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ABSTRACT 

 

MATHEMATICAL MODELING OF A SMALL-SCALE HELICOPTER AND 

MRAC DESIGN WITH TIME BASED UNCERTAINTY 

PARAMETRIZATIONS 

 

Gürler, Mustafa 

Master of Science, Aerospace Engineering 

Supervisor: Assist. Prof. Dr. Ali Türker Kutay 

 

November 2018, 137 pages 

 

In this thesis, nonlinear mathematical modeling of a small scale model helicopter is 

presented. In addition, problems in uncertainty parametrization component of Model 

Reference Adaptive Control (MRAC) is investigated and external uncertainty on the 

system is parametrized using universal approximators such as Fourier Series and 

Chebyshev Polynomials in time dependent form. Advantages of using times based 

universal approximators in MRAC design of MIMO systems are presented. 

Proposed controller is tested on the model helicopter using derived mathematical 

model. Considering special capabilities of the model helicopters, hovering is the most 

problematic case in terms of stability issues and pilot workload. Therefore, 

simulations and case studies are performed at hover condition. Moreover, procedure 

of the MRAC design for a multi input multi output (MIMO) system is given and 

controller performance is evaluated with and without external disturbance. Adaptive 

law design and uncertainty parametrization method are the key parts of MRAC design. 

While the use of e-modification and projection operator in adaptive law improves the 

controller performance and provide adaptive weights boundedness, proper uncertainty 

parametrization method selection is important for estimating true adaptive weights.. 
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ÖZ 

 

KÜÇÜK BOYUTLU HELİKOPTERLER İÇİN MATEMATİK MODEL 

GELİŞTİRME VE ZAMANA BAĞLI BELİRSİZLİK PARAMETRİZE ETME 

YÖNTEMİ İLE MRAC TASARIMI  

 

Gürler, Mustafa 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği 

Tez Danışmanı: Dr. Öğr. Üyesi Ali Türker Kutay 

 

Kasım 2018, 137 sayfa 

 

Bu tezde, küçük ölçekli bir model helikopterin doğrusal olmayan matematiksel 

modellemesi sunulmuştur. Buna ek olarak, Model Referans Adaptif Kontrol’deki 

(MRAC) belirsizlik parametrizasyon bileşenindeki sorunlar araştırılmıştır ve dış 

kaynaklı belirsizlikler Fourier Serileri ve Chebyshev Polinomları gibi evrensel 

kestirimciler kullanılarak zamana bağlı formda parametrize edilmiştir. Zamana bağlı 

evrensel kestirimcilerin çok girişli ve çok çıkışlı (MIMO) sistemler için MRAC 

tasarımında sağladığı avantajlar sunulmuştur. 

Önerilen kontrolcü, türetilmiş matematiksel modeli kullanarak model helikopter 

üzerinde test edilmiştir. Model helikopterlerin özel kabiliyetleri düşünüldüğünde, 

havada asılı kalma koşulu kararlılık ve pilot iş yükü açısından en problemli durumdur. 

Bu nedenle, simülasyon ve yapılan analiz çalışmaları havada asılı kalma durumunda 

gerçekleştirilmiştir. Ayrıca, MIMO sistemler için MRAC tasarım prosedürü 

anlatılmıştır ve kontrolcü performansı dış bozucular mevcutken ve mevcut değilken 

değerlendirilmiştir. Adaptif kontrol yasası tasarımı ve belirsizlik parametrizasyon 

yöntemi MRAC tasarımın önemli parçalarıdır. Adaptif kontrol yasasında kullanılan e-

modifikasyon ve projeksiyon operatörü kontrolcü performansını geliştirip adaptif 



 

 

 

viii 

 

ağırlıkları kısıtlarken, doğru adaptif ağırlıkları tahmin etmek için uygun belirsizlik 

parametrizasyon yöntemi seçimi önemlidir. 

Anahtar Kelimeler: Helikopter Dinamiği, Helikopter Modelleme, Model Referans 

Adaptif Kontrol, Belirsizlik Paremetrize Etme, Fourier Serileri, Chebyshev 

Polinomları 
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CHAPTER 1

INTRODUCTION

Helicopters are rotary wing aircrafts with different unique qualities that make them

special aerial vehicles. The main advantage of rotary wing aircrafts is to provide

lift force without the need of forward flight. This lift force ensure the helicopter

the ability of hover and vertical takeoff/landing which fixed wing aircrafts could not

perform. Due to these abilities, helicopters are preferred for low speed tasks such as

search and rescue, firefighting and transportation applications. Rather than full sized

helicopters, unmanned small scale helicopters are widely used for performing these

special tasks and their popularity have also been increasing as a new field of interest

in literature for the last three decades [1].

Since rotary wing aircraft dynamics is highly nonlinear and coupled, piloting is not an

easy task especially under some unstable flight conditions. Two basic flight conditions

exist for helicopters; hovering and forward flight. Hovering is the most challenging

case for a helicopter and pilot workload is high relative to forward flight condition. A

great number of studies have been done by designing different types of controller in

order to facilitate pilot tasks in hovering [46, 26, 24].

Since the development and production of the first helicopter, control systems have

become compulsory part of the design. Most of the control systems lean on mathe-

matical model of the systems and physical relations. Yet, in real world applications,

perfect models representing the real system exactly do not exist and all physical sys-

tems may not be modeled easily. Moreover, in aerospace applications, describing

system dynamics for all flight regime with one model is not possible and generally

expose a nonlinear and coupled mathematical model. Since plant dynamics is nonlin-

ear, control system needs to be nonlinear and robust to uncertainties. Robust control is
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one of the most used approach for systems with uncertainties. In this approach, worst

case is considered and excessive inputs may occur in control process. In other words,

robust controllers are conservative by their nature and they may result in performance

degrade. However, adaptive controllers try to cancel out uncertainties online and they

generate required control input to overcome undesired effects on the system. Adap-

tive controllers can be classified into two main groups; direct and indirect. Direct

adaptive controllers try to adapt controller variables without trying to estimate un-

known parameters of the plant. Unlike direct adaptive controllers, indirect ones try to

estimate unknown system parameters to use them in estimating controller variables.

While indirect adaptive controllers provide long term learning, short term learning

exists and controller response is fast in direct adaptive controllers. In other words,

direct adaptive controllers focus on suppressing tracking error rather than estimating

uncertainty itself.

Model Reference Adaptive Controllers (MRAC) are the most commonly used direct

adaptive controllers in the latest years. Numerous subjects have been studied with

MRAC such as aerospace vehicles, automobiles, medical processes and robotics. The

goal of MRAC is to generate adaptive control law such that plant states track the

predefined reference model. In order to achieve this, MRAC requires three major

elements; reference model, uncertainty parametrization and weight update law. These

three elements affect the controller tracking performance and it will be focused on

uncertainty parametrization methods particularly in this thesis.

1.1 Literature Search

Unmanned helicopters are mostly used in surveillance and transportation applications

in past decades. High lift-to-weight ratios, capability of aerobatic maneuvers and ease

of piloting make such vehicles special relative to full-sized helicopters. These speci-

fications result in high angular rates and fast dynamics to perform special tasks. The

fastest and the most dominant motion for a miniature helicopter is flapping motion

and most of the moments are produced by the main rotor around the main rotor hub.

This relieves the use of higher fidelity mathematical models including secondary ef-

fects and dynamics generally used for full-sized helicopters in literature [12].
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There are two common techniques for obtaining a helicopter model used in literature.

These are system identification and simple physics and mathematical based modeling

methods. For the modeling of the small scale helicopters, system identification in

frequency domain was used in previously developed models. Mettler, Tischler and

Kanade developed a small scale helicopter model based on frequency domain system

identification and they verified the model with a time domain model [25]. In addition,

Civita, Messner and Kanade presented a novel modeling technique based on global

optimization in frequency domain for Yamaha R-50 type autonomous helicopter [8].

Although these frequency domain based models provide lower order linear models,

accuracy is not good when there is a feedback [21] which is mendatory for helicopters

as their open loop systems are mostly nonlinear. Although accuracy of high frequency

modes is satisfactory, low frequency modes lack of accuracy and need flight test data

which cannot be performed every case.

Other technique is physics and mathematical based modeling in literature [6, 50, 51,

16, 28, 39, 5]. Although a high number of mathematical models are developed in

literature, Chen and Heffley have played a key role behind the main idea of devel-

oping mathematical model for a helicopter. Even though Chen presented flapping

dynamics, non-teetering configurations, pitch-flap couplings and hinge restraints to

the literature, mathematical models were not accurate in all flight regimes due to

model assumptions [6]. Lastly, in 1986, Heffley and Mnich published a paper at

NASA Annes Research Center. They developed a mathematical model based simula-

tion model which can be used in all flight regimes with very low calculations, known

as minimum complexity model [16].

Classical adaptive theory started with gain scheduling methods and self tuning con-

trol techniques. Gain scheduling is the control method where controller gains are

calculated for specific flight conditions and changed as flight regime changes. Exam-

ples of gain scheduling can be found in literature [27, 49, 3, 42]. Another technique

used in classical adaptive control is self tuning control. The main idea of self tuning

control is to identify system parameters using parameter identification and to find a

analytical relation with controller gains. Examples of such controller are presented in

[17, 4, 22, 45].
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Modern adaptive control theory can be classified as direct and indirect adaptive con-

trollers. Indirect adaptive controllers use an estimating algorithm to approximate

the uncertain system parameters and to use these parameters in estimating controller

gains. On the other hand, direct adaptive controllers use instantaneous tracking error

to directly estimate controller gains without requiring to estimate system parameters.

The most known and widely used direct adaptive control technique is Model Ref-

erence Adaptive Control (MRAC). Examples of MRAC can be found in literature

[54, 4, 30, 52].

The main idea of MRAC is to make the plant states track the predefined and desired

reference model. MRAC can be considered as combination of three fundamental

elements. The first one is the reference model. It is the desired response and char-

acteristics that plant should follow. Although reference model can be selected as any

proper desired dynamics, it can also be designed by and control methods by using

open loop plant dynamics. The second element of MRAC is the weight update law.

It is based on Lyapunov Stability and first studies with Lyapunov based MRAC are

done in [44] and [37]. There are some modifications applied on the weight update law

in literature. e-modification [29], σ -modification [15], dead-zone modification [38],

K-modification [18], Kalman-modification [55], Q-modification [53], multi-objective

control modification [31] and optimal control modification [33] are the some modifi-

cations presented in literature. Projection operator is another modification for ensur-

ing adaptive weights in a compact set [20]. The last fundamental element of MRAC

is uncertainty parametrization. The common way to parametrize the uncertainty is to

use basis functions in terms of system states for structured uncertainties. Wing-rock

motion [47] is widely studied subject in this manner and used in control literature

[23, 48]. Another frequently used method to parametrize uncertainty is to use uni-

versal appproximators. Neural networks using Radial Basis Functions or Sigmoidal

Functions are the most general technique used in literature [19, 7]. Fourier Series

Expansion and Chebyshev Polynomials are the other universal approximators used in

MRAC literature [13, 34]. Fourier Series is separated from others in terms of using

time variable in uncertainty parametrization instead of system state variables.
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1.2 Motivation

Motivation of this thesis is to develop a mathematical model for small scaled model

helicopters and gain insight and expertise on one of the most popular modern control

techniques. The goal of choosing a model helicopter as the plant is that helicopters

are highly nonlinear and coupled systems and unmanned rotary wing aircrafts have

become popular in industry especially for surveillance applications.

Nonlinearities and couplings in the nature of helicopter dynamics exposes to design a

nonlinear and MIMO controller. Popularity in the last decades, allowing the use of a

baseline controller with any techniques and simplicity in design put forward MRAC in

other modern nonlinear control techniques. Robustness to external disturbances and

unmodeled dynamics also encourage to use MRAC controller for model helicopters

even if we do not have a high fidelity mathematical model.

1.3 Contributions

Beside developing a mathematical model for a nonlinear helicopter model, another

goal of this thesis is to improve tracking performance of MRAC controllers by focus-

ing uncertainty parametrization component. Apart from Fourier Series, in literature,

all uncertainty parametrization methods are in terms of system states or outputs. Since

defining the uncertainty as state dependent may not be an easy task for nonlinear and

coupled high order MIMO systems, a necessity of time based universal approxima-

tors usage is appeared. Beside Fourier Series Expansion, Chebyshev Polynomials

are defined in terms of time by using trigonometric relations and these time based

uncertainty methods are used in MRAC uncertainty parametrization.

1.4 Thesis Outline

In this thesis, there are five chapters: Introduction, Mathematical Model Derivation,

Model Reference Adaptive Control, Results and Discussion and Conclusion.

The first chapter is introduction to the thesis which contains overview of the helicopter
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dynamics and control. Literature survey in helicopter mathematical modelling and

MRAC theory and applications are presented in this chapter. Lastly, thesis motivation

and structure are given.

Chapter 2 contains derivation of the nonlinear mathematical model. Sub-components

of the helicopter are mathematically modeled separately and combined to create a

built up model. Nonlinear helicopter model is analyzed by trying with a sample

model helicopter parameters. Considering control purpose, trimming, linearization

and model order reductions are also presented in this chapter. Lastly, model verifica-

tion is done by comparing results in literature and sub-component testing.

In Chapter 3, MIMO adaptive control design and modifications are presented. First,

MRAC components are described and all fundamental elements are formulated and

designed. Design part starts with the reference model to be tracked. After decided

reference model, standard MRAC formulation and MIMO design procedures are pre-

sented. In the following parts of this section, MRAC adaptive law modifications and

uncertainty parametrization methods are given.

Chapter 4 presents implementation of the controllers, designed controllers results on

the helicopter model, modifications on the controller design and discussions. First,

linear and nonlinear helicopter model responses with baseline controller are given

and reason for needing an adaptive controller is presented. After, modifications in

MRAC are applied to the controller and their results and effects are discussed con-

sidering tracking performance of reference model. Lastly, robustness of the proposed

controller is evaluated.

The last chapter is conclusion of the thesis. This chapter contains a thesis summary

and future work considerations.
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CHAPTER 2

MATHEMATICAL MODEL DERIVATION

In this chapter, mathematical model derivation procedure for a helicopter is described.

The main aim of the deriving mathematical model is that it is required for designing

control laws. Stepwise refinement is the main method to be considered in model-

ing. In other words, it is started with describing general functions and then they are

broken down into more details until whole system is fully covered. In this manner,

firstly, reference frames used in derivation is determined. Then, starting with rigid

body and main rotor dynamics, all forces and moments acting on the helicopter is

defined. Blade Element Theory [40] is the main method used in main rotor dynam-

ics. Constant inflow is assumed and calculated according to Momentum Theory [16].

Other components are modeled based on basic aerodynamics facts.

After deriving all components, nonlinear simulation model is developed using math-

ematical model. After trimming and linearizing around hover condition, linear and

nonlinear models are ready for control design and simulation purposes.

2.1 Mathematical Model Overview and Structure

Mathematical model consists of some main blocks which are responsible for different

tasks from each other. These subblocks can be seen in Figure 2.1. This mathematical

model describes the motion from pilot inputs (ulon, ulat , ucoll , uped) to helicopter

attitudes and motions. It has four primary and one auxiliary blocks and detailed

explanations of them are given below:
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• Rotary Wing Dynamics: This block consists of main rotor and stabilizer bar

dynamics. It is responsible for deriving flapping dynamics which is the most

dominant motion for helicopter behaviour. Outputs of Rotary Wing Dynamics

block are used in determining forces and moments generated by the main ro-

tor. This block uses swash plate inputs and helicopter model states to compute

flapping angles (β0, β1s, β1c) and main rotor inflow (Vi).

• Forces and Moments Generation: This block consists of five different sources

which create forces and moments. The first one is Main Rotor Forces and

Moments which calculates main rotor forces and moments at main rotor hub.

The second one is Tail Rotor Forces and Moments. Other force and moments

sources are Horizontal Stabilizer, Vertical Fin and Fuselage Drag. This block

uses flapping angles, swash plate inputs, pedal input (uped), main rotor inflow

(vi) and helicopter model states to calculate all forces and moments generated

on the helicopter.

• Forces and Moments Summation: This block basically transform all gener-

ated forces and moments of subparts of the helicopter to CG position. Then,

it sums all forces and moments in order to use them in Newtonian Mechan-

ics. This block uses main rotor, tail rotor, horizontal stabilizer, vertical fin and

fuselage forces and moments and calculates total force and total moment in BF .

• Rigid Body Dynamics: This block consists of differential equations of six de-

gree of freedom dynamics. It uses total force and total moments at CG position

and calculates helicopter attitudes, translational velocities and rotational veloc-

ities in BF .

• Atmosphere Model: This block basically uses American National Standard

Guide to Reference and Standard Atmosphere Models [2] to calculate density

of the air as the altitude changes in flight.

• Velocity and Position Transformation to EF: This block transforms body

velocities and positions to EF which can be used for earth velocity trim and

navigation purposes for future works.
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Figure 2.1: MATLAB-Simulink Blocks of the Mathematical Model

2.1.1 Model Assumptions

There are some assumptions which are considered during modeling of the helicopter

dynamics. These assumptions are mostly because of complexity and nonlinearity of

the helicopter dynamics. In order to work in a simulation environment and solve
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nonlinear differential equations, the following assumptions are made in modeling:

• Wind velocity are assumed as zero.

• Constant inflow speed on the blade is considered.

• Blades are not twisted.

• Earth is assumed flat and stationary.

• Helicopter mass is constant during simulations.

• Moment of inertias are constant.

• Non-diagonal terms in inertia matrix are zero due to plane of symmetry as-

sumption around xB-zB axis.

• The helicopter is considered as a rigid body.

• There is an enough engine power to keep main rotor rotating at a constant an-

gular velocity.

• CG location is constant during simulations.

• Main rotor blades are rotating in clockwise direction.

• Only flapping dynamics are considered in main rotor dynamics. Lead-lag and

feathering dynamics are ignored.

• Ground effect is not considered for low level flights.

2.1.2 Reference Frames

There will be two main and five auxiliary reference frames and notations to describe

the helicopter flight dynamics. The main reference frames are Body Fixed Reference

Frame and Earth Fixed Reference Frame. In order to facilitate helicopter dynamic

modeling, five auxiliary reference frames, Hub Fixed, Tail Rotor Fixed, Flapping

Hinge Fixed, Blade Fixed and Spatial, are defined. The orientation and center points

of each frame are shown in Figure 2.2.
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Figure 2.2: Orientation of Reference Frames [39]

2.1.2.1 Body Fixed Reference Frame

Considering equations of motion, it is necessary that a frame where inertia of the heli-

copter is constant. This frame is called by Body Fixed Reference Frame, abbreviated

by BF and its orientation is defined as a right handed coordinate system. Origin of

BF is fixed at the center of mass of the helicopter and it moves and rotates with the

helicopter. The basis vector of BF is expressed by (xB, yB, zB). The xB axis points out

the nose of the helicopter from CG position. The yB axis points through the right side

seen from the back of the helicopter. The zB axis is perpendicular to both xB and yB

and it points through downward from the bottom of the helicopter.
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2.1.2.2 Earth Fixed Reference Frame

In order to use Newtonian mechanics and develop equations of motions, a non-

rotating and non-accelerating frame is needed. This frame is called as Inertial Co-

ordinate Frame. With the assumptions of that Earth is flat and stationary and the

speed of the helicopter is not high, Earth Fixed Coordinate Frame, abbreviated by

EF , is taken as Inertial Coordinate Frame [43]. Origin of EF is located arbitrarily

on the Earth surface with fixed orientation. The basis vector of EF is expressed by

(xE ,yE ,zE). The xE axis points out North direction. The yE axis points out East direc-

tion. The zE axis is perpendicular to both xE and yE and it points through downward

to the center of the Earth.

2.1.2.3 Hub Fixed Reference Frame

In order to express main rotor forces and moments, Hub Fixed Reference Frame,

abbreviated by HF , is defined as an auxiliary reference frame. Origin of HF is located

at the top of the main rotor hub. The basis vector of HF is expressed by (xH ,yH ,zH).

The orientation of HF is same with BF .

2.1.2.4 Tail Rotor Fixed Reference Frame

In order to express tail rotor forces and moments, Tail Rotor Fixed Reference Frame,

abbreviated by T F , is defined as the second auxiliary reference frame. Origin of T F

is located at the top of the tail rotor hub and its orientation is same with BF . The basis

vector of T F is expressed by (xT ,yT ,zT ).

2.1.2.5 Spatial Reference Frame

The third auxiliary reference frame is Spatial Reference Frame, abbreviated by SF ,

used in transformation of forces and moments from BF to a non-rotating reference

frame. Origin of SF is same with BF , which is center of the mass of the helicopter,

and same orientation with EF . The basis vector of SF is expressed by (xS,yS,zS).
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2.1.2.6 Flapping Hinge Fixed Reference Frame

The forth auxiliary reference frame is Flapping Fixed Reference Frame, abbreviated

by FF , origin of the FF is fixed at the flapping hinge and it rotates with the main

rotor rotation. The basis vector of FF is expressed by (xF ,yF ,zF ).

2.1.2.7 Blade Fixed Reference Frame

The last auxiliary reference frame is Blade Fixed Reference Frame, abbreviated by

BFF , origin of the BFF is fixed at the main rotor blade and it rotates with main rotor

flapping. The basis vector of BFF is expressed by (xBl,yBl,zBl).

2.2 Rigid Body Dynamics

According to Newtonian mechanics, time derivatives of linear and angular momen-

tum are equal to the external forces and moments of the body, respectively [36].

