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Abstract

The magnetic moments of heavy Z¢ baryons containing a single
charm or bottom quark are calculated in the framework of light cone
QCD sum rules method. A comparison of our results with the predic-
tions of other approches, such as relativistic and nonrelativistic quark
models, hyper central model, Chiral perturbation theory, soliton and
skyrmion models is presented.
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1 Introduction

During the last few years, exciting experimental results are obtained in the
baryon sector containing a single b-quark. The CDF Collaboration observed
the states X3 and ;¥ [1], while both DO [2] and CDF [3] Collaborations
have seen =;,. Recently, BaBar Collaboration reported the discovery of 2}
with mass splitting mq: —mgq, = (70.8 £ 1.0 = 1.1)MeV [4].

The masses of the heavy baryons have been studied in the framework
of various phenomenological models [5]- [13] and also in the framework of
QCD sum rules method [14]- [26]. Along with their masses, another static
parameter of the heavy baryons is their magnetic moment. Study of the mag-
netic moments can give valuable information about the internal structures
of hadrons.

The magnetic moments of heavy baryons have been studied in the frame-
work of different methods. In [27, 28] the magnetic moments of charmed
baryons are calculated within naive quark model. In [29, [30], magnetic mo-
ments of charmed and bottom baryons are analyzed in quark model and in
[31] heavy baryon magnetic moments are studied in bound state approach.
Magnetic moments of heavy baryons are calculated in the relativistic three-
quark model [32], hyper central model [33], Chiral perturbation model [34],
soliton model [35], skyrmion model [36] and nonrelativistic constituent quark
model with light and strange gq pairs [37]. In [38] the magnetic moments
of ¥, and A. baryons are calculated in QCD sum rules in external electro-
magnetic field. In [39 40], the light cone QCD sum rules method is applied
to study the magnetic moments of the Ag, (@ = ¢,b) and XA transitions
(more about this method can be found in [41] [42] 43, 44] and references
therein ).

The aim of the present work is the calculation of the magnetic moments



of the =, baryons recently observed by DO and CDF Collaborations within
the light cone QCD sum rules framework. The plan of the paper is as follows.
In section 2, using the general form of the the baryon current, the light cone
QCD sum rules for =, and =, baryons are calculated. In section 3 we present
our numerical calculations on the =, and =, baryons. In this section we also

present a comparison of our results with the predictions of other approaches.

2 Light cone QCD sum rules for the =; mag-
netic moments

In order to calculate the magnetic moments of Z¢ (Q = b, ¢) in the framework
of the light cone QCD sum rules, we need the expression for the interpolating
current of Z¢. To construct it, we follow [L1], i.e. we assume that the strange
and light quarks (sq) in Z¢ are in a relative spin zero state (scalar or pseudo
scalar diquarks). Therefore, the most general current without derivatives and
with the quantum numbers of Z¢ can be constructed from the combination

of aforementioned scalar or pseudoscalar diquarks in the following way

1Q = €abel ("7 Cs")ys + B(g* Cy5")]Q°, (1)

here a, b and ¢ are color indices, C is the charge conjugation operator, () = b,
or ¢, ¢ = u, or d and 8 is an arbitrary parameter. Having the explicit ex-
pression for the interpolating current, our next task is to construct light cone
QCD sum rules for the magnetic moments of =g baryons. It is constructed

from the following correlation function:

H(p,q) = i / e < | T{no(x)o(0) |0 > . 2)

The calculation of the phenomenological side at the hadronic level pro-

ceeds by inserting into the correlation function a complete set of hadronic



states with the quantum numbers of Zg. We get

<0|;7Q‘HQ(p2) — —_ HQ(p1)|17Q‘0>
II = E . < Z0. =0, > :
EQ Qi (p2) | Qi (pl) v 1 m_‘

(3)

Isolating the ground state’s contributions, Eq. (B]) can be written as

<0 |nq | Zq(p2) > < Eq(p1) |19 10>

II = < Eq(p2) | Eq(p1) >
p3 —m2, ! pt—mi,
<0\77Qz|h(p2) < hi(p1) | g | 0>
+ Z hz(p2) ‘ hl(pl) >'*/ p2 _ m2 )
h 1 .

(4)

where p; = p+q, p2 = p and q is the photon momentum. The second term in
Eq. (@) describes the higher resonances and continuum contributions. The

coupling of the interpolating current with the baryons Z¢ is determined as

< 0[ng | Z¢(p) >= Aquz, (p), ()

where uz, (p) is a spinor describing the baryon Z¢ with four momentum p
and Ag is the corresponding residue.

