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Abstract

Marginalised models, also known as marginally specified models, have recently become a
popular tool for analysis of discrete longitudinal data. Despite being a novel statistical method-
ology, these models introduce complex constraint equations and model fitting algorithms. On
the other hand, there is a lack of publicly available software to fit these models. In this paper,
we propose a three-level marginalised model for analysis of multivariate longitudinal binary out-
come. The implicit function theorem is introduced to approximately solve the marginal constraint
equations explicitly.probit link enables direct solutions to the convolution equations. Parameters
are estimated by maximum likelihood via a Fisher-Scoring algorithm. A simulation study is con-
ducted to examine the finite-sample properties of the estimator. We illustrate themodel with an
application to the data set from the Iowa Youth and Families Project. The R packagepnmtrem is
prepared to fit the model.

Keywords: correlated data, implicit differentiation, link functions, maximum likelihood estimation,
subject-specific inference, statistical software.

1 Introduction

Longitudinal data comprise repeated measurements on the same subjects across time. Whilst data
from the same subjects are typically dependent on each other, data from different subjects are typ-
ically independent. Often, multiple responses, e.g. multiple health outcomes or distress variables,
from each subject are collected. These responses introducetwo types of dependencies: 1) within-
response (serial) dependence, and 2) multivariate response dependence at a given time point. To
draw valid statistical inferences, both of these dependencies should be taken into account.

Conventional models for analysis of longitudinal data are marginal, transition and random effects
models (Diggle et al., 2002). A recently popular method for discrete longitudinal data analysis is the
framework of marginalised models, also known as marginallyspecified models. The framework typ-
ically combines the underlying features of the conventional models, and enables likelihood-based
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inference for marginal mean parameters. Heagerty and Zeger(2000) define marginally specified
models as a re-parameterised version of transition and/or random effects models in terms of the
marginal mean and additional dependence parameters. Heagerty (1999, 2002), in his seminal pa-
pers, develops marginalised random effects and marginalised transition models, respectively. Both
of these models are two-level logistic regression models. Whilst covariate effects are captured in the
first levels, serial dependence is captured in the second levels via random effects and response his-
tory, respectively. Heagerty and Kurland (2001) show that marginal regression parameter estimates
based on marginalised random effects models are less sensitive to dependence structure misspecifi-
cation compared to those based on conventional random effects models. Heagerty (2002) and Lee
and Mercante (2010) prove that parameters of the first and second levels of marginalised transition
models are orthogonal. The marginalised modeling paradigmwas primarily developed for binary
data (Schildcrout and Heagerty, 2007; Ilk and Daniels, 2007; Lee et al., 2009; along with the afore-
mentioned works of Heagerty). Later, it has been extended toordinal (Caffo and Griswold, 2006;
Lee and Daniels, 2007; Lee et al., 2013), count (Lee et al., 2011; Iddi and Molenberghs, 2012)
and nominal data (Lee and Mercante, 2010). Amongst these works, Ilk and Daniels (2007) pro-
pose a three-level marginalised model formultivariate longitudinal binary data, called marginalised
transition random effects model. With this model, whilst covariate effects are captured in the first
level, serial and multivariate response dependencies are captured in the second and third levels via
response history and random effects, respectively. In this paper, we extend marginalised transition
random effects model in terms of link function, fromlogit to probit, and the parameter estimation
methodology, fromBayesian methods (BM) to maximum likelihood (ML) estimation.

probit andlogit are popular link functions for modelling categorical data.These link functions
are defined as the inverses of the distribution functions of the standard normal and the standard
logistic distribution, respectively. They have similar behaviours in terms of placing probabilities.
The only difference is at the extreme tails;logit places higher probabilities at the tails (Hedeker and
Gibbons, 2006). Nonetheless, substantial and high qualitydata are needed to detect the difference
(Doksum and Gakso, 1990, cited in Hedeker and Gibbons, 2006,pp. 153). logit allows direct in-
terpretation of the parameter estimates, as changes in (log) odds ratios. The interpretation is more
challenging withprobit. Nonetheless, (approximate) transitions between the parameter estimates
based on these link functions is possible (Agresti, 2002; Griswold et al., 2013). For example, the
JKB constant (Johnson et al., 1995, pp. 113-163, cited in Griswold et al., 2013) postulates the fol-
lowing: βlogit � c ∗βprobit wherec = (15/16)(π/

√
3) � 1.700437. One advantage ofprobit overlogit

is that it allows explicit form of the linkage between the levels of marginalised random effects mod-
els (Heagery and Zeger, 2000; Griswold et al., 2013; Caffo and Griswold, 2006). The use ofprobit
link in multivariate modelling dates back to Ashford and Sowden (1970). Some recent examples on
longitudinal mixed modelling are Hedeker and Gibbons (2006), Liu and Hedeker (2006), Varin and
Czado (2010), amongst others.

Generalized estimating equations (GEE; Liang and Zeger, 1986) have been widely used to esti-
mate the parameters of marginal models, especially for discrete outcome. Nonetheless, they might
be inefficient because of being a semi-parametric method, compared to the full likelihood-based
methods, e.g. ML and BM. BM are widely used in longitudinal data literature and have their own
properties. Some distinguishing features of ML over BM are that parameter estimation requires less
computational times, and related procedures are more automatised (Efron, 1986). In this paper, we
consider ML for parameter estimation to avoid the computational burden.

Marginalised models with transition structures require solving marginal constraint equations
(Heagerty, 2002; Schildcrout and Heagerty, 2007; Ilk and Daniels, 2007; Lee and Mercante, 2010).
Common literature for solving these equations has been built on optimisation methods, e.g. Newton-
Raphson (N-R) algorithm. This might be computationally cumbersome and might yield convergence
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problems. In this paper, we consider approximately explicit solutions of marginal constraint equa-
tions, and propose the use of theimplicit function theorem for the first time in the scope of marginally
specified models.

Publicly available software for analysis of multivariate longitudinal binary data is still rare.
Available options include the SAS macro of Shelton et al. (2004), and theR (R Core Develop-
ment Team, 2015) packagesmmm (Asar and Ilk, 2013) andmmm2 (Asar and Ilk, 2014). In this study,
we propose the R packagepnmtrem for first-order marginalised transition random effects models
with probit link. The package is available from the Comprehensive R Archive Network (CRAN) at

http://CRAN.R-project.org/package=pnmtrem.

The paper is organized as follows. Whilst the general modelling framework is introduced in
Section 2, first-order version is discussed in detail in Section 3. In Section 4, we discuss inference
for the first-order model. Finite-sample behaviours of the estimator are investigated by a simulation
study in Section 5. The first-order model is applied to a real data set in Section 6. Section 7 is a
concluding discussion.

