed it does not enter the preferences of generation one and so a tax on it sim-
ply moves its period one budget constraint in or out. Thus the tax on capital acts as an
imperfect substitute for an individual lump-sum tax on generation one in period one. It is,
in general, an imperfect substitute for an individual lump-sum transfer because generation
one can adjust its demand for the storable good in response to price changes thus generating
intertemporal substitution effects. Nevertheless, the tax on capital permits the planner to
move closer to the first-best frontier than would be possible without the tax on capital. A
similar argument holds in period two. Only generation two purchases the storable good
and again, its price is a personalized price to generation two and can be used in lieu of a
lump-sum transfer.

The remainder of the paper is organized as follows. Section 2 outlines the model. This

is followed by a tax reform analysis.7 We start from an economy that is at an arbitrary

4 A similar situation would hold if we allowed many individuals per generation, unrestricted transfers
across generations, but a common transfer within generations.

5 In fact, this common transfer plus the purchases of the storable could be replaced by a bond market
with an equal endowment of bonds given to each generation, but at some cost in complexity.

6 Alternatively, we could have assumed a constant-returns-to-scale technology which would have elimi-
nated this instrument.

7 See Guesnerie [1977,1995], Diewert [1978], Weymark [1979].
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equilibrium and ask if there exist changes in taxes, transfers, and producer prices that are
strictly Pareto-improving and equilibrium preserving. By describing the feasible, Pareto–
improving directions of policy reform, we also furnish a characterization of the (local) second–
best Pareto optima. Our main result is presented and interpreted in Section 4. We offer
some concluding remarks in Section 5, and collect many of the mathematical details in an
appendix.

2. The Model

We consider the simplest possible overlapping generations model.8 The economy lasts for
three periods: a start-up phase, a single period of the type usually examined in overlapping
generations models, and a shut-down period.

2.1. Goods and Consumers

There is a single consumer in each generation, so consumer and generation are used in-
terchangeably. Consumers have preferences over a vector α ∈ Rn in the first period and
ᾱ ∈ Rn−1 in the second period of non–storable goods and services; good n is labour which is

only supplied when young.9 A single storable good, κ ≥ 0, is the sole means of transferring
resources forward in time and can be purchased when young to be resold when old.

An initial generation, denoted 0, is born old. It enters at date 1. It consumes goods and

services, ᾱ0
1 ∈ Rn−1

+ , and receives common lump-sum transfer, m. Also alive at time 1 is a
generation born young. This generation lives for two periods. During period 1, it consumes
(or supplies) α1

1 ∈ Rn and may also purchases an amount of the storable good, κ1
1, to carry

forward with it into the second period. In period 2 it spends its accumulated wealth and

its lump-sum transfer, m, on the consumption of ᾱ1
2 ∈ Rn−1

+ . A second young generation is
born in period 2; it works, consumes, and saves. In period 3, the final period of our model,
this generation sells its capital stock, κ2

2, receives its lump-sum transfer,m, and consumes

ᾱ3
3 ∈ Rn−1

+ .
The production sector is composed of an aggregate profit–maximizing firm whose tech-

nology may change over time. During periods 1 and 2, this firm can produce non–durables
in amounts a and the storable good in amount b, using a and k as inputs. In period 3 it

does not produce any b.10

There is a set of consumer prices and a set of producer prices for each good and service at

each date in time. Let pt be the producer price vector for at.
11 πt denotes the corresponding

consumer price vector. rt is the producer price of the storable good at time t, while ρt is

8 This is a simple version of the model introduced by Allais [1947], Samuelson [1958], and analyzed
by Diamond [1965]. The restriction to three periods simplifies the notation considerably with no loss in
generality.

9 If individuals were allowed to work in both periods nothing of substance would change.
10 We use roman letters to indicate quantities produced and greek letters to indicate quantities consumed.

That is, the symbols α and a refer to goods of identical characteristics. The same correspondence applies to
κ and k. An inconsistency in notation arises in that the supply of κ is denoted b.
11 We express all prices in present value form.
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its consumer price. In addition the firm buys, at time t, the capital stock from generation
t− 1 at a price st−1 while generation t− 1 receives σt−1. Taxes and/or subsidies are defined
implicitly by

πt = pt + τa
t , ρt = rt + τ b

t , and σt = st + τk
t . (2.1)

We assume that the government may bestow a common lump–sum income transfer upon
each generation. Specifically, at date t it transfers m to the old generation. These transfers
are financed by a combination of commodity taxes and a one–hundred per cent pure profit

tax.12 The government may also purchase the storable good in period t for resale in the
next period. We denote these purchases by κg

1 in period 1 and κg
2 in period 2. Note that the

government’s redistribution of income across time is mediated by the capital market.
Given the prices prevailing in period 1, and its lump-sum transfer, the budget constraint

of generation 0 is13

π̄T
1 ᾱ0

1 ≤ m. (2.2)

Its preferences are represented by an indirect utility function given by

u0 = V 0(π̄1, m). (2.3)

Generation 1 faces an inter–temporal decision problem. It allocates its period 1 service
income among goods and services consumed in that period and purchases of the storable
good. At the beginning of the second period, it sells its capital to the firm, receiving σ1 per
unit. It combines this with its lump–sum payment from the government to finance (net)
transactions in period 2. Thus, its behaviour is consistent with the joint budget constraints:

πT
1 α1

1 + ρ1κ
1
1 ≤ 0 and π̄T

2 ᾱ1
2 ≤ σ1κ

1
1 + m. (2.4)

If generation 1 has positive savings,14 its behaviour is also consistent with the single budget
constraint

σ1

ρ1
πT

1 α1
1 + π̄T

2 ᾱ1
2 ≤ m. (2.5)

When this is the case, its indirect utility function is given by

u1 = V 1(π̃1, π̄2, m) where π̃1 :=
σ1

ρ1
π1. (2.6)