The last step for obtaining the expression for the physical part of the
correlator function is to write down the matrix element < Zg(p2) | Z¢(p1) >4
in terms of the form factors. Using Lorentz covariance, this matrix element

can be written as

< Eq(p1)

Opala
M= fz] UEQ(P2)

( p2)
2m

Eq(p2) >, = "z, (p1) [fﬂu —1

= Uz, (p1) [(fl + f2) v+ uf2} uzq (P2)e”,
(6)

where f1(¢?) and fa(q?) are the form factors and e is the photon polarization

vector.



For calculation of the Z¢ magnetic moments, the values of the form factors
only at ¢> = 0 are needed because the photon is real in our problem. Using
Eqgs. ([@Hd) for physical part of the correlator and summing over the spins of

initial and final =¢ baryons, the correlation function becomes

P2+ m= p1+p p+mz
I = —)\225”27262 (f1+f2)7u+( = 2)uf2 2 2Q'
ps —m, 2mz, P — mg,

(7)

From this expression, we see that there are various structures which can
be chosen for studying the magnetic moments of Zg. In the present work
following [45], we choose the structure po ¢ 4 that contains magnetic form
factor fi + fo and at ¢ = 0 it gives the magnetic moment of =g in units of
eh/2mz,. Choosing this structure in the physical part of the correlator, for

the magnetic moments of =g we obtain

_ 2

(8)

where pz, = (fi + f2) |20 are the magnetic moments of Zg in units of
eh/2ms=,.

In order to calculate the magnetic moments of =g baryons, the expression
of the theoretical part of the correlation function is needed. After simple
calculations for the theoretical part of the correlation function in QCD we

obtain

II = _ieabcea’b’c’/d4zeipx<7(Q) | {755226/757—‘76(53&/551)/)
+ BysSE Tr(SE" 550 ) + BSE v Tr (7550 Si)
+ 8285 Tr(v55:" 1:9.")} | 0) 9)



where S} = C'STC and C and T are the charge conjugation and transposition
operators, respectively and Sg and Sy(s) are the heavy and light(strange)
quark propagators.

The correlation function from QCD part receives three different contribu-
tions: a) perturbative contributions, b) nonperturbative contributions, where
photon is emitted from the freely propagating quark (in other words at short
distance) c¢) nonperturbative contributions, when photon is radiated at long
distances. To obtain the expression for the contribution from the emission
of photon at short distances, the following procedure can be used: Each one
of the quarks can emit the photon, and hence each term in Eq. (@) corre-
sponds to three terms in which the propagator of the photon emitting quark
is replaced by:

1 ab

sty = —5 { [aurenste s} o
ap

where the Fock-Schwinger gauge, =, A*(z) = 0 has been used. Note that the

explicit expressions of free light and heavy quark propagators in x represen-

tation are:
Sfree — i ?i o Mg
a 2m2zt 422’
2 / 2
ree mg Ki(m —1'2 .m
s = =2 1mg ) i ¢K2(mQV —x?),

472 /=12 422
(11)

where K; are Bessel functions, m, 4 = 0 and m, # 0. The expression for the
nonperturbative contributions to the correlation function can be obtained
from Eq. (@) by replacing one of the light quark propagator by

1
Sty = =0T (T)as (12)



where I'; = {1, Y5, Vas ©Y5Va Uaﬁ/\/i} and sum over I'; is implied, and
the other two propagators are the full propagators involving both perturba-
tive and nonperturbative contributions. In order to calculate the correlation
function from QCD side, we need the explicit expressions of the heavy and
light quark propagators in the presence of external field.

The light cone expansion of the propagator in external field is obtained
in [43]. It receives contributions from various ¢Gq, ¢GGq, Gqgq nonlocal
operators , where GG is the gluon field strength tensor. In this work, we
consider operators with only one gluon field and contributions coming from
three particle nonlocal operators and neglect terms with two gluons ¢GGyq,
and four quarks gqgqq [44]. In this approximation the expressions for the

heavy and light quark propagators are:

. - o free . d4k —ikx ' +m v
iSo(x) = zSé (I)—ng/(27r)4e k /0 dv[(}éikg)?Gu (vx)o

mQ -
+ 71 vx, GH
mg) — k2 H Tl
ree m <(jc.I> .m x2 _ .m
Sole) = S0 - e Ty (1 iy ¢> ~ Jgz""0(@0) (1 —ig ?é)
1 .
- 7 , i
cige [ |5 Gt — Gl
272
i mq n —X A
Z327-(-2 G//’VO- (ln ( 4 ) _l_ 27E):| ) (13)

where A is the energy cut off separating perturbative and nonperturbative
domains.

