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1 Introduction

During the last few years, exciting experimental results are obtained in the

baryon sector containing a single b-quark. The CDF Collaboration observed

the states Σ±

b and Σ∗±

b [1], while both DO [2] and CDF [3] Collaborations

have seen Ξb. Recently, BaBar Collaboration reported the discovery of Ω∗

c

with mass splitting mΩ∗

c
−mΩc

= (70.8± 1.0± 1.1)MeV [4].

The masses of the heavy baryons have been studied in the framework

of various phenomenological models [5]- [13] and also in the framework of

QCD sum rules method [14]- [26]. Along with their masses, another static

parameter of the heavy baryons is their magnetic moment. Study of the mag-

netic moments can give valuable information about the internal structures

of hadrons.

The magnetic moments of heavy baryons have been studied in the frame-

work of different methods. In [27, 28] the magnetic moments of charmed

baryons are calculated within naive quark model. In [29, 30], magnetic mo-

ments of charmed and bottom baryons are analyzed in quark model and in

[31] heavy baryon magnetic moments are studied in bound state approach.

Magnetic moments of heavy baryons are calculated in the relativistic three-

quark model [32], hyper central model [33], Chiral perturbation model [34],

soliton model [35], skyrmion model [36] and nonrelativistic constituent quark

model with light and strange q̄q pairs [37]. In [38] the magnetic moments

of Σc and Λc baryons are calculated in QCD sum rules in external electro-

magnetic field. In [39, 40], the light cone QCD sum rules method is applied

to study the magnetic moments of the ΛQ, (Q = c, b) and ΣQΛQ transitions

(more about this method can be found in [41, 42, 43, 44] and references

therein ).

The aim of the present work is the calculation of the magnetic moments
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of the Ξb baryons recently observed by DO and CDF Collaborations within

the light cone QCD sum rules framework. The plan of the paper is as follows.

In section 2, using the general form of the the baryon current, the light cone

QCD sum rules for Ξb and Ξc baryons are calculated. In section 3 we present

our numerical calculations on the Ξb and Ξc baryons. In this section we also

present a comparison of our results with the predictions of other approaches.

2 Light cone QCD sum rules for the ΞQ mag-

netic moments

In order to calculate the magnetic moments of ΞQ (Q = b, c) in the framework

of the light cone QCD sum rules, we need the expression for the interpolating

current of ΞQ. To construct it, we follow [11], i.e. we assume that the strange

and light quarks (sq) in ΞQ are in a relative spin zero state (scalar or pseudo

scalar diquarks). Therefore, the most general current without derivatives and

with the quantum numbers of ΞQ can be constructed from the combination

of aforementioned scalar or pseudoscalar diquarks in the following way

ηQ = εabc[(q
aTCsb)γ5 + β(qaTCγ5s

b)]Qc, (1)

here a, b and c are color indices, C is the charge conjugation operator, Q = b,

or c, q = u, or d and β is an arbitrary parameter. Having the explicit ex-

pression for the interpolating current, our next task is to construct light cone

QCD sum rules for the magnetic moments of ΞQ baryons. It is constructed

from the following correlation function:

Π(p, q) = i

∫

d4xeipx < γ | T{ηQ(x)η̄Q(0) |}0 > . (2)

The calculation of the phenomenological side at the hadronic level pro-

ceeds by inserting into the correlation function a complete set of hadronic

2



states with the quantum numbers of ΞQ. We get

Π =
∑

i

< 0 | ηQ | ΞQi
(p2) >

p22 −m2
ΞQ

< ΞQi
(p2) | ΞQi

(p1) >γ
< ΞQi

(p1) | η̄Q | 0 >
p21 −m2

ΞQ

.

(3)

Isolating the ground state’s contributions, Eq. (3) can be written as

Π =
< 0 | ηQ | ΞQ(p2) >

p22 −m2
ΞQ

< ΞQ(p2) | ΞQ(p1) >γ
< ΞQ(p1) | η̄Q | 0 >

p21 −m2
ΞQ

+
∑

hi

< 0 | ηQi | hi(p2) >
p22 −m2

hi

< hi(p2) | hi(p1) >γ
< hi(p1) | η̄Q | 0 >

p21 −m2
hi

,

(4)

where p1 = p+q, p2 = p and q is the photon momentum. The second term in

Eq. (4) describes the higher resonances and continuum contributions. The

coupling of the interpolating current with the baryons ΞQ is determined as

< 0 | ηQ | ΞQ(p) >= λQuΞQ
(p), (5)

where uΞQ
(p) is a spinor describing the baryon ΞQ with four momentum p

and λQ is the corresponding residue.