2 General framework

Let Yit j denote thejth ( j = 1, . . . , k) response of theith (i = 1, . . . , n) subject at timet (t = 1, . . . ,T ).
Also let Xit j denote the associated set of covariates, which might include time-varying and/or time-
invariant covariates. The framework of the general model with inverseprobit link is as follows:

Pm
it j ≡ P(Yit j = 1|Xit j) = Φ(Xit jβ), (1)

Pt
it j≡P(Yit j = 1|yi,t−1, j, .., yi,t−p, j, Xit j)=Φ(∆it j +

p∑

m=1

γit j,myi,t−m, j), (2)

Pr
it j ≡ P(Yit j = 1|yi,t−1, j, ..., yi,t−p, j, Xit j, bit) = Φ(∆∗it j + λ jbit), (3)

whereΦ(·) is the distribution function of the standard normal.
In (1), the first level of the framework,β are marginal regression parameters. These parame-

ters measure the relationship between covariates and responses, and allow comparing covariate sub-
groups, e.g. males vs. females, without conditioning on response history and/or random effects. The
default setting assumes that intercepts and slopes are shared by different responses, i.e. we postulate
β instead ofβ j. Nonetheless, one is able to specify different intercepts and slopes for multiple re-
sponses by including inXit j indicator variables for responses and interactions of these indicator vari-
ables with covariates, respectively. This specification provides model flexibility. We might gain in
efficiencies considerably, e.g. when the relationships between covariates and multiple responses are
not significantly different (Asar and Ilk, 2014). Another default setting is the assumption of accom-
modating only the relationship of responses with current covariates, i.e.P(Yit j = 1|Xi1 j, . . . , Xit j) =
P(Yit j = 1|Xit j). Nonetheless, relationships with lagged covariates might be captured by including
covariate history inXit j.

In (2), the second level of the framework, Markov model of order p is used to capture the
serial dependence. Here, themth transition parameters,γit j,m, can be written in terms of covariates,
i.e. γit j,m = αt,mZit j,m = αt1,mZit j1,m + . . . + αtl,mZit jl,m for m = 1, . . . , p. αt f ,m ( f = 1, . . . , l) are
time, covariate and order specific transition parameters. They capture the relationships between
past and current responses.Zit j,. have a form of design matrix with 1’s on the first column, and
are typically a subset ofXit j with l covariates. The form ofZit j,. permits flexibly specifying the
association structures between past and current responses. For example, if one suspects that the lag-
1 associations are different for males and females, then gender can be included inZit j,1. Similar to
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the first level,αt,m are assumed to be shared across multiple responses. Response-specific transition
parameters can be specified by including inZit j,. indicator variables for responses and interactions
of these indicator variables with response history and other covariates.

In (3), the third level of the model, multivariate response dependence and individual variations
are captured.bit’s are subject and time specific random effects coefficients that measure unobserved
heterogeneity between subjects at timet. We assume thatbit ∼ N(0, σ2

t ). bit can be rewritten as
bit=σt zi, wherezi is a standard normal random variable, which is useful in numerical integration.
λ j’s are response-specific parameters that scalebit with respect to thejth response, and accounts
for multivariate response dependence. We setλ1 to 1 for identifiability, and estimateλ j for j =
2, . . .. Note that by specifyingbit’s are time-varying, the model assumes that multivariate response
dependencies might change across time.
∆it j’s in (2) are subject, time and response specific intercepts.They take into account the (non-

linear) relationship between marginal (Pm
it j) and transition probabilities (Pt

it j). Similarly, ∆∗it j’s in
(3) are subject, time and response specific intercepts that account for the (non-linear) relationship
between transition and random effects probabilities (Pr

it j).
We assume that conditional mean of responses given all covariates is equal to conditional mean

of responses given covariate history, i.e.,E(Yit j|Xiq j, q = 1, . . . ,T ) = E(Yit j|Xis j, s ≤ t). The as-
sumption is meaningful only for exogenous covariates (covariates that do not depend on response
history), but not for endogenous ones (covariates that depend on response history at timet). It is
necessary for the validity of the marginal constraint equation, to be introduced later.

3 First-order model

In this study, we focus on lag-1 dependence in (2). The framework for the first-order model becomes

Pm
it j ≡ P(Yit j = 1|Xit j) = Φ(Xit jβ), (4)

Pt
it j ≡ P(Yit j = 1|yi,t−1, j, Xit j)=Φ(∆it j + γit j,1yi,t−1, j), (5)

Pr
it j ≡ P(Yit j = 1|yi,t−1, j, Xit j, bit) = Φ(∆∗it j + λ jbit). (6)

As before,bit ∼ N(0, σ2
t ) andbit=zi σt, zi ∼ N(0,1); λ1=1; γit j,1 = αt,1Zit j,1 = αt1,1Zit j1,1 + . . . +

αtl,1Zit jl,1. Throughout, we call this framework ast ≥ 2 model.
(5) is not valid at baseline (t = 1), because there is no history data are available at this time point.

Based on this and the assumption that variabilities att = 1 andt ≥ 1 might be different, we postulate
a separate model fort = 1:

Pm
i1 j ≡ P(Yi1 j = 1|Xi1 j) = Φ(Xi1 jβ

∗), (7)

Pr
i1 j ≡ P(Yi1 j = 1|Xi1 j, bi1) = Φ(∆∗i1 j + λ

∗
jbi1), (8)

wherebi1 ∼N(0,σ2
1) andbi1=zi σ1, zi ∼N(0,1);λ∗1=1. Throughout we call this model as thebaseline

model.

3.1 Linking levels of thet ≥ 2 model

Levels of the first-order model (4 - 6) are connected to each other for the model being a valid
probabilistic model.
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3.1.1 Linking first and second levels

Levels 1 (4) and 2 (5) are linked via the following marginal constraint equation,

P(Yit j = 1|Xit j) =
1∑

yi,t−1, j=0

P(Yit j = 1|yi,t−1, j, Xit j)P(yi,t−1, j|Xi,t−1, j), (9)

which is equivalent to

Φ(Xi2 jβ) = Φ(∆i2 j)(1− Φ(Xi,1, jβ
∗)) + Φ(∆i2 j + γi2 j,1)Φ(Xi,1, jβ

∗), (10)

and
Φ(Xit jβ) = Φ(∆it j)(1− Φ(Xi,t−1, jβ)) + Φ(∆it j + γit j,1)Φ(Xi,t−1, jβ). (11)

for t > 2 andt = 2, respectively. Hereafter, the discussion will be based on(11). We take the
difference between (11) and (10) when necessary.