Similarly, the value function of generation 2—conditional on positive savings—is given by

u2 = V 2(π̃2, π̄3, m). (2.7)

We assume that the preferences are such that the indirect utility functions are differentially

strongly quasi-convex.15

12 Alternatively, one could assume constant returns-to-scale, implying zero profits.
13 We use subscripts to denote the date at which a commodity is produced or consumed. When ambiguity

is possible, we use superscripts to denote the birth date of the consuming agent. π̄t is the consumer price
vector minus the nth price, the price of labour.
14 This is the only case that we analyze because we are interested in capital/savings taxation.
15 See Blackorby and Diewert [1979].
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In each period, the firm uses the capital it purchases from the old generation in com-
bination with the services supplied by the young generation to produce a vector of (net)
outputs. We assume that the within–period profit functions of the firm are twice contin-

uously differentiable and strongly convex in each period.16 The supply functions are the
derivatives of these profit functions and are denoted

a1 = A1(p1, r1), and b1 = B1(p1, r1), (2.8)

a2 = A2(s1, p2, r2), b2 = B2(s1, p2, r2), and k2 = K2(s1, p2, r2), (2.9)

and
a3 = A3(s2, p3), and k3 = K3(s2, p3). (2.10)

We have suppressed the level of the accumulated capital stock in the supply functions as a
matter of notation. Because the technology is not assumed to be the same in each period,
this formulation is consistent with any rate of capital depreciation or technological progress.
To ease notation we let α0

1 = (ᾱ0
1, 0), α1

2 = (ᾱ1
2, 0) and α2

3 = (ᾱ2
3, 0).

A collection of prices give rise to an equilibrium if

−α0
1 − α1

1 + a1 ≥ 0,

−κ1
1 − κg

1 + b1 ≥ 0,

κ1
1 + κg

1 − k2 ≥ 0,

−α1
2 − α2

2 + a2 ≥ 0,

−κ2
2 − κg

2 + b2 ≥ 0,

κ2
2 + κg

2 − k3 ≥ 0,

−α2
3 + a3 ≥ 0,

κg
1 ≥ 0, and

κg
2 ≥ 0.

(2.11)

That is, all markets — for both storable and non–storable commodities — clear. The capital
market clearing conditions include the demand for capital purchases by the government.

Walras’ law guarantees that the government budget is balanced.17

16 See Diewert, Avriel, and Zang [1981].
17 See Chapter 2 in Guesnerie [1995] for a general discussion of this issue.
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3. The Second-Best Pareto Optima

We assume that the taxation authority has control over the uniform lump–sum transfer,
commodity taxes and its capital purchases. Producer prices adjust to changes in taxes,
but these adjustments are captured by the equilibrium conditions. We wish to investigate

if, starting at an initial tight equilibrium18 with positive saving by consumers, there exist
directions of policy reform that are strictly Pareto improving and equilibrium preserving. If
no such directions exist, then the economy is at a local second-best optimum. We use this
to characterize the set of all Pareto optima.

We denote a direction of policy reform by γ, where

γT := [γT
p , γT

τ , γT
m, γT

κ ] (3.1)

and
γT

p := [dpT
1 , dr1, ds1, dpT

2 , dr2, ds2, dpT
3 ];

γT
τ := [dτaT

1 , dτ b
1 , dτk

1 , dτaT
2 , dτ b

2 , dτk
2 , dτaT

3 ];

γT
m := [dm] and γT

κ := [dκg
1, dκg

2].

(3.2)

The partition of γ corresponds to changes in producer prices, taxes, the common lump-sum
transfer, and government capital purchases.

Consumer utility depends on income and consumer prices alone. The latter are the
sum of producer prices and taxes. The set of strictly Pareto-improving changes in producer
prices, taxes, and demogrant is given by

Pπγp + Pπγτ + Pmγm + 03×2γκ � 0 (3.3)

where Pπ and Pm are the matrices that define the directions of strict Pareto improvements

from any arbitrary equilibrium with respect to consumer prices and the demogrant.19 A
direction is equilibrium-preserving if and only if

[Eπ + Ep]γp + Eπγτ + Emγm + Eκγκ ≥ 0 (3.4)

where Eπ, Ep, Em,and Eκ are the directions of change that preserve equilibrium with respect
to consumer prices, producer prices, the demogrant, and government capital purchases. In
addition, the capital constraints on government must be satisfied before and after the changes
so that

dκg
1 + κg

1 ≥ 0 and dκg
2 + κg

2 ≥ 0. (3.5)

18 An equilibrium is said to be tight if all relations in (2.11) (except possibly the last two) hold with
equality.
19 These matrices as well as those that follow are explicitly defined in the Appendix.
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There are strict Pareto-improving changes that are simultaneously equilibrium-preserving
if and only if (3.3), (3.4), and (3.5) have a solution. Together these constitute a non–
homogeneous system of linear equalities and inequalities. It is shown in the appendix that
this system is equivalent to the following homogeneous system[

Pπ Pπ Pm 03×2 03

0T
3n+4 0T

3n+4 0 0T
2 1

] [
γ
γη

]
� 0 (3.6)

and [
Eπ + Ep Eπ Em Eκ 03n+4

02×(3n+4) 02×(3n+4) 02 I2×2 κg

] [
γ

γη

]
≥ 0 (3.7)

where γη is the dummy variable that permits the conversion of the non–homogeneous system
into a homogeneous one.

