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Abstract

We investigate the CP violating asymmetry, the forward backward asymmetry and the CP
violating asymmetry in the forward-backward asymmetry forthe inclusiveB → Xd ℓ

+ℓ−decays
for the ℓ = e, µ, τ channels in the standard model. It is observed that these asymmetries are
quite sizable andB → Xd ℓ

+ℓ−decays seem promising for investigating CP violation.

1 Introduction

An efficient way in performing the precision test for the standard model (SM) is provided by the
flavor-changing neutral current (FCNC) processes since these are generated only through higher
order loop effects in weak interaction. Among them, the inclusiveB → Xs(d)ℓ

+ℓ− modes are
prominent because of their relative cleanness compared to the pure hadronic decays. In the SM,
B → Xs(d)ℓ

+ℓ− decays are dominated by the parton level processesb → s(d)ℓ+ℓ−, which
occur through an intermediateu, c or t quarks. They can be described in term of an effective
Hamiltonian which contains the information about the shortand long distance effects.

The FCNC decays are also relevant to the CKM phenomenology; and b → dℓ+ℓ− modes
are especially important in this respect. In case of theb → sℓ+ℓ− decays, the matrix element
receives a combination of various contributions from the intermediatet, c or u quarks with factors
VtbV

∗
ts ∼ λ2, VcbV ∗

cs ∼ λ2 andVubV ∗
us ∼ λ4, respectively, whereλ = sin θC ∼= 0.22. Since the

last factor is extremely small compared to the other two we can neglect it and this reduces the
unitarity relation for the CKM factors to the formVtbV ∗

ts+VcbV
∗
cs ≈ 0. Hence, the matrix element

for theb → sℓ+ℓ− decays involve only one independent CKM factor so that CP violation would
not show up. On the other hand, as pointed out before [1, 2], for b → dℓ+ℓ− decay, all the CKM
factorsVtbV ∗

td, VcbV
∗
cd andVubV ∗

ud are at the same orderλ3 in the SM and the matrix element for
these processes would have sizable interference terms, so as to induce a CP violating asymmetry
between the decay rates of the reactionsb → dℓ+ℓ− and b̄ → d̄ℓ+ℓ−. Therefore,b → dℓ+ℓ−

decays seem to be suitable for establishing CP violation in Bmesons.
We note that the inclusiveB → Xsℓ

+ℓ− decays have been widely studied in the framework
of the SM and its various extensions [3]-[19]. As forB → Xdℓ

+ℓ− modes, they were first
considered within the SM in [1] and [2]. In ref. [1], togetherwith the branching ratio, the CP
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violating asymmetry for theB → Xd ℓ
+ℓ−decays has been studied including the long-distance

(LD) effects, but only forℓ = emode. In [2], a SM analysis for the forward-backward asymmetry
is given again only forℓ = e mode and neglecting the LD contributions. The general two Higgs
doublet model contributions and minimal supersymmetric extension of the SM (MSSM) to the CP
asymmetries were discussed in refs. [20] and [21], respectively. Ref. [21] contains a comparative
study of the CP asymmetries in the inclusiveB → Xd ℓ

+ℓ−and exclusiveB → γ ℓ+ℓ− decays
for ℓ = τ only, by mainly focusing on the effects of the scalar interactions in the framework of
the MSSM. Recently, CP violation in the polarizedb → dℓ+ℓ− decay has been also investigated
in the SM [22] and also in a general model independent way [23]. The aim of this work is to
perform a quantitative analysis on the SM CP violation and the related observables, such as the
forward-backward asymmetry and CP violation aysmmetry in the forward-backward asymmetry
in theB → Xdℓ

+ℓ− decays, some of which have already addressed in refs. [1], [2] and [21],
as pointed out above. However, in this work we extend the investigation of the abovemensioned
observables to consider all three lepton modes by mainly focusing on LD effects and also their
dependence on the SM parametersρ andη.

From the experimental side, the branching ratio(BR) of theB → Xsℓ
+ℓ− decay has been

also reported by the BELLE Collaboration [24],BR(B → Xsℓ
+ℓ−) = ((6.1 ± 1.4)+1.4

−1.1), which
is very close to the value predicted by the SM [25], and may be used to put further constraint on
the models beyond the SM.