∑~FB =
d
dt
(~LB) =

d
dt
(mh~VB)

∑~τB =
d
dt
(~HB) =

d
dt
(I~ωB)

(2.1)

2.2.1 Euler Angles and Rotation Matrix

In order to define vectors between BF and SF , a transformation matrix should be

defined in terms of attitude of the helicopter. Euler angles Θ =
[

φ

θ
ψ

]T
are used to

represent helicopter attitude. Therefore, SF should be rotated around its z axis by ψ ,

y axis by θ , and x axis by φ respectively to reach the identical coordinate system with

BF .
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(a) z-rotation (b) y-rotation (c) x-rotation

Figure 2.3: Rotations around three axis

Figure 2.3 shows that rotations around z-y-x axis, respectively. As a mathematical

fact, any new reference frame can be obtained by rotating any coordinate frame one-

by-one around each axis.

First rotating SF around its z axis by ψ ,

x1 = xS cosψ + yS sinψ

y1 =−xS sinψ + yS cosψ

z1 = zS

(2.2)

In matrix form, 
x1

y1

z1

=


cosψ sinψ 0

−sinψ cosψ 0

0 0 1




xS

yS

zS

 = Rz(ψ)


xS

yS

zS

 (2.3)

Then, rotating the new coordinates system around y axis by θ ,

x2 = x1 cosθ − z1 sinθ

y2 = y1

z2 = x1 cosθ + z1 cosθ

(2.4)

In matrix form, 
x2

y2

z2

=


cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ




x1

y1

z1

 = Ry(θ)


x1

y1

z1

 (2.5)
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Finally, rotating the last coordinate system around x axis by φ ,

x3 = x2

y3 = y2 cosθ + z2 sinθ

z3 =−y2 sinθ + z2 cosθ

(2.6)

In matrix form, 
x3

y3

z3

=


1 0 0

0 cosφ sinφ

0 −sinφ cosφ




x2

y2

z2

 = Rx(ϕ)


x2

y2

z2

 (2.7)

After the last rotation,
xB

yB

zB

=


x3

y3

z3

= Rx(φ)Ry(θ)Rz(ψ)


xS

yS

zS

 = RSB(Θ)


xS

yS

zS

 (2.8)

where

RSB(θ) =


cosθ cosψ cosθ sinψ −sinθ

sinφ sinθ cosψ− cosφ sinψ sinφ sinθ sinψ + cosφ cosψ sinφ cosθ

cosφ sinθ cosφ + sinφ sinψ cosφ sinθ sinψ− sinφ cosψ cosφ cosθ


(2.9)

Since the transformation matrix is orthogonal, the inverse of it is equals to its trans-

pose, that is:

RBS(θ) =


cosθ cosψ sinφ sinθ cosψ− cosφ sinψ cosφ sinθ cosψ + sinφ sinψ

cosθ sinψ sinφ sinθ sinψ cosφ sinθ sinψ− sinφ cosψ

−sinθ sinφ cosθ cosφ cosθ


(2.10)

2.2.2 Transformation of Reference Frames

In this part, transformation of the reference frames described in Section 2.1.2 between

each other is presented. These transformation matrices will be helpful in mathemati-

cal model derivation.
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2.2.2.1 Transformation of Earth Frame to Body Frame

In Equation 2.9, the relation between SF and BF is shown. Since the orientation of

SF and EF are same as stated in Section 2.1.2.5, transformation matrix in Equation

2.9 can be used for transformation of EF to BF ,

REB(Θ) =


cosθ cosψ cosθ sinψ −sinθ

sinφ sinθ cosψ− cosφ sinψ sinφ sinθ sinψ + cosφ cosψ sinφ cosθ

cosφ sinθ cosφ + sinφ sinψ cosφ sinθ sinψ− sinφ cosψ cosφ cosθ


(2.11)

2.2.2.2 Transformation from Body Frame to Hub Frame

As described in Section 2.1.2.3, hub axis is fixed and has exactly the same orientation

with BF . In matrix form,
xH

yH

zH

= RBH(Θ)


xB

yB

zB

=


1 0 0

0 1 0

0 0 1




xB

yB

zB

 (2.12)

2.2.2.3 Transformation from Hub Frame to Flapping Hinge Frame

FF is obtained by rotating HF about its z axis amount of ψ degrees.
xF

yF

zF

= Rz(ψ)


xH

yH

zH



=


cosψ sinψ 0

−sinψ cosψ 0

0 0 1




xH

yH

zH



= RHF(Θ)


xH

yH

zH



(2.13)
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2.2.2.4 Transformation from Flapping Hinge Frame to Blade Fixed Frame

BFF is obtained by rotating FF about its y axis amount of β degrees.


xBl

yBl

zBl

= Ry(β )


xF

yF

zF



=


cosβ 0 −sinβ

0 1 0

sinβ 0 cosβ




xF

yF

zF



= RFBl(β )


xF

yF

zF



(2.14)

2.2.3 Euler Rates

There is another transformation matrix which will be required in defining the relation

of angular velocities with Euler angle rates. It is important to notice that while Euler

angle rates

(
Θ̇ =

[
φ̇

θ̇
ψ̇

]T
)

are the rates of change of the Euler angles with respect to

SF , angular velocity
(
~ωB =

[ p
q
r

]T
)

is the helicopter body angular velocity vector.

The equation expressing the relation between θ̇ and ω is written by kinematics [43],

~ωB =


p

q

r

=


φ̇

0

0

+Rx(φ)


0

θ̇

0

+Rx(φ)Ry(θ)


0

0

ψ̇

=CBS(Θ)Θ̇ (2.15)

where,

CBS(Θ) =


1 0 −sinθ

0 cosφ sinφ .cosθ

0 −sinφ cosφ .cosθ

 (2.16)
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By inverting the transformation matrix, Euler rates are defined in terms of body an-

gular velocities:
Θ̇ =C−1

BS (Θ)~ωB
φ̇

θ̇

ψ̇

=CSB(Θ)


p

q

r

 (2.17)

where,

CSB(Θ) =C−1
BS (Θ) =

1
cosθ


cosθ sinφ .sinθ cosφ .sinθ

0 cosφ .cosθ −sinφ .cosθ

0 sinφ cosφ

 (2.18)

Finally, rotation matrix REB(Θ) in Equation 2.11 will be used for mapping Earth

position vector and rotation matrix CSB(Θ) in Equation 2.18 will be used for mapping

angular velocities from BF to SF .

2.2.4 Translational Accelerations

Using Equation 2.1 and assuming helicopter mass is constant with time [36],

∑~FB =
d
dt
(mh~V I

B) = mh
d
dt
~V I

B (2.19)

where ∑~FB = [~Fx ~Fy ~Fz]
T are total external forces of three axis generated by the

helicopter components. mh is the mass of the helicopter. ~VB = [~uB ~vB ~wB]
T are

translational body velocities of the three axis with respect to inertial frame. This

velocity is written as,

~V I
B =~VB +~ω I

B×~rI
B (2.20)

where ~ω I
B = [p q r]T are angular velocities of three axis and ~rI

B is the helicopter

body position vector. Taking derivative of Equation 2.20,

d
dt
~V I

B = ~̇VB +~ω I
B× ~V I

B (2.21)

Then,

∑~FB =
d
dt
(mh~V I

B) = mh

(
~̇VB +~ω I

B× ~V I
B

)
⇒ ~̇VB =

∑~FB

mh
−ω

I
B×V I

B

(2.22)
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After writing cross product in matrix notation,

~̇VB =


~̇uB

~̇vB

~̇wB

=
∑ ~FB

mh
−


0 −r q

r 0 −p

−q p 0



~uB

~vB

~wB

 (2.23)

Finally, translational accelerations are derived as,

~̇uB =
∑~Fx

mh
+~vBr−~wBq

~̇vB =
∑~Fy

mh
−~uBr+~wB p

~̇wB =
∑~Fz

mh
+~uBq−~vB p

(2.24)

2.2.5 Rotational Accelerations

Using Equation 2.1 [36],

∑ ~MB =
d
dt

~HI
B =

d
dt

~HB
B +ω

I
B× ~HI

B (2.25)

Where ∑ ~MB = [~Mx ~My ~Mz]
T are total external moments of three axis generated by

the helicopter components and ~HB is the angular momentum vector about center of

gravity position of the helicopter and it is defined as,

~HB = I~ωB (2.26)

Where I is the inertia matrix of the helicopter,

I =


Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

 (2.27)

For a symmetric aircraft, xz plane is assumed as plane of symmetry and inertia matrix

can be taken as,

I =


Ixx 0 −Ixz

0 Iyy 0

−Izx 0 Izz

 (2.28)

Taking derivative of angular momentum equation in Equation 2.25 with respect to

BF,
d
dt

~HB
B =

d
dt

I.~ωB
B + I.

d
dt
~ωB

B (2.29)
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Since change in inertia vector with time is assumed as zero,

d
dt

I = 0

d
dt

~HB
B = I.~̇ωB

(2.30)

⇒∑ ~MB =


Ixx 0 −Ixz

0 Iyy 0

−Izx 0 Izz




ṗ

q̇

ṙ

+


p

q

r

×


Ixx 0 −Ixz

0 Iyy 0

−Izx 0 Izz




p

q

r



=


~Mx

~My

~Mz

=


Ixx ṗ− Ixzṙ−q(Izx p− Izzr)− Iyyqr

Iyyq̇+ p(lzx p− Izzr)+ r(Ixx p− Ixzr)

Izzṙ− Izx ṗ−q(Ixx p− Ixzr)+ Iyy pq


(2.31)

Then, the rotational accelerations are derived as,

ṗ =
~Mx + Ixzṙ+q(Izx p− Izzr)+ Iyyqr

Ixx

q̇ =
~My− p(Izx p− Izzr)− r(Ixx p− Ixxr)

Iyy

ṙ =
~Mz + Izx ṗ+q(Ixx p− Ixzr)− Iyy pq

Izz

(2.32)

Finally, all rigid body dynamics equations are obtained. There are nine unknowns

and six differential equations described in Equation 2.24 and Equation 2.32. In or-

der to solve these nonlinear equations, three more equations are essential and they

come from kinematic relation in Equation 2.17. After deriving all equations, ∑~FB =

[~Fx ~Fy ~Fz]
T and ∑ ~MB = [~Mx ~My ~Mz]

T are needed to be calculated to solve rigid

body dynamics equations.

2.3 Rotary Wing Dynamics

In this section, main rotor and stabilizer bar dynamics are described. As mentioned

in model assumptions in Section 2.1.1, only flapping motion is considered in deriving

equations. Flapping of the rotary wing is the most important dynamics for a helicopter

[6]. It is primary source of lift force and it does not only keep the helicopter in air, but

also it decides direction of the helicopter. Since it is a very complex physical structure,

most of the model assumptions are made in defining and deriving this dynamics.
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2.3.1 Main Rotor Flapping Dynamics

In order to describe main rotor flapping dynamics, it is necessary to determine the

source of this dynamics. Therefore, pitch angle of each blade is defined. Pitch angle

of blades are controlled by swash plate with harmonically varying angles. Only first

order harmonics are considered [41]. That is,

θbl = θcoll +θlat cosψ−θlon sinψ +θtw
e+ r

R
−Ksβbl (2.33)

where,

θbl is the pitch angle of the blade,

θcol is the collective pitch angle,

θlon is the longitudinal pitch angle,

θlat is the lateral pitch angle,

ψ is the angular position of the blade,

θtw is the blade twist angle,

e is the distance from flapping hinge to the main rotor hub,

r is the distance from flapping hinge to a blade element,

R is the main rotor radius,

Ks is the cross-coupling between the flapping angle and the pitch angle,

βbl is the flapping angle of the main rotor blade.

In Equation 2.33, it is seen that θcoll are not multiplied with any term related with

the blade position. This means that collective pitch angle of blades are equal at any

azimuth angle ψ . Moreover, according to model assumptions in Section 2.1.1, blade

twist angle and flapping-pitch angle cross coupling are zero. Then,

θbl = θcoll +θlat cosψ−θlon sinψ (2.34)

After defining the source of the flapping dynamics, the resulting motion is need to be

defined. Since pitch angle of the blades are defined as a harmonic function, resulting

flapping motion are also be defined harmonically. Considering ideal phase shift (90◦),

flapping motion is defined as [36],

βbl = β0−β1c cosψ +β1s sinψ (2.35)
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In order to determine signs in Equation 2.35, corresponding flapping motion is con-

sidered after 90◦ phase shift from the swash plate input is given. The main principle

is that maximum flapping occurs 90◦ after maximum pitch is given.

After determining inputs and results of flapping motion, aerodynamic forces and mo-

ments on a blade are considered in order to derive flapping dynamics equations. For

this purpose, Blade Element Method is widely used in literature [40]. This method

basically presents examining forces and moments on a small element of a blade, then

calculating total forces and moments by integration along blade length.

Figure 2.4: Cross section of the helicopter main rotor blades

In Figure 2.4, a small blade element dr is shown. By using basic aerodynamics [36],

corresponding lift force dL is calculated. e is the hinge offset in the same unit with

Rmr and calculated by multiplying hinge offset percent with main rotor radius length.

First step of blade element method is to calculate lift and drag force on a small el-

ement. Figure 2.5 illustrates the blade cross section and corresponding dL and dD

forces acting on the blade. Resulting air velocity Ub is perpendicular to dL and is

parallel to dD.
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Figure 2.5: Cross section of the helicopter main rotor blades

The increment of lift force dL on a small element dr is described by basic aerody-

namics [36],

dL =
ρ

2
U2

b CLcdr (2.36)

where,

ρ is the density of the air

Ub is the air velocity

CL is the blade lift coefficient

c is the cord length of the blade

Blade lift coefficient CL can be assumed as it has a constant lift curve slope CLα
, then

Equation 2.36 becomes,

dL =
ρ

2
U2

b CLα
αcdr (2.37)

Considering local inflow angle αi very small, it is assumed that |Ut |>> |Up|.

α = θbl−αi

= θbl− tan−1(
Up

Ut
)

≈ θbl−
Up

Ut

(2.38)

23



Ub =
√

U2
t +U2

p

≈Ut

(2.39)

Then, lift force acting on a small blade element dL is described,

dL =
ρ

2
U2

t CLα
(θbl−

Up

Ut
)cdr (2.40)

Drag force acting on a small element dD is derived by same procedure,

dD =
ρ

2
U2

t Cdcdr (2.41)

where Cd is the blade drag coefficient.

In Equations 2.40 and 2.41, there are two unknowns which need to be defined. These

are horizontal and vertical blade velocities. Primary source of horizontal blade veloc-

ity is the main rotor rotation speed. Other source that contributes to Ut is translational

velocities of the helicopter. On the other hand, primary source of vertical blade ve-

locity is main rotor inflow. Other contributors are helicopter translational velocities,

helicopter rotational velocities and main rotor flapping rates. Considering all contri-

butions to horizontal and vertical velocity of the blade, these velocities can be defined

[5].

Ut = Ωmr(e+ r cosβ )+uB sinψ− vB cosψ

Up =−wB cosβ +usinβ cosψ + vsinβ sinψ + vi cosβ + β̇ r

+(e+ r cosβ )(psinψ−qcosψ)

(2.42)

Assuming small angle assumption to flapping angle β (sinβ ≈ β and cosβ ≈ 1),

Equation 2.42 becomes,

Ut = Ωmr(e+ r)+uB sinψ− vB cosψ

Up =−wB +uβ cosψ + vβ sinψ + vi + β̇ r

+(e+ r)(psinψ−qcosψ)

(2.43)

Now, each unknown term in Equations 2.40 and 2.41 is defined . This means that

forces acting on a blade can be calculated by simple integration over the blade. Mov-

ing on to torques acting on the blades, it can be said that resulting torque needs to be

equal to aerodynamic torque generated dominantly by lift force on the blade for equi-

librium. Resulting torque is defined by Euler equations of rotation which is based on
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total moment of all external forces about a fixed point is equal to time rate of change

in total angular momentum [14].

∑Maero = (~rcgmbl×~ahinge)+ ~̇H0bl +~ωbl× ~H0bl +
~Msp (2.44)

In Equation 2.44, there are some new terms need to be defined,

• ~ωbl: Rotational velocity at blade

• ~ahinge: Translational acceleration at flapping hinge point

• ~Msp is the restraint torque due to spring at flapping hinge.

• ~H0bl : Angular momentum around hinge center

In order to define these unknown terms, transformation matrices are frequently used.

Starting to define angular velocities at BF , HF and FF ,

~ωB =


p

q

r

 (2.45)

~ωH = RBH(Θ)~ωB (2.46)

~ωF = RHF(Θ)~ωH (2.47)

~ωbl = RFBl(β )~ωF +


0

β̇

0

+RFBl(β )


0

0

Ωmr

 (2.48)

Note that main rotor rotation
([ 0

0
Ωmr

])
is defined in FF and flapping rate

([
0
β̇

0

])
is

defined in BFF .

Next, translational acceleration of the hinge point is defined with general planar mo-

tion [14],

~aBlhinge = RFBl

[
~aFhinge + ~̇ωF ×~e+~ωF × (~ωF ×~e)

]
(2.49)
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where ~aFhinge = 0 because it is the translational acceleration of flapping hinge fixed

reference frame relative to itself. ~e =
[ emr

0
0

]
is the hinge offset vector fixed at flapping

hinge in FF .

Next, ~MBlsp =

[
0

Ksβ
0

]
is the restraint torque and its source is the virtual spring at the

flapping hinge. It always generates torque against flapping motion.

The last term needs to be defined ~H0bl = I~ωbl is the angular momentum of the blade

with respect to flapping hinge point. Therefore, ~̇H0bl = I~̇ωbl .

After determining all unknown terms in total moment equation in Equation 2.44, total

lift force and aerodynamics moment can be calculated by using lift force acting on a

small blade element [36],

∑Maero =
∫

rdL =
∫ Rmr−e

0

ρ

2
U2

t CLα
(θbl−

Up

Ut
)crdr (2.50)

In Equation 2.50, all terms are previously defined. Inserting 2.50 into total moment

equation in Equation 2.44, total flapping dynamics equation is obtained. That is,∫ Rmr−e

0

ρ

2
U2

t CLα
(θbl−

Up

Ut
)crdr−

[
(~rcgmbl×~ahinge)+ ~̇H0bl +~ωbl× ~H0bl +

~Msp

]
= 0

(2.51)

It should be noticed that pitch angle and flapping angle of the blades are defined as a

first order harmonic function. This results in using harmonic balancing [41] to solve

Equation 2.51. In order to do this, all sine, cosine and constant terms are separated

from each other and equated to zero.

Finally second order flapping equations are derived as β̈0, β̈1s and β̈1c. β̈0 is the solu-

tion of constant terms in Equation 2.51. β̈1s is the solution of sine terms in Equation

2.51. Lastly, β̈1c is the solution of cosine terms in Equation 2.51. Implicit solutions

of second order flapping angles equations can be seen in Appendix A.

2.3.2 Main Rotor Inflow

Main rotor inflow is the most important parameter affecting thrust generation by the

main rotor. For the induced velocity calculation, momentum theory with a recur-

sive solution is used and main rotor inflow is assumed constant over blade. Thrust
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generated by the main rotor is described as [16],

Tmr = (wb− vi)
ρΩmrRmrCLα

NcRmr

4
(2.52)

v2
i =

√
(− v̂2

2
)2 +(

Tmr

2ρAmr
)2− v̂2

2
(2.53)

where,

wb = wr +
2
3

ΩmrRmr(θcoll +
3
4

θtw) (2.54)

wr = w+(β1c + is)uB−β1svB (2.55)

v̂2 = u2
B + v2

B +wr(wr−2vi) (2.56)

Amr = πR2
mr (2.57)

where ρ is the air density, Ωmr is the main rotor angular velocity, CLα
is the lift curve

slope, Rmr is the main rotor radius, N is the number of blades, c is the chord length,

wb is the main rotor blade velocity, wr is main rotor disc velocity and and vi is the

induced velocity.

2.3.3 Stabilizer Bar Flapping Dynamics

In order to describe stabilizer bar flapping dynamics, its function and use of pur-

pose are necessary to be defined. Basically, stabilizer bar acts like a rate feedback

controller in pitch and roll axes to decrease bandwidth and weights of cyclic control

inputs. Stabilizer bar does not have a coning angle, it only flaps in lateral and longi-

tudinal directions. Similar procedure with main rotor flapping derivation is applied

for stabilizer bar flapping dynamics. It uses longitudinal and lateral swash plate input

[39],

θsb = θswlat cosψ−θswlonsinψ (2.58)

And stabilizer bar flapping is defines as[39],

βsb =−β1csbcosψ +β1ssbsinψ (2.59)
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Horizontal and vertical velocities on the stabilizer bar paddle and angle between them

is written as[39],

Utsb = Ωmrr+uB sinψ− vB cosψ (2.60)

Upsb =−wB +uBβsb cosψ + vBβsb sinψ + vi + β̇sbr+ r(psinψ−qcosψ) (2.61)

α = θsb− tan−1(
Up

Ut
)

≈ θsb−
Upsb

Utsb

(2.62)

After using the whole procedure and applying harmonic balancing [41], first order

stabilizer bar flapping equations are derived implicitly. β̇1csb and β̇1ssb equations can

be found in Appendix A.

Stabilizer bar flapping and swash plate inputs are mixed and fed to the main rotor.

This mixing relation is the mechanical links connecting swash plate, stabilizer bar

and main rotor. Bell-Hiller gains are used to define this relation [39].