In order to calculate the theoretical part, from Eqs. (@)-(13) it follows
that the matrix elements of nonlocal operators gl';q between the photon
and vacuum states are needed, i.e.(7y(q) | g(z1)I;q(x2) | 0). These matrix

elements can be expanded near the light cone 22 = 0 in terms of the photon



distribution amplitudes [46].

@A), O10) = —iegta(cut — 1) | due™ (s (0) + Tohlw))

. 1
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1 o
+q_x(qM$V - quu)(anB - 55Qo¢) /Daiez(aq—i-vag)qx%(ai)

+ qix(qaxa — 48%a)(Eudy — Evdy) / Daze“aﬁ”%)”ﬁ(ai)}

where X is the magnetic susceptibility of the quarks, ¢, (u) is the leading twist
2, Y% (u), v*(u), A and V are the twist 3 and h(u), A, 7; (i =1, 2, 3, 4) are
the twist 4 photon distribution amplitudes (DA’s), respectively. The explicit
expressions of DA’s are presented in numerical analysis section.

The theoretical part of the correlation function can be obtained in terms
of QCD parameters by substituting photon DA’s and expressions for heavy
and light quarks propagators in to Eq. (@)). Sum rules for the Z; magnetic
moments are obtained by equating two representations of the correlation
function. The higher states and continuum contributions are modeled using
the hadron-quark duality. Applying double Borel transformations on the
variables p? = (p + ¢)? and p2 = p* on both sides of the correlator, for the

=¢ baryon magnetic moments we get:

—m2 2 S0 —s
_ AzQ(ﬁ),uEQe :Q/MB :/ eM%p(S)dS
m2
Q
-
e )
+ W ’)/E(66Q + es)msmg <qq >
*7”2@
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- oL 9 (es + eg)mi < 58 >< qq > m
2 "
ST
e B mQ

m {(ﬁ2 — l)mg < 88 >< qq > [366@ + (65 + eq)A(uo)}
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— 36[1(52 + 1) f3yms < 55> 1 }

2

—m
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— ( 9€)57r2m2 B (6eg + es)yemy < 4q >
Q

7’”2Q

2
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A2
(3(ﬁ2 — 1)€ng < qq > { -3+ 2vg + QZn[W]}
Q

+ emg < 55> (14 5%) +esmd < qq > [(1 = B%)(ve + ln[nﬁ—z])] )
Q

9eomZm
+ %{ <§S>(1+ﬁ2)+2<§q>(1—ﬁ2)},
(15)
where M3 = % and uy = Ml%fMg Since the masses of the initial and

final baryons are the same, we will set M = M2 and ug = 1/2. The functions

appearing in Eq. (I3 are defined as:
1
n o= /Dai/ dvS(a;)d (g + vay — up),
0

1
N2 = /DO&Z/ dUV(Ozi)(S/(Oéq +U0ég — Uo),
0

(8> =1) i Cme? s
p(s) = m mg(6eQ +es)ms < qq > 111(%)
3(1+ B%)eqmy [ 13 1 5 s 1
+ 6474 b} + 119 — 6?/)20 - 6%0 + [Y10 + §]ln(m—é) + 6¢41
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2 24
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Q
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(16)
where,

1 1 1
/Dai = / daq/ daq/ dago(l —a; —a, — ay), (17)
0 0 0

and functions 1, are defined as

b, = (s —mqo?)"
nm - T o ~n—m )
Sm(m%)n m

(18)

Note that the contributions of the terms ~< G? > are also calculated, but
their numerical values are very small and therefore for customary in Eq. (I3)
these terms are omitted. From Eq. (&) it follows that for the determination
of the Z¢ baryon magnetic moments, we need to know the residue Ag. The
residue can be obtained from the two-point sum rules and is calculated in
[25]. For the current given in eq. () it takes the following form:

S0 2 4
N (8) = "=’/ (/ FR—Y {m {(1 22 (i _8 1) _ 121114

3 2974 2

bog- ) |- ) + 0
(144 < ¢°G? >
4 ST 21—+ 5;5)}
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+ 552 5 (1—pHma < qq > [e

1 g -
+ / da(1 — a)e<la>M%] } — —<qg>ﬁ(1 - ﬁz)e—m%/M%> :
0

2,2 _ &
mg {(1+5)m0<33 > w3 M

where, z = mg, /s.