Since (11) does not permit explicitly writing∆it j in terms ofβ andγit j,1 (or αt,1), we use the
implicit function theorem (IFT; Krantz and Parks, 2003) foran approximately explicit solution.
Application of IFT is as follows.

Let F be a function ofXit j, Xit−1 j, β, ∆it j, αt,1 andZit j,1 such that (by rewriting (11))

F(Xit j, Xit−1 j,β,∆it j,αt,1, Zit j,1) = Φ(Xit jβ)−Φ(∆it j)(1−Φ(Xi,t−1, jβ))−Φ(∆it j+αt,1Zit j,1)Φ(Xi,t−1, jβ) = 0. (12)

By IFT with first order implicit differentiation, i.e. first order approximation,∆it j can be obtained as

∆it j = −
∂F
∂β

∣
∣
∣
∣
(β0,αt,10,∆it j0)

∂F
∂∆it j

∣
∣
∣
∣
(β0,αt,10,∆it j0)

(β − β0) −
∂F
∂αt,1

∣
∣
∣
∣
(β0,αt,10,∆it j0)

∂F
∂∆it j

∣
∣
∣
∣
(β0,αt,10,∆it j0)

(αt,1 − αt,10), (13)

where

∂F
∂β
= Xit jφ(Xit jβ) + Φ(∆it j)(φ(Xi,t−1, jβ))Xi,t−1, j − Φ(∆it j + αt,1Zit j,1)φ(Xi,t−1, jβ)Xi,t−1, j,

∂F
∂∆it j

= −φ(∆it j)(1− Φ(Xi,t−1, jβ)) − φ(∆it j + αt,1Zit j,1)(Φ(Xi,t−1, jβ)),

∂F
∂αt,1

= −φ(∆it j + αt,1Zit j,1)Φ(Xi,t−1, jβ)Zit j,1. (14)

Here,φ(·) is the density function of the standard normal, andβ0,αt,10 and∆it j0 are fixed values
around which IFT searches for solution. We setβ0 andαt,10 to 0, since null hypotheses forβ and
αt,1 are on equality of these parameters to0. ∆it j0 is obtained by solving (12) underβ0 andαt,10

being0. This yields∆it j0 = 0 for t > 2. N-R is used to obtain∆i2 j0. Based on our experience, this
has very fast convergence due to the simple form of (12).

3.1.2 Linking second and third levels

Level 2 (5) and level 3 (6) are linked via the following convolution equation:

P(Yit j = 1|yi,t−1, j, Xit j) =
∫

P(Yit j = 1|yi,t−1, j, Xit j, bit)dF(bit), (15)
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which is equivalent to

Φ(∆it j + αt,1Zit j,1yi,t−1, j) =
∫

Φ(∆∗it j + λ jbit) f (bit)dbit. (16)

Following Griswold (2005), we can explicitly obtain∆∗it j as

∆∗it j =

√

1+ λ2
jσ

2
t (∆it j + αt,1Zit j,1yi,t−1, j). (17)

Proof of (17) is given in Appendix A.∆∗it j is now an explicit and deterministic function of∆it j (hence,
∆∗it j is a function ofXit j, Xi,t−1, j andβ), αt,1 Zit j,1, yit−1 j, λ j andσt.

3.2 Linking levels of the baseline model

First (7) and second (8) levels of the baseline model are linked via the following convolution equa-
tion:

P(Yi1 j = 1|Xi1 j) =
∫

P(Yi1 j = 1|Xi1 j, bi1)dF(bi1). (18)

∆∗i1 j can be written as an explicit function ofXi1 j, β
∗, λ∗j andσ1 such that

∆∗i1 j =

√

1+ λ∗j
2σ2

1 Xi1 jβ
∗. (19)

Proof of (19) can be easily adapted from the proof of (17).

4 Inference

4.1 Estimation

The likelihood of the first-order model is the product of the likelihood functions of the baseline and
t ≥ 2 models. By re-writing the random effects coefficients asbi1 = σ1zi andbit = σtzi, it can be
expressed as

L(θ|y) = L1(θ1|y1)L2(θ2|y2), (20)

where

L1(θ1|y1) =
N∏

i=1

∫ k∏

j=1

(

Pr
i1 j

)yi1 j
(

1− Pr
i1 j

)1−yi1 j
φ(zi)dzi, (21)

L2(θ2|y2) =
N∏

i=1

T∏

t=2

∫ k∏

j=1

(

Pr
it j

)yit j
(

1− Pr
it j

)1−yit j
φ(zi)dzi. (22)

Here,θ = (θ1, θ2), whereθ1 = (β∗, λ∗, σ2
1) with λ∗ = (λ∗2, . . . , λ

∗
k) andθ2 = (β,αt,1, λ,σ

2) with λ =
(λ2, . . . , λk) andσ2 = (σ2

2, . . . , σ
2
T ), are parameters of the baseline andt ≥ 2 models, respectively;y1

andy2 are observed responses at baseline andt ≥ 2 time points, respectively.L1(θ1|y1) andL2(θ2|y2)
are connected to each other viaβ∗ at t = 2 (see (10)). We modellog(σt), instead ofσt or σ2

t , due
to computational aspects. This transformation helps extending the parameter spaces from [0,+∞)
to (−∞,+∞). Estimates and standard errors regardingσt or σ2

t can be easily obtained using the
invariance property of ML estimates and delta method, respectively.
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We need to use numerical methods to solve the integrals in (21) and (22), since there is no
closed-form solutions. Since these integrals are one-dimensional, we use Gauss-Hermite quadrature
with 20-points (Lesaffre and Spiessens, 2001; Agresti, 2002; McCulloch et al., 2008). Similarly,
the closed-form solutions based on the first partial derivatives of the log-likelihood are not available.
We use Fisher-Scoring (F-S) algorithm to obtain the parameter estimates iteratively. An advantage
of F-S algorithm is that it only works with the first partial derivates and does not require the second
partial derivatives (Hedeker and Gibbons, 2006, pp. 162-165). Another advantage of the algorithm is
that at convergence, inverse of the expected information matrix is a consistent estimator of the large
sample variance-covariance matrix of the model parameters. With F-S algorithm, ML estimates are
obtained iteratively as

θ(m+1)
s = θm

s + I(θm
s )−1∂log

(

Ls(θm
s |ys)

)

∂θm
s

, (23)

where s = (1,2); s = 1 corresponds to the baseline model ands = 2 corresponds to thet ≥ 2

model; m represents the F-S step andI(θs) is an empirical information matrix;
∂log(Ls(θs |ys))