θlat = Kswθswlat +Ksbβ1ssb

θlon = Kswθswlon−Ksbβ1csb

θcoll = θswcoll

(2.63)

2.4 Forces and Moments

In this section, forces and moments acting on the helicopter body are described. Pri-

mary sources of the forces are main rotor and tail rotor. The most important torque

contribution of main rotor is drag torque around zH due to main rotor rotation. The

main role of tail rotor is to create anti-torque to main rotor drag torque. Fuselage,

horizontal tail and vertical fin also generate a force on the helicopter body; however,

these forces are small relative to main rotor and tail rotor. Stabilizer bar is assumed

as it does not create a significant force on the helicopter.
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2.4.1 Forces and Moments Generation

In order to understand helicopter motion, forces and moments generated by the com-

ponents of helicopter model should be derived particularly. These forces can be de-

rived at different reference frames. It will be transformed into BF in Forces and

Moment Summation in Section 2.4.2.

2.4.1.1 Main Rotor Forces and Moments

Main rotor generates forces and moments in three axis in HF . These forces and

moments are Fxmr , Fymr , Fzmr and Mxmr , Mymr and Mzmr . In order to define these forces,

blade element theory is again used. Lift and drag force on the blade are the main

sources of main rotor forces and moments. They can be seen in Figure 2.5. According

to Figure 2.5 and small angle assumption to αi, forces at zero azimuth are defined as

[41],

dFyBl =−dLsinαi−dDcosαi

≈−(dLαi +dD)
(2.64)

dFzBl =−dLcosαi +dDsinαi

≈−dL
(2.65)

dFxBl = dFzBl sinβ

≈−dLβ

(2.66)

⇒ dFBl =


dFxBl

dFyBl

dFzBl

=


−dLβ

−(dLαi +dD)

−dL

 (2.67)

In order to write main rotor forces in HF , transformation matrices are used. The

angle between BFF and HF is (180+ψ) degrees.

dFH = Rz(180◦+ψ)dFBl =


cos(180◦+ψ) sin(180◦+ψ) 0

−sin(180◦+ψ) cos(180◦+ψ) 0

0 0 1

dFBl (2.68)
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⇒ dFxH =−dFxBl cosψ +dFyBl sinψ = dLβ cosψ− (dLαi +dD)sinψ

⇒ dFyH =−dFxBl sinψ−dFyBl cosψ = dLβ sinψ +(dLαi +dD)cosψ

⇒ dFzH = dFzBl =−dL

(2.69)

Then, infinitesimal main rotor forces in HF are integrated over blade length, that is

from 0 to (Rmr− e). Since forces are changing with azimuth angle ψ , average main

rotor forces are found by integrating along azimuth angle from 0 to 2π , multiplying

with number of main rotor blades and by dividing 2π [36].

Hmr =
Nmr

2π

∫ 2π

0

∫ Rmr−e

0
dFxH drdψ (2.70)

Ymr =
Nmr

2π

∫ 2π

0

∫ Rmr−e

0
dFyH drdψ (2.71)

Tmr =
Nmr

2π

∫ 2π

0

∫ Rmr−e

0
dFzH drdψ (2.72)

Finally, main rotor forces in HF is derived.

FmrH =


Hmr

Ymr

Tmr

 (2.73)

Same procedure is applied for deriving main rotor moments. It should be noted that

moments are taken around flapping hinge point [36].

MzH
= Qmr =

Nmr

2π

∫ 2π

0

∫ Rmr−e

0
(e+ r)dFyBl dψ (2.74)

MxH
= Mxmr =

Nmr

2π

∫ 2π

0

∫ Rmr−e

0
−(esinψ)dFzBl dψ +Ksβ sinψdψ (2.75)

MyH
= Mymr =

Nmr

2π

∫ 2π

0

∫ Rmr−e

0
(ecosψ)dFzBl dψ +Ksβ cosψdψ (2.76)

It is seen that while FzBl force generates Mxmr and Mymr , FyBl force is the source of

main rotor drag torque Qmr. Note that Ks is the flapping hinge spring constant and

Ksβ is the its contribution, known as restraint torque.
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After inserting Equation 2.38, final main rotor force and moments equations in HF

in Equations 2.71–2.76 are derived.

FmrH =


Hmr

Ymr

Tmr

=


Nmr
2π

∫ 2π

0
∫ Rmr−e

0 dLβ cosψ− (dL(θbl−
Up
Ut
)+dD)sinψdrdψ

Nmr
2π

∫ 2π

0
∫ Rmr−e

0 dLβ sinψ +(dL(θbl−
Up
Ut
)+dD)cosψdrdψ

Nmr
2π

∫ 2π

0
∫ Rmr−e

0 −dLdrdψ


(2.77)

MmrH =


Mxmr

Mymr

Qmr

=


Nmr
2π

∫ 2π

0
∫ Rmr−e

0

[
dL(esinψ)+Ksβ sinψ

]
dψ

Nmr
2π

∫ 2π

0
∫ Rmr−e

0

[
−dLecosψ +Ksβ cosψ

]
dψ

Nmr
2π

∫ 2π

0
∫ Rmr−e

0 −(e+ r)
[
dL(θbl−

Up
Ut
)+dD

]
dψ

 (2.78)

2.4.1.2 Tail Rotor Forces and Moments

In derivation of tail rotor forces and moments, it is assumed that tail rotor only gen-

erates thrust force in yT axis and tail rotor drag force is neglected. Unlike main rotor,

tail rotor does not have longitudinal and lateral inputs. Collective pedal input θtr gen-

erates tail thrust force Ttr. In order to derive tail rotor thrust, momentum theory with

a recursive solution is used like main rotor inflow. Tail rotor does not generate any

torque on center of T F . Thrust generated by the tail rotor is described as [16],

Ttr = (wbtr − vitr)
ρΩtrRtrCLαtr

NtrctrRtr

4
(2.79)

v2
itr =

√
(− v̂2

tr

2
)2 +(

Ttr

2ρAtr
)2− v̂2

tr
2

(2.80)

where,

wbtr = wrtr +
2
3

ΩtrRtr(θtr +
3
4

θtwtr) (2.81)

wrtr =−v+ rRxT R− pRzT R
(2.82)

v̂2
tr = u2

B +(wB +qRxT R)
2 +wrtr(wrtr −2vitr) (2.83)

Atr = πR2
tr (2.84)
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where ρ is the air density, Ωtr is the tail rotor angular velocity, CLαtr
is the tail rotor

lift curve slope, Rtr is the tail rotor radius, Ntr is the number of blades of tail rotor, ctr

is the chord length of the tail rotor, wbtr is the tail rotor blade velocity, wrtr is tail rotor

disc velocity and and vitr is the induced velocity of the tail rotor.

Final tail rotor force equations are described.

FtrB = FtrT =


0

−Ttr

0

 (2.85)

2.4.1.3 Fuselage Forces and Moments

Fuselage creates drag forces defined in all axes in BF . These forces are assumed at

CM; therefore, they do not create any significant moment on CG position. Fuselage

forces are described using quadratic drag function [36],

Ff usB =


−1

2ρuB|uB|CdxA f usx

−1
2ρvB|vB|CdyA f usy

−1
2ρwB|wB|CdzA f usz

 (2.86)

Where Cdx , Cdy and Cdz are drag coefficients and A f usx , A f usy and A f usz are the equiv-

alent flat plate areas in the related axis.

2.4.1.4 Empennage Forces and Moments

The last components which generate forces and moments on the helicopter body are

horizontal stabilizer and vertical fin. The main intended purpose of vertical fin is

to create extra anti-torque when the helicopter is in forward flight and air is flow-

ing across the lifting surface. On the other hand, horizontal tail is used for holding

fuselage flat in forward flight. Drag force on both vertical fin and horizontal stabi-

lizer can be neglected, since they are relatively small and thin components. Lift force

generated by vertical fin and horizontal stabilizer are defined as [36],

FhsB =


Fxhs

Fyhs

Fzhs

=


0

0

−1
2ρuB|uB|CLαhs

αhsAhs

 (2.87)
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Fv fB =


Fxv f

Fyv f

Fzv f

=


0

−1
2ρuB|uB|CLαv f

αv f Av f

0

 (2.88)

Where CLαhs
and CLαv f

are lift curve slopes of horizontal tail and vertical fin, respec-

tively. Ahs and Av f are the horizontal stabilizer and vertical fin areas. Angle of attack

of these components are defines as [36],

αhs = arctan(whs/uB)

αv f = arctan(vv f /uB)
(2.89)

Velocities passing over the lifting surfaces are defined as,

whs = wB +qRxhs

vv f = vB− rRxv f

(2.90)

Moving on torques generated by empennage forces,

MhsB =


Mxhs

Myhs

Mzhs

=


FzhsRyhs−FyhsRzhs

FxhsRzhs−FzhsRxhs

FyhsRxhs−FxhsRyhs

 (2.91)

Mv fB =


Mxv f

Myv f

Mzv f

=


Fzv f Ryv f −Fyv f Rzv f

Fxv f Rzv f −Fzv f Rxv f

Fyv f Rxv f −Fxv f Ryv f

 (2.92)

Where Rxhs , Ryhs , Rzhs , Rxv f , Ryv f and Rzv f are the distances of horizontal stabilizer and

vertical fin to CG in xB, yB and zB axis.

2.4.2 Forces and Moments Summation

After deriving forces and moments generated by the components, the last step is to

transform them to BF in order to use in Rigid Body Dynamics in Section 2.2. First,

total moment around CG due to main rotor and tail rotor are defined.

MmrB = MmrH +RMR×FmrH

MtrB = RT R×FtrH

(2.93)
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Beside these forces generated in Section 2.4.1, gravitational force is defined in SF

and always act in zS direction. Transforming all forces and moments to BF ,

FB = RSB

[ 0
0

mhg

]
+RHBFmrH +FtrB +Ff usB +FhsB +Fv fB

τB = MmrB +MtrB +MhsB +Mv fB

(2.94)

Then, using Equation 2.93 in Equation 2.94, final moment equation in BF are derived.

Where RMR =
[Rxmr

Rymr
Rzmr

]
and RT R =

[Rxtr
Rytr
Rztr

]
are the distances of main rotor and tail rotor

to CG position, respectively.

2.5 Analysis of Mathematical Model

In this part, mathematical model of the helicopter is implemented and analysed. Af-

ter deriving necessary dynamics, these equations need to be related with each other.

Looking at the structure by considering inputs and outputs of each subparts,

Figure 2.6: Model Inputs, States and Outputs

Considering full mathematical model, there are four inputs, fifteen states and twelve

outputs. States are translational body velocities, rotational velocities, Euler Angles,
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main rotor flapping angles and flapping rates. Outputs are translational body veloci-

ties, rotational velocities, Euler angles and translational Earth velocities.

u =
[
ucoll ulon ulat uped

]T

x =
[
uB yB wB p q r φ θ ψ β0 β1s β1c β̇0 β̇1s β̇1c

]T

y =
[
uB yB wB p q r φ θ ψ uE vE wE

]T

(2.95)

After constructing the helicopter mathematical model, a sample helicopter model

need to be selected. This helicopter should be a small-sized model helicopter be-

cause of the assumptions in Section 2.1.1. Having a hinge offset and a stabilizer bar

are other important properties for the sample helicopter selection. After searching

literature, R-50 helicopter is found appropriate to be tested with the mathematical

model derived. R-50 helicopter parameters can be found in Appendix B [28].

Using sample helicopter parameters and defining trim condition, trimming process of

the nonlinear mathematical model is done. Then, in order to obtain linear system and

design a linear controller, nonlinear model is linearized around specified equilibrium

point. Finally, linear model order is reduced considering the least effective states for

the helicopter behavior.

2.5.1 Trimming and Linearization of the Mathematical Model

2.5.1.1 Trimming Process

Trim point is defined as a condition where all resultant forces and moments around

center of gravity position of the helicopter are zero. Any force acting a position

different than c.g. produces moments on the aircraft and it is desired that rotation

should be zero at trim condition. Trimming is an important job because there will be

residual forces and moments which ruin the exact nonlinear character if working with

random point rather than trim point.

∑~F = ∑ ~M = 0 (2.96)

In addition, mathematically, trim point is the point where all state derivatives equal

to zero [35]. For trimming of nonlinear helicopter model, MATLAB Linear Analysis
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Tool is used for its reliability, simplicity and accuracy. The sample helicopter param-

eters is substituted into mathematical model equations and trim input and state values

is obtained at specified trim conditions. Trim condition is decided to be hover at 100

ft altitude.

ẋtrim = f (xtrim,utrim, t) = 0 (2.97)

Constraints for the trim condition are decided as follows,

uB = vB = wB = p = q = r =U = 0

h = 100 f t
(2.98)

where U is the airspeed and h is the altitude of the helicopter.
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Result of the trimming process is,

utrim =


ucolltrim[rad]

ulontrim[rad]

ulattrim[rad]

upedtrim
[rad]

=


0.106516

0.00019

0.0035

0.02312

 , xtrim =



uBtrim[m/s]

vBtrim[m/s]

wBtrim[m/s]

ptrim[rad/s]

qtrim[rad/s]

rtrim[rad/s]

φtrim[rad]

θtrim[rad]

ψtrim[rad]

β1csbtrim[rad]

β1ssbtrim[rad]

β0[rad]

β1s[rad]

β1c[rad]

β̇0[rad]

β̇1s[rad]

β̇1c[rad]

X [m]

Y [m]

Z[m]



=



0

0

0

0

0

0

0.003516

−0.000112

0

0.00011

0.001204

0.037341

0.00013

0.001236

0

0

0

0

0

30.48


(2.99)

2.5.1.2 Linearization Process

Linearization process is made according to small perturbation theory. Writing states

and input variables as a perturbation value addition to trim value [35],

x = xtrim +∆x

u = utrim +∆u
(2.100)

where ∆x and ∆u are perturbation values. Then,

ẋ = f ((xtrim +∆x),(utrim +∆u), t) (2.101)
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For more compact form of the linearized system after neglecting second and higher

order terms,

ẋ(t) = f (x,u, t)

ẋtrim +∆ẋ(t) = f ((xtrim +∆x(t)),(utrim +∆u(t)), t)

= f (xtrim,utrim, t)+
∂ f
∂x

∣∣∣x(t)=xtrim(t)
u(t)=utrim(t)

×∆x(t)+
∂ f
∂u

∣∣∣x(t)=xtrim(t)
u(t)=utrim(t)

×∆u(t)

(2.102)

Combining Equation 2.97 and Equation 2.102,

∆ẋ(t) =
∂ f
∂x

∣∣∣x(t)=xtrim(t)
u(t)=utrim(t)

×∆x(t)+
∂ f
∂u

∣∣∣x(t)=xtrim(t)
u(t)=utrim(t)

×∆u(t) (2.103)

Finally, nonlinear system is linearized and state-space representation of the linear

system is defined as,

∆ẋ(t) = A(t)∆x(t)+B(t)∆u(t) (2.104)

where A(t) = ∂ f
∂x

∣∣∣x(t)=xtrim(t)
u(t)=utrim(t)

and B(t) = ∂ f
∂u

∣∣∣x(t)=xtrim(t)
u(t)=utrim(t)

A(t) and B(t) are the Jacobian Linearized matrices of the nonlinear system around

specified trim condition. In order to obtain A(t) and B(t), MATLAB Linear Analysis

Tool is used.

2.5.2 Order Reduction of Linearized Mathematical Model

After linearization, the next step to do with the model is the order reduction. For

controller design purpose, lower order linear model is appropriate unless discarded

model states do not affect the system characteristics. Eigenvalue analysis of the full

order linear system and reduced order linear systems are required to make sure that

general behavior of the systems are the same. There are two main types of model

reduction: Truncation and Matched DC gain methods. For truncation method, states

considered as to be eliminated are directly removed on the system matrix of the linear

system since they are ineffective in system dynamics manner. Matched DC gain

method is a model reduction method considering the effects of the eliminated states

on remaining states of the system. In this method, time derivatives of the eliminated

38



states are taken as zero. First, consider a state vector to be partitioned to x1 and x2.ẋ1

ẋ2

=

A11 A12

A21 A22

x1

x2

+
B1

B2

u (2.105)

After taking the time derivative of x2 as zero, reduced system dynamics are described

as follows.

ẋ1 =
[
A11−A12A−1

22 A21
]
x1 +

[
B1−A12A−1

22 B2
]
u (2.106)

By looking the states of the full linear model, flapping angles and flapping rates are the

states which are needed to be eliminated with Matched DC Gain method since they

are faster dynamics than helicopter rigid body dynamics but they affect the general

behavior at the least. Earth positions states are the eliminated states by truncation

method. They do not have a role on system dynamics.

Consequently, there are three different models; nonlinear model, full order linear

model at hover condition and reduced order linear model at hover condition. Eigen-

value comparison of reduced order model and the linear model of R-50 type helicopter

in literature [28] are compared and can be found in Appendix C. As the last step of

modeling part, different models obtained by linearization and model order reduction

are tested by commanding step inputs of 1◦ to all channels. Comparison of the models

is given in Figure 2.7.

39



0 0.5 1 1.5 2 2.5 3

time (sec)

0

0.5

1

1.5
u

 (
m

/s
)

Nonlinear Model

Full Linear Model

Reduced Linear Model

(a) u

0 0.5 1 1.5 2 2.5 3

time (sec)

0

0.5

1

1.5

2

v
 (

m
/s

)

Nonlinear Model

Full Linear Model

Reduced Linear Model

(b) v

0 0.5 1 1.5 2 2.5 3

time (sec)

-1.5

-1

-0.5

0

w
 (

m
/s

)

Nonlinear Model

Full Linear Model

Reduced Linear Model

(c) w

0 0.5 1 1.5 2 2.5 3

time (sec)

0

2

4

6

8

p
 (

d
e

g
/s

)

Nonlinear Model

Full Linear Model

Reduced Linear Model

(d) p

0 0.5 1 1.5 2 2.5 3

time (sec)

-6

-5

-4

-3

-2

-1

0

q
 (

d
e
g
/s

)

Nonlinear Model

Full Linear Model

Reduced Linear Model

(e) q

0 0.5 1 1.5 2 2.5 3

time (sec)

-15

-10

-5

0

r 
(d

e
g
/s

)

Nonlinear Model

Full Linear Model

Reduced Linear Model

(f) r

0 0.5 1 1.5 2 2.5 3

time (sec)

0

2

4

6

8

10

12

p
h
i 
(d

e
g
)

Nonlinear Model

Full Linear Model

Reduced Linear Model

(g) phi

0 0.5 1 1.5 2 2.5 3

time (sec)

-8

-6

-4

-2

0

th
e
ta

 (
d
e
g
)

Nonlinear Model

Full Linear Model

Reduced Linear Model

(h) theta

0 0.5 1 1.5 2 2.5 3

time (sec)

-14

-12

-10

-8

-6

-4

-2

0

p
s
i 
(d

e
g
)

Nonlinear Model

Full Linear Model

Reduced Linear Model

(i) psi

Figure 2.7: Comparison of Nonlinear Model, Full Order Linear Model and Reduced

Order Linear Model Response

As seen in Figure 2.7, all models have similar response. Difference between linear

model and nonlinear model is because of the getting far away the trim point of the

linear model and this is expected result. Finally, it can be concluded that reduced

order linear model can be used in controller design.
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CHAPTER 3

MODEL REFERENCE ADAPTIVE CONTROL

In this chapter, MRAC design procedures are given for an uncertain MIMO system.

The purpose of MRAC is to make the uncertain plant track the desired reference

model [4]. Reference model design, deciding uncertainty parametrization method

and weight update law are the main steps in controller design. Reference model is

the desired system response and the plant should follow it in spite of uncertainties.

Uncertainty parametrization is the component that is used to define and cancel out un-

certainties. Lastly, weight update law is the estimation algorithm of controller gains

required for adaptive control. For the nonadaptive baseline controller, any control

method can be selected. Uncertain plant, reference model, baseline and MRAC con-

troller are the total system to be considered and design scheme is given in Figure 3.1.

Figure 3.1: Augmentation of MRAC controller to baseline controller
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3.1 Reference Model Design

The first part of designing MRAC controller is to decide the reference model to be

tracked. This process can also be called as baseline controller design. The main prop-

erty of this controller is that to make the actual system follow the reference model

without any uncertainty and disturbance effects. This implies that there should not be

any transient and steady state error between the reference model and closed loop dy-

namics with baseline controller. Another property of the baseline controller is having

a feasible design and appropriate to be tested on the nonlinear mathematical model.

Considering the baseline controller design specifications, Linear Quadratic Optimal

Conroller with an Integrator is decided to be suitable for baseline controller design.

First, consider a plant defined by [11],

ẋp(t) = Apxp(t)+Bpu(t)

yp(t) =Cpxp(t)
(3.1)

Where xp(t) ∈ Rnp is the plant state vector, u(t) ∈ Rm is the control input signal, yp(t)

is the plant output vector. Ap ∈ Rnpxnp , Bp ∈ Rnpxm and Cp ∈ Rnpxnp are the system,

input and output matrices of the plant, respectively.