If there is no solution to (3.6) and (3.7) then there are no Pareto-improving feasible

changes and the economy is at a second-best optimum. Using Motzkin’s Theorem20 the
economy is at a second-best optimum if and only if there exists some collection of multipliers
such that 0 �= [ξT , θ] ≥ 0T and [vT , ηT ] ≥ 0T satisfying

ξT Pπ + vT [Eπ + Ep] = 0, (3.8)

ξT Pπ + vT Eπ = 0, (3.9)

ξT Pm + vT Em = 0, (3.10)

vT Eκ + ηT = 0, (3.11)

and
θ + ηT κg = 0. (3.12)

The relations (3.8)–(3.12) contain the first–order conditions for a Pareto optimum, and
implicitly define the efficient taxes and demogrant. The multipliers correspond to shadow
values. Specifically, v is the vector of the social marginal values of commodities (the shadow
prices), and ξ is the vector of social marginal values of the incomes of the various gener-

ations (consumers).21 That is, if the planner were maximizing a social welfare function
W (u0, u1, u2) subject to the equilibrium conditions, then,

ξt =
∂W

∂ut

∂V t

∂m
. (3.13)

We first show that production efficiency obtains in the model; that is, that the shadow
prices in this economy are proportional to producer prices. Subtracting (3.9) from (3.8)
yields

vT Ep = 0. (3.14)

20 See Mangasarian [1969, pp. 28-29] for a statement and proof of this result.
21 See Guesnerie [1995] or Myles [1995].
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From (3.14) and the strong convexity of the firm’s profit functions, it follows that22

Theorem 1: Given our regularity conditions and positive savings by generations one and
two, there is production efficiency at all Pareto optima. Per period shadow prices are pro-
portional to producer prices,

vT =
[
µ1(p

T
1 , r1), µ2(s1, p

T
2 , r2), µ3(s2, p

T
3 )

]
(3.15)

where µt is a function of period t producer prices only.

Although shadow prices in the economy are proportional to producer prices in each pe-
riod, no such claim can be made directly for intertemporal shadow prices which depend upon
the values of µt. This, however, is not necessary for production efficiency; the production
sector does not engage directly in intertemporal production but only indirectly by producing
the storable good that is resold in the next period to augment the capital stock.

The relation (3.12) has no analogue in the static Ramsey problem. Expanding it yields

θ + η1κ
g
1 + η2κ

g
2 = 0. (3.16)

Because each term in (3.16) is nonnegative, they are all zero yielding

η1κ
g
1 = 0 and η2κ

g
2 = 0, (3.17)

the standard complementary slackness conditions associated with the constraints on gov-
ernment capital purchases. These conditions partition the set of Pareto optima into four
regions, depending upon the timing of government saving. The region of κg

1 = 0 and η1 > 0
corresponds to a situation where the government would like to transfer more resources into
period one, but is prevented from doing so by the nonnegativity constraint on government
capital purchases. The region in which η1 = η2 = 0 corresponds to a case when the planner
is not capital constrained and is saving in both periods. In this case, (3.11) implies that

µt+1st = µtrt for t = 1, 2. (3.18)

That is, the ratio of intertemporal shadow prices is equal to the ratio of the price that firms
must pay for the stored good at the beginning of period t to what it can sell the storable
good for at the end of the period.

(3.9) and (3.10) contain the information commonly contained in Ramsey formulae. More
specifically, expanding and manipulating them under the assumption that (3.18) holds yields
(See the Appendix.)

ξ1 + ξ2 + ξ3 = µ1p
T
1 ∇mα0

1 + µ1p
T
1 ∇mα1 + µ2p

T
2 ∇mα2 + µ3p

T
3 ∇mα2

3, (3.19)

22 The proof is in the Appendix.
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[
ξ1α

0T
1 + ξ2

σ1
ρ1

α1T
1 ξ2α

1T
2 + ξ3

σ2
ρ2

α2T
2 ξ3α

2T
3

]

= −
[
µ1p

T
1 µ2p

T
2 µ3p

T
3

] 
∇π1α1 ∇π2α

1
1 0

∇π1α
1
2 ∇π2α2 ∇π3α

2
2

0 ∇π2α
2
3 ∇π3α

2
3


 ,

(3.20)

−ξ2ρ1κ
1
1 = −µ1p

T
1 ∇π̃1α

1
1π1 − µ2p

T
2 ∇π̃1α

1
2π1 (3.21)

and
−ξ3ρ2κ

2
2 = −µ2p

T
2 ∇π̃2α

2
2π2 − µ3p

T
3 ∇π̃2α

2
3π2. (3.22)

Expression (3.20) is close to the standard Mirrlees’ result if one ignores (3.21) and

(3.22).23 That is, the social value of the demands and supplies is equal to the cost of the
change in commodity and service taxes valued at producer prices. Using the Slutsky equation
for each generation allows one to rewrite this to obtain the many person Ramsey rule.

From (3.21) and (3.22) we obtain a result relating the value of savings of generation
one to changes in the consumer cost of changes in consumption, again valued at producer
prices. This means that the social value of the savings of generation one must be equal to the
value, at consumer prices, of the induced change in the demand for goods and services times
the shadow prices of these commodities and services. To interpret this result it is useful to
consider the effect of giving generation one a voucher that it can spend on capital purchases
only. The social value of this would be minus the left–hand side of (3.21). Generation one
would spend this windfall on goods and services, perhaps some in each period of its life.
The first two terms of (3.21) account for the costs, at the social shadow prices prevailing
in the period of consumption, of these changes. Note that (3.21) contains only information
about generation 1. Because generation zero does not purchase any of the storable good,
this equation allows the planner to distinguish between the two generations even though it
does not have access to lump sum transfers. From (3.22) we obtain a similar result for the
value of the savings of generation two.

In the other three regions — those in which (3.18) does not hold — we obtain results
that are quite different. The index of discouragement in consumption must be adjusted for
the induced changes in savings which are valued at the differences in the social value of
capital in two adjacent time periods, µt+1s1 − µtrt. This is the result of the fact that in
these regions the government is moving into regions of the Pareto-set where it wishes that
it could move capital from the future to the present but is unable to do so. This in turn
entails that the shadow value of capital is different in the two periods.