3 Numerical analysis

The present section is devoted to the numerical analysis of the magnetic
moments of =g baryons. The values of the input parameters, appearing
in the sum rules expression for magnetic moments are: (uu)(l GeV) =
(dd)(1 GeV) = —(0.243)3 GeV3, B(1 GeV) = 0.8(uu)(1 GeV), m3(1 GeV) =
0.8 GeV? [47], , A = 300 MeV and f3, = —0.0039 GeV? [46]. The value
of the magnetic susceptibility x(1 GeV) = —3.15 + 0.3 GeV 2 was obtained
by a combination of the local duality approach and QCD sum rules [46].
Recently, from the analysis of radiative heavy meson decay, x(1 GeV) =
—(2.85 £ 0.5) GeV =% was obtained [48], which is in good agreement with
the instanton liquid model prediction [49], but slightly below the QCD sum
rules prediction [46]. Note that firstly the magnetic susceptibility in the
framework of QCD sum rules is calculated in [50] and it is obtained that
x(1 GeV) = —4.4 GeV 2. In the numerical analysis, we have used all three
value of y existing in the litrature and obtained that the values of the mag-
netic moments of = baryons are practically insensitive to the value of .
The photon DA’s entering the sum rules for the magnetic moments of =g
are calculated in [46] and their expressions are:

3

¢y(u) = Guu (1 + @2(p) O3 (u — ﬂ)) ,

11

/03

(19)



3(32u—1)"—1) + 634

(1—(2u—1)?%) (5(2u—1)2—1)§<1+ L g ?’wA),

(15w — 5w?) (3 = 30(2u — 1) + 35(2u — 1)),

2 67 16

360aq g0 (1 +w ;(7% — 3)) ,
540w (g — ) cvgigers,

—10 (1 +2x7) Cé(u — 1),

40u*u® (3k — kT + 1)

+8(¢ — 3¢s) [uu(2 + 13un)

+ 2u®(10 — 15u + 6u®) In(u) + 2a*(10 — 15a + 6u°) In(w)] ,

—120(3¢2 + ¢ ) (g — aq)aqaqag,

30a ag) ((k— k" =)L = 20y) + (3 — 4ay))
—120(34"2 ¢ ) (g )aqaqag,

3002(ag — ag) (K + &%) + (G + G5 (1 — 20g) + G(3 — 4ay))
30&2{(H +r)(1 - ag) (G +GHA = ay)(1 —2a,)

G2[3(ag — O‘q) — ag(1 —ag)l},
=300 {(rk = ) (1 = ay) + (G = ()1 — ag) (1 — 20)
Ca[3(g — aq)z —ay(1 —ay)]} (20)

The constants appearing in the wave functions are given as [46] p2(1 GeV') =
V=38+18 wh=-21+10, =02 k" =0,( =04, =03,
¢ =0and ¢ =0.

From the explicit expressions of the magnetic moments of =¢ baryons, it

follows that it contains three auxiliary parameters: Borel mass squared M3,

continuum threshold sy and § which enters the expression of the interpolating

current for =Zg. The physical quantity, magnetic moment p=,, should be

independent of these auxiliary parameters. In other words we should find

12



the "working regions” of these auxiliary parameters, where the magnetic
moments are independent of them.

The value of the continuum threshold is fixed from the analysis of the
two- point sum rules, where the mass and residue Az, of the =g baryons
are determined [25], which leads to the value sy = 6.5* GeV? for =, and
so = 3.0 GeV? for Z.. If we choose the value sy = 6.4> GeV? for =, and
sg = 8 GeV? for Z,. the results remain practically unchanged. Next, we
try to find the working region of M3 where p=, are independent of it at
fixed value of 8 and the above mentioned values of s5. The upper bound
of M% is obtained requiring that the continuum contribution should be less
than the contribution of the first resonance. The lower bound of M3 is
determined by requiring that the highest power of 1/M3% be less than 30°/q
of the highest power of M3. These two conditions are both satisfied in the
region 15 GeV? < M]23 <20 GeV? and 5 GeV? < M% < 8 GeV? for =, and
=, respectively.

