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Abstract

Marginalised models, also known as marginally specified models, haeathe become a
popular tool for analysis of discrete longitudinal data. Despite being alsb&tistical method-
ology, these models introduce complex constraint equations and mtiig élgorithms. On
the other hand, there is a lack of publicly available software to fit these Isiotfethis paper,
we propose a three-level marginalised model for analysis of multtealdagitudinal binary out-
come. The implicit function theorem is introduced to approximately solve trgimel constraint
equations explicitlyprobit link enables direct solutions to the convolution equations. Parameters
are estimated by maximum likelihood via a Fisher-Scoring algorithm. A simulatiedy is con-
ducted to examine the finite-sample properties of the estimator. We illustrateotthe with an
application to the data set from the lowa Youth and Families Project. The iRagegnmtrem is
prepared to fit the model.

Keywords: correlated data, implicit dierentiation, link functions, maximum likelihood estinatj
subject-specific inference, statistical software.

1 Introduction

Longitudinal data comprise repeated measurements on the sabjects across time. Whilst data
from the same subjects are typically dependent on each, athtar from diferent subjects are typ-
ically independent. Often, multiple responses, e.g. pl@lthealth outcomes or distress variables,
from each subject are collected. These responses intradactypes of dependencies: 1) within-
response (serial) dependence, and 2) multivariate respigendence at a given time point. To
draw valid statistical inferences, both of these dependsrghould be taken into account.
Conventional models for analysis of longitudinal data aseginal, transition and randonffects

models (Diggle et al., 2002). A recently popular method fscrete longitudinal data analysis is the
framework of marginalised models, also known as margirsdcified models. The framework typ-
ically combines the underlying features of the conventionadels, and enables likelihood-based
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inference for marginal mean parameters. Heagerty and Z2660) define marginally specified
models as a re-parameterised version of transitioricamdndom &ects models in terms of the
marginal mean and additional dependence parameters. ie&t@99, 2002), in his seminal pa-
pers, develops marginalised randoffeets and marginalised transition models, respectivelyh Bo
of these models are two-level logistic regression modelsilsat\dovariate &ects are captured in the
first levels, serial dependence is captured in the secordsleia random fects and response his-
tory, respectively. Heagerty and Kurland (2001) show thatgimal regression parameter estimates
based on marginalised randofffiexts models are less sensitive to dependence structurgemiifss
cation compared to those based on conventional randteaote models. Heagerty (2002) and Lee
and Mercante (2010) prove that parameters of the first armhdgdevels of marginalised transition
models are orthogonal. The marginalised modeling paradigs primarily developed for binary
data (Schildcrout and Heagerty, 2007; Ilk and Daniels, 20@@ et al., 2009; along with the afore-
mentioned works of Heagerty). Later, it has been extendexidimal (Cdfo and Griswold, 2006;
Lee and Daniels, 2007; Lee et al., 2013), count (Lee et all120ddi and Molenberghs, 2012)
and nominal data (Lee and Mercante, 2010). Amongst theskswik and Daniels (2007) pro-
pose a three-level marginalised modelifaidtivariate longitudinal binary data, called marginalised
transition random féects model. With this model, whilst covariatffezts are captured in the first
level, serial and multivariate response dependenciesamteired in the second and third levels via
response history and randorfiexts, respectively. In this paper, we extend marginalissasition
random &ects model in terms of link function, frotogit to probit, and the parameter estimation
methodology, fronBayesian methods (BM) to maximum likelihood (ML) estimation.

probit andlogit are popular link functions for modelling categorical dat&ese link functions
are defined as the inverses of the distribution functionshefdtandard normal and the standard
logistic distribution, respectively. They have similathbeiours in terms of placing probabilities.
The only diference is at the extreme tailsgit places higher probabilities at the tails (Hedeker and
Gibbons, 2006). Nonetheless, substantial and high quiditst are needed to detect th&elience
(Doksum and Gakso, 1990, cited in Hedeker and Gibbons, 206153). logit allows direct in-
terpretation of the parameter estimates, as changes inqtits ratios. The interpretation is more
challenging withprobit. Nonetheless, (approximate) transitions between thenpatea estimates
based on these link functions is possible (Agresti, 2002sv@&ld et al., 2013). For example, the
JKB constant (Johnson et al., 1995, pp. 113-163, cited iav@@id et al., 2013) postulates the fol-
lowing: Biogit = C* Bprobit Wherec = (15/16)(r/ V3) = 1.700437. One advantage mfobit overlogit
is that it allows explicit form of the linkage between thedés/of marginalised randonftects mod-
els (Heagery and Zeger, 2000; Griswold et al., 2013fdcCand Griswold, 2006). The use pifobit
link in multivariate modelling dates back to Ashford and Slew (1970). Some recent examples on
longitudinal mixed modelling are Hedeker and Gibbons (30D and Hedeker (2006), Varin and
Czado (2010), amongst others.

Generalized estimating equations (GEE; Liang and Zeg@&6)18ave been widely used to esti-
mate the parameters of marginal models, especially forets@utcome. Nonetheless, they might
be indficient because of being a semi-parametric method, compardtetfull likelihood-based
methods, e.g. ML and BM. BM are widely used in longitudinaladiterature and have their own
properties. Some distinguishing features of ML over BM &e parameter estimation requires less
computational times, and related procedures are more atited (Efron, 1986). In this paper, we
consider ML for parameter estimation to avoid the compaieti burden.

Marginalised models with transition structures requirtvisg marginal constraint equations
(Heagerty, 2002; Schildcrout and Heagerty, 2007; Ilk andiBla, 2007; Lee and Mercante, 2010).
Common literature for solving these equations has beethddptimisation methods, e.g. Newton-
Raphson (N-R) algorithm. This might be computationally bensome and might yield convergence



problems. In this paper, we consider approximately exgdiciutions of marginal constraint equa-
tions, and propose the use of ilngplicit function theoremfor the first time in the scope of marginally
specified models.