The main aim of the controller is to find a control input signal such that the regu-

lated plant output tracks the reference input command. The error between the plant

regulated output and the reference input command is defined by,

ey(t) = y(t)− r(t) =Cpxp(t)− r(t) (3.2)

In order to write it in a state space form, integral of output error is defined [11].

eyi(t) =
∫ t

0

(
y(τ)− r(τ)

)
dτ =

ey(t)
s

(3.3)

Combining both equations, augmented system dynamics with output error can be

represented with [11],

ẋ(t) =

ey(t)

ẋp(t)

=

0m×m Cp

0np×m Ap

eyi(t)

xp(t)

+
0m×m

Bp

u(t)+

−Im×m

0np×m

r(t)

y =
[
0m×m Cp

]
x(t)

(3.4)
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yields the extended open loop dynamics in the form of,

ẋ(t) = Ax(t)+Bu(t)+Bre f r(t)

y(t) =Cx(t)
(3.5)

where x(t) = [
eyi(t)
xp(t)

] ∈ Rn×m is the extended system state vector and corresponding

state space matrices are defined by,

A =

0m×m Cp

0np×m Ap

 , B =

0m×m

Bp

 , Bre f =

−Im×m

0np×m

 , C =
[
0m×m Cp

]
(3.6)

Define the control input by LQR control law,

u(t) =−Klqrx(t) (3.7)

Where Klqr = R−1
lqrBT Plqr and Plqr is the solution of the associated Riccati Equation,

AT Plqr +PlqrA−PlqrBR−1
lqrBT Plqr +Qlqr = 0 (3.8)

Where Qlqr and Rlqr are the LQR controller state and input weight matrices, respec-

tively.

Inserting Equation 3.7 to Equation 3.5,

ẋ(t) =
(
A−BKlqr

)
x(t)+Bre f r(t) (3.9)

This final form of the closed loop system is defined as a reference model to be fol-

lowed by the actual system.

ẋre f (t) = Are f xre f (t)+Bre f r(t) (3.10)

Then, matching condition is defined [11],

Are f = A−BKlqr (3.11)

This completes the baseline controller design. Considering closed loop system per-

formance and stability, reference model is designed by selecting appropriate weight

matrices.
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3.2 Model Reference Adaptive Control Design with Integral Action

The next part is to decide the controller structure and control law in order to keep the

actual system tracks the reference model. Reference model is selected to be linear and

without any uncertainty; therefore, the designed controller should need to cancel out

uncertainties. Since these uncertainties on the system can be varying and mostly non-

linear, proposed controller is required to be also nonlinear. Model Reference Adap-

tive Control is considered as a suitable controller design technique for these purposes.

The main idea of the controller is that while keeping baseline controller provides a

reasonable tracking performance and stability, MRAC augmented controller structure

gives the controller extra capability in uncertainty suppression manner.

First, consider an uncertain plant dynamics [11],

ẋp(t) = Apxp(t)+BpΛ
(
u(t)+ f (x)

)
yp =Cpxp(t)

(3.12)

Where xp ∈ Rnp is the plant state vector, u ∈ Rm is the control input signal, r(t) ∈
Rm is the external bounded command signal, yp is the regulated plant output vector.

Ap ∈ Rnpxnp , Bp ∈ Rnpxm and Cp ∈ Rnpxnp are the system, input and output matrices

of the plant, respectively. Λ ∈ Rmxm is the constant diagonal matrix which defines

modeling errors or failures known as control effectiveness. Applying same approach

with Section 3.1, augmented system dynamics is obtained.

ẋ(t) = Ax(t)+BΛ
(
u(t)+ f (x)

)
+Bre f r(t)

y =Cx(t)
(3.13)

Where x(t) ∈ Rn is the augmented state vector, u(t) ∈ Rm is the control input signal,

r(t)∈ Rm is the external bounded command signal, y(t) is the output vector. A∈ Rnxn,

B ∈ Rnxm and C ∈ Rnxn are the system, input and output matrices of the augmented

system, respectively.

According to LQR control law described in Equation 3.7, baseline controller is se-

lected [11].

ubl(t) =−Klqrx(t) =−Klqr

[
eyi(t)
xp(t)

]
=−Ki

ey(t)
s
−Kpxp(t) (3.14)

where Klqr =
[

Ki
Kp

]
is the baseline controller gain.
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Assumption 1: f (x) : Rn → Rm is the matched uncertainty and each component of

f (x) can be represented in terms of locally Lipschitz continuous basis functions.

f (x) =W T
β (x) (3.15)

Where W ∈ Rnbxm is the constant ideal weight matrix with unknown coefficients and

β (x) ∈ Rnb is the vector of basis functions.

The controller objective is to design state feedback adaptive law to make the system

tracks the predefined reference model in Equation 3.16 when there are parametric

uncertainties Λ and f (x).

ẋre f = Are f xre f (t)+Bre f r(t)

yre f =Cre f xre f (t)
(3.16)

Where xre f ∈ Rn is the reference model state vector, yre f is the reference model output

vector. Are f ∈ Rnxn, Bre f ∈ Rnxm and Cre f ∈ Rnxn are the system, input and output

matrices of the reference model, respectively.

Assumption 2: Model matching condition is satisfied. There exists K1 ∈ Rnxm satis-

fying Equation 3.11 to given reference Hurwitz Are f matrix .

Inserting model matching condition and Equation 3.16 into Equation 3.13,

ẋ(t) = Are f x(t)+BKlqrx+BΛ
(
u(t)+W T

β (x)
)
+Bre f r(t) (3.17)

In order to satisfy controller tracking objective, define a control signal such that,

u(t) = ubl(t)+uad(t) =−Klqrx(t)+uad(t) (3.18)

Then, closed loop system dynamics equation becomes,

ẋ(t) = Are f x(t)+BΛ
(
(Imxm−Λ

−1)ubl(t)+uad(t)+W T
β (x)

)
+Bre f r(t) (3.19)

Alternatively, Equation 3.19 can be written in more compact form,

ẋ(t) = Are f x(t)+BΛ
(
W ∗β ∗(x)+uad

)
+Bre f r(t) (3.20)

where
W ∗ =

[
(Imxm−Λ−1) W T

]
β
∗(ubl,x(t)) =

 ubl

β (x)

 (3.21)
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Since augmented system needs to be same dynamics with the reference model, adap-

tive component should be selected as [11],

uad(t) =−Ŵ ∗
T
β
∗(ubl(t),x(t)) (3.22)

Where Ŵ ∗ ∈ Rnbxm is the unknown adaptive weight with unknown coefficients and

β ∗ ∈ Rnb is the augmented vector of basis functions.

Inserting 3.22 into 3.20,

ẋ(t) = Are f x(t)+BΛ
(
W ∗β ∗(x)−Ŵ ∗

T
β
∗(ubl(t),x(t))

)
+Bre f r(t)

= Are f x(t)+BΛW̃β
∗(ubl(t),x(t))+Bre f r(t)

(3.23)

where W̃ =W ∗−Ŵ ∗ is the weight estimation error.

Defining a state tracking error and its time derivative,

e(t) = x(t)− xre f (t)

ė(t) = ẋ(t)− ẋre f (t)
(3.24)

Substituting closed loop system dynamics and reference model dynamics in Equation

3.23 and Equation 3.16 into 3.24

ė(t) =
(
Are f x(t)+BΛW̃β

∗(ubl(t),x(t))+Bre f r(t)
)
−
(
Are f xre f (t)+Bre f r(t)

)
= Are f e(t)+BΛW̃β

∗(ubl(t),x(t))
(3.25)

Then, in order to derive adaptive law and ensure that the closed loop stability, choose

a Lyapunov function candidate such that,

V (e(t),W̃ ) = eT Pe+ tr(W̃ T
Γ
−1W̃Λ) (3.26)

The Lyapunov function candidate is selected as a radially unbounded one in quadratic

form. Γ = ΓT > 0 is the adaptive learning rate and P ∈ Rnxn is the symmetric positive

definite solution of the Lyapunov equation,

Are f P+PAre f =−Q (3.27)

Also note that there exists unique P ∈ Rnxn for every Q ∈ Rnxn since Are f is Hurwitz.

Taking time derivative of Equation 3.26 along trajectories of Equation 3.25 [11],

V̇ (e(t),W̃ ) =−eT Qe−2eT PBΛW̃ T
β
∗+2tr(W̃ T

Γ
−1 ˙̂W ∗Λ) (3.28)
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Using vector trace identity
(

AT B = tr(BAT )
)

, Equation 3.28 becomes,

V̇ (e(t),W̃ ) =−eT Qe+2tr
(
W̃ T(

Γ
−1 ˙̂W ∗−β

∗eT PB
)
Λ

)
(3.29)

In order to satisfy that Lyapunov stability condition V̇ (e(t),W̃ ) =−eT Qe<= 0, adap-

tive weight update law is selected in the form [4],

˙̂W ∗ = Γβ
∗eT PB (3.30)

which completes the proof of uniform ultimate boundedness of
(
e(t),W̃

)
.

Consequently, Equation 3.30 is the well known classical adaptive control law and it

guarantees that state tracking error e(t)→ 0 as t → ∞. In addition, since Lyapunov

candidate function is radially unbounded, the closed loop state tracking error dynam-

ics are globally asymptotically stable. Similarly, output tracking error is defined,

ey(t) = y(t)− yre f (t) =C(x(t)− xre f (t)) =Ce(t)

⇒ lim
t→∞

ey(t) = lim
t→∞

Ce(t) = 0
(3.31)

This concludes that for any bounded reference command, output of the closed loop

system tracks the output of reference model, that is ey(t)→ 0 as t→ ∞.

Substituting Equation 3.21 into Equation 3.30 and defining Γ =
[

Γbl 0nxm
0nbxm Γx

]
, ˙̂Kubl

˙̂W

=

 Γbl 0nxm

0nbxm Γx

 ubl

β (x)

eT PB (3.32)

where Kubl = (Imxm−Λ−1) and K̂ubl is the estimation of Kubl .

Arranging Equation 3.32, final form of the adaptive law is obtained [11].
˙̂Kubl = ΓblubleT PB

˙̂W = Γxβ (x)eT PB
(3.33)

Rewriting control law of the MRAC with integral connection,

u(t) = ubl(t)+uad(t)

=−Kblx(t)+ K̂ubl ubl(t)+Ŵβ (x)
(3.34)

Equation 3.34 is the total control law of the closed loop system including baseline

control input of LQR with integrator and augmented control input of MRAC con-

troller. Kbl is the optimal controller gain calculated by LQR method and K̂bl and Ŵ

are the adaptive weights required to be estimated by adaptive laws in Equation 3.33.

Initial values of the adaptive weights can be chosen arbitrarily.
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3.3 MRAC Modifications

In Section 3.2, classical adaptive control law is derived for the augmented system. It

is assumed that there is not any external disturbance and uncertainty on the system

can be linearly parametrized. When there exists bounded external disturbances on the

system, augmented system dynamics is written as [11],

ẋ(t) = Ax(t)+BΛ
(
u(t)+ f (x)

)
+Bre f r(t)+ζ (t)

y =Cx(t)
(3.35)

where ζ (t) is the bounded external disturbances such that,

‖ζ (t)‖ ≤ ζmax, where ζmax ≥ 0 (3.36)

State error dynamics is updated as,

ė(t) = Are f e(t)+BΛW̃β
∗(ubl(t),x(t))+ζ(t) (3.37)

Choosing the same Lyapunov function candidate in Equation 3.26 and taking time

derivative of it,

V (e(t),W̃ ) = eT Pe+ tr(W̃ T
Γ
−1W̃Λ) (3.38)

V̇ (e(t),W̃ ) =−eT Qe+2tr
(
W̃ T(

Γ
−1 ˙̂W ∗−β

∗eT PB
)
Λ
)
+2eT Pζ(t) (3.39)

Assuming classical adaptive law in Equation 3.30 holds,

V̇ (e(t),W̃ ) =−eT Qe+2eT Pζ(t)≤−λQmin‖e‖
2 +2‖e‖λPmaxζmax (3.40)

yields,

V̇ (e(t),W̃ )< 0 in the outside of the set [11],

R0 =
{
(e(t),W̃ ) : ‖e‖ ≤ 2

λPmax

λQmin

ζmax = e0

}
(3.41)

State error dynamics e(t) trajectories are in the compact set Ω0 in R0, however, Ω0

is unbounded since there is no limitation in estimating adaptive parameters. In other

words, W̃ is not restricted in any region. Thus, V̇ (e(t),W̃ ) can be positive inside

the compact set Ω0. This makes adaptive parameter diverges and unbounded even

if state error norm remains bounded. Consequently, classical adaptive law losses its

48



robustness with ζ (t). This problem is known as parameter drift in the literature.

In order to keep robustness, some modifications can be done in the controller and

adaptive law design.

3.3.1 Adaptive Weight Update Law Modifications

Weight update law is one of the most significant part in model reference adaptive

controller design. In order to improve performance and robustness of the system with

classical adaptive control law in Equation 3.30, some modifications are presented as

solution. In adaptive control literature, while sigma-modification, e-modification and

dead-zone modification are the modifications by adding extra damping term to the

classical adaptive law, projection operator is the modification with a special mathe-

matical operator.

3.3.1.1 Projection Operator

Projection operator aims restricting adaptive weight in a predefined bounded and con-

vex set. This idea is required for sustaining robustness to parametric and nonparamet-

ric uncertainties.

Defining two convex sets

Ω0 =
{

W ∈ Rn : f (W )≤ 0
}
=
{

W ∈ Rn : ‖W‖2 ≤
Wmax√
1+ ε0

}
Ω1 =

{
W ∈ Rn : f (W )≤ 1

}
=
{

W ∈ Rn : ‖W‖2 ≤Wmax

} (3.42)

Note that Ω0 ⊂Ω1. Then, projection operator is defined by [20],

Pro j(W,y) =

y− Γ∇ f (W )(∇ f (W ))T

(∇ f (W ))T Γ∇ f (W )
, if f (W )> 0 and yT ∇ f (W )> 0

y, otherwise
(3.43)

where y ∈ Rn and Γ ∈ Rnxn is a constant symmetric positive definite matrix and

∇ f (W ) = 2(1+ε0)
ε0W 2

max
W .

Projection operator ensures that all adaptive weights remain in a compact set for all

t ≥ 0. Adaptive law with projection operator is defined by,

˙̂W ∗ = Pro j(Ŵ ∗,Γβ
∗eT PB) (3.44)
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3.3.1.2 Dead-Zone Modification

The main idea of dead-zone modification, first proposed by Peterson and Narendra

[38], is to disable adaptation process when state tracking error norm becomes smaller

relative to predefined error norm in order to maintain robustness. Adaptive law with

dead-zone modification is described by,

˙̂W ∗ =

Γβ ∗eT PB, if ‖e‖> e0

0, if ‖e‖ ≤ 0
(3.45)

Although dead-zone modification provides uniform ultimate boundedness of W̃ , it

has some drawbacks in design and performance. One of them is the requirement

of having information of the upper error norm bound so that e0 is properly selected

considering upper bounds of e(t). The second drawback is chattering problem around

‖e‖= 0. Although uniform ultimate boundedness is achieved, asymptotic stability is

not proved at ‖e‖= 0. Chattering problem can be solved by using smooth dead-zone

modification first presented by Slotine and Coetsee [10]. Adaptive law with smooth

dead-zone modification is described by,

˙̂W ∗ = Γβ
∗
µ(‖e‖)eT PB (3.46)

where ‖e‖= max
(
0,min(1, ‖e‖−δe0

(1−δ )e0
)
)

3.3.1.3 Sigma Modification

The main objective of sigma modification first proposed by Ioannou and Kokotovic

[15], is to add extra damping to adaptive law. This damping term tries to decrease

adaptive weights when they become large. Adaptive law with sigma modification is

described by,
˙̂W ∗ = Γβ

∗eT PB−ΓσŴ ∗ (3.47)

Where σ ≥ 0 is the modification term which increases damping of the adaptive law.

Although sigma modification does not require the knowledge of upper bounds of error

norm, extra damping term can be overconservative and costly in controller design

especially when error norm is around zero. This is the most known disadvantage of

sigma modification.
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3.3.1.4 e-Modification

Another method to overcome with drawbacks of sigma modification is using e-modification

in adaptive law. The main idea behind e-modification, firstly presented by Narendra

and Annaswamy [29], is replacing constant damping term with a linear combination

of the error. This solves the problem of undesired effects around ‖e‖ = 0. Adaptive

law with e-modification is described by,

˙̂W ∗ = Γβ
∗eT PB−Γµ‖eT PB‖Ŵ ∗ (3.48)

Where µ ≥ 0 is the modification term which increases damping of the adaptive law

in terms of state tracking error norm.

3.4 Uncertainty Parametrization Methods

Another important part of the model reference adaptive controller design is uncer-

tainty parametrization. In order to parametrize unstructured uncertainties, universal

approximators can be used. The main idea behind using them in MRAC design is

that every uncertain function can be represented with a universal approximator. Sig-

moid Functions are one of the most used functions in adaptive control problems [32].

Although they are not common as Sigmoid Functions, Fourier Series Expansion and

Chebyshev Orthogonal Polynomials are used in literature [13, 34].

f (x) =W T
β (x, t)+ ε (3.49)

Where β (x, t) is the regression vector of the uncertainty parametrization method, W

is the corresponding adaptive weights and ε is the approximation error.

Regression vectors depend on the uncertainty parametrization methods described in

the following part of this section. Three different basis functions are considered as a

regression vector. There are some advantages and disadvantages of each basis func-

tion and each one is described and evaluated.
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3.4.1 Sigmoid Functions

Sigmoid functions are specific kind of mathematical functions in the form of S-

shaped. Equilibrium point is βi(0) = 0 and sigmoid functions are defined in the range

of −1 ≤ βi(x, t) ≤ 1 for x ∈ (−∞,∞). Main advantage of sigmoid functions are that

they are bounded, monotonic and differentiable at every x(t). Detailed information

about sigmoid functions can be found in [9]. Regression vector of Sigmoid Functions

are formed as,

β (x, t) =



1

β1(x, t)

β2(x, t)
...

βn−1(x, t)

βn(x, t)


(3.50)

Where i = 1,2, . . . ,n and βi(x, t) = 1−e−xi(t)

1+e−xi(t)
. Note that function length n is the only

one design parameters for Sigmoid Functions.

3.4.2 Fourier Series Transform

Fourier Series is a combination of trigonometric and periodic functions. Thus, when

the uncertainty on the system is periodic and unknown, these special form of series

can be advantageous to use. There are two parameters of Fourier series; series length

and period. Fourier Series length is the parameter to be selected by designer and

period should be at least three times higher than simulation time. Proof of using

Fourier Series in MRAC can be found in [13]. Regression vector of Fourier Series
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Transform are formed as,

β (x, t) =



1

βc1(x, t)

βc2(x, t)
...

βcN(x, t)

βs1(x, t)

βs2(x, t)
...

βsN(x, t)



(3.51)

where i = 1,2, . . . ,N , βci(x, t) = cos(i2π

T t) and βsi(x, t) = sin(i2π

T t). Series length N

and series period T are the design parameters for Fourier Series Transform.

3.4.3 Chebyshev Polynomials

Another universal approximators to parametrize uncertainty is Chebyshev Polyno-

mials. The main properties of Chebyshev Polynomials are being orthogonal in the

interval of x(t)∈ (−1,1) with respect to weight function w(x) = 1/
√

1− x2. Restrict-

ing x(t) to required interval is done by simple trigonometric transform, x = cos(t)

where t stands for time. Then, it can be said that Chebyshev polynomials length is

the only parameter to be decided in design. Proof of using Chebyshev Polynomials

in MRAC can be found in [34]. Regression vector of Chebyshev Polynomials are

formed as,

β (x, t) =



T0(x, t)

T1(x, t)
...

TN−1(x, t)

TN(x, t)


(3.52)
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where
T0(x, t) = 1

T1(x, t) = x
...

Ti+1(x, t) = 2xTi(x, t)−Ti−1(x, t)

where i = 1,2, . . . ,n. Only the series length N is the design parameters for using

Chebyshev Polynomials.

This completes the describing methodology of the controller design. Deciding design

parameters, tuning controller weights and other controller design and implementation

parts will be given in Chapter 4.
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CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Implementation of the Controllers

In Section 2.5, mathematical model inputs, states and outputs are described. Consid-

ering whole system, nonlinear helicopter model is implemented on Matlab/Simulink

environment. There is also a need of a linear model for model reference adaptive

control design since reference model is going to be a linear one. For ease of control

design purpose, reference model outputs are selected as only translational velocities,

angular velocities and Euler Angles. Therefore, open loop helicopter model needs

to be reduced according to reference model states and outputs. Reduced order linear

model described in Equation 2.106 is used for this purpose. Reduced order system

has four inputs, nine states and four outputs. Firstly, Linear Quadratic Controller with

an Integral action (LQI Controller) is designed for reduced order linear model. Then,

open loop system is controlled with LQI controller and it is shown that matching con-

dition in Equation 3.11 is hold and reduced order linear model and reference model

have exactly same response. However, when there is an external disturbance of the

system, this type of controller does not provide a reasonable tracking performance to

reference model. Next, LQI controller is implemented to nonlinear helicopter model

and it is seen that response with the external disturbance is same with the linear one.