The last step for obtaining the expression for the physical part of the

correlator function is to write down the matrix element < ΞQ(p2) | ΞQ(p1) >γ

in terms of the form factors. Using Lorentz covariance, this matrix element

can be written as

< ΞQ(p1) | ΞQ(p2) >γ = εµuΞQ
(p1)

[

f1γµ − i
σµαqα
2mΞQ

f2

]

uΞQ
(p2)

= uΞQ
(p1)

[

(f1 + f2)γµ +
(p1 + p2)µ
2mΞQ

f2

]

uΞQ
(p2)ε

µ,

(6)

where f1(q
2) and f2(q

2) are the form factors and εµ is the photon polarization

vector.
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For calculation of the ΞQ magnetic moments, the values of the form factors

only at q2 = 0 are needed because the photon is real in our problem. Using

Eqs. (4-6) for physical part of the correlator and summing over the spins of

initial and final ΞQ baryons, the correlation function becomes

Π = −λ2Qεµ
6p2 +mΞQ

p22 −m2
ΞQ

[

(f1 + f2)γµ +
(p1 + p2)µ
2mΞQ

f2

] 6p1 +mΞQ

p21 −m2
ΞQ

.

(7)

From this expression, we see that there are various structures which can

be chosen for studying the magnetic moments of ΞQ. In the present work

following [45], we choose the structure 6 p2 6 ε 6 q that contains magnetic form

factor f1 + f2 and at q2 = 0 it gives the magnetic moment of ΞQ in units of

e~/2mΞQ
. Choosing this structure in the physical part of the correlator, for

the magnetic moments of ΞQ we obtain

Π = −λ2Q
1

p21 −m2
ΞQ

µΞQ

1

p22 −m2
ΞQ

,

(8)

where µΞQ
= (f1 + f2) |q2=0 are the magnetic moments of ΞQ in units of

e~/2mΞQ
.

In order to calculate the magnetic moments of ΞQ baryons, the expression

of the theoretical part of the correlation function is needed. After simple

calculations for the theoretical part of the correlation function in QCD we

obtain

Π = −iǫabcǫa′b′c′
∫

d4xeipx〈γ(q) | {γ5Scc′

Q γ5Tr(S
ba′

q S ′ab′

s )

+ βγ5S
cc′

Q Tr(Sba′

q γ5S
′ab′

s ) + βScc′

Q γ5Tr(γ5S
ba′

q S ′ab′

s )

+ β2Scc′

Q Tr(γ5S
ab′

s γ5S
′ba′

q )} | 0〉 (9)
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where S ′

i = CST
i C and C and T are the charge conjugation and transposition

operators, respectively and SQ and Sq(s) are the heavy and light(strange)

quark propagators.

The correlation function from QCD part receives three different contribu-

tions: a) perturbative contributions, b) nonperturbative contributions, where

photon is emitted from the freely propagating quark (in other words at short

distance) c) nonperturbative contributions, when photon is radiated at long

distances. To obtain the expression for the contribution from the emission

of photon at short distances, the following procedure can be used: Each one

of the quarks can emit the photon, and hence each term in Eq. (9) corre-

sponds to three terms in which the propagator of the photon emitting quark

is replaced by:

Sab
αβ ⇒ −1

2

{
∫

d4yF µνyνS
free(x− y)γµS

free(y)

}ab

αβ

, (10)

where the Fock-Schwinger gauge, xµA
µ(x) = 0 has been used. Note that the

explicit expressions of free light and heavy quark propagators in x represen-

tation are:

Sfree
q =

i 6x
2π2x4

− mq

4π2x2
,

Sfree
Q =

m2
Q

4π2

K1(mQ

√
−x2)√

−x2
− i

m2
Q 6x

4π2x2
K2(mQ

√
−x2),

(11)

where Ki are Bessel functions, mu,d = 0 and ms 6= 0. The expression for the

nonperturbative contributions to the correlation function can be obtained

from Eq. (9) by replacing one of the light quark propagator by

Sab
αβ → −1

4
q̄aΓjq

b(Γj)αβ , (12)
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where Γj =
{

1, γ5, γα, iγ5γα, σαβ/
√
2
}

and sum over Γj is implied, and

the other two propagators are the full propagators involving both perturba-

tive and nonperturbative contributions. In order to calculate the correlation

function from QCD side, we need the explicit expressions of the heavy and

light quark propagators in the presence of external field.

The light cone expansion of the propagator in external field is obtained

in [43]. It receives contributions from various q̄Gq, q̄GGq, q̄qq̄q nonlocal

operators , where G is the gluon field strength tensor. In this work, we

consider operators with only one gluon field and contributions coming from

three particle nonlocal operators and neglect terms with two gluons q̄GGq,

and four quarks q̄qq̄q [44]. In this approximation the expressions for the

heavy and light quark propagators are:

iSQ(x) = iSfree
Q (x)− igs

∫

d4k

(2π)4
e−ikx

∫ 1

0

dv

[ 6k +mQ

(m2
Q − k2)2

Gµν(vx)σµν

+
1

m2
Q − k2

vxµG
µνγν

]

,

Sq(x) = Sfree
q (x)− mq

4π2x2
− 〈q̄q〉

12

(

1− i
mq

4
6x
)

− x2

192
m2

0〈q̄q〉
(

1− i
mq

6
6x
)

−igs
∫ 1

0

du

[ 6x
16π2x2

Gµν(ux)σµν − uxµGµν(ux)γ
ν i

4π2x2

−i mq

32π2
Gµνσ

µν

(

ln

(−x2Λ2

4

)

+ 2γE

)]

, (13)

where Λ is the energy cut off separating perturbative and nonperturbative

domains.

In order to calculate the theoretical part, from Eqs. (9)-(13) it follows

that the matrix elements of nonlocal operators q̄Γiq between the photon

and vacuum states are needed, i.e.〈γ(q) | q̄(x1)Γiq(x2) | 0〉. These matrix

elements can be expanded near the light cone x2 = 0 in terms of the photon
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distribution amplitudes [46].

〈γ(q)|q̄(x)σµνq(0)|0〉 = −ieq q̄q(εµqν − ενqµ)

∫ 1

0

dueiūqx
(

χϕγ(u) +
x2

16
A(u)

)

− i

2(qx)
eq〈q̄q〉

[

xν

(

εµ − qµ
εx

qx

)

− xµ

(

εν − qν
εx

qx

)]
∫ 1

0

dueiūqxhγ(u)

〈γ(q)|q̄(x)γµq(0)|0〉 = eqf3γ

(

εµ − qµ
εx

qx

)
∫ 1

0

dueiūqxψv(u)

〈γ(q)|q̄(x)γµγ5q(0)|0〉 = −1

4
eqf3γǫµναβε

νqαxβ
∫ 1

0

dueiūqxψa(u)

〈γ(q)|q̄(x)gsGµν(vx)q(0)|0〉 = −ieq〈q̄q〉 (εµqν − ενqµ)

∫

Dαie
i(αq̄+vαg)qxS(αi)

〈γ(q)|q̄(x)gsG̃µνiγ5(vx)q(0)|0〉 = −ieq〈q̄q〉 (εµqν − ενqµ)

∫

Dαie
i(αq̄+vαg)qxS̃(αi)

〈γ(q)|q̄(x)gsG̃µν(vx)γαγ5q(0)|0〉 = eqf3γqα(εµqν − ενqµ)

∫

Dαie
i(αq̄+vαg)qxA(αi)

〈γ(q)|q̄(x)gsGµν(vx)iγαq(0)|0〉 = eqf3γqα(εµqν − ενqµ)

∫

Dαie
i(αq̄+vαg)qxV(αi)