In Figs. 1 and 2, we depict the dependence of fi=o and fi=- on M?% at fixed
value of 3 and sy = 6.5 GeV?2. In Figs. 3 and 4, we present the dependence
of pzo and piz+ on Mp at fixed value of § and sy = 3.0 GeV?. From these
figures, we see that the values of the magnetic moments of =, and =, exhibit
good stability when M% varies in the region 15 GeV? < M3 < 20 GeV?
and 5 GeV? < M% < 8 GeV?, respectively. The last step of our analysis is
the determination of the working region for the auxiliary parameter 5. For
this aim, in Figs. 5, 6, 7, and 8 we present the dependence of the magnetic
moments of Zg baryons on cosf where tanf = (3, using the values of M3
from the ”"working region” which we already determined and at fixed values
of sg.

From these figures we obtained that the prediction of the magnetic mo-
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ment iz, (pz,) is practically independent of the value of the auxiliary param-
eter 5. From all these analysis we deduce the final results for the magnetic
moments in Table 1 for Y = —3.15 GeV2. Comparison of our results on the
magnetic moments of =g baryons with predictions of other approaches, as

we already noted, is also presented in Tablel.

=9 Hz=- H=9 Het
Our results | —0.045 £+ 0.005 | —0.08 £ 0.02 0.35£0.05 0.50 = 0.05
RQM [32] -0.06 -0.06 0.39 0.41
NQM [32] -0.06 -0.06 0.37 0.37
[33] - - —1.02 - —1.06 | 0.45 + 0.48
[34] - - 0.32 0.42
[35] - - 0.38 0.38
[36] - - 0.28 0.28
[37] - - 0.28 = 0.34 0.39 = 0.46

Table 1: Results for the magnetic moments of =y baryons in different ap-
proaches.

We see that within errors our predictions on the magnetic moments are in
good agreement with the quark model predictions. Our results on the mag-
netic moments of =, are also close to the predictions of the other approaches
except the prediction of [33] on pz=p.

In summary, the magnetic moments of =g baryons, which were discovered
recently (more precisely =, was discovered) are calculated in framework of
light cone QCD sum rules. Our results on magnetic moments are close to

the predictions of the other approaches existing in the literature.

14



4 Acknowledgment

Two of the authors (K. A. and A. O.), would like to thank TUBITAK,
Turkish Scientific and Research Council, for their partial financial support
both through the scholarship program and also through the project number
106T333. One of the authors (A. O. ) would like to thank TUBA for funds
provided through the GEBIP program.

References

[1] T. Aaltonen et. al, CDF Collaboration, Phys. Rev. Lett. 99 (2007)
202001.

[2] V. Abazov et. al, DO Collaboration, Phys. Rev. Lett. 99 (2007) 052001.

[3] T. Aaltonen et. al, CDF Collaboration, Phys. Rev. Lett. 99 (2007)
052002.

[4] B. Aubert et. al, BaBar Collaboration, Phys. Rev. Lett. 97 (2006)
232001.

[5] S. Capstick, N. Isgur, Phys. Rev. D 34 (1986) 2809.

[6] R. Roncaglia, D. B. Lichtenberg, E. Predazzi, Phys. Rev. D 52 (1995)
1722.

[7] E. Jenkins, Phys. Rev. D 54 (1996) 4515.
[8] N. Mathur, R. Lewis , R. M. Woloshyn, Phys. Rev. D 66 (2002) 014502.
[9] D. Ebert, R. N. Faustov, V. O. Galkin, Phys. Rev. D 72 (2005) 034026.

[10] M. Karliner, H. J. Lipkin, arXiv: 0307343 (hep-ph), 0611306 (hep-ph).

15



[11] M. Karliner, B. Kereu-Zura, H. J. Lipkin, J. L. Rosner, arXiv: 0706.2163
(hep-ph).

[12] J. L. Rosner, Phys. Rev. D 75 (2007) 013009.
[13] M. Karliner, H. J. Lipkin, Phys. Lett. B 575 (2003) 249.

[14] M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, Nucl. Phys. B 147
(1979) 385.

[15] E. Bagan, M. Chabab, H. G. Dosch, S. Narison, Phys. Lett. B 278
(1992) 367; ibid; Phys. Lett. B 287 (1992) 176; ibid; Phys. Lett. B 301
(1993) 243.

[16] C. S. Navarra, M. Nielsen, Phys. Lett. B 443 (1998) 285.

[17] E. V. Shuryak, Nucl. Phys. B 198 (1982) 83.

[18] A. G. Grozin, O. I. Yakovlev, Phys. Lett. B 285 (1992) 254.