Because external disturbances may be mostly nonlinear and helicopter mathematical

model is also nonlinear, there is a need of nonlinear controller which can overcome

nonlinear disturbances. When there is not a disturbance on the system, designed

controller should not play a big role on the system since LQI controller is already de-

signed as a baseline/nominal controller. Considering these control design purposes,

Model Reference Adaptive Controller seems suitable for both linear and nonlinear
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systems. After deciding the control design method, the next step is implementation

of the controller to linear and nonlinear helicopter models. The main difference of

them is initial condition. While initial condition of the linear model is always zero

for both inputs and states, nonlinear model inputs and states initial conditions are de-

fined by trimming results described in Section 2.5.1. The other difference is the rate

limiting functions at the inputs of the helicopter. These rate limiters have 8 deg/s

cut-off frequency. The next step is analyzing LQI-MRAC controller on the nonlinear

helicopter model. When there is not any external disturbance on the system, adaptive

controller contribution to the helicopter inputs is inconsiderable and source of this

input is the numerical errors during order reduction to obtain reduced order model,

linearization error and numerical errors by the solver which is Runge-Kutta 4th Order

Method. In addition to these uncertainties on the system, the helicopter model is dis-

turbed externally. In the first MRAC design attempt, Sigmoid Functions are used in

the uncertainty parametrization and classical MRAC adaptive law without any mod-

ification is used. Although tracking performance is not unacceptable as much as the

system only with baseline controller, there are some performance related problems

especially in transient part of the response of MRAC augmented LQI controller. Fi-

nally, it is decided that some modifications are implemented to the MRAC controller

and their effects are analyzed on the nonlinear helicopter model.

4.2 Results

In this part, main design tasks and their results are presented. These are reference

model design, LQI and MRAC controllers design, modifications on MRAC controller

and further studies with modified MRAC, respectively.

4.2.1 Reference Model

Reference model is designed such that there will not be any transient and steady state

error between the closed loop system with baseline controller and reference model

to be followed. Baseline controller method is selected to be LQR Controller with an

integrator (LQI). Outputs to be followed is chosen as to be pitch angle, roll angle,
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vertical velocity and yaw angle of the helicopter. LQI weight matrices are tuned as:

Qlqr =



500 0 0 0 0 0 0 0 0 0 0 0 0
0 500 0 0 0 0 0 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0 0 0 0 0
0 0 0 5000 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 30 0 0 0 0 0 0
0 0 0 0 0 0 0 10 0 0 0 0 0
0 0 0 0 0 0 0 0 10 0 0 0 0
0 0 0 0 0 0 0 0 0 10 0 0 0
0 0 0 0 0 0 0 0 0 0 500 0 0
0 0 0 0 0 0 0 0 0 0 0 500 0
0 0 0 0 0 0 0 0 0 0 0 0 1000


, Rlqr = 1000×

[1 0 0 0
0 1 0 0
0 0 0.1 0
0 0 0 0.01

]

(4.1)

Reference model is designed such that,

ẋre f (t) = Are f xre f (t)+Bre f r(t) (4.2)

Main criteria in tuning controller weight matrices are settling time, steady state error

and controller effort. Using matching condition, reference model is designed with an

appropriate tracking performance. Step response of the reference model is shown in

Figure 4.1.
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Figure 4.1: Reference Model Response to Step Command
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4.2.2 LQI and MRAC Controllers

In this section, LQI and MRAC controllers are designed and compared. First, LQI

controller is implemented to the open loop linear and nonlinear helicopter models.

After ensuring that there are not any transient and steady state error between reference

model and closed loop systems, MRAC controller is designed and implemented. For

the basis function in uncertainty parametrization component, Sigmoid Functions are

used since it is the most commonly used one in the literature. Then, step responses

of systems with these controllers are plotted and compared. MRAC parameters are

chosen and tuned as,

Γ = diag(0.5,0.5,0.05,1,0,0,0.1,100,100,100,1000,1000,100)

Q = diag(10,10,10,10,0.1,0.1,0.01,0,01,0.01,0.1,0.05,0.05,0.1)

β (x, t) =
[
1 β1(x, t) β2(x, t) . . . β8(x, t) β9(x, t)

]T

(4.3)

where βi(x, t) = 1−e−xi(t)

1+e−xi(t)
and i = 1,2, . . . ,9.

4.2.2.1 Without External Disturbance

In the absence of external disturbance and noise on the system, it is expected that

both controllers show almost same behavior on the linear system. The reason is that

MRAC controller does not create a significant adaptive inputs to the system when

there is not any uncertainty on the system. However, for nonlinear case, there can be

internal uncertainties on the system caused by linearization, trimming and numerical

calculations during simulation. For this case, MRAC create adaptive inputs to the

system in order to keep tracking the reference model. Linear model step responses

under different controllers are shown in Figure 4.2 without any external disturbance

and noise to the system.
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Figure 4.2: Linear Model Response with LQI and LQI-MRAC to Step Command

On the hand, executing same procedure for the nonlinear system,
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Figure 4.3: Nonlinear Model Response with LQI and LQI-MRAC to Step Command

As seen in Figure 4.2 and Figure 4.3, MRAC augmented LQI controller counter-

acts the trimming, linearization and numerical errors and keeps tracking the reference

model with zero steady state error. For the nonlinear system, LQI controller could

not make steady state error zero in 20 seconds. Adaptive inputs that MRAC con-

troller creates are effective in this manner and these adaptive inputs can be seen and

compared with linear case in the following figure.
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(a) Lateral Cyclic Inputs of Linear and Nonlinear

LQI and LQI-MRAC Controller

(b) Longitudinal Cyclic Inputs of Linear and

Nonlinear LQI and LQI-MRAC Controller

(c) Collective Inputs of Linear and Nonlinear LQI

and LQI-MRAC Controller

(d) Pedal Collective Inputs of Linear and

Nonlinear LQI and LQI-MRAC Controller

Figure 4.4: Inputs of Linear and Nonlinear LQI and LQI-MRAC Controller

For the following simulation results, only nonlinear model responses will be shown

since nonlinear model is more challenging than linear model in terms of uncertainties

and responses to external disturbances.

4.2.2.2 With External Disturbance

In the presence of external disturbance on the system, adaptive controller is more

effective. In addition to linearization and trimming errors, high amount of uncertainty

is applied to the inputs and it is expected that controller retains the helicopter in

reference model response. Three types of external disturbance are considered. The

first one is constant disturbance. This type of uncertainty may be a crosswind. The

second one is sinusoidal disturbance and turbulence can be an example for this. The

last one is random external disturbance selected as a high order nonlinear function.
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Figure 4.5: Constant Disturbance Acting on the System for Different Axis
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Figure 4.6: Sinusoidal Disturbance Acting on the System for Different Axis
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Figure 4.7: Random Disturbance Acting on the System for Different Axis
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Constant External Disturbance: First, constant external disturbance is applied to

the system. Projection operator and e-modification is used in MRAC controller and

modification terms effects are shown in the same plot. Response of the helicopter is

as follows:
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Figure 4.8: LQI-MRAC Controller Response with Constant Dist. to Step Command

with and without Adaptive Law Modifications

Uncertainty exists on the system at the beginning of the simulation. As seen in Figure

4.8, LQI-MRAC controller removes the effect of uncertainty at the end of the simula-

tion and keeps tracking the reference model. Although there are some oscillations in

transient region, proposed controller successfully removes steady state error. In order

to examine the effectiveness of the controller, uncertainty amount is kept high and

this is the reason for the error in transient region. Modification term effects are seen

in steady state region and they decrease control effort and overshoot.
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Figure 4.9: Inputs of LQI-MRAC Controller with Constant Dist. to Step Command

In Figure 4.9, different types of inputs acting on the helicopter are shown. It can be

clearly seen that adaptive inputs are against to the disturbance on the relevant channel.
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Figure 4.10: Adaptive Weights of LQI-MRAC with Constant Disturbance

In the figure 4.10, adaptive weights are shown. Adaptive controller finds appropriate

weighs to cancel out the effect of the uncertainty. This is an extra profit because

classical adaptive law does not guarantee that adaptive weight converges and equals

to actual weights. Since actual weights are not known actually, converged weight

values are assumed to be actual weights on the system.

Sinusoidal External Disturbance: Second disturbance example is sinusoidal type.

Helicopter response is shown below when sinusoidal type of uncertainty is applied to

system,
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(d) Yaw Angle Tracking of LQI and LQI-MRAC

with Sinusoidal Dist.

Figure 4.11: LQI-MRAC Controller Response with Sinusoidal Dist. to Step

Command

Again, there exists external uncertainty from the beginning of the simulation. Al-

though modification terms on adaptive law provides better tracking performance espe-

cially in transient region, it is seen that adaptive controller performance is not enough

to track the reference model because of the oscillatory responses in the steady state

region. Apart from yaw channel, tracking performance is reasonable. Next, inputs of

the helicopter is shown in Figure 4.12,
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(d) Pedal Collective Inputs

Figure 4.12: Inputs of LQI-MRAC Controller with Sinusoidal Dist. to Step

Command

Adaptive control inputs are almost same magnitude with the disturbance in the neg-

ative direction. Adaptive controller could not remove all uncertainty effects on espe-

cially yaw channel and this result affects the reference model tracking.

(a) Without Proj. Operator and e-mod (b) With Projection Operator and e-modification

Figure 4.13: Adaptive Weights of LQI-MRAC with Sinusoidal Disturbance
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In Figure 4.13, adaptive weights are shown when sinusoidal disturbance acts on the

helicopter. Unlike constant disturbance, adaptive weights are not converged but they

are bounded. It is clearly seen that while projection operator provides upper bounds to

adaptive weights norm and keeps them smaller, e-modification provides better track-

ing performance relative to classical MRAC adaptive law.

Random External Disturbance: Lastly, random nonlinear function is added to the

system as an external disturbance. Response of the model helicopter is shown in

Figure 4.14,
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(c) Vertical Velocity Tracking LQI-MRAC with
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(d) Yaw Angle Tracking of LQI-MRAC with

Random Dist.

Figure 4.14: LQI-MRAC Controller Response with Random Dist. Step Command

It is seen that steady state error is zero between the system with LQI-MRAC con-

troller and reference model apart from yaw angle tracking. There is some oscillatory

response again when random external disturbance is applied to the system input chan-
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nels. Inputs and adaptive weights of the system are shown in the following figure.
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(b) Longitudinal Cyclic Inputs
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(d) Pedal Collective Inputs

Figure 4.15: Inputs of LQI-MRAC Controller with Random Dist. to Step Command

Again, it seen that adaptive control inputs are opposed to the disturbance and adaptive

weights are not converged. At the beginning of the simulation, adaptive controller

shows an aggressive behavior to counteract the external disturbance. This creates

undesired high frequency oscillations. Zero steady state error in pitch angle, roll

angle and vertical velocity tracking performance can also be seen from that adaptive

inputs and disturbances on the relative channel are at same magnitude with opposite

sign.
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Figure 4.16: Adaptive Weights of LQI-MRAC with Random External Disturbance

In Figure 4.16, adaptive weights are shown when random external disturbance acts

on the helicopter. Again, adaptive weights are not converged but they are bounded.

4.2.3 Modification of Uncertainty Parametrization in MRAC Controller

In this part, it will be focused on uncertainty parametrization methods of MRAC con-

troller. First, Fourier Series is implemented and effects on the tracking performance

is evaluated under three different external disturbance conditions. Then, Chebyshev

Polynomials are replaced with Fourier Series and uncertainty parametrization perfor-

mance is evaluated. Finally, Chebyshev Polynomials are defined in terms of time

by using trigonometric relations and overall performance of time based uncertainty

parametrization methods are shown.

70



4.2.3.1 Fourier Series Expansion

First, Fourier Series are written to be used in uncertainty parametrization,

β (x, t) =



1

βc1(x, t)

βc2(x, t)
...

βcN(x, t)

βs1(x, t)

βs2(x, t)
...

βsN(x, t)



, βci(x, t) = cos(i
2π

T
t), βci(x, t) = sin(i

2π

T
t) (4.4)

where i = 1,2, . . . ,N

Considering Fourier Series approximation accuracy and simulation speed, series length

and period are selected and tuned as N = 10 and T = 200s. Then, adaptive control

input is written as in Equation 4.5,

uad(t) = Ŵ ∗
T
β
∗(x, t)

β
∗(x, t) =

 ubl(t)

β (x, t)

 (4.5)

Then, basis function and adaptive law parameters are decided as,

β (x, t) =



1

cos( 2π

200t)

cos(2 2π

200t)
...

cos(10 2π

200t)

sin( 2π

200t)

sin(2 2π

200t)
...

sin(10 2π

200t)



, ΓFourier = 0.1I21 (4.6)

After deciding MRAC parameters, same external disturbance types are applied to
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the system controlled with Fourier Series Based MRAC. Projection operator and e-

modification is still hold in the weight update law.

Constant External Disturbance: First, constant external disturbance is applied to

the system. Response of the helicopter is as follows:
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(a) Roll Angle Tracking of LQI-MRAC with
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(c) Vertical Velocity Tracking LQI-MRAC with

Constant Dist.
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(d) Yaw Angle Tracking of LQI-MRAC with

Constant Dist.

Figure 4.17: Fourier Series Based LQI-MRAC Controller Response with Constant

Dist. Step Command
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Again, uncertainty exists on the system at the beginning of the simulation. As seen in

Figure 4.17, LQI-MRAC controller removes the effect of uncertainty at the end of the

simulation and keeps tracking the reference model. It can be clearly said that Fourier

Series performs better tracking performance in all axis when there is a constant un-

certainty on the system.
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(b) Longitudinal Cyclic Inputs
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(c) Collective Inputs
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(d) Pedal Collective Inputs

Figure 4.18: Inputs of Fourier Series Based LQI-MRAC Controller with Constant

Dist. to Step Command

In Figure 4.18, nominal controller inputs, total inputs, adaptive inputs and disturbance

acting on the helicopter are shown. It can be clearly seen that adaptive inputs are

generated in order to cancel out constant disturbance. Moving on to adaptive weights,

73



Figure 4.19: Adaptive Weights of Fourier Series Based LQI-MRAC with Constant

External Disturbance

Unlike using Sigmoid functions in uncertainty parametrization, use of Fourier Series

does not converge adaptive weights as in Figure 4.19. Since basis function elements

βi are periodic and sinusoidal functions, adaptive weights are also in similar structure

to cancel out constant uncertainty on the system. Simulation length is kept longer to

see the periodic behaviour of the adaptive weights.

Sinusoidal External Disturbance: Second, sinusoidal type uncertainty is applied

to the system. Response of the helicopter is as follows:
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(a) Roll Angle Tracking of LQI-MRAC with

Sinusoidal Dist.
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(b) Pitch Angle Tracking of LQI-MRAC with

Sinusoidal Dist.
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(c) Vertical Velocity Tracking LQI-MRAC with

Sinusoidal Dist.
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(d) Yaw Angle Tracking of LQI-MRAC with

Sinusoidal Dist.

Figure 4.20: Fourier Series Based LQI-MRAC Controller Response with Constant

Dist. Step Command

According to Figure 4.20, it is seen that system tracking performance to the refer-

ence model is improved especially in transient region when sinusoidal disturbance

acts on the system. Oscillatory response is decreased significantly especially in yaw

angle tracking relative to use of Sigmoid Functions in uncertainty parametrization. In

addition, inputs of the helicopter is shown in Figure 4.21,
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(d) Pedal Collective Inputs

Figure 4.21: Inputs of Fourier Series Based LQI-MRAC Controller with Sinusoidal

Dist. to Step Command

The improvement of MRAC controller and success of the uncertainty parametrization

can be noticed by Figure 4.21. Unlike Sigmoid functions, use of Fourier series does

not create high frequency oscillatory adaptive inputs and these inputs are almost same

magnitude with opposite direction.

76



Figure 4.22: Adaptive Weights of Fourier Series Based LQI-MRAC with Sinusoidal

External Disturbance

Figure 4.22 represents adaptive weights in MRAC where the uncertainty is parametrized

with Fourier Series. By nature of Fourier Series, it is bounded and sinusoidal structure

and this is also valid for adaptive weights of Fourier Series.

Random External Disturbance: Lastly, random nonlinear disturbance is imple-

mented to the system as uncertainty. In addition to this, Gaussian type white noise is

added to investigate that MRAC controller still works. Response of the helicopter is

shown in Figure 4.23.
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(d) Yaw Angle Tracking of LQI-MRAC with

Random Dist.

Figure 4.23: Fourier Series Based LQI-MRAC Controller Response with Random

Dist. Step Command

According to Figure 4.23, it is seen that system tracking performance is very similar

with the sinusoidal disturbance case. Again, oscillatory response is decreased signifi-

cantly. It can be said that use of Fourier Series in uncertainty parametrization handles

with the predefined random type uncertainties. Moreover, inputs of the helicopter is

shown in Figure 4.24.
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(d) Pedal Collective Inputs

Figure 4.24: Inputs of Fourier Series Based LQI-MRAC Controller with Sinusoidal

Dist. to Step Command

When inputs are examined in Figure 4.24, it is seen that adaptive inputs play an

important role in suppressing the disturbance. They are in opposite directions and

close in magnitude and the use of Fourier Series inhibits high frequency inputs as in

the use of Sigmoid Functions.

Figure 4.25 represents the adaptive weight created by MRAC controller where un-

certainty is parametrized with Fourier Series. Again, bounded and sinusoidal type

adaptive weights are obtained due to the structure of Fourier Series.
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Figure 4.25: Adaptive Weights of Fourier Series Based LQI-MRAC with Random

External Disturbance

4.2.3.2 Chebyshev Polynomials

Secondly, Chebyshev Polynomials are used in MRAC controller to parametrize un-

certainties,

β (x, t) =



T0(x, t)

T1(x, t)
...

TN−1(x, t)

TN(x, t)


, Ti+1(x, t) = 2xTi(x, t)−Ti−1(x, t) (4.7)

It is predefined that T0(x, t) = 1, T1(x, t) = x and i = 1,2, . . . ,N. And, it is required

that |Tn(x, t)| ≤ 1 and x ∈ [−1,1] for x ∈ N for orthogonality property.

The only one design parameter used Chebyshev Polynomials in uncertainty parametriza-

tion is polynomials length N. For simulation speed and performance, length is chosen
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as N = 5. Rewriting adaptive control input as in Equation 4.8,

uad(t) =−Ŵ ∗
T
β
∗(ubl,x(t))

β
∗(ubl,x(t)) =

 ubl

β (x, t)

 (4.8)

Then, basis function and adaptive law parameters are decided as,

β (x, t) =



T0(x, t)

T1(x, t)
...

T4(x, t)

T5(x, t)


, ΓChebyshev = 0.5I6 (4.9)

Implementation of Chebyshev Polynomials into adaptive law is same with the Fourier

Series Expansion. After it is implemented in MRAC, controller is tested under same

types of disturbances. Projection operator and e-modification is kept in controller

design.

State Based Chebyshev Polynomials

In order to satisfy orthogonality property and use Chebyshev polynomials as a uni-

versal approximators, all state values need to be limited within the range of [-1,1].

System states used in controller design are output error integrals, translational ve-

locities, rotational velocities and Euler angles. Since rotational velocities and Euler

angles are in radians, their absolute values are always less than one in all flight con-

dition for all simulations. Translational velocities may be greater than one; however,

it may be limited between the required range by a simple unit conversion to mile/s.

Unfortunately, there is one more problem in using Chebyshev Polynomials in MRAC

for MIMO systems. Because the polynomials are in term of system states and there

are thirteen system states, basis function is going to be very large. This does not seem

reasonable for simulation speed. If basis function is written in terms of system states
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using Chebyshev Polynomials,

β (x, t) =



T0x1(x, t)

T0x2(x, t)
...

T0xn(x, t)

T1x1(x, t)

T1x2(x, t)
...

T1xn(x, t)
...
...

TNx1(x, t)

TNx2(x, t)
...

TNxn(x, t)



(4.10)

where n = 13 and N = 5.

Consequently, augmented basis function is a column matrix with 82 elements (4 for

ubl and 78 for β (x, t)) and there will be 4×82 elements in the adaptive weight matrix

considering four input channel of the helicopter model. This implies that numerical

calculations to estimate adaptive weights are not easy and simulation performance is

not going to be as desired.

As done for all MRAC design and modifications up to this point, three types of dis-

turbance are applied to the system. However, MRAC controller could not find ap-

propriate weights to remove the uncertainty effect. Simulation result for the constant

disturbance case is shown as an example.
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Figure 4.26: State Dependent Chebyshev Polynomials Based LQI-MRAC Controller

Response with Constant Dist. to Step Command
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(d) Pedal Collective Inputs

Figure 4.27: Inputs of State Dependent Chebyshev Polynomials Based LQI-MRAC

Controller with Constant Dist. to Step Command

As seen in Figure 4.26 and Figure 4.27, adaptive element in MRAC could not found

appropriate weights and could not create adaptive inputs to cancel out uncertainty on

the system. After about four seconds, simulation is stopped.

When defining Chebyshev Polynomials in system state based, uncertainty is tried to

be parametrized with system states one by one. That is, coupled terms are not consid-

ered. For example, generated adaptive input by State Based Chebyshev Polynomials

MRAC is in the form of:

[
uad(t)

]
4x1

= K̂ubl ubl(t)+Ŵβ (x, t)

=
[
K̂ubl

]
4x4
×
[
ubl(t)

]
4x1

+
[
Ŵ
]

4x78
×
[
β (x, t)

]
78x1

(4.11)
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⇒ [uad(t)] j,1 = K̂ubl( j, :)×ubl(:, j)

+Ŵ ∗j,1T0x1(x, t)+Ŵ ∗j,2T0x2(x, t)+ · · ·+Ŵ ∗j,nT0xn(x, t)

+Ŵ ∗j,n+1T1x1(x, t)+Ŵ ∗j,n+2T1x2(x, t)+ · · ·+Ŵ ∗j,2nT1xn(x, t)
...