∂θs
is the

first partial derivative of the log-likelihood, calculations of which can be found in Appendix B.I(θs)
is calculated as

I(θ1) =
N∑

i=1

h(Yi1 j|θ1)−2

(
∂h(Yi1 j|θ1)

∂θ1

) (
∂h(Yi1 j|θ1)

∂θ1

)T

(24)

and

I(θ2) =
N∑

i=1





T∑

t=2

1
h(Yit j|θ2)

∂h(Yit j|θ2)

∂θ2









T∑

t=2

1
h(Yit j|θ2)

∂h(Yit j|θ2)

∂θ2





T

. (25)

Details ofh(Yit j|θs) and ∂h(Yit j |θs)
∂θs

for t = 1, . . . ,T can be found in Appendix B. Sinceσ1 is time-
specific andλ∗j is response-specific for baseline, andσt andαt,1 are time-specific andλ j is response-
specific fort ≥ 2, the calculations ofI(θ1) andI(θ2) for these parameters are different compared to
the calculations forβ∗ andβ. Details can be found in the online supplementary material.

4.2 Prediction

Predictingbit = σtzi (t = 1, . . . ,T ) is equivalent to predictingzi. We obtain the predictions ofzi’s
as the modes of log-conditional distributions ofzi’s given the data (Heagerty, 1999). This requires
solving






T∑

t=1

k∑

j=1

λ̂ jσ̂tφ(d̂it j)
(

Yit j − Φ(d̂it j)
)

Φ(d̂it j)
(

1− Φ(d̂it j)
)






− zi = 0, (26)

with respect tozi usin N-R algorithm. Here,̂dit j = ∆̂
∗
it j + λ̂ jσ̂tzi. ∆̂∗it j’s are obtained as in (17) and

(19) plugging-in the ML estimates ofθ1 andθ2.

5 Simulation study

We conduct a Monte Carlo simulation study to examine the finite-sample behavoiurs of the marginal
mean parameters. In each replications, we simulate data using the first-order model. The data sets
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include bivariate binary responses,Y1 andY2, and two associated covariates,X1 and X2, for 250
subjects with 4 follow-ups. We generateX1 from Uniform(0,1) as a time-independent variable.
X2 is taken as the response indicator variable. It takes 1 forY1, 0 for Y2. We consider different
sets of covariates for baseline andt ≥ 2. Moreover, we consider varying relationships between the
covariates and the responses, i.e.β∗ . β. We specifically considerβ∗ = (β∗0, β

∗
1) = (−0.5,0.5) for

t = 1, andβ = (β0, β1) = (−0.7,0.7,0.2) for t = 2,3,4. By the inclusion of response indicator as
a covariate, we allow the responses to have different intercepts. Whilst the intercept isβ0 + β2 =

−1 + 0.2 = −0.8 for Y1, it is β0 = −1 for Y2. The relationships betweenX1 andY1, andX1 andY2

are assumed to be the same, i.e. interaction betweenX1 andX2 is not included. In terms association
structures, by keeping the marginal mean parameter settingsame, we consider the following four
cases:

Case 1

(λ∗2, λ2) = (0.9,0.95), (σ1, σ2, σ3, σ4) = (0.2,0.25,0.3,0.35), (α21,1, α31,1, α41,1) = (0.3,0.4,0.5)

Case 2

(λ∗2, λ2) = (1.1,1.15), (σ1, σ2, σ3, σ4) = (0.2,0.25,0.3,0.35), (α21,1, α31,1, α41,1) = (0.3,0.4,0.5)

Case 3

(λ∗2, λ2) = (0.9,0.95), (σ1, σ2, σ3, σ4) = (0.5,0.55,0.6,0.65), (α21,1, α31,1, α41,1) = (0.3,0.4,0.5)

Case 4

(λ∗2, λ2) = (0.9,0.95), (σ1, σ2, σ3, σ4) = (0.2,0.25,0.3,0.35), (α21,1, α31,1, α41,1) = (0.6,0.7,0.8)

with λ∗1 andλ1 being 1. The relationships between the lag-1 and current responses are assumed to
be same forY1 andY2, i.e. Zit j,1 = [ 1 ].

Simulated data sets are analysed by the first-order model. The simulation procedure is replicated
500 times for each case. Analysis of a simulated data set (thelast one) took 8.9 minutes on a PC
with 4.00 GB RAM and 3.00 GHz processor. A simulated data set and theR script for data analysis
are available in the user manual of thepnmtrem package.

Simulation results are displayed in Table 1. We report mean,percentage bias (Bias(%)), empiri-
cal standard deviations of the parameter estimates (SD), mean of the standard errors of the parameter
estimates (meSE), and coverage probabilities of the corresponding 95% confidence intervals (CP).
Parameters are approximately unbiased. Empirical standardeviations of the parameter estimates and
the means of the standard error estimates are close to each other. Coverage probabilities are close to
the nominal level of 0.95.

6 Example: Iowa Youth and Families Project data set

6.1 Data

We apply the first-order model to the data set from the Iowa Youth and Families Project (IFYP;
Elder and Conger, 2000; Ilk, 2008). The project was conducted to investigate long-term effects of
the farm crisis that began in 1980’s in the U.S. 451 families from eight rural parts of the north central
Iowa were selected. 7th graders with two alive and biological parents and a sibling within 4 years
old were the target. The focus is on their well-being. The study was started in 1989, and conducted
yearly until 1992. Then, it was conducted in 1994, 1995, 1997and 1999. At each follow-up, both
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Table 1: Simulation results based on 500 replications. For the details of the abbreviations, see the
text.

β∗0 β∗1 β0 β1 β2

True -0.500 0.500 -0.700 0.700 0.200
Mean -0.504 0.513 -0.702 0.704 0.197
Bias (%) 0.797 2.511 0.284 0.549 -1.557

Case 1 SE 0.114 0.199 0.081 0.122 0.068
meSE 0.120 0.205 0.081 0.125 0.065
CP 0.956 0.958 0.958 0.962 0.944
Mean -0.497 0.494 -0.700 0.697 0.250
Bias (%) -0.650 -1.252 0.022 -0.480 0.081

Case 2 SE 0.120 0.206 0.081 0.119 0.066
meSE 0.119 0.204 0.082 0.125 0.065
CP 0.950 0.936 0.952 0.956 0.956
Mean -0.497 0.499 -0.706 0.712 0.198
Bias (%) -0.546 -0.136 0.923 1.755 -0.924

Case 3 SE 0.125 0.220 0.077 0.120 0.063
meSE 0.123 0.211 0.083 0.129 0.063
CP 0.946 0.944 0.960 0.962 0.950
Mean -0.499 0.498 -0.703 0.701 0.201
Bias (%) -0.183 -0.338 0.358 0.176 0.456

Case 4 SE 0.116 0.195 0.082 0.125 0.063
meSE 0.122 0.211 0.083 0.128 0.063
CP 0.956 0.964 0.966 0.956 0.956

the parents and children were surveyed. At the beginning of the study, 48% of the 7th graders were
male and their average age was 12.7 years.