Publicly available software for analysis of multivariatengitudinal binary data is still rare.
Available options include the SAS macro of Shelton et al. 00 and theR (R Core Develop-
ment Team, 2015) packagmsam (Asar and Ik, 2013) andmm2 (Asar and Ik, 2014). In this study,
we propose the R packagemtrem for first-order marginalised transition randorfieets models
with probit link. The package is available from the Compietiee R Archive Network (CRAN) at

http://CRAN.R-project.org/package=pnmtrem.

The paper is organized as follows. Whilst the general matgliiamework is introduced in
Section 2, first-order version is discussed in detail in iB8ac®. In Section 4, we discuss inference
for the first-order model. Finite-sample behaviours of thigngator are investigated by a simulation
study in Section 5. The first-order model is applied to a regh et in Section 6. Section 7 is a
concluding discussion.

2 General framework

LetYy; denote theth (j = 1,...,k) response of thigh (i = 1,...,n) subjectat timeé (t = 1,...,T).
Also let Xj;j; denote the associated set of covariates, which might iediuge-varying antr time-
invariant covariates. The framework of the general modé# wiverseprobit link is as follows:

Pit; = P(Yitj = 1Xitj) = O(XitjB), (1)
p

Pl =P(Yi = Wit vjs - Yip» Xit) =@(Ai + D yigmieom)), @)
m=1

Pitj = P(Yity = LYit-1js s Yigp,j Xitj» Bit) = @AY + Ajbye), 3)

where®(-) is the distribution function of the standard normal.

In (1), the first level of the frameworl are marginal regression parameters. These parame-
ters measure the relationship between covariates andmsspaand allow comparing covariate sub-
groups, e.g. males vs. females, without conditioning oparse history andr random &ects. The
default setting assumes that intercepts and slopes ardshyaditerent responses, i.e. we postulate
B instead off;. Nonetheless, one is able to specifyfelient intercepts and slopes for multiple re-
sponses by including iXi;j indicator variables for responses and interactions o&tiredicator vari-
ables with covariates, respectively. This specificatiawvtes model flexibility. We might gain in
efficiencies considerably, e.g. when the relationships betweeariates and multiple responses are
not significantly dfferent (Asar and Ik, 2014). Another default setting is th&uagption of accom-
modating only the relationship of responses with currentdates, i.e P(Yi; = 11Xi1j, ..., Xitj) =
P(Yitj = UXit;). Nonetheless, relationships with lagged covariates trighcaptured by including
covariate history ir;.

In (2), the second level of the framework, Markov model ofesrg is used to capture the
serial dependence. Here, timth transition parameters;;; m, can be written in terms of covariates,
i.e. Yitjm = a/t,mZitj,m = (Ytl’mzitjlym + ...+ athZithm form=1,..., P. a@tfm (f =1,..., |) are
time, covariate and order specific transition parameteiseyTcapture the relationships between
past and current response&;;. have a form of design matrix with 1's on the first column, and
are typically a subset oX; with | covariates. The form oZj;. permits flexibly specifying the
association structures between past and current respdfrmesxample, if one suspects that the lag-
1 associations are fliérent for males and females, then gender can be includggd;n Similar to



the first level,a;m are assumed to be shared across multiple responses. Respausfic transition
parameters can be specified by includingZigy . indicator variables for responses and interactions
of these indicator variables with response history andratbeariates.

In (3), the third level of the model, multivariate respongpendence and individual variations
are capturedb;'s are subject and time specific randoffeets coéficients that measure unobserved
heterogeneity between subjects at timaNe assume thds, ~ N(0, o). bj; can be rewritten as
bii=0t 7z, wherez is a standard normal random variable, which is useful in rrigakintegration.
Aj's are response-specific parameters that sealith respect to thgth response, and accounts
for multivariate response dependence. We/seto 1 for identifiability, and estimata; for j =
2,.... Note that by specifyindy;’s are time-varying, the model assumes that multivariaspoase
dependencies might change across time.

Ayj's in (2) are subject, time and response specific intercdptsy take into account the (non-
linear) relationship between marginaBi'{g) and transition probabilitiesP(tj). Similarly, Ay's in
(3) are subject, time and response specific intercepts teauat for the (non-linear) relationship
between transition and randorfiects probabilitiesk;).

We assume that conditional mean of responses given alliet®siis equal to conditional mean
of responses given covariate history, iLB(Yij|Xigj, 0 = 1,...,T) = E(Yitj|Xisj, s < t). The as-
sumption is meaningful only for exogenous covariates (dates that do not depend on response
history), but not for endogenous ones (covariates thatritepe response history at tintg It is
necessary for the validity of the marginal constraint eiquato be introduced later.

3 First-order model

In this study, we focus on lag-1 dependence in (2). The fraonlevor the first-order model becomes

Pt = P(Yitj = 1UXitj) = ©(Xit;B). @)
Pl = P(Yitj = Uyie-1.j, Xitj) = P(Aij + itjaYis-1)» (5)
Pij = P(Yitj = U¥i-1j, Xitj» bie) = O(AG; + Ajbye). (6)

As before,bj; ~ N(O, O'tz) andbjt=z o, z ~ N(0,1); 2,=1; Yitir = @1Zitjy = awiZijpy + ...+
ay.1Zitji1. Throughout, we call this framework &g 2 model.

(5) is not valid at baselind & 1), because there is no history data are available at thésgomt.
Based on this and the assumption that variabilitigs-al andt > 1 might be diferent, we postulate
a separate model for= 1:

Pi1j = P(Yiaj = 1UXi1j) = ©(Xi1jB"), (7)
Pirlj = P(Yilj = 1|Xi1j, bil) = (D(Ai*lj + ﬂTbil)a (8)

whereb;j; ~ N(O, ai) andbi1=z o1, z ~ N(0,1); 1;=1. Throughout we call this model as thaseline
model.