〈γ(q)|q̄(x)σαβgsGµν(vx)q(0)|0〉 = eq〈q̄q〉
{[(

εµ − qµ
εx

qx

)(

gαν −
1

qx
(qαxν + qνxα)

)

qβ

−
(

εµ − qµ
εx

qx

)(

gβν −
1

qx
(qβxν + qνxβ)

)

qα

−
(

εν − qν
εx

qx

)(

gαµ −
1

qx
(qαxµ + qµxα)

)

qβ

+

(

εν − qν
εx

q.x

)(

gβµ −
1

qx
(qβxµ + qµxβ)

)

qα

]
∫

Dαie
i(αq̄+vαg)qxT1(αi)

+

[(

εα − qα
εx

qx

)(

gµβ −
1

qx
(qµxβ + qβxµ)

)

qν

−
(

εα − qα
εx

qx

)(

gνβ −
1

qx
(qνxβ + qβxν)

)

qµ

−
(

εβ − qβ
εx

qx

)(

gµα − 1

qx
(qµxα + qαxµ)

)

qν

+

(

εβ − qβ
εx

qx

)(

gνα − 1

qx
(qνxα + qαxν)

)

qµ

]
∫

Dαie
i(αq̄+vαg)qxT2(αi)
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+
1

qx
(qµxν − qνxµ)(εαqβ − εβqα)

∫

Dαie
i(αq̄+vαg)qxT3(αi)

+
1

qx
(qαxβ − qβxα)(εµqν − ενqµ)

∫

Dαie
i(αq̄+vαg)qxT4(αi)

}

(14)

where χ is the magnetic susceptibility of the quarks, ϕγ(u) is the leading twist

2, ψv(u), ψa(u), A and V are the twist 3 and hγ(u), A, Ti (i = 1, 2, 3, 4) are

the twist 4 photon distribution amplitudes (DA’s), respectively. The explicit

expressions of DA’s are presented in numerical analysis section.

The theoretical part of the correlation function can be obtained in terms

of QCD parameters by substituting photon DA’s and expressions for heavy

and light quarks propagators in to Eq. (9). Sum rules for the ΞQ magnetic

moments are obtained by equating two representations of the correlation

function. The higher states and continuum contributions are modeled using

the hadron-quark duality. Applying double Borel transformations on the

variables p21 = (p + q)2 and p22 = p2 on both sides of the correlator, for the

ΞQ baryon magnetic moments we get:

− λ2Q(β)µΞQ
e
−m2

ΞQ
/M2

B =

∫ s0

m2
Q

e
−s

M2
B ρ(s)ds

+
(β2 − 1)e

−m2
Q

M2
B

288π2

{

γE(6eQ + es)msm
2
0 < q̄q >

}

−
(β2 − 1)e

−m2
Q

M2
B m2

Q

72M4
B

{

(es + eq)m
2
0 < s̄s >< q̄q > η1

}

+
e

−m2
Q

M2
B m2

Q

432M4
B

{

(β2 − 1)m2
0 < s̄s >< q̄q >

[

36eQ + (es + eq)A(u0)

]

+ (β2 + 1)f3γeqmsm
2
0 < s̄s > (η2 + ψa(u0))

}

+
e

−m2
Q

M2
B

72

{

(1− β2) < s̄s >< q̄q >

[

12eQ − (es + eq)[η1 −m2
0χiϕγ(u0)]

]
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− 3eq(β
2 + 1)f3γms < s̄s > η2

}

− (β2 − 1)e

−m2
Q

M2
B M2

Bms

96π2m2
Q

[

(6eQ + es)γEm
2
0 < q̄q >

]

− e

−m2
Q

M2
B ms

288π2

(

3(β2 − 1)eQm
2
0 < q̄q >

{

− 3 + 2γE + 2ln[
Λ2

m2
Q

]

}

+ eqm
2
0 < s̄s > (1 + β2) + esm

2
0 < q̄q >

[

(1− β2)(γE + ln[
Λ2

m2
Q

])

]

)

+
9eQm

2
Qms

144π2

{

< s̄s > (1 + β2) + 2 < q̄q > (1− β2)