Three main distress variables, anxiety, hostility and depression, were used to measure emotional
statuses of the young people (Table 2). These variables werecollected by a list of symptoms, e.g.
including nervousness, shakiness, an urge to break things and feeling low in energy etc. The symp-
toms were then dichomotised (Ilk, 2008). The frequencies ofthe dichomotised distress variables
are given in Table 3. The frequencies of depression were higher compared to those of anxiety and
hostility, and the frequencies of the latter variables wereclose to each other. For instance, almost
93% of them reported at least one depression symptom at 1989,whilst the frequencies of anxiety
and hostility were 83.2%. A set of explanatory variables, thought to be related with the distress
variables, were also collected (Table 2). These variables include gender, degree of negative life
event experiences of the young people, e.g. having a close friend moved away permanently, finan-
cial cutbacks, e.g. moving to a cheaper residence, and negative economical event experiences of
their families, e.g. such as changing job for a worse one. Amongst the explanatory variables, whilst
gender was time-invariant, the others were time-varying.

Transitional structure of our model requires equally-spaced data. Therefore, we analyse the first
four follow-ups of the IYFP data set. Indicator variables for distress variables and time are con-
sidered as additional explanatory variables, and dummy variables are created for all the categorical
covariates (Table 2). We coded the binary explanatory variables as 0 vs. 1 in our initial data analyses.
However, the alternative coding of -1 vs. 1 is used due to convergence problems.
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Table 2: Variable list of IYFP used in PNMTREM(1).
Variable Explanation
Responses
anxiety whether the young person had symptoms: 0=absence, 1=presence
hostility whether the young person had symptoms: 0=absence, 1=presence
depression whether the young person had symptoms: 0=absence, 1=presence
Covariates
gender gender of the young person: -1=male, 1=female
NLE1 first indicator variable for negative life event experiences of young

people: 1=some, -1=none or many
NLE2 second indicator variable for negative life event experiences of young

people: 1=many, -1=none or some
NEE whether the household had any negative economical event: -1=no, 1=yes
cut1 first indicator variable for financial cutback experiences of the household:

1=between 1 and 5, -1= none or more than 5
cut2 second indicator variable for financial cutback experiences of the household:

1=more than 5, -1= none or between 1 and 5
resp1 first response indicator variable: 1=hostility, -1=anxiety or depression
resp2 second response indicator variable: 1=depression, -1=hostility or anxiety
time1 first indicator variable for follow-up time: 1=1991, -1=1990 or 1992
time2 second indicator variable for follow-up time: 1=1992, -1=1990 or 1991

Table 3: Frequency table of the distress variables across years.

1989 1990 1991 1992
Anxiety 375 (83.2%) 347 (76.9%) 342 (75.8%) 327 (72.5%)
Hostility 375 (83.2%) 350 (77.6%) 342 (75.8%) 328 (72.7%)
Depression 418 (92.7%) 385 (85.4%) 378 (83.8%) 386 (85.6%)

6.2 Results

We specifically build two models. Whilst the set of explanatory variables are same, the models differ
in terms of separating the lag-1 associations amongst the distress variables. Whilst the first model
(Model 1 in Table 5) assumes these associations are shared across the responses, i.e.Zit j,1 = [ 1 ],
the second model (Model 2 in Table 5) assumes that the associations are different for the distres
variables, i.e.Zit j,1 = [ 1 resp1 resp2 ]. Results for baseline models are presented in Table Table
4. Note that the baseline results of Model 1 and Model 2 are same, since the specifications of the
baseline parameter sets are same. Results fort ≥ 2 models are presented in Table 5.

We compare Model 1 and 2 by likelihood ratio test (LRT), sincethey are nested. Respective
maximised log-likelihoods are -1236.78 (= −210.78− 1026) and -1234.49 (= −210.78− 1023.71).
The LRT statistic is 4.58 (= −2 ∗ (−1026− (−1023.71))), with a p-value of 0.60. This indicates that
there is not enough evidence to conclude that Model 2 is a better model to analyse the IYFP data set
compared to Model 1. Therefore, throughout the paper we onlydiscuss the results of Model 1.

We check existence of multicollinearity problem by variance inflation factor. The largest value is
1.17 (results not shown here). This indicates that multicollinearity is not a problem for the analysis
of the IYFP data set. We rely on the findings of Ilk and Daniels (2007) regarding the exogeneity of
the time-varying covariates in the IFYP data set.
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Table 4: Results fort = 1989.H0 : λ∗hostility = 1 andH0 : λ∗depression = 1; other parameters are tested
for 0.

PNMTREM(1)
Parameter Est. SE Z P
β∗0 1.33 0.07 18.82 0.00
β∗gender -0.09 0.06 -1.41 0.16
β∗NLE1 0.20 0.12 1.61 0.11
β∗NLE2 0.41 0.12 3.27 0.00
β∗NEE 0.03 0.05 0.72 0.47
β∗cut1 0.08 0.07 1.15 0.25
β∗cut2 -0.003 0.07 -0.04 0.97
β∗resp1 -0.001 0.06 -0.02 0.99
β∗resp2 0.29 0.07 4.17 0.00
β∗gender∗resp1 -0.04 0.06 -0.73 0.47
β∗gender∗resp2 -0.08 0.07 -1.29 0.20
λ∗hostility 1.10 0.79 0.12 0.91
λ∗depression 1.04 0.71 0.05 0.96
log(σ1) -0.41 0.41
Max. loglik. -210.78

6.3 Population-averaged results

At baseline (1989), only the intercept, one of the negative life event indicators (NLE2) and one of
the response indicators (resp2) are significant. The estimate of intercept,̂β∗0 = 1.33, indicates that
young people had high probability of distress at 1989. The estimate of the second response indicator
variable,β̂∗resp2 = 0.29, indicates that young people were more likely to report depression compared
to anxiety and hostility. Insignificance of the first response indicator (p-value=0.99) indicates that
reporting anxiety and hostility were equally likely. Thesefindings are in agreement with the em-
pirical frequencies (Table 3). Young people who had many negative life events were more likely
to be distressed (β̂∗NLE2 = 0.41). Pairwise correlations between anxiety, hostility anddepression
were not significantly different, p-values ofλ∗hostility andλ∗depression were 0.91 and 0.96. The standard
deviation estimate of the random effects distribution is 0.66 (= exp(−0.41)), with a standard error
of 0.27 (=

√

0.412 ∗ exp(−0.41∗ 2), by the delta method). The standard deviation is significantly
different from 0, with a p-value of 0.007. Of note, we modified the p-value following Molenberghs
and Verbeke (2007).