3.1 Linking levels of thet > 2 model

Levels of the first-order model (4 - 6) are connected to eatlerotor the model being a valid
probabilistic model.



3.1.1 Linking first and second levels

Levels 1 (4) and 2 (5) are linked via the following marginahstraint equation,

1
P(Yitj = 1 Xiyj) = Z P(Yitj = U¥it-1.j» Xitj) PVit-1,1 Xit-1.5) ()]
Yit-1j=0
which is equivalent to
O(XizjB) = O(Aizj))(1 — (X 1jB")) + P(Ai2j + ¥i2j1)P(Xi.1,i8"), (10)
and
O(XitjB) = P(Aitj)(1 — ©(Xir-1,i8)) + P(Aitj + Vitj,1) P(Xit-1,iB)- (11)

fort > 2 andt = 2, respectively. Hereafter, the discussion will be basedqld). We take the
difference between (11) and (10) when necessary.

Since (11) does not permit explicitly writingyi; in terms of 8 andyitj1 (or @t1), we use the
implicit function theorem (IFT; Krantz and Parks, 2003) fom approximately explicit solution.
Application of IFT is as follows.

Let F be a function oKjj, Xit-1j, 8, Aitj, @1 andZi; 1 such that (by rewriting (11))

F(Xitj> Xit-1j> B, Aitj> @1, Zitj1) = O(XigjB) = ©(Aitj) (L= O(X t-1,i8)) — (Aitj + @11 Zitj 1) O(Xi -1,i8) = 0. (12)

By IFT with first order implicit diterentiation, i.e. first order approximatiafs;; can be obtained as

oF _OF
B (Bo-t,10,Aitjo) ey (Bo-ar10.Aitjo)
Aij = = (B o) = o (e — ano), (13)
9Aij (Bo-t.10,Aitjo) Ay (Bo-@t.10.Aitjo)
where
oF
P = Xitjd(XitjB) + O(Aitj)(@(Xit-1,iB)) Xit-1.j — P(Aitj + @1 Zitj1)p(Xit—1,iB) Xit-1j
oF
o —¢(Ait)) (L = D(Xit-1,iB)) — ¢(Aitj + @1 Zitj1)(P(Xit-1,i8)),
it]
oF
Fromie =¢(Aitj + @1Zitj1)P(Xit-1,iB) Zitj.1- (14)
i1

Here, ¢(-) is the density function of the standard normal, gday10 and Ajo are fixed values
around which IFT searches for solution. We Bgtanda: 10 to O, since null hypotheses f@ and
ay1 are on equality of these parametersOtoAjo is obtained by solving (12) undg@, anday 10
being0. This yieldsAjtjo = 0 fort > 2. N-R is used to obtainzjo. Based on our experience, this
has very fast convergence due to the simple form of (12).

3.1.2 Linking second and third levels

Level 2 (5) and level 3 (6) are linked via the following conwtibn equation:

P(Yitj = Uyie-1j» Xitj) = fP(Yitj = L¥ir-1j, Xitj, bir)dF (bi), (15)



which is equivalent to
O(Aitj + @1 Zitj1Yir-1,j) = f‘D(Ai*tj + 4;jbit) f (bir) dbit. (16)
Following Griswold (2005), we can explicitly obtahrrtj as

Ay = 1+ B0 (A + @ ZiaYie))- 17)

Proof of (17) is given in Appendix A\ is now an explicit and deterministic function&f; (hence,

. . it]
Ai*tj is a function ofXy;j, X1 andp), av1 Zitj1, Yi-1j, 4j andor.

3.2 Linking levels of the baseline model

First (7) and second (8) levels of the baseline model aretinka the following convolution equa-
tion:

P(Yi1j = 1Xiyj) = fP(Yilj = 1IXi1j, bia)dF (big). (18)

AF

ij can be written as an explicit function &1, 8", /l] ando; such that

Ajj = A 1+ %02 XiniB'. (19)

Proof of (19) can be easily adapted from the proof of (17).

4 Inference

4.1 Estimation

The likelihood of the first-order model is the product of thelihood functions of the baseline and
t > 2 models. By re-writing the randontfects coéicients ady; = 01z andbj; = 0z, it can be
expressed as

L(6ly) = L1(611y,)L2(6021ys), (20)
where
N K Yitj 1-Yiaj
Ly = | | [ T](P)™ (1= Py) ™ ot@acz. (21)
iz1 Y =1
Lateay) = [ [ [ T1(Pi)" (2= Pry)™" otarc. (22)
i=1 t=2 Y =1

Here,0 = (61,6,), whered, = (8", 2°,02) with A* = (15,..., 4;) andé, = (B, a1, 4,0%) with A =
(A2,...,A) anda? = (03, ..., 0%), are parameters of the baseline and2 models, respectively,
andy, are observed responses at baselinetand time points, respectively.; (61]y;) andL(62ly,)
are connected to each other yaatt = 2 (see (10)). We modebg(c), instead ofo or o2, due
to computational aspects. This transformation helps etenthe parameter spaces from {0o)

to (—o0, +00). Estimates and standard errors regardingr o2 can be easily obtained using the
invariance property of ML estimates and delta method, retspay.