}

,

(15)

where M2
B =

M2
1M

2
2

M2
1+M2

2
and u0 =

M2
1

M2
1+M2

2
. Since the masses of the initial and

final baryons are the same, we will setM2
1 =M2

2 and u0 = 1/2. The functions

appearing in Eq. (15) are defined as:

η1 =

∫

Dαi

∫ 1

0

dvS(αi)δ(αq + vαg − u0),

η2 =

∫

Dαi

∫ 1

0

dvV(αi)δ
′(αq + vαg − u0),

ρ(s) =
(β2 − 1)

144π2M2
B

{

m2
0(6eQ + es)ms < q̄q > ln(

−mQ
2 + s

Λ2
)

}

+
3(1 + β2)eQm

4
Q

64π4

{

13

2
+ ψ10 −

1

6
ψ20 −

1

6
ψ30 + [ψ10 +

3

2
]ln(

s

m2
Q

) +
1

6
ψ41

}

+
(1− β2)ms < q̄q > ψ10

48π2m2
Q

{

2eqm
2
Qη1 − (es + eq)m

2
0

[

8 + ln(
s−m2

Q

Λ2
)

]}

− ms

288π2m2
Q

{

(β2 − 1)m2
0(es + 6eQ) < q̄q >

[

3ln(
s−m2

Q

Λ2
)− (4γE + ln[

Λ2

m2
Q

])

]

+ 6eQ

[

3m2
Q{(1 + β2) < s̄s > +2(1− β2) < q̄q >}ψ10

] }

9



+
m2

Q

576π2

(

(es + 12eQ)

{

(β2 − 1)

m4
Q

m2
0ms < q̄q >

[

− (1 + γE)(ψ22 + 2ψ12)

− ψ02 − ψ32 − ψ22 −
γE
2
ψ20 + 3(2ψ32 + 3ψ22 + ψ02)ln(

s−m2
Q

Λ2
)− ln(

Λ2

m2
Q

)

]}

+ 12eq

{

2

m2
Q

(β2 − 1)ms < q̄q > η1ψ21

+ (1 + β2)f3γη2

[

ψ21 − ψ10 +
1

2
ψ20 +

1

2
ψ00 + ln(

m2
Q

s
)

]})

,

(16)

where,

∫

Dαi =

∫ 1

0

dαq̄

∫ 1

0

dαq

∫ 1

0

dαgδ(1− αq̄ − αq − αg), (17)

and functions ψnm are defined as

ψnm =
(s−mQ

2)
n

sm(m2
Q)

n−m ,

(18)

Note that the contributions of the terms ∼< G2 > are also calculated, but

their numerical values are very small and therefore for customary in Eq. (15)

these terms are omitted. From Eq. (15) it follows that for the determination

of the ΞQ baryon magnetic moments, we need to know the residue λQ. The

residue can be obtained from the two-point sum rules and is calculated in

[25]. For the current given in eq. (1) it takes the following form:

λ2Q(β) = emΞQ
2/M2

B

(

∫ s0

m2
Q

ds e−s/M2
B

{

(1 + β2)m4
Q

29π4

[

(1− x2)

(

1

x2
− 8

x
+ 1

)

− 12 lnx

]

+
ms

24π2
(1− x2)

[

(1− β2)〈q̄q〉+ (1 + b2)ß

2

]

+
(1 + β2) < g2G2 >

2103π4
(1− x)(1 + 5x)

}

10



+
ms

25π2

{

(1 + β2)m2
0 < s̄s >

6
e−m2

Q/M2
B − (1− β2)m2

0 < q̄q >
[

e−m2
Q/M2

B

+

∫ 1

0

dα(1− α)e

−m2
Q

(1−α)M2
B

]}

− 〈q̄q〉ß
6

(1− β2)e−m2
Q/M2

B

)

,

(19)

where, x = m2
Q/s.

3 Numerical analysis

The present section is devoted to the numerical analysis of the magnetic

moments of ΞQ baryons. The values of the input parameters, appearing

in the sum rules expression for magnetic moments are: 〈ūu〉(1 GeV ) =

〈d̄d〉(1 GeV ) = −(0.243)3 GeV 3, ß(1 GeV ) = 0.8〈ūu〉(1 GeV ), m2
0(1 GeV ) =

0.8 GeV 2 [47], , Λ = 300 MeV and f3γ = −0.0039 GeV 2 [46]. The value

of the magnetic susceptibility χ(1 GeV ) = −3.15± 0.3 GeV −2 was obtained

by a combination of the local duality approach and QCD sum rules [46].