+Ŵ ∗j,5n+1TNx1(x, t)+Ŵ ∗j,5n+2TNx2(x, t)+ · · ·+Ŵ ∗j,6nT6xn(x, t)

where j = 1,2,3,4, n = 13 and

T0xi(x, t) = 1

T1xi(x, t) = xi

T2xi(x, t) = 2x2
i −1

T3xi(x, t) = 4x3
i −3xi

T4xi(x, t) = 8x4
i −8x2

i +1

T5xi(x, t) = 16x5
i −20x3

i +5xi

(4.12)

for i = 1,2, . . . ,13.

With this form, multiplication of different states are not taken into account. Therefore,

uncertainty is not parametrized successfully and MRAC controller does not create

appropriate adaptive input.

Time Based Chebyshev Polynomials

Parametrizing uncertainty with Chebyshev Polynomials are not straightforward and

successful with system states. Alternatively, defining Chebyshev Polynomials in time

only could be a solution for this complexity of use. By trigonometric relation,

cos(0) = 1

cos(φ) = cosφ

cos(2φ) = 2cos2
φ −1

cos(3φ) = 4cos3
φ −3cosφ

cos(4φ) = 8cos4
φ −8cos2

φ +1

cos(5φ) = 16cos5
φ −20cos3

φ +5cosφ

(4.13)
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Selecting φ = t and Tn = cos(nt),

T0 = 1

T1 = cos(t)

T2 = 2cos2(t)−1

T3 = 4cos3(t)−3cos(t)

T4 = 8cos4(t)−8cos2(t)+1

T5 = 16cos5(t)−20cos3(t)+5cos(t)

(4.14)

Finally, equations in Equation 4.14 are in the form of Chebyshev Polynomials. Note

that orthogonality property of Chebyshev Polynomials still hold. That is, |Tn(x, t)|<=

1 and x ∈ [−1,1] for x ∈ N.

Figure 4.28: Chebyshev Polynomials (1st Kind)

Figure 4.28 shows first six members of 1st kind Chebyshev polynomials. It is clearly

seen that orthogonal property is kept.

After defining time dependent Chebyshev Polynomials, same simulation procedures

are done in order to analyze the effect of modification.

Constant and Sinusoidal External Disturbance: As done in other modifications,

first, constant external disturbance is applied to the system. Since time based Cheby-
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shev Polynomials are in trigonometric form, helicopter response is compared with the

case that Fourier Series is used in uncertainty parametrization.
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(d) Yaw Angle Tracking of LQI-MRAC with
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Figure 4.29: Time Dependent Chebyshev Polynomials and Fourier Based

LQI-MRAC Controller Response with Constant Dist. to Step Command
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(b) Longitudinal Cyclic Inputs
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(c) Collective Inputs
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(d) Pedal Collective Inputs

Figure 4.30: Inputs of Time Dependent Chebyshev Polynomials Based LQI-MRAC

Controller with Constant Dist. to Step Command

Inputs of the Time Dependent Chebyshev Polynomials Based LQI-MRAC Controller

and response to step command are given in Figure 4.29 and Figure 4.30. It is clearly

seen that both systems show similar behavior and tracking performance. Although

they converge to reference model successfully after t = 1s, system with Chebyshev

Polynomials exhibit less amplitude oscillations before t = 1s. Adaptive input in the

form of, [
uad(t)

]
4x1

= K̂ubl ubl(t)+Ŵ T
β (x, t)

=
[
K̂ubl

]
4x4
×
[
ubl

]
4x1

+
[
Ŵ T
]

4x6
×
[
β (x, t)

]
6x1

(4.15)

[uad(t)] j,1 = K̂ubl( j, :)×ubl(:, j)+Ŵj,1T0(t)+Ŵj,2T1(t)+ · · ·+Ŵj,6T5(t) (4.16)

where j = 1,2,3,4.

Adaptive weight matrix is formed with 4×10 elements for all input channels of the

helicopter. Since there is not unique form for basis function elements, that is T0, T1,
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T2, . . . , T5 are in different form from each other, adaptive weights are not in a special

form like Fourier Series.

Another difference between Fourier Series and Chebyshev Polynomials are MRAC

design parameters. While Fourier Series need an appropriate period to parametrize

uncertainty successfully, Chebyshev Polynomials do not need period as a parameter.

In order to compare both approximators for different series period, sinusoidal type on

disturbance is given to the system.

(a) Roll Angle Tracking of LQI-MRAC with

Sinusoidal Dist.

(b) Pitch Angle Tracking of LQI-MRAC

with Sinusoidal Dist.

(c) Vertical Velocity Tracking LQI-MRAC

with Sinusoidal Dist.

(d) Yaw Angle Tracking of LQI-MRAC with

Sinusoidal Dist.

Figure 4.31: Comparison of Time Dependent Chebyshev Polynomials and Fourier

Based LQI-MRAC Controller Response with Sinusoidal Dist. and Different Periods

In Figure 4.31, use of Time Dependent Chebyshev Polynomials and Fourier Series

in MRAC uncertainty parametrization is compared under sinusoidal external distur-

bance case. Although, system with Chebyshev Polynomials are not affected by pe-

riod, simulations are repeated under different periods to show period effect in Fourier

Series Approximation. As seen in especially Figure 4.31a and Figure 4.31b, Fourier

Series are not effective with low periods like T = 10s or T = 20s. Using Fourier Series
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Approximation with high period length such as T = 100s or T = 500s, both universal

approximation methods show almost same tracking and uncertainty parametrization

performance. For collective channel, uncertainty is canceled out successfully and

system does almost perfect following of reference model with independent of period.

Lastly, for yaw channel, oscillatory response still exists and both approximator could

not remove all of the sinusoidal uncertainty.

Random External Disturbance: Finally, random disturbance is applied to the sys-

tem with Time Based Chebyshev Polynomials LQI-MRAC controller. Since con-

troller successfully tracks the reference model with these conditions, Gaussian type

white noise is added to system input channels. Response of the helicopter is shown

in Figure 4.32.
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(b) Pitch Angle Tracking of LQI-MRAC with
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(c) Vertical Velocity Tracking LQI-MRAC with

Random Dist.
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(d) Yaw Angle Tracking of LQI-MRAC with

Random Dist.

Figure 4.32: Time Dependent Chebyshev Polynomials Based LQI-MRAC

Controller Response with Random Dist. Step Command

It is basically seen that reference model is tracked under random external disturbance

with the help of Time Dependent Chebyshev Polynomials Based LQI-MRAC con-

troller. Parametrizing uncertainty in time based approximates the uncertainty suc-

cessfully and this can be seen in Figure 4.33 for without noise case.
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(b) Longitudinal Cyclic Inputs
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(c) Collective Inputs
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(d) Pedal Collective Inputs

Figure 4.33: Inputs of Time Dependent Chebyshev Polynomials Based LQI-MRAC

Controller with Random Dist. to Step Command

Lastly, Figure 4.34 shows adaptive weights of MRAC controller where Time Based

Chebyshev Polynomials are used in uncertainty parametrization. Again, e-modification,

Projection Operator and sinusoidal structure of polynomials guarantees that adaptive

inputs are bounded.
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(a) Without Noise Case (b) With Noise Case

Figure 4.34: Adaptive Weights of Time Dependent Chebyshev Polynomials Based

LQI-MRAC with Random External Disturbance

4.2.4 Case Studies

In this section, for random external disturbance case, which is the most complex form

in three disturbance types, is applied to the system and more complex flight tasks

are commanded to the helicopter. Effect of adaptive controller is also shown in plots

obtained by simulations and compared with the non-adaptive case.

4.2.4.1 Sequential Step Commands

In this part, different sequential step commands is given to all channels and response

of the helicopter is investigated. Projection operator, e-modification are used in adap-

tive law in MRAC. Time dependent Chebyshev Polynomials is chosen as the uncer-

tainty parametrization method because of its simplicity of design and good tracking

performance.

Outputs of the helicopter model is shown in the following figures when random ex-

ternal uncertainty exists on all input channels.
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(d) Yaw Angle Tracking of LQI versus

LQI-MRAC with Random Dist.

Figure 4.35: Sequential Step Command Tracking Comparison of LQI and

LQI-MRAC with Random Dist.

In Figure 4.35, blue line represents the response of the helicopter when adaptive con-

troller is not active on the system, that is only Linear Quadratic Regulator with Inte-

gral exists. Although LQI controller do not track reference model shown by magenta

color and are not robust to external disturbances, adding MRAC controller to LQI

baseline controller solves the tracking problem. MRAC controller adapts the distur-

bance and cancel out its effect within about five seconds after new step is commanded

to the system. By looking closer to Figure 4.35,
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Figure 4.36: Sequential Step Command Tracking Comparison of LQI and

LQI-MRAC with Random Dist. (0-5s)

Next, inputs given to the helicopter to track the reference model are shown.

95



0 10 20 30 40 50 60
Time(s)

-3

-2

-1

0

1

2

3
LQ

I-
M

R
A

C
 C

on
tr

ol
le

r 
La

te
ra

l C
yc

lic
 In

pu
ts

 (
de

g)

ad
lat

LQI-MRAC-NONLINEAR

dist
lat

LQI-MRAC-NONLINEAR

nom
lat

LQI-MRAC-NONLINEAR

lat
LQI-MRAC-NONLINEAR

(a) Lateral Cyclic Inputs

0 10 20 30 40 50 60
Time(s)

-4

-3

-2

-1

0

1

2

3

LQ
I-

M
R

A
C

 C
on

tr
ol

le
r 

Lo
ng

itu
di

na
l C

yc
lic

 In
pu

ts
 (

de
g)

ad
lon

LQI-MRAC-NONLINEAR

dist
lon

LQI-MRAC-NONLINEAR

nom
lon

LQI-MRAC-NONLINEAR

lon
LQI-MRAC-NONLINEAR
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Figure 4.37: Inputs of Time Dependent Chebyshev Polynomials Based LQI-MRAC

Controller with Random Dist. to Step Command

MRAC controller performance can be seen better in input plots Figure 4.37. Adap-

tive inputs generated by MRAC controller are almost in same magnitude with the

disturbance on the system in opposite direction. This implies that closed loop system

acts like that there is not any external disturbance on the system and nonlinear model

outputs track the reference model with baseline controller.

By the nature of Chebyshev Polynomials, it is known that they are bounded in [-1,1].

Thus, adaptive weights calculated by using Chebyshev Polynomials in uncertainty

parametrization needs to be bounded. They are plotted and shown in Figure 4.38.
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Figure 4.38: Adaptive Weights of LQI-MRAC with Random External Disturbance

Since different commands are given to the helicopter one after another, helicopter

model states need to be showed as well as helicopter model outputs.
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Figure 4.39: Helicopter States when Sequential Step is Commanded with

LQI-MRAC and Random Dist.

In Figure 4.39, reduced order helicopter model states are shown. Note that helicopter

initial trim point is hovering condition where all translational and rotational velocities

are zero. After, reference Euler angles are commanded in pitch, roll and yaw axis.

Vertical velocity is commanded in collective axis. Consequently, helicopter velocity

is increasing and decreasing in all axis. Since moment of inertia of the relevant axis is

small relative to other axis, roll channel has some oscillatory response while tracking

reference model. After ten seconds of the simulation, it can be said that helicopter

is in forward flight and its speed reaches to 8-10 m/s in 50s. It should be noted that

getting far away from the initial condition brings extra uncertainties on the system

since reference model and baseline controller is designed considering hovering case.
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4.2.4.2 Robustness Analysis

In this section, robustness of the proposed controller is analyzed. Since sample he-

licopter is chosen a model helicopter, its parameter may not be known exactly. For

example, although helicopter mass is assumed constant, it may be increased with

payloads and decreased by remove of the some equipment on the helicopter. Its aero-

dynamics parameters may differ from the values assumed in model parameters. To

make sure that designed controller still works with altering physical and aerodynamic

parameters of the helicopter, robustness of the helicopter in tracking of the reference

model is investigated by changing mass, inertia and some aerodynamics parameters

of the helicopter.

Mass and Inertia Differences Firstly, mass and second moment of inertias of all

axis are changed in order to examine controller performance. It should be noted that

classical adaptive theory defined in Chapter 3 does not guarantee the stability of the

system when uncertainty exist on the system matrix. That is, uncertainty cannot be

removed completely by the input channel. However, these parameters are the most

varying parameters considering the mathematical model and the model helicopter

in real world applications. Therefore, it is preferred that the controller still shows

reasonable performance and does not create a catastrophic problem. Reference model

tracking performance are presented in Figure 4.40-4.43.
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Figure 4.40: Effect of Mass and Inertia Change in Roll Angle Tracking Performance

with Random External Dist.
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Figure 4.41: Effect of Mass and Inertia Change in Pitch Angle Tracking

Performance with Random External Dist.
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Figure 4.42: Effect of Mass and Inertia Change in Vertical Velocity Tracking

Performance with Random External Dist.
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Figure 4.43: Effect of Mass and Inertia Change in Yaw Angle Tracking Performance

with Random External Dist.

As seen in Figure 4.40-4.43, mass and inertias are changed up to±15%. It can be said

that system uncertainties caused by mass and inertia differences do not create a big
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problem and tracking of the system is kept with small errors. It also seems that high

frequency oscillations start especially in the collective channel when the difference is

around ±10%−±15%. By a close look to first five seconds after simulation start in

order to investigate the adaptation process clearly,
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(a) Effect of Mass and Inertia Change in Roll
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(b) Effect of Mass and Inertia Change in Pitch

Angle Tracking Performance with Random

External Dist. (0-5s)
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(c) Effect of Mass and Inertia Change in Vertical

Velocity Tracking Performance with Random

External Dist. (0-5s)
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Figure 4.44: Effect of Mass and Inertia Change of LQI-MRAC with Random

External Dist. (0-5s)
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Next, total inputs acting on the four different input channels are shown in Figure

4.45-4.48.
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Figure 4.45: Lateral Cyclic Inputs
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Figure 4.46: Longitudinal Cyclic Inputs
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Figure 4.47: Collective Inputs
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Figure 4.48: Pedal Collective Inputs
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By looking total inputs, it can be said that there will not be a serious problem up to

%10 percent mass and inertia difference between measured and model parameters.

The problem for 10+% is seen in especially collective input in Figure 4.47.

Aerodynamics Parameter Differences: Secondly, aerodynamics parameters vari-

ation is examined. Lift curve slope and main rotor rotation speed are the selected

parameters to be changed. Reference model tracking performance are presented in

Figure 4.49-4.52.
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Figure 4.49: Effect of Main Rotor RPM and Lift Curve Slope Change in Roll Angle

Tracking Performance with Random External Dist.
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Figure 4.50: Effect of Main Rotor RPM and Lift Curve Slope Change in Pitch Angle

Tracking Performance with Random External Dist.
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Figure 4.51: Effect of Main Rotor RPM and Lift Curve Slope Change in Vertical

Velocity Tracking Performance with Random External Dist.
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Figure 4.52: Effect of Main Rotor RPM and Lift Curve Slope Change in Yaw Angle

Tracking Performance with Random External Dist.

As seen in Figure 4.49–4.52, lift curve slope and main rotor rotation speed are changed

up to ±10%. Again, aerodynamics parameters does not affect the closed loop system

significantly in tracking of reference model manner. It also seems that high frequency

oscillations start especially in the collective channel when the difference is around

±10%−±15%. By a close look to first five seconds after simulation start in order to

investigate the adaptation process clearly,
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(a) Effect of Main Rotor RPM and Lift Curve

Slope Change in Roll Angle Tracking
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Slope Change in Vertical Velocity Tracking

Performance with Random External Dist. (0-5s)
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Figure 4.53: Effect of Mass and Inertia Change of LQI-MRAC with Random

External Dist. (0-5s)

As seen in Figure 4.53, in collective channel, system is more sensitive to decrease in

selected aerodynamics parameters than increase in these parameters. That is, although

tracking performance are not changed significantly when the parameters are increase

by 10%, oscillation in first part of the adaptation affects the tracking reference model.
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Next, total inputs acting on the four different input channels are shown in Figure

4.54–4.57.
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Figure 4.54: Lateral Cyclic Inputs
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Figure 4.55: Longitudinal Cyclic Inputs

109



0 10 20 30 40 50 60

Time(s)

-8

-6

-4

-2

0

2

4

6

8
C

o
lle

c
ti
v
e

 I
n

p
u

ts
 (

d
e

g
)

Exact Parameters

-1%

-3%

-5%

-10%

1%

3%

5%

10%

Figure 4.56: Collective Inputs
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Figure 4.57: Pedal Collective Inputs
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By looking total inputs, it can be said that there will not be a serious problem up

to 10% percent selected aerodynamic parameters difference between measured and

model parameters. The chattering problem for ±10+% is seen in especially collec-

tive input in Figure 4.56.

4.3 Discussions

In this section, LQI and MRAC controllers are implemented on the nonlinear he-

licopter model. Response of the helicopter, model inputs and adaptive weight are

shown and compared under three different types of disturbance in input channels.

As the first step of the design and implementation part, reference model is chosen.

Considering ideal conditions, that is there is not any uncertainty on the system, ideal

response of the helicopter is chosen by LQI controller and the ideal response is plot-

ted in Figure 4.1. Since internal and external uncertainties are not considered in LQI

design for the open loop linear helicopter model, it is expected that reference model

has exactly the same response with the closed loop helicopter model with the base-

line LQI controller (See Figure 4.2). Unlike linear case, some uncertainties exist in

the nonlinear helicopter model such as mathematical calculation errors during lin-

earization and model order reduction. Therefore, response of the nonlinear helicopter

model with LQI controller are not exactly same with the reference model. Secondly,

MRAC controller is designed and implemented to cancel out the internal uncertain-

ties on the system. Consequently, it is provided that closed loop nonlinear helicopter

model with baseline LQI controller and MRAC follows the reference model without

any transient and steady state error (See Figure 4.3). MRAC controller is designed by

using reduced order linear model and reference model and it is testes on both linear

and nonlinear helicopter models. In order to realize the effect of MRAC controller,

it is a good way to show adaptive inputs of the closed loop systems. In Figure 4.4, it

is clearly seen that adaptive inputs are commanded to the nonlinear helicopter model

by MRAC controller against the internal uncertainties. Unlike nonlinear case, there

is not any uncertainty on the linear helicopter model and adaptive inputs are zero in

all input channels as expected (See Figure 4.4). Thirdly, disturbance rejection per-

formance of MRAC augmented LQI controller is analyzed. In this manner, three
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different types of disturbance are applied to the input channels (See Figure 4.5–4.7).

Response of the nonlinear helicopter models are plotted and tracking performances,

oscillations in inputs and boundedness of adaptive weights are evaluated. In the first

MRAC design and implementation, projection operator and e-modification are used

as modification and sigmoid functions are used in uncertainty parametrization. To

examine the effectiveness of modifications, response of the helicopter is plotted with

and without MRAC modifications (See Figure 4.8 and Figure 4.11). It is seen that

modifications in adaptive law decreases the transient error in tracking the reference

model and bounds the adaptive weights. However, tracking performance is still not as

desired and the need of modification on uncertainty parametrization arises. Fourthly,

Fourier Series are implemented on the uncertainty parametrization element in MRAC

controller. In design process, it is noticed that series period and length are effective

especially in tracking the reference model. Tuning period and series length, nonlinear

helicopter response is plotted and it is seen that a remarkable tracking improvement

occurs and high frequency input problems in first MRAC design attempt with sigmoid

functions are solved (See Figure 4.18, 4.21 and 4.24). Fifthly, Chebyshev Polynomi-

als are used in the uncertainty parametrization of MRAC. The only one effective de-

sign parameter is polynomials length. After tuning polynomials length, simulations

are performed with the nonlinear helicopter model controller by MRAC augmented

LQI controller. Simulation is stopped about in 5s. Chebyshev Polynomials do not

succeed in approximating the uncertainty on the system and the response of the he-

licopter diverges as seen in Figure 4.26 and 4.27. After analyzing the approximation

method and the unknown numbers to be calculated, it is concluded that 4x82 ele-

ments are almost impossible to calculate considering the simulation and calculations

performance (See Equation 4.11–4.12). Sixthly, a modification on the Chebyshev

Polynomials is considered. Although the original polynomials are in terms of system

states, they are converted to time based polynomials as in Equation 4.14 by keeping

the orthogonal property of the Chebyshev Polynomials. Modified version of polyno-

mials only depend of time and the unknown numbers to be calculated are less than the

original one. Then, nonlinear helicopter model response is plotted in Figure 4.29 and

4.32. It is seen that tracking performance is very close to Fourier Series and they are

shown in the same plot as in Figure 4.29. It is concluded that using larger series period

in Fourier Series approximates the response to Time Based Chebyshev Polynomials
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(See Figure 4.31). This completes the design and implementation process. As the

last step of the design and implementation part, it is decided that using Time Based

Chebyshev Polynomials and Fourier Series in uncertainty parametrization with ap-

propriate design parameters do not differ from each other. However, considering the

ease of design and less design parameter encourage to use Chebyshev Polynomials.

Moreover, e-modification and projection operator are still effective in decreasing the

transient tracking error and boundedness of the adaptive weights. Lastly, some case

studies are done to examine the controller performance better. First, sequential step

commands are given to the system and it is expected that the nonlinear helicopter

model tracks the predefined reference model. Response of the helicopter model is

given in Figure 4.35 and it is compared with the non-adaptive case to see the effect

of MRAC controller better. Next, robustness analysis is done. Although proposed

controller scheme and technique are not assertive with system uncertainties, it is won-

dered that whether system uncertainties create a catastrophic results or not. The effect

of the difference in mass and inertia of real values and model parameters are aimed.