We need to use numerical methods to solve the integrals ing@d (22), since there is no
closed-form solutions. Since these integrals are one+isinaal, we use Gauss-Hermite quadrature
with 20-points (Lesfire and Spiessens, 2001; Agresti, 2002; McCulloch et al.8R08imilarly,
the closed-form solutions based on the first partial ddvigatof the log-likelihood are not available.
We use Fisher-Scoring (F-S) algorithm to obtain the paranetimates iteratively. An advantage
of F-S algorithm is that it only works with the first partialrilates and does not require the second
partial derivatives (Hedeker and Gibbons, 2006, pp. 182-18nother advantage of the algorithm is
that at convergence, inverse of the expected informatidnixria a consistent estimator of the large
sample variance-covariance matrix of the model parameéf¥its F-S algorithm, ML estimates are
obtained iteratively as

dlog (Ls(62'ys))

1 -1
6" = 63+ 1(65) A

(23)
wheres = (1,2); s = 1 corresponds to the baseline model ang 2 corresponds to the > 2

model; m represents the F-S step ah@s) is an empirical information matrlxw is the

first partial derivative of the log-likelihood, calculatis of which can be found in Appendlx BYs)
is calculated as

- T
101) = Z O R R 24)
and
NS 1 oh(Ygled)) (& 1 ah(Yileo))
|(02)=;(; h(Yiijl2) 962 ](; h(Yijl62) 362 ) =

Details ofh(Ym|05) and WY‘”'BS) fort = 1,...,T can be found in Appendix B. Sinae; is time-

specific andt’ is response- specmc for basellne, andinday 1 are time-specific and; is response-
specific fort > 2, the calculations off(9;) and|(6,) for these parameters arefdrent compared to
the calculations fog* andg. Details can be found in the online supplementary material.

4.2 Prediction

Predictingbyy = oz (t = 1,...,T) is equivalent to predicting. We obtain the predictions &’s
as the modes of log-conditional distributionszg$ given the data (Heagerty, 1999). This requires
solving

A619(d)) (Yigg — @(dy))

T k )
-7 =0, 26
{ZE () (1 o) } i )

with respect t@ usin N-R algorithm. Heredy; = Ay + 4;61z. A;'s are obtained as in (17) and
(19) plugging-in the ML estimates @f and@,.

5 Simulation study

We conduct a Monte Carlo simulation study to examine thesfis@mple behavoiurs of the marginal
mean parameters. In each replications, we simulate datg tiee first-order model. The data sets



include bivariate binary responses, andY,, and two associated covariate§, and X, for 250
subjects with 4 follow-ups. We generaXe from Uniform(Q 1) as a time-independent variable.
X, is taken as the response indicator variable. It takes Y{fpO for Y,. We consider dferent
sets of covariates for baseline and 2. Moreover, we consider varying relationships between the
covariates and the responses, .z B. We specifically consides” = (5;,5;) = (-0.5,0.5) for

t =1, andB = (Bo,B1) = (-0.7,0.7,0.2) for t = 2,3,4. By the inclusion of response indicator as
a covariate, we allow the responses to haveedent intercepts. Whilst the interceptds + 82 =
-1+ 0.2 =-08for Vs, itis Bp = —1 for Y,. The relationships betweexy andY;, andX; andY,
are assumed to be the same, i.e. interaction betigand X, is not included. In terms association
structures, by keeping the marginal mean parameter sedtinge, we consider the following four
cases:

Case 1
(15, A2) = (0.9,0.95), (1, o2, 73, 4) = (0.2,0.25,0.3,0.35), (@211, @311, a11) = (0.3,0.4,0.5)
Case 2
(15, A2) = (1.1, 1.15), (1, 02, 73, 04) = (0.2,0.25,0.3,0.35), (@211, @311, @411) = (0.3,0.4,0.5)
Case 3
(15, A2) = (0.9,0.95), (1, o2, 73, ) = (0.5,0.55,0.6,0.65), (@211, 311, @411) = (0.3,0.4,0.5)
Case 4
(15, A2) = (0.9,0.95), (1, o2, 73, ) = (0.2,0.25,0.3,0.35), (@211, @311, @411) = (0.6,0.7,0.8)

with 2] and1; being 1. The relationships between the lag-1 and currepbrees are assumed to
be same foiv; andYy, i.e. Ziyj1 =[1].

Simulated data sets are analysed by the first-order modelsifitulation procedure is replicated
500 times for each case. Analysis of a simulated data setqth@®ne) took 8.9 minutes on a PC
with 4.00 GB RAM and 3.00 GHz processor. A simulated dataséttheR script for data analysis
are available in the user manual of thentrem package.

Simulation results are displayed in Table 1. We report mparcentage bias (Bias(%)), empiri-
cal standard deviations of the parameter estimates (SR wighe standard errors of the parameter
estimates (meSE), and coverage probabilities of the quoreing 95% confidence intervals (CP).
Parameters are approximately unbiased. Empirical stateda@ations of the parameter estimates and
the means of the standard error estimates are close to deah Gbverage probabilities are close to
the nominal level of 0.95.

6 Example: lowa Youth and Families Project data set

6.1 Data

We apply the first-order model to the data set from the lowattY@nd Families Project (IFYP;
Elder and Conger, 2000; Ilk, 2008). The project was condltdenvestigate long-termfiects of
the farm crisis that began in 1980’s in the U.S. 451 familiegteight rural parts of the north central
lowa were selected. 7th graders with two alive and bioldgieaents and a sibling within 4 years
old were the target. The focus is on their well-being. Thelgtwas started in 1989, and conducted
yearly until 1992. Then, it was conducted in 1994, 1995, 189d 1999. At each follow-up, both



Table 1: Simulation results based on 500 replications. Rerdetails of the abbreviations, see the
text.

By By Bo B B2
True -0.500 0.500 -0.700 0.700 0.20
Mean -0.504 0.513 -0.702 0.704 0.19
Bias (%) 0.797 2511 0.284 0.549 -1.55

Casel SE 0.114 0.199 0.081 0.122 0.0¢
meSE 0.120 0.205 0.081 0.125 0.04
CP 0.956 0.958 0.958 0.962 0.94
Mean -0.497 0.494 -0.700 0.697 0.25
Bias (%) -0.650 -1.252 0.022 -0.480 0.08
Case2 SE 0.120 0.206 0.081 0.119 0.0¢
meSE 0.119 0.204 0.082 0.125 0.09
CP 0.950 0.936 0.952 0.956 0.95

Mean  -0.497 0499 -0.706 0.712 0.19
Bias (%) -0.546 -0.136 0.923 1755 -0.92

Case3 SE 0.125 0.220 0.077 0.120 0.0¢
meSE 0.123 0.211 0.083 0.129 0.09
CP 0946 0944 0960 0.962 0.95

Mean -0.499 0.498 -0.703 0.701 0.20
Bias (%) -0.183 -0.338 0.358 0.176 0.45
Case4 SE 0.116 0.195 0.082 0.125 0.0¢
meSE 0.122 0.211 0.083 0.128 0.04
CP 0.956 0.964 0966 0.956 0.95

CWHTOFPCOwRFRDOZFROSOTYINO

the parents and children were surveyed. At the beginningeo$tudy, 48% of the 7th graders were
male and their average age was 12.7 years.