Recently, from the analysis of radiative heavy meson decay, χ(1 GeV ) =

−(2.85 ± 0.5) GeV −2 was obtained [48], which is in good agreement with

the instanton liquid model prediction [49], but slightly below the QCD sum

rules prediction [46]. Note that firstly the magnetic susceptibility in the

framework of QCD sum rules is calculated in [50] and it is obtained that

χ(1 GeV ) = −4.4 GeV −2. In the numerical analysis, we have used all three

value of χ existing in the litrature and obtained that the values of the mag-

netic moments of ΞQ baryons are practically insensitive to the value of χ.

The photon DA’s entering the sum rules for the magnetic moments of ΞQ

are calculated in [46] and their expressions are:

ϕγ(u) = 6uū
(

1 + ϕ2(µ)C
3
2
2 (u− ū)

)

,
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ψv(u) = 3
(

3(2u− 1)2 − 1
)

+
3

64

(

15wV
γ − 5wA

γ

) (

3− 30(2u− 1)2 + 35(2u− 1)4
)

,

ψa(u) =
(

1− (2u− 1)2
) (

5(2u− 1)2 − 1
) 5

2

(

1 +
9

16
wV

γ − 3

16
wA

γ

)

,

A(αi) = 360αqαq̄α
2
g

(

1 + wA
γ

1

2
(7αg − 3)

)

,

V(αi) = 540wV
γ (αq − αq̄)αqαq̄α

2
g,

hγ(u) = −10
(

1 + 2κ+
)

C
1
2
2 (u− ū),

A(u) = 40u2ū2
(

3κ− κ+ + 1
)

+8(ζ+2 − 3ζ2) [uū(2 + 13uū)

+ 2u3(10− 15u+ 6u2) ln(u) + 2ū3(10− 15ū+ 6ū2) ln(ū)
]

,

T1(αi) = −120(3ζ2 + ζ+2 )(αq̄ − αq)αq̄αqαg,

T2(αi) = 30α2
g(αq̄ − αq)

(

(κ− κ+) + (ζ1 − ζ+1 )(1− 2αg) + ζ2(3− 4αg)
)

,

T3(αi) = −120(3ζ2 − ζ+2 )(αq̄ − αq)αq̄αqαg,

T4(αi) = 30α2
g(αq̄ − αq)

(

(κ + κ+) + (ζ1 + ζ+1 )(1− 2αg) + ζ2(3− 4αg)
)

,

S(αi) = 30α2
g{(κ+ κ+)(1− αg) + (ζ1 + ζ+1 )(1− αg)(1− 2αg)

+ ζ2[3(αq̄ − αq)
2 − αg(1− αg)]},

S̃(αi) = −30α2
g{(κ− κ+)(1− αg) + (ζ1 − ζ+1 )(1− αg)(1− 2αg)

+ ζ2[3(αq̄ − αq)
2 − αg(1− αg)]}. (20)

The constants appearing in the wave functions are given as [46] ϕ2(1 GeV ) =

0, wV
γ = 3.8 ± 1.8, wA

γ = −2.1 ± 1.0, κ = 0.2, κ+ = 0, ζ1 = 0.4, ζ2 = 0.3,

ζ+1 = 0 and ζ+2 = 0.

From the explicit expressions of the magnetic moments of ΞQ baryons, it

follows that it contains three auxiliary parameters: Borel mass squared M2
B,

continuum threshold s0 and β which enters the expression of the interpolating

current for ΞQ. The physical quantity, magnetic moment µΞQ
, should be

independent of these auxiliary parameters. In other words we should find

12



the ”working regions” of these auxiliary parameters, where the magnetic

moments are independent of them.