23 See Mirrlees [1986] and Guesnerie [1995].

9



4. Capital Income/Savings Taxation

We are now in a position to pose the principal question of the paper: what conditions
on preferences and technologies are necessary and sufficient to imply that the taxation of
capital income is unnecessary at efficient equilibria? It is well-known that in certain classes

of models with sufficient structure capital taxation is redundant.24 The model set out above
is ideal to test this intuition. Each generation has a lifetime that is shorter than that of the
economy. Commodity and service taxes are an essential part of almost all Pareto-efficient
outcomes because the government does not have access to individual lump-sum transfers,
but only a uniform lump-sum transfer—a demogrant. Given that one of the components
of αt

t must be negative, this is equivalent to an anonymous affine income-tax schedule with
linear taxes for all other commodities.

Before we can pose the question that motivates this paper we need first to establish the
number of prices and or taxes that can be normalized without changing the set of Pareto
optima. The following result, which is proved in the appendix, establishes this.

Theorem 2: Given our regularity conditions and positive savings by generations one and
two, at every Pareto optimum one can normalize one producer price in each period, either
the tax on capital or the tax on savings in each period, but not both, and one consumer price
(not per period).

To effectuate Theorem 2 we employ the following normalizations in the rest of the paper.
Let

p11 = 1, s1 = 1, s2 = 1, τa
11 = 0, τk

1 = 0, and τk
2 = 0. (4.1)

That is, we have chosen arbitrarily to set the producer price of good one in period one, of
capital in period two and three equal to one, the tax on good one in period one and the tax
on savings in periods two and three equal to zero.

We ask if there are any restrictions on preferences or technologies that entail zero capital
taxes along the Pareto frontier. To pose the question, we ask under what circumstances can
we—without loss of generality—set the tax on the purchases of the storable good equal to
zero in addition to the normalizations given above. That is, under what conditions are
efficient equilibria consistent with (4.1) and

τ b
1 = 0 and τ b

2 = 0. (4.2)

The following result is established in the Appendix.

Theorem 3: Given the regularity conditions, there are no restrictions on preferences or
technologies such that zero taxes on capital and savings hold along a segment of the second
best Pareto frontier in a finite-horizon OLG model with positive individual savings.

24 These are either models with a single infinitely-lived consumer or a study of steady-state behaviour. See
Auerbach and Hines [2002] for a discussion and for references.
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Theorem 3 is a strong result but is relatively easily explained. In periods one and two
there are two consumers for all good and services except labour; they face the same consumer
prices except for the after-tax wage rate, and have the same lump-sum income. Because
the planner does not have access to generation-specific lump-sum transfers, the optimal
commodity taxes can only depend upon the aggregate elasticities of demand. However, only
generation one purchases the storable good in period one and only generation two buys the
storable good in period two. Thus, for generation one, the price of the storable good in period
one is a personalized price. Because the storable good does not appear in the preferences of
generation one, the only effect of a change in the personalized price to generation one is to

move the period one budget constraint of generation one in or out.25 Similarly, the price of
the storable good in period two is a personalized price for generation two. The planner can,
in part, substitute the tax on the storable good for the unavailable lump-sum tax. Of course,
this substitution is less than perfect because the individuals can adjust their purchases of
the storable good in response to price changes. If generations one and two simply possessed
a stock of the storable good and could not buy or sell it, then, we would be able to retrieve
a first-best optimum. Because we are only interested in the regions where generations one
and two are saving, and because this is the only intertemporal link for these generations, the
planner uses the tax on savings to move in the direction of lump-sum taxation.

In order to see this argument more formally consider, for simplicity, the region where
the government purchases of the storable good are positive so that (3.18) holds. Considering
this case also makes it clear that Theorem 3 depends in no way on the relationship between
inter-temporal shadow prices and rates of return on the storable commodity. Expanding the
first equation of (3.20) and and using the first period budget constraint of generation one,
(3.20) and (3.21) can be rewritten as

ξ1α
0T
1 + ξ2

σ1

ρ1
α1T

1 = −µ1p
T
1 ∇π1α

0
1 − µ1p

T
1 ∇π̃1α

1
1
σ1

ρ1
− µ2p

T
2 ∇π̃1α

1
2
σ1

ρ1
(4.3)

and
ξ2π

T
1 α1

1 = −µ1p
T
1 ∇π̃1α

1
1π1 − µ2p

T
2 ∇π̃1α

1
2π1. (4.4)

Postmultiplying (4.3) by π1 and collecting terms yields

ξ1α
0T
1 π1 + µ1p

T
1 ∇π1α

0
1π1 = −σ1

ρ1

[
ξ2α

1T
1 π1 + µ1p

T
1 ∇π̃1α

1
1π1 + µ2p

T
2 ∇π̃1α

1
2π1

]
(4.5)

Using (4.4), the term in square brackets on the right side of (4.5) is zero yielding

ξα0T
1 π1 + µ1p

T
1 ∇π1α

0
1π1 = 0 (4.6)

which, using the budget constraint of generation zero and the homogeneity of degree zero in
(π1, m) of generations zero’s demand functions becomes

ξα0T
1 = µ1p

T
1 ∇mα0

1. (4.7)

25 See the left side of (2.4).
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However, (4.7) is exactly the first-order condition that would obtain if there were a generation-
specific lump-sum transfer to generation zero that would permit the planner to distinguish
it from generations one and two. That is, taxing the storable good acts indirectly just like a
generation-specific lump-sum transfer and thus allows the second-best optima to be moved
closer to the first-best than would be possible if there were no capital taxation. A similar, but
less complete, argument explains the taxation of the capital good in period two. It allows
the planner to distinguish between generations one and two because only generation two
buys the storable good. It is less complete because consumption of generation one in period
one cannot be controlled by manipulating the period-two budget constraint of generation
two but only the consumption of period two commodities by generation one. This explains
Theorem 3, the tax on saving should be nonzero almost everywhere.