For 1990− 1992, the intercept, gender, both negative life event indicators (NLE1, NLE2), nega-
tive economical events experience (NEE), one of the cutbacks indicators (cut1), one of the response
indicators (resp2), one of the time indicators (time2) and the interaction between gender and second
response indicator (gender * resp2) are significant. The estimate of the intercept (̂β0 = 0.96) indi-
cates high probability of distress for 1990− 1992, which tend to be higher compared to baseline,
sinceβ̂∗0 > β̂0. Females were more likely to report distress compared to males (̂βgender = 0.18).
Furthermore, they were more likely to report depression (β̂gender∗resp2 = 0.07) compared to reporting
anxiety or hostility. Note that gender is insignificant at 1989. This finding was also reported in Ge
et al. (2001, cited in Ilk, 2008) and Ilk (2008). Experiencing many negative life events and any
family-level negative economical events were associated with distress (̂βNLE1 = 0.14, β̂NLE2 = 0.38
andβ̂NEE = 0.08). Reporting depression was more likely compared to reporting anxiety or hostility

11



Table 5: Results fort ≥ 1990.H0 : λhostility = 1 andH0 : λdepression = 1; other parameters are tested
for 0.

Model 1 Model 2
Parameter Est. SE Z P Est. SE Z P
β0 0.96 0.05 20.77 0.00 0.96 0.05 19.49 0.00
βgender 0.18 0.03 5.87 0.00 0.18 0.03 5.87 0.00
βNLE1 0.14 0.04 3.09 0.00 0.14 0.05 3.05 0.00
βNLE2 0.38 0.05 7.95 0.00 0.38 0.05 7.90 0.00
βNEE 0.08 0.03 3.08 0.00 0.08 0.03 3.03 0.00
βcut1 0.06 0.03 2.10 0.04 0.07 0.03 2.20 0.03
βcut2 0.02 0.03 0.72 0.47 0.02 0.03 0.73 0.47
βresp1 0.01 0.04 0.28 0.78 0.01 0.04 0.13 0.90
βresp2 0.22 0.04 5.21 0.00 0.22 0.05 4.66 0.00
βtime1 -0.07 0.04 -1.75 0.08 -0.08 0.05 -1.75 0.08
βtime2 -0.09 0.05 -1.96 0.05 -0.09 0.05 -1.88 0.06
βgender∗resp1 -0.01 0.03 -0.18 0.86 -0.01 0.03 -0.20 0.84
βgender∗resp2 0.07 0.04 2.08 0.04 0.07 0.04 2.07 0.04
βresp1∗time1 -0.002 0.03 -0.07 0.95 -0.02 0.04 -0.42 0.68
βresp1∗time2 0.004 0.04 0.10 0.92 0.003 0.04 0.07 0.94
βresp2∗time1 -0.01 0.04 -0.36 0.72 -0.01 0.04 -0.31 0.75
βresp2∗time2 0.05 0.04 1.15 0.25 0.05 0.04 1.03 0.30
α21,1 0.76 0.11 6.62 0.00 0.75 0.17 4.50 0.00
α22,1 0.06 0.13 0.43 0.67
α23,1 0.11 0.16 0.70 0.48
α31,1 0.87 0.10 9.11 0.00 0.86 0.13 6.58 0.00
α32,1 0.08 0.11 0.74 0.46
α33,1 0.07 0.14 0.48 0.63
α41,1 0.90 0.10 9.53 0.00 0.86 0.12 7.03 0.00
α42,1 -0.04 0.12 -0.34 0.74
α43,1 0.12 0.13 0.93 0.35
λhostility 1.03 0.37 0.60 0.94 0.99 0.36 -0.02 0.99
λdepression 1.21 0.49 0.57 0.68 1.18 0.49 0.36 0.72
log(σ2) -0.48 0.25 -0.47 0.26
log(σ3) -0.62 0.25 -0.59 0.26
log(σ4) -0.62 0.26 -0.59 0.26
Max. loglik -1026.00 -1023.71

(β̂resp2 = 0.22). On the other hand, reporting anxiety or hostility were not significantly different
(p-value ofβresp1 = 0.78). Whilst the distress levels were lower at 1992 compared to1990 and
1991 (̂βtime2 = −0.09), the distress levels at 1990 and 1991 were not significantly different from each
other (p-value ofβresp1 = 0.08). The decrease in the distress probabilities at 1992 was not different
for depression, anxiety and hostility; respective p-values for βresp1∗time2 andβresp2∗time2 are 0.92 and
0.25.

The marginal mean parameter estimates based onprobit link can be interpreted in terms of
odds-ratios, using the JKB constant; for details see Introduction. For instance, young people who
experienced many negative life events were approximately 2.26 (= exp(1.700437∗ ((−1 ∗ 0.14+
1 ∗ 0.38)− (1 ∗ 0.14− 1 ∗ 0.38)))) times more likely to be distressed compared to those with some
negative life events, and individuals in the latter group were 1.60 (= exp(1.700437∗ ((1 ∗ 0.14− 1 ∗
0.38)− (−1∗0.14−1∗0.38)))) times more likely to be distressed compared to those with no negative
life events.

The transition parameter estimates are positive and significant: α̂21,1 = 0.76, α̂31,1 = 0.87,
α̂41,1 = 0.90 with p-values< 1×10−10. These indicate that that young people who were distressed at
year before were more likely to be distressed at current year. As indicated by the baseline model, the
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pairwise correlations between anxiety, hostility and depression were not significantly different; cor-
responding p-values were 0.94 and 0.68 for hostility and depression, respectively. The standard de-
viation estimates of the random effects distributions were 0.62 (= exp(−0.48)), 0.54 (= exp(−0.62))
and 0.54 (= exp(−0.62)) at 1990, 1991 and 1992, respectively. Respective standard errors were
0.16, 0.14 and 0.14, and all of these parameters were significant (p-values< 0.0001). These results
indicate that the individual variations decreased throughtime (recall that ˆσ1=0.66) and close to each
other at 1991 and 1992.