The value of the continuum threshold is fixed from the analysis of the

two- point sum rules, where the mass and residue λΞQ
of the ΞQ baryons

are determined [25], which leads to the value s0 = 6.52 GeV 2 for Ξb and

s0 = 3.02 GeV 2 for Ξc. If we choose the value s0 = 6.42 GeV 2 for Ξb and

s0 = 8 GeV 2 for Ξc. the results remain practically unchanged. Next, we

try to find the working region of M2
B where µΞQ

are independent of it at

fixed value of β and the above mentioned values of s0. The upper bound

of M2
B is obtained requiring that the continuum contribution should be less

than the contribution of the first resonance. The lower bound of M2
B is

determined by requiring that the highest power of 1/M2
B be less than 300/0

of the highest power of M2
B. These two conditions are both satisfied in the

region 15 GeV 2 ≤ M2
B ≤ 20 GeV 2 and 5 GeV 2 ≤ M2

B ≤ 8 GeV 2 for Ξb and

Ξc, respectively.

In Figs. 1 and 2, we depict the dependence of µΞ0
b
and µΞ−

b
onM2

B at fixed

value of β and s0 = 6.52 GeV 2. In Figs. 3 and 4, we present the dependence

of µΞ0
c
and µΞ+

c
on M2

B at fixed value of β and s0 = 3.02 GeV 2. From these

figures, we see that the values of the magnetic moments of Ξb and Ξc exhibit

good stability when M2
B varies in the region 15 GeV 2 ≤ M2

B ≤ 20 GeV 2

and 5 GeV 2 ≤ M2
B ≤ 8 GeV 2, respectively. The last step of our analysis is

the determination of the working region for the auxiliary parameter β. For

this aim, in Figs. 5, 6, 7, and 8 we present the dependence of the magnetic

moments of ΞQ baryons on cos θ where tan θ = β, using the values of M2
B

from the ”working region” which we already determined and at fixed values

of s0.

From these figures we obtained that the prediction of the magnetic mo-

13



ment µΞb
(µΞc

) is practically independent of the value of the auxiliary param-

eter β. From all these analysis we deduce the final results for the magnetic

moments in Table 1 for χ = −3.15 GeV 2. Comparison of our results on the

magnetic moments of ΞQ baryons with predictions of other approaches, as

we already noted, is also presented in Table1.

µΞ0
b

µΞ−

b
µΞ0

c
µΞ+

c

Our results −0.045± 0.005 −0.08 ± 0.02 0.35± 0.05 0.50± 0.05
RQM [32] -0.06 -0.06 0.39 0.41
NQM [32] -0.06 -0.06 0.37 0.37

[33] - - −1.02÷−1.06 0.45÷ 0.48
[34] - - 0.32 0.42
[35] - - 0.38 0.38
[36] - - 0.28 0.28
[37] - - 0.28÷ 0.34 0.39÷ 0.46

Table 1: Results for the magnetic moments of ΞQ baryons in different ap-
proaches.

We see that within errors our predictions on the magnetic moments are in

good agreement with the quark model predictions. Our results on the mag-

netic moments of Ξc are also close to the predictions of the other approaches

except the prediction of [33] on µΞ0
c
.

In summary, the magnetic moments of ΞQ baryons, which were discovered

recently (more precisely Ξb was discovered) are calculated in framework of

light cone QCD sum rules. Our results on magnetic moments are close to

the predictions of the other approaches existing in the literature.
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Figure 1: The dependence of magnetic moment µΞ0
b
onM2

B at s0 = 6.52 GeV 2

and β = ±5, − 1.
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Figure 2: The same as Fig. 1 but for µΞ−

b
.
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Figure 3: The same as Fig. 1 but for µΞ0
c
and at s0 = 3.02 GeV 2 .
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Figure 4: The same as Fig.3 but for µΞ+
c
.
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Figure 5: The dependence of the magnetic moment µΞ0
b
on cosθ at s0 =

6.52 GeV 2 and for M2
B = 15 GeV 2 and M2

B = 20 GeV 2.
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Figure 6: The same as Fig. 5 but for µΞ−

b
.
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Figure 7: The same as Fig. 5 but for µΞ0
c
and s0 = 3.02 GeV 2 and for

M2
B = 5 GeV 2 and M2

B = 8 GeV 2.
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Figure 8: The same as Fig. 7 but for µΞ+
c
.
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