We organized the paper as follows: Following this brief introduction, in section 2, we first
present the effective Hamiltonian. Then, we introduce the basic formulas of the double and dif-
ferential decay rates, CP violation asymmetry,ACP , forward-backward asymmetry,AFB , and
CP violating asymmetry in forward-backward asymmetryACP (AFB) for B → Xd ℓ

+ℓ−decay.
Section 3 is devoted to the numerical analysis and discussion.

2 The theoretical framework ofB → Xdℓ
+ℓ− decays

Inclusive decay rates of the heavy hadrons can be calculatedin the heavy quark effective theory
(HQET) [26] and the important result from this procedure is that the leading terms in1/mq ex-
pansion turn out to be the decay of a free quark, which can be calculated in the perturbative QCD;
while the corrections to the partonic decay rate start with1/m2

q only. On the other hand, the pow-
erful framework for both the inclusive and the exclusive modes into which the perturbative QCD
corrections to the physical decay amplitude are incorporated in a systematic way is the effective
Hamiltonian method. In this approach, heavy degrees of freedom, namelyt quark andW± bosons
in the present case, are integrated out. The procedure is to take into account the QCD corrections
through matching the full theory with the effective low energy one at the high scaleµ = mW and
evaluating the Wilson coefficients frommW down to the lower scaleµ ∼ O(mb). The effective
Hamiltonian obtained in this way for the processb→ d ℓ+ℓ−, is given by [14], [27]-[30]:

Heff =
4GF√

2
VtbV

∗
td

{

10
∑

i=1

Ci(µ)Oi(µ)− λu{C1(µ)[O
u
1 (µ)−O1(µ)]

+C2(µ)[O
u
2 (µ)−O2(µ)]}

}

(1)

where

λu =
VubV

∗
ud

VtbV
∗
td

, (2)
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using the unitarity of the CKM matrix i.e.VtbV ∗
td + VubV

∗
ud = −VcbV ∗

cd. The explicit forms of
the operatorsOi can be found in refs. [27, 28]. In Eq.(1),Ci(µ) are the Wilson coefficients
calculated at a renormalization pointµ and their evolution from the higher scaleµ = mW down
to the low-energy scaleµ = mb is described by the renormalization group equation. ForCeff7 (µ)
this calculation is performed in refs.[31, 32] in next to leading order. The value ofC10(mb) to the
leading logarithmic approximation can be found e.g. in [27,30]. We here present the expression
for C9(µ) which contains the terms responsible for the CP violation inB → Xd ℓ

+ℓ−decay. It
has a perturbative part and a part coming from long distance (LD) effects due to conversion of the
real c̄c into lepton pairℓ+ℓ−:

Ceff9 (µ) = Cpert9 (µ) + Yreson(s) , (3)

where

Cpert9 (µ) = C9 + h(u, s)[3C1(µ) + C2(µ) + 3C3(µ) + C4(µ) + 3C5(µ) + C6(µ)

+ λu(3C1 + C2)]−
1

2
h(1, s) (4C3(µ) + 4C4(µ) + 3C5(µ) + C6(µ))

− 1

2
h(0, s) [C3(µ) + 3C4(µ) + λu(6C1(µ) + 2C2(µ))] (4)

+
2

9
(3C3(µ) + C4(µ) + 3C5(µ) + C6(µ)) ,

and

Yreson(s) = − 3

α2
κ

∑

Vi=ψi

πΓ(Vi → ℓ+ℓ−)mVi

m2
Bs−mVi + imViΓVi

× [(3C1(µ) + C2(µ) + 3C3(µ) + C4(µ) + 3C5(µ) + C6(µ))

+ λu(3C1(µ) + C2(µ))] . (5)

In Eq.(4),s = q2/m2
B whereq is the momentum transfer,u = mc

mb
and the functionsh(u, s) arise

from one loop contributions of the four-quark operatorsO1 −O6 and are given by

h(u, s) = −8

9
ln
mb

µ
− 8

9
lnu+

8

27
+

4

9
y (6)