Our argument for the existence of a tax on saving is similar to the standard argument
for differential commodity taxes, in that the savings tax allows the planner a measure of
targeted redistribution. It is possible to find restrictions on preferences, like those outlined
in Atkinson and Stiglitz [1976], that render commodity demands similar across types of
consumers, so that differential commodity taxes have no redistributive effect. However, at
each date, savings taxes are necessarily targeted at the (in our model, unique) generation
doing the saving. Under the assumption of non-zero saving a change in the price of saving
has an income effect on exactly one generation, regardless of its preferences.

One might imagine that these results derive from some sort of dynamic inconsistency.
This question is more difficult in the current context because we are trying to describe
properties that hold at all Pareto optima and not just the result of a particular social
welfare maximization. Of course, each point on the Pareto frontier would be chosen by some
social welfare function so that in principle one could analyze this problem point by point.
This would involve not only examining the changes in the planner’s behaviour but also the
individual generation’s optimal responses to it. There is no obvious way to do this while
looking at the entire set of Pareto optima, however, a partial response is possible.

In the original set of Pareto optima all three generations received the same lump-sum
transfer. At the beginning of period two, given the work/consumption and saving decision
taken by generations zero and one, we can compute a (potentially) new set of Pareto optima
constraining generations one and two to receive the same lump-sum transfer but possibly
different from that received by generation zero. This preserves the second-best nature of the
problem but permits us to ask if the tax on the storable good is still a necessary instrument
at the potentially new Pareto optima. The solutions that we found to the original problem
are still consistent with the new problem but there may of course be solutions to the new
problem that were not solutions to the old. We have shown in the original problem that
the capital tax was non-zero almost everywhere and that it was an integral part of the tax
system. At the beginning of period two, a tax has already been levied on the storable good in
period one. Beginning in period two and constraining the lump-sum transfers to generations
one and two to be equal but not necessarily equal to that of generation zero, we can show
that the capital tax is still non-zero and that it is an essential element of the indirect tax
system for the same reasons provided above, namely that the price of the storable good in
period to is a personalized price to generation two.

12



Theorem 4: Constraining the lump-sum payments to generations one and two to be equal
at the beginning of period two, the result of Theorem 3 is preserved at the resulting Pareto-
optima.

The proof of Theorem 4 is exactly like the proof of Theorem 3.

5. Conclusion

We have shown that a tax on capital is required at almost all Pareto optima and that
there are no restrictions on preferences or technology that render these taxes unnecessary.
These theorems depend explicitly on the OLG structure of the model. Theorems 3 and 4 do
not claim that there are no Pareto efficient tax structures with zero capital taxation. The
Walrasian equal-income equilibrium is Pareto efficient. However, it is a single point on the
Pareto frontier. Even points on the Pareto frontier near the laissez faire outcome require
some form of capital market intervention.

Capital taxation can have far–reaching effects on the economy. Like all forms of taxa-
tion, it affects the relative prices consumers face, and the real incomes at their disposal. By
their very nature, the incidence of capital income taxes differs among agents. In the absence
of optimal inter–generational transfer schemes, this differential incidence can be exploited to
implement some parts of the Pareto frontier that would otherwise be unattainable. This pa-
per has uncovered, perhaps surprisingly, that this intuition is more robust than it might first
appear. No set of restrictions on preferences is sufficient to render the possible redistributive
effects of capital taxation inoperable.

6. Appendix

This sections contains several technical arguments used in the text.

6.1. Pareto-Improving and Equilibrium-Preserving Directions

The matrices that define Pareto-improving directions with respect to consumer prices and
the demogrant are given by

Pπ :=


−α0T
1 0 0 0T

n 0 0 0T
n

−σ1
ρ1

α1T
1

σ1

ρ2
1
πT

1 α1
1 − 1

ρ1
πT

1 α1
1 −α1T

2 0 0 0T
n

0T
n 0 0 −σ2

ρ2
α2T

2
σ2

ρ2
2
πT

2 α2
2 − 1

ρ2
πT

2 α2
2 −α2T

3


 (6.1)

and

Pm :=


 1

1
1


 . (6.2)
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In order to describe the feasible directions of policy reform, we define a collection of

matrices.26 First,

Eπ :=


−∇π1α1 −∇ρ1α
1
1 −∇σ1α

1
1 −∇π2α

1
1 0n 0n 0n×n

−∇π1κ
1
1 −∇ρ1κ

1
1 −∇σ1κ

1
1 −∇π2κ

1
1 0 0 0T

n

+∇π1κ
1
1 +∇ρ1κ

1
1 +∇σ1κ

1
1 +∇π2κ

1
1 0 0 0T

n

−∇π1α
1
2 −∇ρ1α

1
2 −∇σ1α

1
2 −∇π2α2 −∇ρ2α

2
2 −∇σ2α

2
2 −∇π3α

2
2

0T
n 0 0 −∇π2κ

2
2 −∇ρ2κ

2
2 −∇σ2κ

2
2 −∇π3κ

2
2

0T
n 0 0 +∇π2κ

2
2 +∇ρ2κ

2
2 +∇σ2κ

2
2 +∇π3κ

2
2

0n×n 0n 0n −∇π2α
2
3 −∇ρ2α

2
3 −∇σ2α

2
3 −∇π3α

2
3




.
(6.3)

Each row of (6.3) corresponds to a relation in (2.11), with elements corresponding to the
change in the left–hand side in (2.11) to an infinitesimal change in a consumer price. To deal
with the demogrant, producer price changes and government capital purchases, we introduce:

Em :=




−∇mα0
1 −∇mα1

1

−∇mκ1
1

∇mκ1
1

−∇mα1
2 −∇m3α

2
2

−∇mκ2
2

∇mκ2
2

−∇mα2
3




; (6.4)

Ep :=


∇p1a1 ∇r1a1 0n 0n×n 0n 0n 0n×n

∇p1b1 ∇r1b1 0 0T
n 0 0 0T

n

0T
n 0 −∇s1k2 −∇p2k2 −∇r2k2 0 0T

n

0n×n 0n ∇s1a2 ∇p2a2 ∇r2a2 0 0T
n

0T
n 0 ∇s1b2 ∇p2b2 ∇r2b2 0 0T

n

0T
n 0 0 0T

n 0 −∇s2k3 −∇p3k3

0n×n 0n 0n 0n×n 0n ∇s2a3 ∇p3a3




;
(6.5)

and

Eκ :=




0 0
−1 0
1 0
0 0
0 −1
0 1
0 0




. (6.6)

26 Variables without superscripts denote within–period aggregate demands.
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6.2. Non Homogeneous Motzkin Theorem

We want to show that the non–homogeneous system of relations,

Ax � 0, Bx ≥ 0, Dx ≥ ξ, and Cx = 0, (6.7)

has a solution exactly when there exists a solution to the following homogeneous system:[
A 0a

0T
n θ

] [
x

z

]
� 0,

[
B 0b

D −ξ

] [
x

z

]
≥ 0, and

[
C 0c

0T
n 0

] [
x

z

]
= 0 (6.8)

where x ∈ Rn and 0a has the same number of rows as A.
If (6.7) has a solution, then (6.8) has a solution with z = 1. If (6.8) has a solution,

then, dividing through by z shows that (6.7) has a solution.

6.3. Proof of Theorem 1

From (3.14) we have

vT Ep = 0. (6.9)

From (6.5) this is

vT




∇p1a1 ∇r1a1 0n 0n×n 0n 0n 0n×n

∇p1b1 ∇r1b1 0 0T
n 0 0 0T

n

0T
n 0 −∇s1k2 −∇p2k2 −∇r2k2 0 0T

n

0n×n 0n ∇s1a2 ∇p2a2 ∇r2a2 0 0T
n

0T
n 0 ∇s1b2 ∇p2b2 ∇r2b2 0 0T

n

0T
n 0 0 0T

n 0 −∇s2k3 −∇p3k3

0n×n 0n 0n 0n×n 0n ∇s2a3 ∇p3a3




= 0. (6.10)

This matrix is block diagonal. The first block is the N + 1 by N + 1 Hessian of the first
period profit function which is assumed to be differentially strongly convex and hence has
rank N. This means that the zero eigen-vector is unique up to positive scalar multiplication
and is proportional to the first period producer price vector, (pT

1 , r1). It follows that the
factor of proportionality can only be a function of period one producer prices. The second
block is the Hessian of the second period profit function and the third block that of the third
period profit function. Similar arguments establish the theorem.

6.4. Proof of Theorem 2:

This model admits six independent price normalizations: one producer price per period
can be fixed; one consumer price — but not one per period — may be fixed; and either the
capital input taxes or the taxes on savings (but not both) may be set to zero. We show that
here only six are possible:

p11 = 1, s1 = 1, s2 = 1, τa
11 = 0 τk

1 = 0, and τk
2 = 0. (6.11)

Given our tax reform perspective, it is necessary to translate the normalizations and
(possibly) binding restrictions into statements about the possible directions of policy reform.

15



Clearly, the components of γ corresponding to a change in a normalized quantity must be
zero. We can introduce these restrictions with the help of the following matrices:

I =


 1, 0T

n−1 0 0 0T
n 0 0 0T

n

0T
n 0 1 0T

n 0 0 0T
n

0T
n 0 0 0T

n 0 1 0T
n


 (6.12)

and

Ĩ =


 1, 0T

n−1 0 0 0T
n 0 0 0T

n

0T
n 0 1 0T

n 0 0 0T
n

0T
n 0 0 0T

n 0 1 0T
n


 . (6.13)

The rows of the matrices correspond to the order in which the constraints are imposed by

(6.11); for example, the first row of Ĩ imposes the constraint dτa
11 = 0.

These normalizations are imposed by[ I
03×(3n+4)

]
γp +

[
03×(3n+4)

Ĩ

]
γτ +

[
03

03

]
γm +

[
03×2

03×2

]
γκ +

[
03

03

]
γη = 0. (6.14)

There are strict Pareto-improving changes that are simultaneously equilibrium-preserving
with the six normalizations if and only (3.6), (3.7), and (6.14) have a solution. If there is no
such solution we are at a second-best optimum. Using Motzkin’s Theorem the economy is
at a second-best optimum if and only if

[
ξT θ

] [
[Pπ Pπ Pm 0 0

0T
n 0T

n 0 0T
2 1

]
+

[
vT ηT

] [
Eπ + Ep Eπ Em Eκ 0

02×n 02×n 02 I2×2 κg

]

+ (wT , zT )

[
I 03×(3n+4) 03 03×2 03

03×(3n+4) Ĩ 03 03×2 03

]
= 0

(6.15)

where 0 �= [ξT , θ] ≥ 0T and [vT , ηT ] ≥ 0T .
Expanding (6.15) yields

ξT Pπ + vT (Eπ + Ep) + wTI = 0, (6.16)

ξT Pπ + vT Eπ + zT Ĩ = 0, (6.17)

ξT Pm + vT Em = 0, (6.18)

vT Eκ + ηT = 0, (6.19)

θ + ηT κg = 0. (6.20)

Let vT = (vT
1 , v2, v3, v

T
4 , v5, v6, v

T
7 ) where the first, fourth, and last element are n-tuples.