Tracking performance and total inputs commanded to the nonlinear helicopter model

is analyzed and plotted in Figure 4.40–4.48. Then, difference in main rotor rotation

speed and lift curve slope of real values and model parameters are analyzed. Again,

tracking performance and total inputs commanded to the nonlinear helicopter model

is analyzed and plotted in Figure 4.49–4.57. Consequently, it is concluded that up

to about 10%-15% difference with ideal values of main rotor rotation speed and lift

curve slope, helicopter tracking performance and total inputs commanded to the non-

linear helicopter model is reasonable.
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CHAPTER 5

CONCLUSION

In this thesis, derivation of the nonlinear mathematical model for a small scale heli-

copter is presented. All equations used in modeling are written in terms of helicopter

parameters; however, derived mathematical model is appropriate for small size heli-

copters satisfying assumptions stated in Section 2.1.1. After constructing the nonlin-

ear helicopter model, it is linearized around hover condition at 100 ft and order of the

linear model is reduced for controller design purpose.

Design and modifications of the model reference adaptive control is the other fo-

cus of this thesis. First, classical MRAC controller for a MIMO system is designed.

Reference model is designed with optimal tracking control by LQR method. Clas-

sical MRAC controller is designed without any modifications and Sigmoid Func-

tions are used in its uncertainty parametrization component. Baseline LQR controller

and MRAC controller tracking performance is examined under different types of dis-

turbances given to all input channels of the helicopter along the simulation. From

the simulations, it is verified that non-adaptive baseline controller could not succeed

tracking of the reference model with existence of external disturbances on the sys-

tem. Classical MRAC performs satisfactory tracking performance and it cancels out

the external disturbances; however, it is considered that transient response is not good

enough and some oscillations exist in the inputs. Using e-modification and projection

operator provides better performance and adaptive law is modified accordingly.

After modifying adaptive law, some modifications are considered on the other key

element of MRAC, uncertainty parametrization. Since the helicopter system and

designed classical MRAC controller are both MIMO systems, estimating all adap-

tive weights are not straightforward. Sigmoid Functions require state information of
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the helicopter and this may be problematic when state number of the MIMO sys-

tem is high. At this point, use of time based universal approximators in uncertainty

parametrization is proposed. Previously, Fourier Series and Chebyshev Polynomials

have been used in wing-rock problem [[13],[34]]. Both approximators are tried to

estimate and suppress the uncertainty on the system. While use of Fourier Series

performs better transient response and tracking performance than classical MRAC

controller, state dependent Chebyshev Polynomials could not estimate the adaptive

weights and cause the helicopter response diverges. The source of the problem is

again related with the high number of system states and it is proposed to write Cheby-

shev Polynomials with only time dependent instead of state dependent. Use of time

based Chebyshev Polynomials in uncertainty parametrization provides the best per-

formance in terms of reference model tracking and low frequency control input com-

mand. Finally, classical MRAC controller is formed to the final configuration in such

a manner that e-modification and projection operator are used in its adaptive weight

update law and uncertainty is parametrized with time based Chebyshev Polynomials

written in the form of Equation 4.14. As the last step, case studies are performed for

observing the tracking performance of the MRAC controller in the proposed structure.

5.1 Findings

• Generic mathematical model for model helicopters is derived and implicit equa-

tions are given in terms of helicopter parameters. This provides that presented

mathematical model can be used for different helicopters satisfying the given

assumptions.

• From the simulations performed, it is deduced that the system is more sensitive

in roll channel than other channels. This is probably because of the low moment

of inertia in the relevant axis. This problem may not be seen with the choice of

more robust sample helicopter in roll channel.

• In the controller design and implementation process, control channels are not

separated from each other. That is, multidimensional controller gains and weight

matrices are used in the design. Adaptive weights calculation does not seem

easy with this controller structure, however, it provides the ease of design and
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better coupling effects suppression.

• Adaptive law modifications like σ -modification and e-modification improves

the adaptation process and tracking performance, however, they are not effec-

tive as using them in less complex systems such as wing-rock problem. For

more complex systems, uncertainty parametrization plays the key role.

• It may be concluded that using time based Chebyshev Polynomials in uncer-

tainty parametrization provides better tracking performance than using Fourier

Series. However, this is related with the tuning of controller gains and learning

rates. The only one advantage of using Chebyshev Polynomials is that it re-

quires less design parameter than using Fourier Series. The common property

of the both universal approximators is parametrizing uncertainty on the system

using time data instead of states of the system.

5.2 Future Search and Recommendations

Future works of this thesis can include the verification of the presented mathematical

model with using flight test data. Detailed comparison of the Fourier Series and

Chebyshev Polynomials can be performed in terms of adaptation property. Baseline

controller can be substituted with a robust controller to handle system uncertainties.

Moreover, experimental verification of the proposed controller structure may be the

main focus of the future works and robustness of the controller can be examined under

real world limitations like input delays of the selected hardwares.
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APPENDIX A

EQUATIONS OF THE MAIN ROTOR DYNAMICS

Main Rotor Flappings:

β̈0 =−(24Ksβ0 +24Ibmrβ0Ω2
mr−12Ibmrβ0 p2−12Ibmrβ0q2 +24Ibmrβ0r2

+48Ibmrβ0Ωmrr−24Ibmrβ0β1cΩmr p+24Ibmrβ0β1sΩmrq−24Ibmrβ0β1c pr

+24Ibmrβ0β1sqr+24Xcgβ0emrmbΩ2
mr +12Xcgβ0emrmb p2 +12Xcgβ0emrmbq2

+24Xcgβ0emrmbr2 +3R4
mrClαmr

β̇0cmrΩmrρ +2R3
mrClαmr

β̇1scmrρu

+2R3
mrClαmr

β̇1ccmrρv−Clαmr
β̇0cmre4

mrΩmrρ +2R3
mrClαmr

cmr pρu

+4R3
mrClαmr

cmrΩmrρvi−4R3
mrClαmr

cmrΩmrρw+2R3
mrClαmr

cmrqρv

−2Clαmr
β̇1scmre3

mrρu−2Clαmr
β̇1ccmre3

mrρv+Clαmr
cmre3

mr pρu+2Clαmr
cmre3

mrΩmrρvi

−2Clαmr
cmre3

mrΩmrρw+Clαmr
cmre3

mrqρv−3R4
mrClαmr

cmrΩ
2
mrρθ0−3R2

mrClαmr
cmrρθ0u2

−3R2
mrClαmr

cmrρθ0v2−Clαmr
cmre4

mrΩ
2
mrρθ0−3Clαmr

cmre2
mrρθ0u2−3Clαmr

cmre2
mrρθ0v2

+48Xcgβ0emrmbΩmrr−8R3
mrClαmr

β̇0cmremrΩmrρ +6RmrClαmr
β̇1scmre2

mrρu

−6R2
mrClαmr

β̇1scmremrρu+6RmrClαmr
β̇1ccmre2

mrρv−6R2
mrClαmr

β̇1ccmremrρv

−3R2
mrClαmr

cmremr pρu−6R2
mrClαmr

cmremrΩmrρvi +6R2
mrClαmr

cmremrΩmrρw

−3R2
mrClαmr

cmremrqρv+6RmrClαmr
cmremrρθ0u2 +6RmrClαmr

cmremrρθ0v2

+4R3
mrClαmr

cmrΩmrρθ1su−3Clαmr
β1ccmre3

mrΩmrρu+4R3
mrClαmr

cmrΩmrρθ1cv

+3Clαmr
β1scmre3

mrΩmrρv+2Clαmr
cmre3

mrΩmrρθ1su+2Clαmr
cmre3

mrΩmrρθ1cv

+6R2
mrClαmr

β̇0cmre2
mrΩmrρ +4R3

mrClαmr
cmremrΩ

2
mrρθ0−6R2

mrClαmr
cmremrΩmrρθ1su

−6R2
mrClαmr

cmremrΩmrρθ1cv+6RmrClαmr
β1ccmre2

mrΩmrρu−3R2
mrClαmr

β1ccmremrΩmrρu

−6RmrClαmr
β1scmre2

mrΩmrρv+3R2
mrClαmr

β1scmremrΩmrρv)/(24Ibmr)

β̈1s =−(48Ksβ1s+96Ibmr β̇1cΩmr−96IbmrΩmrq−48Ibmrqr−36Ibmrβ1sq2+48Ibmrβ1sr2

+48Ibmrβ
2
0 Ωmrq+36Ibmrβ

2
1sΩmrq+48Ibmrβ

2
0 qr+36Ibmrβ

2
1sqr+96Ibmrβ1sΩmrr

−96XcgemrmbΩmrq−48Xcgemrmbqr+48Xcgβ1semrmbΩ2
mr +36Xcgβ1semrmb p2

+48Xcgβ1semrmbr2 +6R4
mrClαmr

β̇1scmrΩmrρ +8R3
mrClαmr

β̇0cmrρu
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+6R4
mrClαmr

cmrΩmr pρ−2Clαmr
β̇1scmre4

mrΩmrρ−8Clαmr
β̇0cmre3

mrρu+12R2
mrClαmr

cmrρuvi

−12R2
mrClαmr

cmrρuw+2Clαmr
cmre4

mrΩmr pρ+12Clαmr
cmre2

mrρuvi−12Clαmr
cmre2

mrρuw

+6R4
mrClαmr

β1ccmrΩ
2
mrρ+6R4

mrClαmr
cmrΩ

2
mrρθ1s−2Clαmr

β1ccmre4
mrΩ

2
mrρ+9R2

mrClαmr
cmrρθ1su2

+2Clαmr
cmre4

mrΩ
2
mrρθ1s+9Clαmr

cmre2
mrρθ1su2+96Xcgβ1semrmbΩmrr−24RmrClαmr

cmremrρuvi

+24RmrClαmr
cmremrρuw+12R2

mrClαmr
β1ccmre2

mrΩ
2
mrρ−16R3

mrClαmr
β̇1scmremrΩmrρ

+24RmrClαmr
β̇0cmre2

mrρu−24R2
mrClαmr

β̇0cmremrρu−8R3
mrClαmr

cmremrΩmr pρ

+8R3
mrClαmr

β0cmrΩmrρv+9R2
mrClαmr

β1scmrρuv−18RmrClαmr
cmremrρθ1su2

−16R3
mrClαmr

cmrΩmrρθ0u+4Clαmr
β0cmre3

mrΩmrρv+9Clαmr
β1scmre2

mrρuv

−8Clαmr
cmre3

mrΩmrρθ0u−16R3
mrClαmr

β1ccmremrΩ
2
mrρ +12R2

mrClαmr
β̇1scmre2

mrΩmrρ

−8R3
mrClαmr

cmremrΩ
2
mrρθ1s+24R2

mrClαmr
cmremrΩmrρθ0u−18RmrClαmr

β1scmremrρuv

−12R2
mrClαmr

β0cmremrΩmrρv)/(48Ibmr)

β̈1c =−(48Ksβ1c−96Ibmr β̇1sΩmr+96IbmrΩmr p+48Ibmr pr−36Ibmrβ1c p2+48Ibmrβ1cr2

−48Ibmrβ
2
0 Ωmr p−36Ibmrβ

2
1cΩmr p−48Ibmrβ

2
0 pr−36Ibmrβ

2
1c pr+96Ibmrβ1cΩmrr

+96XcgemrmbΩmr p+48Xcgemrmb pr+48Xcgβ1cemrmbΩ2
mr +36Xcgβ1cemrmbq2

+48Xcgβ1cemrmbr2+6R4
mrClαmr

β̇1ccmrΩmrρ+8R3
mrClαmr

β̇0cmrρv+6R4
mrClαmr

cmrΩmrqρ

−2Clαmr
β̇1ccmre4

mrΩmrρ−8Clαmr
β̇0cmre3

mrρv+12R2
mrClαmr

cmrρvvi−12R2
mrClαmr

cmrρvw

+2Clαmr
cmre4

mrΩmrqρ+12Clαmr
cmre2

mrρvvi−12Clαmr
cmre2

mrρvw−6R4
mrClαmr

β1scmrΩ
2
mrρ

+6R4
mrClαmr

cmrΩ
2
mrρθ1c+2Clαmr

β1scmre4
mrΩ

2
mrρ+9R2

mrClαmr
cmrρθ1cv2+2Clαmr

cmre4
mrΩ

2
mrρθ1c

+9Clαmr
cmre2

mrρθ1cv2+96Xcgβ1cemrmbΩmrr−24RmrClαmr
cmremrρvvi+24RmrClαmr

cmremrρvw

−12R2
mrClαmr

β1scmre2
mrΩ

2
mrρ−16R3

mrClαmr
β̇1ccmremrΩmrρ +24RmrClαmr

β̇0cmre2
mrρv

−24R2
mrClαmr

β̇0cmremrρv−8R3
mrClαmr

cmremrΩmrqρ−8R3
mrClαmr

β0cmrΩmrρu

−9R2
mrClαmr

β1ccmrρuv−18RmrClαmr
cmremrρθ1cv2−4Clαmr

β0cmre3
mrΩmrρu

−16R3
mrClαmr

cmrΩmrρθ0v−9Clαmr
β1ccmre2

mrρuv−8Clαmr
cmre3

mrΩmrρθ0v

+16R3
mrClαmr

β1scmremrΩ
2
mrρ+12R2

mrClαmr
β̇1ccmre2

mrΩmrρ−8R3
mrClαmr

cmremrΩ
2
mrρθ1c

+24R2
mrClαmr

cmremrΩmrρθ0v+18RmrClαmr
β1ccmremrρuv+12R2

mrClαmr
β0cmremrΩmrρu)/(48Ibmr)

Main Rotor Forces:

Tmr =(NmrClαmr
cmrρ(Rmr−emr)(3Rmrβ̇1su−6θ0v2−4R2

mrΩ
2
mrθ0−4e2

mrΩ
2
mrθ0−6θ0u2

+3Rmrβ̇1cv+3Rmr pu+6RmrΩmrvi−6RmrΩmrw+3Rmrqv−3β̇1semru−3β̇1cemrv

+3emr pu+6emrΩmrvi−6emrΩmrw+3emrqv+4R2
mrβ̇0Ωmr−2β̇0e2

mrΩmr+6RmrΩmrθ1su

−6β1cemrΩmru+6RmrΩmrθ1cv+6β1semrΩmrv+6emrΩmrθ1su+6emrΩmrθ1cv

−4RmremrΩ
2
mrθ0−2Rmrβ̇0emrΩmr))/24
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Hmr = (Nmrcmrρ(Rmr− emr)(24Clαmr
emr pvi−24Clαmr

emr pw+72Clαmr
β0vvi

−72Clαmr
β0vw−24Clαmr

θ0uvi +24Clαmr
θ0uw+16R2

mrClαmr
β̇0β̇1s +16R2

mrClαmr
β̇0 p

+16Clαmr
β̇0β̇1se2

mr−8Clαmr
β̇0e2

mr p+48Clαmr
β0β1sv2+24Clαmr

β0θ1cv2−24Clαmr
β1cθ0v2

−24CdRmrΩmru+24RmrClαmr
β̇1svi−24RmrClαmr

β̇1sw−24CdemrΩmru+24RmrClαmr
pvi

−24RmrClαmr
pw−24Clαmr

β̇1semrvi +24Clαmr
β̇1semrw−8R2

mrClαmr
β0β1sΩ

2
mr

+8R2
mrClαmr

β0Ω2
mrθ1c−16R2

mrClαmr
β1cΩ2

mrθ0+4Clαmr
β0β1se2

mrΩ
2
mr+8Clαmr

β0e2
mrΩ

2
mrθ1c

−4Clαmr
β1ce2

mrΩ
2
mrθ0−32RmrClαmr

β̇0β̇1semr−8RmrClαmr
β̇0emr p−3RmrClαmr

β1cβ̇1su

−3RmrClαmr
β1sβ̇1cu+36RmrClαmr

β0β̇0v+15RmrClαmr
β1cβ̇1cv+21RmrClαmr

β1sβ̇1sv

−3RmrClαmr
β1c pu+36RmrClαmr

β1cΩmrvi +21RmrClαmr
β1s pv−3RmrClαmr

β1squ

−36RmrClαmr
β1cΩmrw+15RmrClαmr

β1cqv−12RmrClαmr
β̇0θ0u+3RmrClαmr

β̇1cθ1cu

+9RmrClαmr
β̇1sθ1su+3Clαmr

β1cβ̇1semru+3Clαmr
β1sβ̇1cemru+3RmrClαmr

β̇1cθ1sv

+3RmrClαmr
β̇1sθ1cv−36Clαmr

β0β̇0emrv−15Clαmr
β1cβ̇1cemrv−21Clαmr

β1sβ̇1semrv

+9RmrClαmr
pθ1su+12RmrClαmr

Ωmrθ1svi−3Clαmr
β1cemr pu+3RmrClαmr

pθ1cv

+3RmrClαmr
qθ1cu−12RmrClαmr

Ωmrθ1sw−12Clαmr
β1cemrΩmrvi +21Clαmr

β1semr pv

−3Clαmr
β1semrqu+3RmrClαmr

qθ1sv+12Clαmr
β1cemrΩmrw+15Clαmr

β1cemrqv

−48Clαmr
β0β1cuv+12Clαmr

β̇0emrθ0u−3Clαmr
β̇1cemrθ1cu−9Clαmr

β̇1semrθ1su

−3Clαmr
β̇1cemrθ1sv−3Clαmr

β̇1semrθ1cv+9Clαmr
emr pθ1su+12Clαmr

emrΩmrθ1svi

+3Clαmr
emr pθ1cv+3Clαmr

emrqθ1cu−12Clαmr
emrΩmrθ1sw+3Clαmr

emrqθ1sv+24Clαmr
β0θ1suv

−24Clαmr
β1sθ0uv+8R2

mrClαmr
β0β̇1cΩmr +24R2

mrClαmr
β1cβ̇0Ωmr +8R2

mrClαmr
β0Ωmrq

+8R2
mrClαmr

β̇0Ωmrθ1s−8R2
mrClαmr

β̇1sΩmrθ0−12RmrClαmr
β 2

0 Ωmru−12RmrClαmr
β 2

1cΩmru

−4Clαmr
β0β̇1ce2

mrΩmr +12Clαmr
β1cβ̇0e2

mrΩmr−8R2
mrClαmr

Ωmr pθ0+8Clαmr
β0e2

mrΩmrq

−4Clαmr
β̇0e2

mrΩmrθ1s+4Clαmr
β̇1se2

mrΩmrθ0−12Clαmr
β 2

0 emrΩmru−6Clαmr
β 2

1cemrΩmru

−6Clαmr
β 2

1semrΩmru−8Clαmr
e2

mrΩmr pθ0+4RmrClαmr
β0β1semrΩ

2
mr+8RmrClαmr

β0emrΩ
2
mrθ1c

−4RmrClαmr
β1cemrΩ

2
mrθ0−4RmrClαmr

β0β̇1cemrΩmr−36RmrClαmr
β1cβ̇0emrΩmr

+8RmrClαmr
β0emrΩmrq+12RmrClαmr

β1cβ1sΩmrv−4RmrClαmr
β̇0emrΩmrθ1s

+4RmrClαmr
β̇1semrΩmrθ0−8RmrClαmr

emrΩmr pθ0 +12RmrClαmr
β1cΩmrθ1su

−36RmrClαmr
β0Ωmrθ0v+24RmrClαmr

β1cΩmrθ1cv+12RmrClαmr
β1sΩmrθ1sv

−6Clαmr
β1cemrΩmrθ1su+6Clαmr

β1semrΩmrθ1cu−36Clαmr
β0emrΩmrθ0v

+18Clαmr
β1cemrΩmrθ1cv+18Clαmr

β1semrΩmrθ1sv))/96

Ymr =−(Nmrcmrρ(Rmr−emr)(24Clαmr
emrqw−24Clαmr

emrqvi+72Clαmr
β0uvi−72Clαmr

β0uw

+24Clαmr
θ0vvi−24Clαmr

θ0vw−16R2
mrClαmr

β̇0β̇1c−16R2
mrClαmr

β̇0q−16Clαmr
β̇0β̇1ce2

mr

+8Clαmr
β̇0e2

mrq−48Clαmr
β0β1cu2 +24Clαmr

β0θ1su2−24Clαmr
β1sθ0u2
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+24CdRmrΩmrv−24RmrClαmr
β̇1cvi +24RmrClαmr