−2

9
(2 + y)|1− y|1/2







(

ln
∣

∣

∣

√
1−y+1√
1−y−1

∣

∣

∣− iπ
)

, for y ≡ 4u2

s < 1

2 arctan 1√
y−1

, for y ≡ 4u2

s > 1,

h(0, s) =
8

27
− 8

9
ln
mb

µ
− 4

9
ln s+

4

9
iπ . (7)

The phenomenological parameterκ in Eq. (5) is taken as2.3 (see e.g. [33]).
The next step is to calculate the matrix element of theB → Xdℓ

+ℓ− decay. Neglecting the
mass of thed quark, the effective short distance Hamiltonian in Eq.(1) leads to the following QCD
corrected matrix element:

M =
GFα

2
√
2π
VtbV

∗
td

{

Ceff9 (mb) d̄γµ(1− γ5)b ℓ̄γ
µℓ+ C10(mb) d̄γµ(1− γ5)b ℓ̄γ

µγ5ℓ

− 2Ceff7 (mb)
mb

q2
d̄iσµνq

ν(1 + γ5)b ℓ̄γ
µℓ

}

. (8)
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Since the initial and final state polarizations are not measured, we must average over the initial
spins and sum over the final ones, that leads to the following double differential decay rate

d2Γ

ds dz
= Γ(B → Xcℓν)

α2

4π2f(u)k(u)
(1− s)2

|VtbV ∗
td|2

|Vcb|2
v
{

12 v z Re(Ceff7 C∗
10)

+ 12
(

1 +
2t

s

)

Re(Ceff7 Ceff ∗9 ) + 6 vRe(C10C
eff ∗
9 )

+
3

2

[

(1 + s)− (1− s) v2z2 + 4t
]

|Ceff9 |2

+ 6
[(

1 +
1

s

)

−
(

1− 1

s

)

v2z2 +
4t

s

]

|Ceff7 |2

+
3

2

[

(1 + s)− (1− s) v2z2 − 4t
]

|C10|2
}

(9)

wherev =
√

1− 4t/s, t = m2
ℓ/m

2
b andz = cos θ, whereθ is the angle between the momentum

of the B-meson and that ofℓ− in the center of mass frame of the dileptonsℓ−ℓ+. In Eq. (9),

Γ(B → Xcℓν) =
G2
Fm

5
b

192π3
|Vcb|2f(u)k(u) , (10)

where

f(u) = 1− 8u+ 8u4 − u8 − 24u4ln(u) (11)

k(u) = 1− 2αs(mb)

3π

[

(

π2 − 31

4

)

(1− m̂2
c) +

3

2

]

, (12)

are the phase space factor and the QCD corrections to the semi-leptonic decay rate, respectively,
which is used to normalize the decay rate ofB → Xdℓ

+ℓ− to remove the uncertainties in the
value ofmb.

After integrating the double differential decay rate in Eq.(9) over the angle variable, we find

dΓ

ds
= Γ(B → Xcℓν)

α2

4π2f(u)k(u)
(1− s)2

|VtbV ∗
td|2

|Vcb|2
√

1− 4t

s
∆(s) , (13)

where

∆(s) =
(s + 2s2 + 2t− 8st)

s
|C10|2 +

4

s2
(2 + s)(s + 2t)|Ceff7 |2 + (2 + s)(1 +

2t

s
)|Ceff9 |2

+
12

s
(s + 2t)Re(Ceff7 Ceff ∗9 ) . (14)

We start with calculating the CP asymmetryACP between theB → Xdℓ
+ℓ− and the conju-

gated oneB̄ → X̄dℓ
+ℓ−, which is defined as

ACP (s) =
dΓ
ds − dΓ̄

ds
dΓ
ds +

dΓ̄
ds

(15)

where
dΓ

ds
=

dΓ(B → Xdℓ
+ℓ−)

ds
,
dΓ̄

ds
=

dΓ(B̄ → X̄dℓ
+ℓ−)

ds
. (16)

Since in the SM onlyCeff9 contains imaginary part, representingCeff9 symbolically as