Expanding yields (6.18) and then (6.17) yields∑
t

ξt − vT
1 ∇mα1 + (v3 − v2)∇mκ1

1 − vT
4 ∇mα2 + (v6 − v5)∇mκ2

2 − vT
7 ∇mα2

3 = 0, (6.21)
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−ξ1α
0T
1 − ξ2

σ1

ρ1
α1T

1 − vT∇π1α1 + (v3 − v2)∇π1κ
1
1 − vT

4 ∇π1α
1
2 + z1 = 0, (6.22)

ξ2
σ1

ρ2
1

πT
1 α1

1 − vT
1 ∇ρ1α

1
1 + (v3 − v2)∇ρ1κ

1
1 − vT

4 ∇ρ1α
1
2 = 0, (6.23)

−ξ2
1

ρ1
πT

1 α1
1 − vT

1 ∇σ1α
1
1 + (v3 − v2)∇σ1κ

1
1 − vT

4 ∇σ1α
1
2 + z2 = 0, (6.24)

−ξ2α
1T
2 −ξ3

σ2

ρ2
α2T

2 −vT
1 ∇π2α

1
1 +(v3−v2)∇π2κ

1
1−vT

4 ∇π2α2 +(v6−v5)∇π2κ
2
2−vT

7 ∇π2α
2
3 = 0,

(6.25)

ξ3
σ2

ρ2
2

πT
2 α2

2 − vT
4 ∇ρ2α

2
2 + (v6 − v5)∇ρ2κ

2
2 − vT

7 ∇ρ2α
2
3 = 0, (6.26)

−ξ3
1

ρ2
πT

2 α2
2 − vT

4 ∇σ2α
2
2 + (v6 − v5)∇σ2κ

2
2 − vT

7 ∇σ2α
2
3 + z3 = 0, (6.27)

and
−ξ3α

2T
3 − vT

4 ∇π3α
2
2 + (v6 − v5)∇π3κ

2
2 − vT

7 ∇π3α
2
3 = 0. (6.28)

Multiplying (6.23) by ρ1, (6.24) by σ1, adding and using the homogeneity of κ1
1 yields

σ1z2 = 0 (6.29)

so that z2 is identically zero and the constraint that tk1 = 0 is not binding; hence a free nor-
malization. Similarly multiply (6.26) by ρ2, (6.25) by σ2, adding and using the homogeneity

of κ2
2 yields

σ2z3 = 0 (6.30)

so that z3 is identically zero and the constraint that tk2 = 0 is not binding. Next, multiply
(6.21) by m, (6.22) by π1, (6.25) by π2, (6.28) by π3, add, use the homogeneity of the demand
equations and the budget constraints to obtain

z1π11 = 0. (6.31)

Thus the tax on one consumer price can be set equal to zero. Next, using the proof of
Theorem 1, shows that one producer price can be normalized in each period.

6.5. Proof of Theorem 3:

In order to impose the six normalizations plus (4.2) let

I =


 1, 0T

n−1 0 0 0T
n 0 0 0T

n

0T
n 0 1 0T

n 0 0 0T
n

0T
n 0 0 0T

n 0 1 0T
n


 . (6.32)

Î =




1, 0T
n−1 0 0 0T

n 0 0 0T
n

0T
n 1 0 0T

n 0 0 0T
n

0T
n 0 1 0T

n 0 0 0T
n

0T
n 0 0 0T

n 1 0 0T
n

0T
n 0 0 0T

n 0 1 0T
n


 . (6.33)
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Then, the six normalizations plus (4.2) are imposed by[ I
05×(3n+4)

]
γp +

[
03×(3n+4)

Î

]
γτ +

[
03

05

]
γm +

[
03×2

05×2

]
γκ +

[
03

05

]
γη = 0. (6.34)

Using Motzkin’s Theorem the economy is at a second-best optimum if and only if

[
ξT θ

] [
[Pπ Pπ Pm 0 0

0T
n 0T

n 0 0T
2 1

]
+

[
vT ηT

] [
Eπ + Ep Eπ Em Eκ 0

02×n 02×n 02 I2×2 κg

]

+ (wT , zT )

[
I 03×(3n+4) 03 03×2 03

05×(3n+4) Î 05 05×2 05

]
= 0

(6.35)

where 0 �= [ξT , θ] ≥ 0T and [vT , ηT ] ≥ 0T .
Expanding (6.35) yields

ξT Pπ + vT (Eπ + Ep) + wTI = 0, (6.36)

ξT Pπ + vT Eπ + zT Î = 0, (6.37)

ξT Pm + vT Em = 0, (6.38)

vT Eκ + ηT = 0, (6.39)

θ + ηT κg = 0. (6.40)

In order for capital taxation to be redundant, it must be that w and z are both identically
zero. However, if z is not zero, then w cannot be. Therefore a necessary condition for the
redundancy of capital taxation is that z be equal to zero. Expanding (6.38) and (6.37) yields∑

t

ξt − vT
1 ∇mα1 + (v3 − v2)∇mκ1

1 − vT
4 ∇mα2 + (v6 − v5)∇mκ2

2 − vT
7 ∇mα2

3 = 0, (6.41)

−ξ1α
0T
1 − ξ2α

1T
1 − vT∇π1α1 + (v3 − v2)∇π1κ

1
1 − vT

4 ∇π1α
1
2 + (z1, 0

T
n−1) = 0, (6.42)

ξ2
σ1

ρ2
1

πT
1 α1

1 − vT
1 ∇ρ1α

1
1 + (v3 − v2)∇ρ1κ

1
1 − vT

4 ∇ρ1α
1
2 + z2 = 0, (6.43)

−ξ2
1

ρ1
πT

1 α1
1 − vT

1 ∇σ1α
1
1 + (v3 − v2)∇σ1κ

1
1 − vT

4 ∇σ1α
1
2 + z3 = 0, (6.44)