Three main distress variables, anxiety, hostility and esgion, were used to measure emotional
statuses of the young people (Table 2). These variables sediexted by a list of symptoms, e.g.
including nervousness, shakiness, an urge to break thirdyfealing low in energy etc. The symp-
toms were then dichomotised (llk, 2008). The frequenciethefdichomotised distress variables
are given in Table 3. The frequencies of depression wereshigbmpared to those of anxiety and
hostility, and the frequencies of the latter variables waose to each other. For instance, almost
93% of them reported at least one depression symptom at ¥888t the frequencies of anxiety
and hostility were 83.2%. A set of explanatory variablesutiht to be related with the distress
variables, were also collected (Table 2). These varialvielside gender, degree of negative life
event experiences of the young people, e.g. having a cleselfmoved away permanently, finan-
cial cutbacks, e.g. moving to a cheaper residence, andinegstonomical event experiences of
their families, e.g. such as changing job for a worse one. Agabthe explanatory variables, whilst
gender was time-invariant, the others were time-varying.

Transitional structure of our model requires equally-goadata. Therefore, we analyse the first
four follow-ups of the IYFP data set. Indicator variables fistress variables and time are con-
sidered as additional explanatory variables, and dummighias are created for all the categorical
covariates (Table 2). We coded the binary explanatory bbessas 0 vs. 1 in our initial data analyses.
However, the alternative coding of -1 vs. 1 is used due to emance problems.



Table 2: Variable list of IYFP used in PNMTREM(1).

Variable Explanation

Responses

anxiety whether the young person had symptomsstence, Zpresence

hostility whether the young person had symptomsalfisence, 2presence

depression  whether the young person had symptoesbg€ence, 2presence

Covariates

gender gender of the young person=riale, Efemale

NLE1 first indicator variable for negative life event exmertes of young
people: Esome, -Enone or many

NLE2 second indicator variable for negative life event gigreces of young
people: Emany, -E=none or some

NEE whether the household had any negative economical:evestio, 1=yes

cutl first indicator variable for financial cutback expedes of the household:
1=between 1 and 5, =1none or more than 5

cut2 second indicator variable for financial cutback exgrees of the household
1=more than 5, - none or between 1 and 5

respl first response indicator variable:hbstility, -1=anxiety or depression

resp2 second response indicator variabteddpression, -thostility or anxiety

timel first indicator variable for follow-up time:=11991, -1=1990 or 1992

time2 second indicator variable for follow-up time=1992, -£=1990 or 1991

Table 3: Frequency table of the distress variables acrasye

1989 1990 1991 1992
Anxiety 375 (83.2%) 347 (76.9%) 342 (75.8%) 327 (72.5%)
Hostility ~ 375 (83.2%) 350 (77.6%) 342 (75.8%) 328 (72.7%)
Depression 418 (92.7%) 385 (85.4%) 378 (83.8%) 386 (85.6%)

6.2 Results

We specifically build two models. Whilst the set of explangteariables are same, the modelfeti

in terms of separating the lag-1 associations amongst #teeds variables. Whilst the first model
(Model 1 in Table 5) assumes these associations are shaweshdbe responses, i.8qj1 = [1],

the second model (Model 2 in Table 5) assumes that the atisosiare diferent for the distres
variables, i.eZy1 =[1 respl resp2 ]. Results for baseline models are presented in Table Table
4. Note that the baseline results of Model 1 and Model 2 areesaince the specifications of the
baseline parameter sets are same. Results¥& models are presented in Table 5.

We compare Model 1 and 2 by likelihood ratio test (LRT), sitlcey are nested. Respective
maximised log-likelihoods are -1236.78 (21078 — 1026) and -1234.49«-21078 - 102371).
The LRT statistic is 4.58« -2« (-1026— (-102371))), with a p-value of 0.60. This indicates that
there is not enough evidence to conclude that Model 2 is afr@ibdel to analyse the IYFP data set
compared to Model 1. Therefore, throughout the paper we dislyuss the results of Model 1.

We check existence of multicollinearity problem by variaiaflation factor. The largest value is
1.17 (results not shown here). This indicates that multiwedrity is not a problem for the analysis
of the IYFP data set. We rely on the findings of Ilk and Dani2B0(7) regarding the exogeneity of
the time-varying covariates in the IFYP data set.

10



]'crable 4: Results for = 1989.Ho : Af gy = 1 @ndHo : 4G eon = 15 Other parameters are tested
or 0.
PNMTREM(1)

Parameter Est. SE Z R
B 1.33 0.07 18.82 0.00
Biender -0.09 0.06 -1.41 0.16
BuLEL 020 012 161 0.11
Buie2 0.41 012 3.27 0.00
Bree 0.03 0.05 0.72 047
Baw 0.08 0.07 115 0.25
Béwo -0.003 0.07 -0.04 0.97
Blespt -0.001 0.06 -0.02 0.99
Bresp2 0.29 0.07 4.17 0.00
Biender srespi -0.04 0.06 -0.73 0.47
Bender srespa -0.08 0.07 -1.29 0.20
Aosility 1.10 0.79 012 091
Alepression 1.04 071 0.05 0.96
log(o1) -0.41 0.41
Max. loglik. -210.78