Ceff9 = ξ1 + λuξ2 (17)
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and further substitutingλ → λ∗ for the conjugated process̄B → X̄dℓ
+ℓ−, one can easily obtain

[1]

ACP (s) =
−2 Im(λu)Σ

∆ + 2 Im(λu)Σ
, (18)

where

Σ =
(

1 +
2t

s

)

[(1 + 2s) Im(ξ∗1ξ2) + 6Ceff7 Im(ξ2)] Im(λu) . (19)

For completeness, we next consider the forward-backward asymmetry,AFB, inB → Xd ℓ
+ℓ−,

which is another physical quantity that may be useful to testthe theoretical models. Using the def-
inition of differentialAFB(s)

AFB(s) =

∫ 1
0 dz

d2Γ
dsdz −

∫ 0
−1 dz

d2Γ
dsdz

∫ 1
0 dz

d2Γ
dsdz +

∫ 0
−1 dz

d2Γ
dsdz

, (20)

we find

AFB(s) =
3 v

∆(s)
Re[C10(2C

eff
7 + sCeff ∗9 )], (21)

which agrees with the result given by ref. [2], but not by [21].
We have also a CP violating asymmetry inAFB , ACP (AFB), in B → Xd ℓ

+ℓ−decay. Since
in the limit of CP conservation, one expectsAFB = −ĀFB [2, 34], whereAFB andĀFB are the
forward-backward asymmetries in the particle and antiparticle channels, respectively,ACP (AFB)
is defined as

ACP (AFB) = AFB + ĀFB . (22)

Here,ĀFB can be obtained by the replacement,

Ceff9 (λu) → C̄eff9 (λu → λ∗u). (23)

Using Eqs.(21) we can find

ACP (AFB) =
6 v Im(λu)

∆(∆ + 4Im(λu) Σ)
C10

·
[

2Σ (2Ceff7 + s(Re(ξ1) + Re(ξ2) Re(λu)− Im(ξ2) Im(λu)))− s∆ Im(ξ2)
]

,

(24)

which is slightly different from the one given by ref. [21].

3 Numerical analysis and discussion

In this section, we present results of our calculations related toB → Xd ℓ
+ℓ−decays, for two

different sets of the Wolfenstein parameters. For this we first give the Wolfenstein parametrization
[35] of the CKM factor in Eq.(2)

λu =
ρ(1− ρ)− η2 − iη

(1− ρ)2 + η2
+O(λ2) , (25)
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and also

|VtbV ∗
td|2

|Vcb|2
= λ2[(1− ρ)2 + η2] +O(λ4) . (26)

The updated fitted values for the parametersρ andη are given in ref.[36] as

ρ̄ = 0.22± 0.07 (0.25 ± 0.07)

η̄ = 0.34± 0.04 (0.34 ± 0.04) (27)

with (without) including the chiral logarithms uncertainties. In our numerical analysis, we have
used(ρ, η) = (0.15; 0.30) and (0.32; 0.38), which are the lower and higher allowed values
of the parameters given in Eq. (27) above, and present the dependence of theACP , AFB and
ACP (AFB) on the dimensionles photon energys for theB → Xd ℓ

+ℓ−(ℓ = e, µ, τ) decays in
Figs. (1-6).

We have also evaluated the average values of CP asymmetry< ACP >, forward-backward
asymmetry< AFB > and CP asymmetry in the forward-backward asymmetry< ACP (AFB) >
in B → Xd ℓ

+ℓ−decay for the above sets of parameters(ρ, η), and our results are displayed in
Table 1 and 2 without and with including the long distance effects, respectively.