β̇1cw+24CdemrΩmrv

−24RmrClαmr
qvi+24RmrClαmr

qw+24Clαmr
β̇1cemrvi−24Clαmr

β̇1cemrw+8R2
mrClαmr

β0β1cΩ2
mr

+8R2
mrClαmr

β0Ω2
mrθ1s−16R2

mrClαmr
β1sΩ

2
mrθ0−4Clαmr

β0β1ce2
mrΩ

2
mr+8Clαmr

β0e2
mrΩ

2
mrθ1s

−4Clαmr
β1se2

mrΩ
2
mrθ0 +32RmrClαmr

β̇0β̇1cemr +8RmrClαmr
β̇0emrq+36RmrClαmr

β0β̇0u

+21RmrClαmr
β1cβ̇1cu+15RmrClαmr

β1sβ̇1su−3RmrClαmr
β1cβ̇1sv−3RmrClαmr

β1sβ̇1cv

+15RmrClαmr
β1s pu+36RmrClαmr

β1sΩmrvi−3RmrClαmr
β1c pv+21RmrClαmr

β1cqu

−36RmrClαmr
β1sΩmrw−3RmrClαmr

β1sqv−3RmrClαmr
β̇1cθ1su−3RmrClαmr

β̇1sθ1cu

−36Clαmr
β0β̇0emru−21Clαmr

β1cβ̇1cemru−15Clαmr
β1sβ̇1semru+12RmrClαmr

β̇0θ0v

−9RmrClαmr
β̇1cθ1cv−3RmrClαmr

β̇1sθ1sv+3Clαmr
β1cβ̇1semrv+3Clαmr

β1sβ̇1cemrv−3RmrClαmr
pθ1cu

−12RmrClαmr
Ωmrθ1cvi +15Clαmr

β1semr pu−3RmrClαmr
pθ1sv−3RmrClαmr

qθ1su

+12RmrClαmr
Ωmrθ1cw−12Clαmr

β1semrΩmrvi−3Clαmr
β1cemr pv+21Clαmr

β1cemrqu

−9RmrClαmr
qθ1cv+12Clαmr

β1semrΩmrw−3Clαmr
β1semrqv+48Clαmr

β0β1suv+3Clαmr
β̇1cemrθ1su

+3Clαmr
β̇1semrθ1cu−12Clαmr

β̇0emrθ0v+9Clαmr
β̇1cemrθ1cv+3Clαmr

β̇1semrθ1sv−3Clαmr
emr pθ1cu

−12Clαmr
emrΩmrθ1cvi−3Clαmr

emr pθ1sv−3Clαmr
emrqθ1su+12Clαmr

emrΩmrθ1cw

−9Clαmr
emrqθ1cv+24Clαmr

β0θ1cuv−24Clαmr
β1cθ0uv+8R2

mrClαmr
β0β̇1sΩmr

+24R2
mrClαmr

β1sβ̇0Ωmr+8R2
mrClαmr

β0Ωmr p−8R2
mrClαmr

β̇0Ωmrθ1c+8R2
mrClαmr

β̇1cΩmrθ0

−4Clαmr
β0β̇1se2

mrΩmr+12Clαmr
β1sβ̇0e2

mrΩmr+12RmrClαmr
β 2

0 Ωmrv+12RmrClαmr
β 2

1sΩmrv

+8Clαmr
β0e2

mrΩmr p+8R2
mrClαmr

Ωmrqθ0 +4Clαmr
β̇0e2

mrΩmrθ1c−4Clαmr
β̇1ce2

mrΩmrθ0

+12Clαmr
β 2

0 emrΩmrv+6Clαmr
β 2

1cemrΩmrv+6Clαmr
β 2

1semrΩmrv+8Clαmr
e2

mrΩmrqθ0

−4RmrClαmr
β0β1cemrΩ

2
mr +8RmrClαmr

β0emrΩ
2
mrθ1s−4RmrClαmr

β1semrΩ
2
mrθ0

−4RmrClαmr
β0β̇1semrΩmr−36RmrClαmr

β1sβ̇0emrΩmr +8RmrClαmr
β0emrΩmr p

−12RmrClαmr
β1cβ1sΩmru+4RmrClαmr

β̇0emrΩmrθ1c−4RmrClαmr
β̇1cemrΩmrθ0

+8RmrClαmr
emrΩmrqθ0−36RmrClαmr

β0Ωmrθ0u+12RmrClαmr
β1cΩmrθ1cu

+24RmrClαmr
β1sΩmrθ1su+12RmrClαmr

β1sΩmrθ1cv−36Clαmr
β0emrΩmrθ0u

+18Clαmr
β1cemrΩmrθ1cu+18Clαmr

β1semrΩmrθ1su

+6Clαmr
β1cemrΩmrθ1sv−6Clαmr

β1semrΩmrθ1cv))/96

Main Rotor Moments:

Qmr =(Nmrcmrρ(Rmr−emr)(12R3
mrClαmr

β̇ 2
0 −12CdR3

mrΩ
2
mr+6R3

mrClαmr
β̇ 2

1c+6R3
mrClαmr

β̇ 2
1s

−12Cde3
mrΩ

2
mr+6R3

mrClαmr
p2+6R3

mrClαmr
q2+4Clαmr

β̇ 2
0 e3

mr+2Clαmr
β̇ 2

1ce3
mr+2Clαmr

β̇ 2
1se

3
mr

+6Clαmr
e3

mr p2 +6Clαmr
e3

mrq
2−12CdRmru2−12CdRmrv2−12Cdemru2−12Cdemrv2

+24RmrClαmr
v2

i +24RmrClαmr
w2 +24Clαmr

emrv2
i +24Clαmr

emrw2−48RmrClαmr
viw

+6R3
mrClαmr

β 2
1cΩ2

mr +6R3
mrClαmr

β 2
1sΩ

2
mr−48Clαmr

emrviw+2Clαmr
β 2

1ce3
mrΩ

2
mr
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+2Clαmr
β 2

1se
3
mrΩ

2
mr +12R3

mrClαmr
β̇1s p+12R3

mrClαmr
β̇1cq+32R2

mrClαmr
β̇0vi

−32R2
mrClαmr

β̇0w−4Clαmr
β̇1se3

mr p−4Clαmr
β̇1ce3

mrq−16Clαmr
β̇0e2

mrvi

+16Clαmr
β̇0e2

mrw−12CdRmre2
mrΩ

2
mr−12CdR2

mremrΩ
2
mr +4RmrClαmr

β̇ 2
0 e2

mr

−20R2
mrClαmr

β̇ 2
0 emr +2RmrClαmr

β̇ 2
1ce2

mr−10R2
mrClαmr

β̇ 2
1cemr +2RmrClαmr

β̇ 2
1se

2
mr

−10R2
mrClαmr

β̇ 2
1semr +6RmrClαmr

e2
mr p2 +6R2

mrClαmr
emr p2 +6RmrClαmr

e2
mrq

2

+6R2
mrClαmr

emrq2 +12RmrClαmr
β 2

0 u2 +9RmrClαmr
β 2

1cu2 +3RmrClαmr
β 2

1su
2

+12RmrClαmr
β 2

0 v2 +3RmrClαmr
β 2

1cv2 +9RmrClαmr
β 2

1sv
2 +12Clαmr

β 2
0 emru2

+9Clαmr
β 2

1cemru2+3Clαmr
β 2

1semru2+12Clαmr
β 2

0 emrv2+3Clαmr
β 2

1cemrv2+9Clαmr
β 2

1semrv2

+6R3
mrClαmr

β1cΩ2
mrθ1s−6R3

mrClαmr
β1sΩ

2
mrθ1c−2Clαmr

β1ce3
mrΩ

2
mrθ1s+2Clαmr

β1se3
mrΩ

2
mrθ1c

−16RmrClαmr
β̇0emrvi +16RmrClαmr

β̇0emrw−24RmrClαmr
β1cuvi +24RmrClαmr

β1cuw

+24RmrClαmr
β1svvi−24RmrClαmr

β1svw+2RmrClαmr
β 2

1ce2
mrΩ

2
mr−10R2

mrClαmr
β 2

1cemrΩ
2
mr

+2RmrClαmr
β 2

1se
2
mrΩ

2
mr−10R2

mrClαmr
β 2

1semrΩ
2
mr+12RmrClαmr

θ1suvi−12RmrClαmr
θ1suw

−24Clαmr
β1cemruvi +12RmrClαmr

θ1cvvi +24Clαmr
β1cemruw−12RmrClαmr

θ1cvw

+24Clαmr
β1semrvvi−24Clαmr

β1semrvw+12Clαmr
emrθ1suvi−12Clαmr

emrθ1suw

+12Clαmr
emrθ1cvvi−12Clαmr

emrθ1cvw+12R3
mrClαmr

β1cβ̇1sΩmr−12R3
mrClαmr

β1sβ̇1cΩmr

−4RmrClαmr
β̇1se2

mr p−4R2
mrClαmr

β̇1semr p−4RmrClαmr
β̇1ce2

mrq−4R2
mrClαmr

β̇1cemrq

−16R2
mrClαmr

β0β̇1cu−16R2
mrClαmr

β1cβ̇0u+16R2
mrClαmr

β0β̇1sv+16R2
mrClαmr

β1sβ̇0v

+12R3
mrClαmr

β1cΩmr p−12R3
mrClαmr

β1sΩmrq−12R3
mrClαmr

β̇0Ωmrθ0

+6R3
mrClαmr

β̇1cΩmrθ1c+6R3
mrClαmr

β̇1sΩmrθ1s+4Clαmr
β1cβ̇1se3

mrΩmr−4Clαmr
β1sβ̇1ce3

mrΩmr

+16R2
mrClαmr

β0 pv−16R2
mrClαmr

β0qu−3RmrClαmr
β1cθ1su2−3RmrClαmr

β1sθ1cu2

+8R2
mrClαmr

β̇0θ1su−8R2
mrClαmr

β̇1sθ0u+8Clαmr
β0β̇1ce2

mru+8Clαmr
β1cβ̇0e2

mru

+3RmrClαmr
β1cθ1sv2 +3RmrClαmr

β1sθ1cv2 +8R2
mrClαmr

β̇0θ1cv−8R2
mrClαmr

β̇1cθ0v

−8Clαmr
β0β̇1se2

mrv−8Clαmr
β1sβ̇0e2

mrv+6R3
mrClαmr

Ωmr pθ1s−4Clαmr
β1ce3

mrΩmr p

+6R3
mrClαmr

Ωmrqθ1c +4Clαmr
β1se3

mrΩmrq+4Clαmr
β̇0e3

mrΩmrθ0

−2Clαmr
β̇1ce3

mrΩmrθ1c−2Clαmr
β̇1se3

mrΩmrθ1s−8R2
mrClαmr

pθ0u−16R2
mrClαmr

Ωmrθ0vi

+16R2
mrClαmr

Ωmrθ0w+16Clαmr
β0e2

mr pv−16Clαmr
β0e2

mrqu−8R2
mrClαmr

qθ0v

−3Clαmr
β1cemrθ1su2−3Clαmr

β1semrθ1cu2−4Clαmr
β̇0e2

mrθ1su+4Clαmr
β̇1se2

mrθ0u

+3Clαmr
β1cemrθ1sv2 +3Clαmr

β1semrθ1cv2−4Clαmr
β̇0e2

mrθ1cv+4Clαmr
β̇1ce2

mrθ0v

+6Clαmr
e3

mrΩmr pθ1s +6Clαmr
e3

mrΩmrqθ1c−8Clαmr
e2

mr pθ0u−16Clαmr
e2

mrΩmrθ0vi

+16Clαmr
e2

mrΩmrθ0w−8Clαmr
e2

mrqθ0v+4RmrClαmr
β1cβ̇1se2

mrΩmr−4RmrClαmr
β1sβ̇1ce2

mrΩmr

−20R2
mrClαmr

β1cβ̇1semrΩmr +20R2
mrClαmr

β1sβ̇1cemrΩmr−4RmrClαmr
β1ce2

mrΩmr p

−4R2
mrClαmr

β1cemrΩmr p+4RmrClαmr
β1se2

mrΩmrq+4R2
mrClαmr

β1semrΩmrq

+16R2
mrClαmr

β0β1sΩmru+16R2
mrClαmr

β0β1cΩmrv+4RmrClαmr
β̇0e2

mrΩmrθ0
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+4R2
mrClαmr

β̇0emrΩmrθ0−2RmrClαmr
β̇1ce2

mrΩmrθ1c−2R2
mrClαmr

β̇1cemrΩmrθ1c

−2RmrClαmr
β̇1se2

mrΩmrθ1s−2R2
mrClαmr

β̇1semrΩmrθ1s +6RmrClαmr
e2

mrΩmr pθ1s

+6R2
mrClαmr

emrΩmr pθ1s +6RmrClαmr
e2

mrΩmrqθ1c +6R2
mrClαmr

emrΩmrqθ1c

−8R2
mrClαmr

β0Ωmrθ1cu−8Clαmr
β0β1se2

mrΩmru+8R2
mrClαmr

β0Ωmrθ1sv−8Clαmr
β0β1ce2

mrΩmrv

−8Clαmr
β0e2

mrΩmrθ1cu+12Clαmr
β1ce2

mrΩmrθ0u+8Clαmr
β0e2

mrΩmrθ1sv−12Clαmr
β1se2

mrΩmrθ0v

−2RmrClαmr
β1ce2

mrΩ
2
mrθ1s +2RmrClαmr

β1se2
mrΩ

2
mrθ1c−2R2

mrClαmr
β1cemrΩ

2
mrθ1s

+2R2
mrClαmr

β1semrΩ
2
mrθ1c +8RmrClαmr

β0β̇1cemru+8RmrClαmr
β1cβ̇0emru

−8RmrClαmr
β0β̇1semrv−8RmrClαmr

β1sβ̇0emrv+16RmrClαmr
β0emr pv−16RmrClαmr

β0emrqu

−12RmrClαmr
β1cβ1suv−4RmrClαmr

β̇0emrθ1su+4RmrClαmr
β̇1semrθ0u−4RmrClαmr

β̇0emrθ1cv

+4RmrClαmr
β̇1cemrθ0v−8RmrClαmr

emr pθ0u−16RmrClαmr
emrΩmrθ0vi

+16RmrClαmr
emrΩmrθ0w−8RmrClαmr

emrqθ0v−6RmrClαmr
β1cθ1cuv

+6RmrClαmr
β1sθ1suv−12Clαmr

β1cβ1semruv−6Clαmr
β1cemrθ1cuv

+6Clαmr
β1semrθ1suv−8RmrClαmr

β0β1semrΩmru−8RmrClαmr
β0β1cemrΩmrv

−8RmrClαmr
β0emrΩmrθ1cu+12RmrClαmr

β1cemrΩmrθ0u+8RmrClαmr
β0emrΩmrθ1sv

−12RmrClαmr
β1semrΩmrθ0v))/96

Mxmr =−(Nmr(Rmr−emr)(3Clαmr
β1ccmremrρv2−2Clαmr

β̇1scmre3
mrΩmrρ−3Clαmr

β1ccmremrρu2

−6Clαmr
β̇0cmre2

mrρu−24Ksβ1s+4Clαmr
cmre3

mrΩmr pρ+9Clαmr
cmremrρθ1su2+3Clαmr

cmremrρθ1sv2

−2Clαmr
β1ccmre3

mrΩ
2
mrρ+4Clαmr

cmre3
mrΩ

2
mrρθ1s+12Clαmr

cmremrρuvi−12Clαmr
cmremrρuw

+6RmrClαmr
β̇0cmremrρu+6Clαmr

β1scmremrρuv+6Clαmr
cmremrρθ1cuv−2RmrClαmr

β̇1scmre2
mrΩmrρ

+4R2
mrClαmr

β̇1scmremrΩmrρ +4RmrClαmr
cmre2

mrΩmr pρ +4R2
mrClαmr

cmremrΩmr pρ

+6Clαmr
β0cmre2

mrΩmrρv−12Clαmr
cmre2

mrΩmrρθ0u−2RmrClαmr
β1ccmre2

mrΩ
2
mrρ

+4R2
mrClαmr

β1ccmremrΩ
2
mrρ +4RmrClαmr

cmre2
mrΩ

2
mrρθ1s +4R2

mrClαmr
cmremrΩ

2
mrρθ1s

+6RmrClαmr
β0cmremrΩmrρv−12RmrClαmr

cmremrΩmrρθ0u))/48

Mymr =−(Nmr(Rmr− emr)(24Ksβ1c−2Clαmr
β̇1ccmre3

mrΩmrρ−3Clαmr
β1scmremrρu2

+3Clαmr
β1scmremrρv2−6Clαmr

β̇0cmre2
mrρv+4Clαmr

cmre3
mrΩmrqρ+3Clαmr

cmremrρθ1cu2

+9Clαmr
cmremrρθ1cv2+2Clαmr

β1scmre3
mrΩ

2
mrρ+4Clαmr

cmre3
mrΩ

2
mrρθ1c+12Clαmr

cmremrρvvi

−12Clαmr
cmremrρvw+6RmrClαmr

β̇0cmremrρv−6Clαmr
β1ccmremrρuv+6Clαmr

cmremrρθ1suv

−2RmrClαmr
β̇1ccmre2

mrΩmrρ +4R2
mrClαmr

β̇1ccmremrΩmrρ +4RmrClαmr
cmre2

mrΩmrqρ

+4R2
mrClαmr

cmremrΩmrqρ−6Clαmr
β0cmre2

mrΩmrρu−12Clαmr
cmre2

mrΩmrρθ0v

+2RmrClαmr
β1scmre2

mrΩ
2
mrρ−4R2

mrClαmr
β1scmremrΩ

2
mrρ +4RmrClαmr

cmre2
mrΩ

2
mrρθ1c

+4R2
mrClαmr

cmremrΩ
2
mrρθ1c−6RmrClαmr

β0cmremrΩmrρu−12RmrClαmr
cmremrΩmrρθ0v))/48
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Stabilizer Bar Flappings:
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APPENDIX B

R-50 MODEL HELICOPTER PARAMETERS

Table B.1: R50 Model Helicopter Parameters [28]

Symbol Value Unit Definition

Main Rotor Parameters

mb 0.3 kg Main rotor blade mass

Rmr 1.5392 m Main rotor blade radius

Clαmr
6 1/rad Main rotor lift curve slope

cmr 0.1079 m Main rotor mean blade chord

emr 0.030785 m Main rotor hinge offset

Ibmr 0.86754 kg.m2 Main rotor blade flapping inertia

about flapping hinge

Ωmr 91.106 rad/s Main rotor angular velocity

θtw 0 deg Main rotor blade twist angle

is 0 deg Main rotor shaft tilt angle

Nmr 2 - Number of main rotor blades

Cd 0.010 - Main rotor blade drag coefficient

σmr 0.044626 - Main rotor solidity

Amr 7.4432 m2 Main rotor disk area

Mb 3.3483 Nm Main rotor flapping hinge moment

Ksw 0.2 - Swashplate linkage gain

K1 0 deg δ3 angle

CT 0.00226 - Main rotor thrust coefficient

Xcg 0.77 m Main rotor blade c.g. location

Ks 0 N/rad Main rotor spring constant
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Table B.1 continued from previous page

Symbol Value Unit Definition

Loading Parameters

Ixx 1.9887 kg.m2 Helicopter moment of inertia in x axis

Iyy 6.2051 kg.m2 Helicopter moment of inertia in y axis

Izz 5.9751 kg.m2 Helicopter moment of inertia in z axis

Ixz 0 kg.m2 Helicopter product of inertia in xz axis

mh 44.384 kg Helicopter mass

Tail Rotor Parameters

Rtr 0.26 m Tail rotor blade radius

Clαtr
3 1/rad Tail rotor lift curve slope

Ωtr 565.49 rad/s Tail rotor angular velocity

θtwtr 0 deg Tail rotor blade twist

Ntr 2 - Number of tail rotor blades

ctr 0.04444 m Tail rotor mean blade chord

σtr 0.10881 - Tail rotor solidity

Atr 0.21236 m2 Tail rotor disk area

Stabilizer Bar Parameters

Rsb 0.56501 m

Distance from the top center

of the rotor hub to the end

of the stabilizer bar blades

csb 0.099974 m Stabilizer bar mean chord

lsb 0.15 m Stabilizer bar blade length

Rsbp 0.41501 m

Distance from the top center

of the rotor hub to the beginning

of the stabilizer bar blades

AR 1.5 - Stabilizer bar aspect ratio

Clαsb
2.6931 1/rad Stabilizer bar lift curve slope

Ibsb 0.061907 kg.m2 Stabilizer bar blade flapping

inertia about flapping hinge

Ksb 0.8 - Stabilizer bar linkage gain

Nsb 2 - Number of stabilizer bar blades
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Table B.1 continued from previous page

Symbol Value Unit Definition

Geometric Parameters

Rxmr 0 m
Distance from c.g. point to

main rotor hub in xB axis

Rymr 0 m
Distance from c.g. point to

main rotor hub in yB axis

Rzmr -0.56124 m
Distance from c.g. point to

main rotor hub in zB axis

Rxtr -1.8418 m
Distance from c.g. point to

tail rotor in xB axis

Rytr 0 m
Distance from c.g. point to

tail rotor in yB axis

Rztr -0.14468 m
Distance from c.g. point to

tail rotor in zB axis

Rxhs -1.8418 m
Distance from c.g. point to

horizontal stabilizer in xB axis

Ryhs 0 m
Distance from c.g. point to

horizontal stabilizer in yB axis

Rzhs 0 m
Distance from c.g. point to

horizontal stabilizer in zB axis

Rxv f -1.8418 m
Distance from c.g. point to

vertical stabilizer in xB axis

Ryv f 0 m
Distance from c.g. point to

vertical stabilizer in yB axis

Rzv f 0 m
Distance from c.g. point to

vertical stabilizer in zB axis

Fuselage Parameters

A f usx 0.21572 m2 Fuselage flat plate

drag area along xB axis

A f usy 0.7292 m2 Fuselage flat plate

drag area along yB axis

135



Table B.1 continued from previous page

Symbol Value Unit Definition

A f usz 0.64661 m2 Fuselage flat plate

drag area along zB axis

Cdx 0.01 -
Fuselage flat plate

drag coefficient along xB axis

Cdy 0.01 -
Fuselage flat plate

drag coefficient along yB axis

Cdz 0.01 -
Fuselage flat plate

drag coefficient along zB axis

Empennage Parameters

Clαhs
3 1/rad Horizontal stabilizer lift curve slope

Clαv f
3 1/rad Vertical stabilizer lift curve slope

Ahs 0.075 m2 Area of horizontal stabilizer

Av f 0.0375 m2 Area of vertical stabilizer
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APPENDIX C

MODEL ANALYSIS

Figure C.1: Comparison of eigenvalues [28]
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