6.3 Population-averaged results

At baseline (1989), only the intercept, one of the negatffeedvent indicators (NLE2) and one of
the response indicators (resp2) are significant. The emiofeinterceptﬁg = 1.33, indicates that
young people had high probability of distress at 1989. Thienase of the second response indicator
variableﬁ;*es , = 0.29, indicates that young people were more likely to repopregsion compared
to anxiety and hostility. Insignificance of the first respomsdicator (p-value0.99) indicates that
reporting anxiety and hostility were equally likely. Thdsedings are in agreement with the em-
pirical frequencies (Table 3). Young people who had manyatieg life events were more likely
to be distressed@(lLE2 = 0.41). Pairwise correlations between anxiety, hostility aegression
were not significantly dierent, p-values oty ., and/ldepresson were 0.91 and 0.96. The standard
deviation estimate of the randonffects dlstr|but|0n is 0.66= exp(-0.41)), with a standard error
of 0.27 & +/0.412 x exp(-0.41x 2), by the delta method). The standard deviation is sigmifiga
different from 0, with a p-value of 0.007. Of note, we modified theajue following Molenberghs
and Verbeke (2007).

For 1990- 1992, the intercept, gender, both negative life event atdis (NLE1, NLE2), nega-
tive economical events experience (NEE), one of the cutbankcators (cutl), one of the response
indicators (resp2), one of the time indicators (time2) draihteraction between gender and second
response indicator (gender * resp2) are significant. THenagt of the intercept3 = 0.96) indi-
cates high probability of distress for 19901992, which tend to be higher compared to baseline,
smceﬁ0 > Bo. Females were more likely to report distress compared t@&@mde, = 0.18).
Furthermore, they were more likely to report depress,ﬁgg,((e,*respz = 0.07) compared to reporting
anxiety or hostility. Note that gender is insignificant aB29 This finding was also reported in Ge
et al. (2001, cited in Ik, 2008) and Ik (2008). Experiengimany negative life events and any
family-level negative economical events were associaigtldistress gy g1 = 0.14, Bniez2 = 0.38
andByee = 0.08). Reporting depression was more likely compared to tegpanxiety or hostility
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Table 5: Results for > 1990. Hg : Anostility = 1 andHo : Agepression = 1; other parameters are tested
for 0.

Model 1 Model 2
Parameter Est. SE z P Est. SE Z P
Bo 0.96 0.05 20.77 0.00 096 0.05 19.49 0.00
Boender 0.18 0.03 5.87 0.00 0.18 0.03 5.87 0.00
BNLEL 0.14 0.04 3.09 0.00 0.14 0.05 3.05 0.00
BnLE2 0.38 0.05 7.95 0.00 0.38 0.05 7.90 0.00
Bnee 0.08 0.03 3.08 0.00 0.08 0.03 3.03 0.00
Beutr 0.06 0.03 210 0.04 0.07 0.03 220 0.03
Boutz 0.02 0.03 0.72 0.47 0.02 0.03 0.73 047
Brespt 0.01 0.04 0.28 0.78 0.01 0.04 0.13 0.90
Brespe 0.22 0.04 521 0.00 0.22 0.05 4.66 0.00
Brimel -0.07 0.04 -1.75 0.08 -0.08 0.05 -1.75 0.08
Btime2 -0.09 0.05 -1.96 0.05 -0.09 0.05 -1.88 0.06
Bgendersrespl -0.01 0.03 -0.18 0.86 -0.01 0.03 -0.20 0.84
Bgendersresp2 0.07 0.04 2.08 0.04 0.07 0.04 207 0.04
PBrespltimel -0.002 0.03 -0.07 0.95 -0.02 0.04 -0.42 0.68
Presplstime2 0.004 0.04 0.10 0.92 0.003 0.04 0.07 094
Brespostimel -0.01 0.04 -0.36 0.72 -0.01 0.04 -0.31 0.75
Brespestime2 0.05 0.04 115 0.25 0.05 0.04 103 0.30
@211 0.76 0.11 6.62 0.00 0.75 0.17 450 0.0
@221 0.06 0.13 043 0.67
@31 0.11 0.16 0.70 0.48
@311 0.87 0.10 9.11 0.00 0.86 0.13 6.58 0.00
@321 0.08 0.11 0.74 0.46
331 0.07 0.14 048 0.63
@a11 090 0.10 9.53 0.00 0.86 0.12 7.03 0.00
@21 -0.04 0.12 -0.34 0.74
@431 0.12 0.13 0.93 0.35
Anostility 1.03 0.37 0.60 0.94 099 0.36 -0.02 0.99
Adepression 1.21 049 057 0.68 1.18 049 0.36 0.72
log(o) -0.48 0.25 -0.47 0.26
log(cs) -0.62 0.25 -0.59 0.26
log(oa) -0.62 0.26 -0.59 0.26
Max. loglik -1026.00 -1023.71

(ﬁrespz = 0.22). On the other hand, reporting anxiety or hostility weoé significantly diferent
(p-value ofBresp1 = 0.78). Whilst the distress levels were lower at 1992 comparetS&0 and
1991 Biimez = —0.09), the distress levels at 1990 and 1991 were not significdifferent from each
other (p-value oBesp1 = 0.08). The decrease in the distress probabilities at 1992 wiadifierent
for depression, anxiety and hostility; respective p-valie# Sresp1«imez @aNdBresp2:time2 are 0.92 and
0.25.

The marginal mean parameter estimates basegratit link can be interpreted in terms of
odds-ratios, using the JKB constant; for details see Inictdn. For instance, young people who
experienced many negative life events were approximat@§ & exp(1700437x ((-1 = 0.14 +
1x0.38)— (1% 0.14 - 1% 0.38)))) times more likely to be distressed compared to thage some
negative life events, and individuals in the latter groupenk60 € exp(1700437« ((1+0.14— 1 «
0.38)—(—1x0.14—-1+0.38)))) times more likely to be distressed compared to thademws negative
life events.