6.4 Subject-specific results

We calculate probabilities of reporting anxiety, hostility and depression for each individual at each
year. We also calculate the marginal probabilities for comparison. These probabilities are plotted
in Figure 1; only the results for depression are shown here due to page limits, others can be found
in the online supplementary material. We label observed values by 0 and 1 according to absence
and presence depression, respectively. Marginal probabilities range in a narrower interval compared
to conditional probabilities. For instance, whilst the range for the marginal probabilities of being
depressed at the period of 1990 - 1992 was (0.576, 0.971), it was (0.118, 0.999) for the conditional
probabilities. This indicates that marginal probabilities are high even for young people who did
not report depression. On the other hand, conditional probabilities leads to correct decisions. For
instance, in Figure 1, the 0’s were associated with lower conditional probabilities. The associated
box-plots reflect the location and scale of the marginal and conditional probabilities. Whereas the
the conditional probabilities have a spread distribution with many outliers, the marginal probabilities
have a stacked and narrow distribution.

Probabilities of a young person with ID=223 are presented in Table 6. This person was a female,
with some negative life event experiences, no negative economical event experiences and cutbacks
between 1 and 5, except in 1992 at which her family did not experience any cutbacks. She did not
report distress at all. Predicted value ofz223 is−2.45. This indicates that she was less likely to report
distress compared to an average person, i.e.zi = 0. For this person, the conditional probabilities
lead to correct inferences compared to the marginal probabilities. For instance, at 1992, whereas the
marginal probability of being anxious is 0.64, the conditional probability being anxious is 0.08. We
also calculate conditional probabilities assuming that the person is an average person, i.e. setting
z223 = 0. Related results are given under Conditional∗. These probabilities are still subject, time and
response specific, since∆∗it j holds subject, time and response specific information. For instance, at
1992, probability of being anxious based on this method is 0.46.
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Figure 1: Scatter and box plots of marginal vs. conditional probabilities for depression at 1989 (left panel) and 1990-1992 (right panel).
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Table 6: Marginal and conditional probabilities for the young person with ID= 223.
Time Response Gender NLE NEE Cutbacks Observed Marginal Conditional Conditional∗

Anxiety Female Some No Betw. 1 & 5 Absence 0.82 0.30 0.87
1989 Hostility Female Some No Betw. 1 & 5 Absence 0.80 0.23 0.85

Depression Female Some No Betw. 1 & 5 Absence 0.91 0.47 0.95
Anxiety Female Some No Betw. 1 & 5 Absence 0.78 0.09 0.56

1990 Hostility Female Some No Betw. 1 & 5 Absence 0.78 0.09 0.58
Depression Female Some No Betw. 1 & 5 Absence 0.90 0.14 0.77
Anxiety Female Some No Betw. 1 & 5 Absence 0.74 0.14 0.59

1991 Hostility Female Some No Betw. 1 & 5 Absence 0.74 0.13 0.59
Depression Female Some No Betw. 1 & 5 Absence 0.86 0.22 0.79
Anxiety Female Some No None Absence 0.64 0.08 0.46

1992 Hostility Female Some No None Absence 0.65 0.08 0.47
Depression Female Some No None Absence 0.85 0.19 0.77

Table 7: Frequency table of the stayers. “All” stands for thesubjects who reported the same answer
for all the distress variables.

Absence (0) Presence (1)
Anxiety 15 (3.3%) 215 (47.7%)
Hostility 9 (2%) 221 (49%)
Depression 2 (0.4%) 288 (63.9%)
All 2 (0.4%) 134 (29.7%)

6.5 Diagnostics

Longitudinal binary data sets almost surely include stayers, i.e. subjects who constantly report ab-
sence (0) or presence (1) of a binary variable at all time points, for which the subject with ID=223
is an example. The counts and percentages of the stayers in the IYFP data set are given in Table
7. For instance, 29.7% of the subjects reported 1 for all the three distress variables at all the time
points. Marginal and conditional anxiety probabilities ofthe stayers in terms all the distress vari-
ables are summarised in Figure 2. Other results can be found the online supplementary material.
Whilst the gray lines represent the subjects who always reported 1, the black lines represent the ones
who always reported 0. Conditional probabilities are successful at correctly assigning the success
probabilities for these subjects; higher probabilities for subjects reporting 1 and lower probabilities
for those who reported 0. On the other hand, marginal probabilities are not able to distinguish these
subjects.

We also calculate accuracy measures to summarise the predicted probabilities. We specifically
use expected proportion of correct prediction (Herron, 1999) and area under the receiver operating
characteristics curve (AUROC). Results (not shown here) show that conditional probabilities out-
perform the marginal probabilities. This difference is apparent especially in terms of AUROC. For
instance, while the AUROC value for depression at 1990-1992is 0.684 for marginal probabilities, it
is 0.864 for the conditional probabilities.

7 Discussion and conclusion

In this paper, we have proposed a marginalised model for analysis of multivariate longitudinal binary
data. It is an extension of the model proposed by Ilk and Daniels (2007). These authors uselogit
link, and estimate the parameters using BM, specifically Markov Chain Monte Carlo methods. Un-
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Figure 2: Spagetti plots of marginal (left panel) and conditional (right panel) anxiety probabilities
for stayers in terms of all the distress variables. While graylines represent subjects who reported 1,
the black lines represent subjects who reported 0.

automated Fortran codes are available from the personal website of Dr. Ilk. However, their procedure
is computationally cumbersome and requires expertise in BMand Fortran. These aspects prohibit
the routine use of the model. In this study, we replacelogit link by probit, and use ML for parameter
estimation.probit link enables us explicitly linking the second and third levels of the model, which
is not possible with thelogit link. On the other hand, parameter estimation with ML takes less time
compared to BM. We propose the use of implicit function theorem to solve the marginal constraint
equations directly. To the best of our knowledge, this application is proposed for the first time here
for marginalised models. We have prepared the publicly available R packagepnmtrem to fit the
proposed model. Currently, the package provides a functionfor fitting the first-order model. The
function considers both parameter estimation and random effects prediction. It has been tested under
different conditions. For the details and usage, we refer the readers to the package manual.

We have conducted a simulation study to investigate the properties of the estimator under differ-
ent scenarios. Results are satisfactory in terms of unbiasedness, efficiency and coverage. We have
illustrated the first-order model with an application to theIYFP data set. Both population-averaged
and subject-specific inferences have been illustrated. Ourfindings on the IYFP data analysis coin-
cide with the findings of Ilk (2008). As a separate note, the IYFP data set is available upon request
from the authors.