The input parameters and the initial values of the Wilson coefficients we used in our numerical
analysis are as follows:

mB = 5.28GeV , mb = 4.8GeV , mc = 1.4GeV ,mt = 175GeV ,

me = 0.511MeV , mτ = 1.777GeV, mµ = 0.105GeV, ,

BR(B → Xceν̄e) = 10.4% , α = 1/129 , mW = 80.4GeV , mZ = 91.1GeV

C1 = −0.245, C2 = 1.107, C3 = 0.011, C4 = −0.026, C5 = 0.007,

C6 = −0.0314, Ceff7 = −0.315, C9 = 4.220, C10 = −4.619. (28)

In our numerical analysis, we take into account five possibleresonances for the LD effects
coming from the reactionb→ dψi → d ℓ+ℓ−, wherei = 1, ..., 5 and divide the integration region
into two parts forℓ = τ : (2mℓ/mB)

2 ≤ s ≤ ((mψ1
− 0.02)/mB)

2 and((mψ1
+ 0.02)/mB)

2 ≤
s ≤ 1, wheremψ1

= 3.097 GeV is the mass of the first resonance. As forℓ = e andµ modes,
the integration region is divided into three parts :(2mℓ/mB)

2 ≤ s ≤ ((mψ1
− 0.02)/mB)

2,
((mψ1

+ 0.02)/mB)
2 ≤ s ≤ ((mψ2

− 0.02)/mB)
2 and((mψ2

+ 0.02)/mB)
2 ≤ s ≤ 1, where

mψ2
= 3.686 GeV is the mass of the second resonance.

For reference, we present our SM predictions with long distance effects

BR(B → Xd ℓ
+ ℓ−) = (3.01, 2.61, 0.11) × 10−7 , (29)

for ℓ = e, µ, τ , respectively, with(ρ; η) = (0.30; 0.34), which is in agreement with the results of
ref.[1].

In Fig.(1) and Fig.(2), we present the dependence ofACP on the dimensionless photon energy
s, for B → Xd ℓ

+ℓ−decay for the Wolfenstein parameters(ρ; η) = (0.15; 0.30) and(ρ; η) =
(0.32; 0.38), respectively. The three distinct lepton modesℓ = e, µ, τ are represented by the
dashed, dotted and solid curves, respectively. We observe that theACP for ℓ = e, µ cases almost
coincide, reaching up to25 % for the larger values ofs. TheACP for ℓ = τ mode exceeds the
values of the other modes and reaches40 %. We also observe from Tables 1 and 2 that including
the LD effects in calculating< ACP > does not change the results forℓ = e, µ modes, while
ℓ = τ mode, it is quite sizable,8− 36%, depending on the sets of the parameters used for(ρ; η).

Thes dependence ofAFB for theB → Xd ℓ
+ℓ−(ℓ = e, µ, τ) decays are plotted in Figs.(3)

and (4) for(ρ; η) = (0.15; 0.30) and(ρ; η) = (0.32; 0.38), respectively. We see thatAFB is

6



< ACP > < AFB > < ACP (AFB >)

(ρ; η) ℓ = e ℓ = µ ℓ = τ ℓ = e ℓ = µ ℓ = τ ℓ = e ℓ = µ ℓ = τ

(0.15; 0.30) 0.030 0.036 0.134 −0.124 −0.151 −0.182 −0.009 −0.009 0.001
(0.32; 0.38) 0.051 0.061 0.169 −0.129 −0.156 −0.180 −0.015 −0.015 0.002

Table 1: The average values ofACP , AFB andACP (AFB) in B → Xd ℓ
+ℓ−for the three distinct

lepton modes without including the long distance effects.

< ACP > < AFB > < ACP (AFB >)

(ρ; η) ℓ = e ℓ = µ ℓ = τ ℓ = e ℓ = µ ℓ = τ ℓ = e ℓ = µ ℓ = τ

(0.15; 0.30) 0.032 0.036 0.144 −0.119 −0.139 −0.157 −0.017 −0.017 −0.004
(0.32; 0.38) 0.051 0.059 0.230 −0.125 −0.140 −0.150 −0.031 −0.030 −0.009

Table 2: The same as Table (1), but including the long distance effects.

negative for almost all values ofs, except in the resonance and very small-s regions.< AFB >
takes the values between−(12 − 15)% depending on the sets of the parameters used for(ρ; η) .
The LD effects on< AFB > are about10%, but in reverse manner, decreasing its magnitude in
comparison to the values without LD contributions.