The transition parameter estimates are positive and signifi @;; = 0.76, @311 = 0.87,
@411 = 0.90 with p-values< 1x 10710, These indicate that that young people who were distregsed a
year before were more likely to be distressed at current yesindicated by the baseline model, the
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pairwise correlations between anxiety, hostility and éspion were not significantly fiierent; cor-
responding p-values were 0.94 and 0.68 for hostility andeksion, respectively. The standard de-
viation estimates of the randonffects distributions were 0.62 (exp(-0.48)), 0.54 € exp(-0.62))
and 0.54 £ exp(0.62)) at 1990, 1991 and 1992, respectively. Respective atdrefrors were
0.16, 0.14 and 0.14, and all of these parameters were sigmifjp-values< 0.0001). These results
indicate that the individual variations decreased thraimgk (recall thatr1=0.66) and close to each
other at 1991 and 1992.

6.4 Subject-specific results

We calculate probabilities of reporting anxiety, hosfiéind depression for each individual at each
year. We also calculate the marginal probabilities for carigon. These probabilities are plotted
in Figure 1; only the results for depression are shown heeetdyage limits, others can be found
in the online supplementary material. We label observedegsby 0 and 1 according to absence
and presence depression, respectively. Marginal pratebitange in a narrower interval compared
to conditional probabilities. For instance, whilst the garfor the marginal probabilities of being

depressed at the period of 1990 - 1992 was (0.576, 0.971ast(118, 0.999) for the conditional

probabilities. This indicates that marginal probabititizre high even for young people who did
not report depression. On the other hand, conditional fniébas leads to correct decisions. For

instance, in Figure 1, the 0’s were associated with loweditmmal probabilities. The associated

box-plots reflect the location and scale of the marginal amlitional probabilities. Whereas the

the conditional probabilities have a spread distributigtmwany outliers, the marginal probabilities

have a stacked and narrow distribution.

Probabilities of a young person with #223 are presented in Table 6. This person was a female,
with some negative life event experiences, no negative@uaal event experiences and cutbacks
between 1 and 5, except in 1992 at which her family did not egpee any cutbacks. She did not
report distress at all. Predicted valuezgf; is —2.45. This indicates that she was less likely to report
distress compared to an average person,z.es 0. For this person, the conditional probabilities
lead to correct inferences compared to the marginal prétebi For instance, at 1992, whereas the
marginal probability of being anxious is 0.64, the conditibprobability being anxious is 0.08. We
also calculate conditional probabilities assuming thatgpkrson is an average person, i.e. setting
Z3 = 0. Related results are given under Condition@hese probabilities are still subject, time and
response specific, sin(zxi;tj holds subject, time and response specific information. f&tance, at
1992, probability of being anxious based on this method46.0.
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Figure 1: Scatter and box plots of marginal vs. conditiomabgbilities for depression at 1989 (left panel) and 199021(right panel).



Table 6: Marginal and conditional probabilities for the pwoguerson with ID= 223.

Time Response Gender NLE NEE  Cutbacks Observed Marginal diGmmal Conditional
Anxiety Female Some No Betw.1&5 Absence 0.82 0.30 0.87
1989 Hostility Female Some No Betw.1&5 Absence 0.80 0.23 50.8
Depression Female Some No Betw.1&5 Absence 0.91 0.47 0.95
Anxiety Female Some No Betw.1&5 Absence 0.78 0.09 0.56
1990 Hostility Female Some No Betw.1&5 Absence 0.78 0.09 80.5
Depression Female Some No Betw.1&5 Absence 0.90 0.14 0.77
Anxiety Female Some No Betw.1&5 Absence 0.74 0.14 0.59
1991 Hostility Female Some No Betw.1&5 Absence 0.74 0.13 90.5
Depression Female Some No Betw.1&5 Absence 0.86 0.22 0.79
Anxiety Female Some No None Absence 0.64 0.08 0.46
1992 Hostility Female Some No None Absence 0.65 0.08 0.47
Depression Female Some No None Absence 0.85 0.19 0.77

Table 7: Frequency table of the stayers. “All” stands forghbjects who reported the same answer
for all the distress variables.

Absence (0) Presence (1
Anxiety 15(3.3%) 215 (47.7%)
Hostility 9 (2%) 221 (49%)
Depression 2(0.4%) 288 (63.9%
All 2 (0.4%) 134 (29.7%)

6.5 Diagnostics

Longitudinal binary data sets almost surely include stayee. subjects who constantly report ab-
sence (0) or presence (1) of a binary variable at all timetppfor which the subject with 1B223

is an example. The counts and percentages of the stayers IYfP data set are given in Table

7. For instance, 29.7% of the subjects reported 1 for all hineet distress variables at all the time
points. Marginal and conditional anxiety probabilitiestbé stayers in terms all the distress vari-
ables are summarised in Figure 2. Other results can be fdvendriline supplementary material.

Whilst the gray lines represent the subjects who always te@dr, the black lines represent the ones
who always reported 0. Conditional probabilities are sesfié at correctly assigning the success
probabilities for these subjects; higher probabilitiessobjects reporting 1 and lower probabilities

for those who reported 0. On the other hand, marginal prdibabiare not able to distinguish these

subjects.

We also calculate accuracy measures to summarise the feegiobabilities. We specifically
use expected proportion of correct prediction (Herron, 9 %d area under the receiver operating
characteristics curve (AUROC). Results (hot shown herejvstat conditional probabilities out-
perform the marginal probabilities. Thisfiirence is apparent especially in terms of AUROC. For
instance, while the AUROC value for depression at 1990-1992684 for marginal probabilities, it
is 0.864 for the conditional probabilities.