[19] Y. B. Dai, C. S. Huang, C. Liu, C. D. Lu, Phys. Lett. B 371 (1996) 99.
20] D. W. Wang, M. Q. Huang, C. Z. Li, Phys. Rev. D 65 (2002) 094036.
[21] S. L. Zhu, Phys. Rev. D 61 (2000) 114019.

[22] C. S. Huang, A. L. Zhang, S. L. Zhu, Phys. Lett. B 492 (2000) 288.
(23] D. W. Wang, M. Q. Huang, Phys. Rev. D 68 (2003) 034019.

[24] Z. G. Wang, Eur. Phys. J. C 54 (2008) 231.

[25] F. O. Duraes, M. Nielsen, Phys. Lett. B 658 (2007) 40.

[26] X. Liu, H. X. Chen, Y. R. Liu, A. Hosaka, S. L. Zhu, Phys. Rev. D 77
(2008) 014031.

16



[27] A. L. Choudhury, V. Joshi, Phys. Rev. D 13 (1976) 3115.

[28] D. B. Lichtenberg, Phys. Rev. D 15 (1977) 345.

[29] L. Y. Glozman, D. O. Riska, Nucl. Phys. A 603 (1996) 326.

[30] B. Julia-Diaz, D. O. Riska, Nucl. Phys. A 739 (2004) 69.

[31] S. Scholl, H. Weigel, Nucl. Phys. A 735 (2004) 163.

[32] A. Faessler et. al, Phys. Rev. D 73 (2006) 094013.

[33] B. Patel, A. K. Rai, P. C. Vinodkumar, arXiv: 0803.0221 (hep-ph).
[34] M. Savage, Phys. Lett. B 326 (1994) 303.

[35] D. O. Riska, Nucl. Instrum. Meth. B 119 (1996) 259.

[36] Y. Oh, D. P. Min, M. Rho, N. N. Scoccola, Nucl. Phys. A 534 (1991)
493.

37] C. S. An, Nucl. Phys. A 797 (2007) 131, Erratum-ibid; A 801 (2008)
82.

[38] S. L. Zhu, W. Y. Hwang, Z. S. Yang, Phys. Rev. D 56 (1997) 7273.
[39] T. M. Aliev, A. Ozpineci, M. Savci, Phys. Rev. D 65 (2002) 096004.
[40] T. M. Aliev, A. Ozpineci, M. Savci, Phys. Rev. D 65 (2002) 056008.

[41] P. Colangelo and A. Khodjamirian, in ”"At the Frontier of Particle
Physics/Handbook of QCD”, edited by M. Shifman (World Scientific,
Singapore, 2001), Vol. 3, p. 1495.

[42] V. M. Braun, Prep. arXiv: 9801222 (hep-ph).

17



[43] I. I. Balitsky, V. M. Braun, Nucl. Phys. B 311 (1989) 541.
[44] V. M. Braun, I. E. Filyanov, Z. Phys. C 48 (1990) 239.

[45] T. M. Aliev, A. Ozpineci, M. Savci, Phys. Rev. D 66 (2002) 016002,
Erratum-ibid; D 67 (2003) 039901.

[46] P. Ball, V. M. Braun, N. Kivel, Nucl. Phys. B 649 (2003) 263.
[47] V. M. Belyaev, B. L. Ioffe, JETP 56 (1982) 493.

[48] J. Rohrwild, JHEP 0709 (2007) 073.

[49] A. E. Dorokhov, Eur. J. Phys. C 42 (2005) 3009.

[50] V. M. Belyaev, I. I. Kogan, Yad. Fiz. 40 (1984) 1035.

18



et E e ——
e e e e e e T T T T T

i o1 s :
- [3:+5

095——16 17 18 19 20
M (Gev?)

Figure 1: The dependence of magnetic moment fi=o on M% at sy = 6.5% GeV/?
and =45, — 1.
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Figure 2: The same as Fig. 1 but for fiz -
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Figure 3: The same as Fig. 1 but for pzo and at so = 3.0° GeV? .

21



1.5

0.5F

o o e - e o e - P = B—e me A e BN e Bt = P Eee me- e - S e B—Eed e e

5 | 6 7 | 8

M, (Gev?)

Figure 4: The same as Fig.3 but for u-+.
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Figure 5: The dependence of the magnetic moment p=o on cos at sy =
6.5 GeV? and for M3 = 15 GeV? and M3 = 20 GeV2.
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Figure 7: The same as Fig. 5 but for pzo and sy = 3.0° GeV? and for
M3 =5 GeV? and M3 =8 GeV2
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