−ξ2α
1T
2 −ξ3

σ2

ρ2
α2T

2 −vT
1 ∇π2α

1
1 +(v3−v2)∇π2κ

1
1−vT

4 ∇π2α2 +(v6−v5)∇π2κ
2
2−vT

7 ∇π2α
2
3 = 0,

(6.45)

ξ3
σ2

ρ2
2

πT
2 α2

2 − vT
4 ∇ρ2α

2
2 + (v6 − v5)∇ρ2κ

2
2 − vT

7 ∇ρ2α
2
3 + z4 = 0, (6.46)

−ξ3
1

ρ2
πT

2 α2
2 − vT

4 ∇σ2α
2
2 + (v6 − v5)∇σ2κ

2
2 − vT

7 ∇σ2α
2
3 + z5 = 0, (6.47)
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and
−ξ3α

2T
3 − vT

4 ∇π3α
2
2 + (v6 − v5)∇π3κ

2
2 − vT

7 ∇π3α
2
3 = 0. (6.48)

From the argument in the proof of Theorem 2, z1 is equal to zero.27 To find the conditions
under which z2 and z3 are zero, multiply (6.43) by ρ1, (6.44) by σ1, and add. Using the
homogeneity of the demand functions yields

z2ρ1 + z3σ1 = 0. (6.49)

Hence we cannot in general normalize both the capital tax and savings tax to be zero. In
fact, by (6.43), z2 and z3 are identically zero if and only if

ξ2
1

ρ1
πT

1 α1
1 − vT

1 ∇σ1α
1
1 − (v3 − v2)∇σ1κ

1
1 − vT

4 ∇σ1α
1
2 = 0. (6.50)

To see the implications of (6.50) first differentiate the period-one budget constraint of
generation one with respect to σ1 to obtain

πT
1 ∇σ1α

1
1 + ρ1∇σ1κ

1
1 = 0. (6.51)

Substituting this into (6.50) and rearranging terms yields

ξ2
1

ρ1
πT

1 α1
1 =

[
vT
1 + (v3 − v2)

πT
1

ρ1

]
∇σ1α

1
1 + vT

4 ∇σ1α
1
2. (6.52)

From Theorem 1, a necessary condition for all eight normalizations to be harmless yields in
addition to the above that

vT = (vT
1 , v2, v3, v

T
4 , v5, v6, v

T
7 ) =

[
µ1(p

T
1 , r1), µ2(s1, p

T
2 , r2), µ3(s2, p

T
3 )

]
(6.53)

where µt is a function only of period t producer prices. Thus, (6.52) can be rewritten as

ξ2
1

ρ1
πT

1 α1
1 =

[
µ1p

T
1 + (µ2s1 − µ1r1)

πT
1

ρ1

]
∇σ1α

1
1 + µ2p

T
2 ∇σ1α

1
2. (6.54)

Carrying out the indicated differentiation and canceling ρ1 yields

ξ2π
T
1 α1

1 =

[
µ1p

T
1 + (µ2s1 − µ1r1)

πT
1

ρ1

]
∇π̃1α

1
1π1 + µ2p

T
2 ∇π̃1α

1
2π1. (6.55)

Using (6.53) it follows from (6.48) that ξ3 is homogeneous of degree minus one in (π1, π2, π3, m)
and from (6.45) it follows that ξ2 has the same property. The left side of (6.55) is homoge-
neous of degree zero in (π1, π2, m). This is true of the right side if and only if µ2s1−µ1r1 = 0;
that is, we are in the region where the government has positive savings. This leaves us with

ξ2π
T
1 α1

1 = µ1p
T
1 ∇σπ̃1α

1
1π1 + µ2p

T
2 ∇π̃1α

1
2π1. (6.56)

27 This follows from the homogeneity of demand functions and the budget constraints.
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If ξ2 > 0, then dividing (6.54) by ξ2 leaves the left side independent of producer prices
while the right side depends upon them. Hence both sides must be zero which yields a
contradiction because we have assumed positive savings by generations one and two and
hence that −πT

1 α1
1 = ρ1κ

1
1 > 0. If ξ2 = 0, then the right side of (6.54) must equal zero.

Rearranging the right side of (6.54) so that we have but period one producer prices on one
side of the equation and period two producer prices on the other side shows that

∇π̃1α
1
1π̃ = 0 and ∇π̃1α

1
2π̃ = 0. (6.57)

That is, the demand functions of generation one are homogeneous of degree zero in π̃1 as
well as being homogeneous of degree zero in all of its arguments. Thus, we have

α1
1(π̃1, π2, m) = α1

1

(
π̃1

m
, π2, m

)

= α1
1

(
π̃1

m2
,
π2

m
, 1

)
.

(6.58)

From (6.58) it is clear that the demand functions are no longer homogeneous of degree zero
in (π̃1, π2, m) yielding a contradiction.

6.6. Proof of Theorem 4

Computing anew the set of feasible Pareto improvements, the set of new Pareto-optima are
described by

ξ2 + ξ3 = µ2p
T
2 ∇mα2 + (µ3s2 − µ2r2)∇mκ2

2 + µ3p
T
3 ∇mα2

3, (6.59)

ξ2α
1T
2 + ξ3

σ2

ρ2
α2T

2 = −µ2p
T
2 ∇π2α2 + (µ3s2 − µ2r2)∇π2κ

2
2 + µ3p

T
3 ∇π2α

2
3, (6.60)

plus (6.46)—(6.48). Multiply (6.46) by ρ2, (6.47) by σ2 and add to obtain

z4ρ2 + z5σ2 = 0 (6.61)

which shows that in general one cannot normalize both the tax on the storable good and tax
on it sale to be zero. Repeating the argument of Theorem 3 using the budget constraint of
generation two establishes the result.
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