7 Discussion and conclusion
In this paper, we have proposed a marginalised model foysisalf multivariate longitudinal binary

data. It is an extension of the model proposed by Ik and Dagd07). These authors ubmit
link, and estimate the parameters using BM, specificallykdaiChain Monte Carlo methods. Un-
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Figure 2: Spagetti plots of marginal (left panel) and candl (right panel) anxiety probabilities
for stayers in terms of all the distress variables. While djrzss represent subjects who reported 1,
the black lines represent subjects who reported 0.

automated Fortran codes are available from the personaliteet Dr. Ilk. However, their procedure
is computationally cumbersome and requires expertise inaBiifl Fortran. These aspects prohibit
the routine use of the model. In this study, we replagg link by probit, and use ML for parameter
estimation.probit link enables us explicitly linking the second and third llevef the model, which

is not possible with théogit link. On the other hand, parameter estimation with ML taless time
compared to BM. We propose the use of implicit function tleeoto solve the marginal constraint
equations directly. To the best of our knowledge, this aaion is proposed for the first time here
for marginalised models. We have prepared the publiclylavi R packag@nmtrem to fit the
proposed model. Currently, the package provides a fundtiofitting the first-order model. The
function considers both parameter estimation and randteuts prediction. It has been tested under
different conditions. For the details and usage, we refer tlieredo the package manual.

We have conducted a simulation study to investigate thegutigs of the estimator underftér-
ent scenarios. Results are satisfactory in terms of unthieess, &iciency and coverage. We have
illustrated the first-order model with an application to tN&P data set. Both population-averaged
and subject-specific inferences have been illustrated.fi@dings on the IYFP data analysis coin-
cide with the findings of Ik (2008). As a separate note, thEPYdata set is available upon request
from the authors.

A natural extension of our work here would be fitting highetdler models. The variances of
random éects could be modified by a subset of covariates, i.e.dlQgé Mi;; wr whereMy; is a
set covariates an@; are the associated parameters. Also, the rand®eats coéficients might be
assumed to have a multivariate normal distribution, e ~ N(O, D) whereD is aT x T matrix.
However, all of these extensions require intensive newadtoins and implementations. Therefore,
we leave them as future work.
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Appendices

A. Linking second and third levels of thet > 2 model

Whilst linking second and third levels of the> 2 model, we claim the following

A
ot + At =of i

wherebi; ~ N(0,0?) andby = zoy, z ~ N(0,1). The related proof, which is modified from
Griswold (2005), is given below.
Let W Lz, whereW, ~ N(O, 1), then,

Wi/(2jot) ~ N(O, (4jo1)72)
Wi/(2j0) ” a)~ N(0, 1+ (2jo1)7?)
\Ni//ljo't_zi NN O 1

V1+(joy)2 0.1)

and

f(l)(Alt] + A;bi) f(bir)dby; = f (D(An] + 2jzioy)¢(z)dz

o

=f P(Wi < Ay + 2jz00)¢(z)dz

o

o (WH/Qo) —z Af/(Ajo) ]
= )dz
L, P[\/l+(/110't)2 S o)

_P(V\/i/(/ljo't)_zi< A/ (o) ]_q)[ A, ]
O \VIF Qo) 2 T VI oo 2) VI (o2

B.1 ML estimation of 8,
Maximizing the log-likelihood function of the baseline ned_;(6,]y,), with respect t@, yields

dlog (Ly(611y)) ZN: 1 h(Yi1l61)

T 2 o6 @0
where
20 k
h(Yial62) ~ > wq exp| > (Yizjlog (®@(diaje)) + (1 - Yizj)log (1 - @(d.l,q)))] (28)
g=1 j=1
£(Yi1l01)
PO 3" ) i{ 1y, )[ Yo = Ao ]} 29)
00, =1 d = 1 ((D(diqu)) (1— (D(di]_jq))
diqu =41+ /l’sze2°1 (Xiljﬂ*) + /l]-‘ecl ‘/E 2. (30)
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Here,log(o1) is equated tar; for simplicity of notation and#, wy) for q = 1,...,20 are Gauss-
Hermite quadrature points and weights, respectively whrehavailable in Abramowitz and Stegun
(1972). The derivatives afi1jq With respect tof; = (8*, 4%, ¢1) with 1* = (43,..., A;) are given
below.

ady
8;:[1 = 1+ /l]fzezcl(xilj)
Ay
a'ﬂ{j‘* = 1+ A7) 20 (XiyB7) + 6% V2z,
i
_6'5” = (L+ 22&2) 22 (Xiy ) + Aj6% V27,
1

B.2 ML estimation of 0,

Similar to the baseline model, maximizing the log-likeliibfunction of thet > 2 model with
respect t@, yields

alog<L2(az|y2)> w1 n(Yile,)
h Z Z; h(Yil6;) 06, 1)
where
20 k
h(Yicl62) ~ ZWQ exp Z Yitjlog cD(dlth»"'(l YItJ)|09(1 d)(d,“q)»} (32)
g=1 j=1
£(Yitl62)
ah(Yit|02) i {,(thz) i |th t )( Yitj - q)(ditjq) ]] (33)
0, o —~ a (@(chja)) (1~ @(cio)) )] |
ditjq = ,/1+ /l]?ezct (Aitj + at,lzitjyit,lj) + /ljec‘ \/izq (34)

Here,c; = log(o) fort > 2, and gq, wy) for g = 1,..., 20 are Gauss-Hermite quadrature points and
weights. Also note that explicit solution @f;; is given in (13). The derivatives af;jq with respect
to 0 = (B, ai1, 4, €) with A = (12, ..., A) andc = (cy, ..., Cr) are given below.

Odiy
a;q = ﬂ1+ /lj2e2°t(Anj)
Oditi
ﬁ =41+ ;%€ (Bigj + Zitj1Yie-15)

adiy;
a,?q = (1+2;26) 72 e (—(Aitjﬁo + Bijy10) + A + a1 (Bigj + Zitj,1Yit_1j)) £ &V,
J
adiy;
8g:q = (14 126%) 12 2¢% (—(Anjﬂo + Bitja10) + AigjB + @1 (Bitj + Zitj,lyn—lj)) + 6% V2z,
where
9 oF
A = - Boeotd g P Boondg
Fron OF
I8 | (By,a110.A0i0) It | By, 10.A1i0)
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