We present the dependence of theACP (AFB) of B → Xd ℓ
+ℓ−decay ons in Fig.(5) and

Fig.(6), again for two different sets of the Wolfenstein parameters. As forACP , ACP (AFB) for
ℓ = e, andℓ = µ modes almost coincide. We see thatACP (AFB) is all negative except in a
very small region for the intermediate values ofs for ℓ = e, µ cases. LD effects seem to be quite
significant for< ACP (AFB) >, enhancing its value twice (four times) forℓ = e, µ (ℓ = τ )
modes. To see this LD contributions more closely, we presentthe< ACP (AFB) > for different
regions ofs in Table (3) and (4), for(ρ; η) = (0.15; 0.30) and(ρ; η) = (0.32; 0.38), respectively.
We see that for the light lepton modes,ℓ = e, µ, ACP (AFB) is more sizable in the high-dilepton
mass region ofs, ((mψ2

+ 0.02)/mB)
2 ≤ s ≤ 1. However, forℓ = τ , the contribution from

the high-dilepton mass region ofs is negligible and the contribution to< ACP (AFB) > comes
effectively from the low-dilepton mass region,(2ml/mB)

2 ≤ s ≤ ((mψ1
− 0.02)/mB)

2 and
amounts to−1%.

As a conclusion we can say that there is a significantACP andACP (AFB) for theB →
Xd ℓ

+ℓ−decay, although the branching ratios predicted for these channels are relatively small
because of CKM suppression. So,B → Xd ℓ

+ℓ−decays seem promising for investigating CP

SD (2ml/mB)
2 ≤ s ≤ ((mψ1

+ 0.02)/mB)
2 ≤ s ((mψ2

+ 0.02)/mB)
2 SD+LD

ℓ contribution ((mψ1
− 0.02)/mB)

2 ≤ ((mψ2
− 0.02)/mB)

2 ≤ s ≤ 1 contribution

e −0.92 −0.29 −0.25 −1.20 −1.78
µ −0.91 −0.29 −0.25 −1.20 −1.78
τ −0.11 −0.42 3.10× 10−3 −0.42

Table 3: The SM predictions for the average CP-violating asymmetry in the forward-backward asym-
metry < ACP (AFB) > ×10−2 for different regions of the dimensionless photon energys with
(ρ; η) = (0.15; 0.30).
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SD (2ml/mB)
2 ≤ s ≤ ((mψ1

+ 0.02)/mB)
2 ≤ s ((mψ2

+ 0.02)/mB)
2 SD+LD

ℓ contribution ((mψ1
− 0.02)/mB)

2 ≤ ((mψ2
− 0.02)/mB)

2 ≤ s ≤ 1 contribution

e −1.59 −0.51 −0.43 −2.15 −3.10
µ −1.57 −0.51 −0.43 −2.15 −3.09
τ 0.20 −0.94 3.30× 10−3 −0.94

Table 4: Same as Table (3), but with(ρ; η) = (0.32; 0.38).

violation.
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Figure 1:ACP for B → Xd ℓ
+ℓ−decay for the Wolfenstein parameters(ρ, η) = (0.15; 0.30). The

three distinct lepton modesℓ = e, µ, τ are represented by the dashed, dotted and solid curves,
respectively.
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Figure 2: The same as Fig.(1) but for the Wolfenstein parameters(ρ, η) = (0.32; 0.38)
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Figure 3:AFB for B → Xd ℓ
+ℓ−decay for the Wolfenstein parameters(ρ, η) = (0.15; 0.30). The

three distinct lepton modesℓ = e, µ, τ are represented by the dashed, dotted and solid curves,
respectively.
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Figure 4: The same as Fig.(3) but for the Wolfenstein parameters(ρ, η) = (0.32; 0.38)
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Figure 5:ACP (AFB) for B → Xd ℓ
+ℓ−decay for the Wolfenstein parameters(ρ, η) = (0.15; 0.30).

The three distinct lepton modesℓ = e, µ, τ are represented by the dashed, dotted and solid curves,
respectively.
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Figure 6: The same as Fig.(5) but for the Wolfenstein parameters(ρ, η) = (0.32; 0.38)

13


	Introduction
	The theoretical framework of B Xd + - decays
	Numerical analysis and discussion 