A natural extension of our work here would be fitting higher-order models. The variances of
random effects could be modified by a subset of covariates, i.e. log(σt) = Mit j ωt whereMit j is a
set covariates andωt are the associated parameters. Also, the random effects coefficients might be
assumed to have a multivariate normal distribution, i.e.bit ∼ N(0, D) whereD is aT × T matrix.
However, all of these extensions require intensive new derivations and implementations. Therefore,
we leave them as future work.
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Appendices

A. Linking second and third levels of thet ≥ 2 model

Whilst linking second and third levels of thet ≥ 2 model, we claim the following

∫

Φ(∆∗it j + λ jbit) f (bit)dbit = Φ





∆∗it j
√

1+λ2
jσ

2
t





wherebit ∼ N(0, σ2
t ) and bit = ziσt, zi ∼ N(0,1). The related proof, which is modified from

Griswold (2005), is given below.
Let Wi⊥zi, whereWi ∼ N(0,1), then,

Wi/(λ jσt) ∼ N(0, (λ jσt)−2)
Wi/(λ jσt) − zi ∼ N(0,1+ (λ jσt)−2)

Wi/(λ jσt)−zi√
1+(λ jσt)−2

∼ N(0,1)

and

∫

Φ(∆∗it j + λ jbit) f (bit)dbit =

∫ +∞

−∞
Φ(∆∗it j + λ jziσt)φ(zi)dzi

=

∫ +∞

−∞
P(Wi ≤ ∆∗it j + λ jziσt)φ(zi)dzi

=

∫ +∞

−∞
P





Wi/(λ jσt) − zi
√

1+ (λ jσt)−2
≤
∆∗it j/(λ jσt)

√

1+ (λ jσt)−2



 φ(zi)dzi

= P





Wi/(λ jσt) − zi
√

1+ (λ jσt)−2
≤
∆∗it j/(λ jσt)

√

1+ (λ jσt)−2



 = Φ





∆∗it j
√

1+ (λ jσt)2





B.1 ML estimation of θ1

Maximizing the log-likelihood function of the baseline model, L1(θ1|y1), with respect toθ1 yields

∂log
(

L1(θ1|y1)
)

∂θ1
≈

N∑

i=1

1
h(Yi1|θ1)

∂h(Yi1|θ1)
∂θ1

, (27)

where

h(Yi1|θ1) ≈
20∑

q=1

wq exp





k∑

j=1

(

Yi1 jlog
(

Φ(di1 jq)
)

+ (1− Yi1 j)log
(

1− Φ(di1 jq)
))





︸                                                                       ︷︷                                                                       ︸

ℓ(Yi1|θ1)

, (28)

∂h(Yi1|θ1)
∂θ1

≈
20∑

q=1

wq






ℓ(Yi1|θ1)






k∑

j=1





∂di1 jq

∂θ1
φ(di1 jq)





Yi1 j − Φ(di1 jq)
(

Φ(di1 jq)
) (

1− Φ(di1 jq)
)



















, (29)

di1 jq =

√

1+ λ∗j
2e2c1 (Xi1 jβ

∗) + λ∗je
c1
√

2 zq. (30)
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Here,log(σ1) is equated toc1 for simplicity of notation and (zq,wq) for q = 1, . . . ,20 are Gauss-
Hermite quadrature points and weights, respectively whichare available in Abramowitz and Stegun
(1972). The derivatives ofdi1 jq with respect toθ1 = (β∗, λ∗, c1) with λ∗ = (λ∗2, . . . , λ

∗
k) are given

below.

∂di1 jq

∂β∗
=

√

1+ λ∗j
2e2c1(Xi1 j)

∂di1 jq

∂λ∗j
= (1+ λ∗j

2e2c1)−1/2λ∗je
2c1(Xi1 jβ

∗) + ec1
√

2zq

∂di1 jq

∂c1
= (1+ λ∗j

2e2c1)−1/2λ∗j
2e2c1(Xi1 jβ

∗) + λ∗je
c1
√

2zq

B.2 ML estimation of θ2

Similar to the baseline model, maximizing the log-likelihood function of thet ≥ 2 model with
respect toθ2 yields

∂log
(

L2(θ2|y2)
)

∂θ2
≈

N∑

i=1

T∑

t=2

1
h(Yit |θ2)

∂h(Yit |θ2)
∂θ2

, (31)

where

h(Yit |θ2) ≈
20∑

q=1

wq exp





k∑

j=1

(

Yit jlog
(

Φ(dit jq)
)

+ (1− Yit j)log
(

1− Φ(dit jq)
))





︸                                                                     ︷︷                                                                     ︸

ℓ(Yit |θ2)

, (32)

∂h(Yit |θ2)
∂θ2

≈
20∑

q=1

wq






ℓ(Yit |θ2)






k∑

j=1





∂dit jq

∂θ2
φ(dit jq)





Yit j − Φ(dit jq)
(

Φ(dit jq)
) (

1− Φ(dit jq)
)



















, (33)

dit jq =

√

1+ λ2
je

2ct

(

∆it j + αt,1Zit jyit−1 j

)

+ λ je
ct
√

2zq. (34)

Here,ct = log(σt) for t ≥ 2, and (zq,wq) for q = 1, . . . ,20 are Gauss-Hermite quadrature points and
weights. Also note that explicit solution of∆it j is given in (13). The derivatives ofdit jq with respect
to θ2 = (β,αt,1, λ, c) with λ = (λ2, . . . , λk) andc = (c2, . . . , cT ) are given below.

∂dit jq

∂β
=

√

1+ λ j
2e2ct (Ait j)

∂dit jq

∂αt,1
=

√

1+ λ j
2e2ct (Bit j + Zit j,1yit−1 j)

∂dit jq

∂λ j
= (1+ λ j

2e2ct )−1/2λ je
2ct

(

−(Ait jβ0 + Bit jαt,10) + Ait jβ + αt,1(Bit j + Zit j,1yit−1 j)
)

+ ect
√

2zq

∂dit jq

∂ct
= (1+ λ j

2e2ct )−1/2λ j
2e2ct

(

−(Ait jβ0 + Bit jαt,10) + Ait jβ + αt,1(Bit j + Zit j,1yit−1 j)
)

+ λ je
ct
√

2zq

where

Ait j = −
∂F
∂β

∣
∣
∣
∣
(β0,αt,10,∆it j0)

∂F
∂∆it j

∣
∣
∣
∣
(β0,αt,10,∆it j0)

, Bit j = −
∂F
∂αt,1

∣
∣
∣
∣
(β0,αt,10,∆it j0)

∂F
∂∆it j

∣
∣
∣
∣
(β0,αt,10,∆it j0)
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