
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 9, SEPTEMBER 2009 1337

Direct Reconstruction of Pharmacokinetic-Rate
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Abstract—In this paper, we present a new method to form
pharmacokinetic-rate images of optical fluorophores directly
from near infra-red (NIR) boundary measurements. We first
derive a mapping from spatially resolved pharmacokinetic rates
to NIR boundary measurements by combining compartmental
modeling with a diffusion based NIR photon propagation model.
We express this mapping as a state-space equation. Next, we
introduce a spatio-temporal prior model for the pharmacoki-
netic-rate images and combine it with the state-space equation. We
address the image formation problem using the extended Kalman
filtering framework. We analyze the computational complexity
of the resulting algorithms and evaluate their performance in
numerical simulations. An important feature of our approach
is that the reconstruction of fluorescence concentrations and
compartmental modeling are combined into a single step 1) to
take advantage of the inherent temporal correlations in dynamic
NIR measurements, and 2) to incorporate spatio-temporal a priori
information on pharmacokinetic-rate images. Simulation results
show that the resulting algorithms are more robust and lead to
higher signal-to-noise ratio as compared to existing approaches
where the reconstruction of concentrations and compartmental
modeling are treated separately. Additionally, we reconstructed
pharmacokinetic-rate images using in vivo data obtained from
three patients with breast tumors. The reconstruction results show
that the pharmacokinetic rates of indocyanine green are higher
inside the tumor region as compared to the surrounding tissue.

Index Terms—Compartmental analysis, direct reconstruction,
extended Kalman filter, indocyanine green, pharmacokinetics.

I. INTRODUCTION

A. Motivation and Overview of Our Approach

P HARMACOKINETICS can be defined as the mathe-
matics of the time course of absorption, distribution, and

excretion of fluorophores, contrast agents, and drugs in the
body [1]. The biological alterations such as tumor development
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which influence the transfer process of fluorophores or drugs
also influence the rate of change of absorption and excretion in
the body. Hence, pharmacokinetic analysis of fluorophores is
a potential means for tumor detection, diagnosis, and staging;
treatment monitoring; and drug delivery and feasibility studies.

Compartmental modeling is a well-known approach in phar-
macokinetic analysis [2]–[4]. In this method, a region of interest
is decomposed into a number of compartments, each repre-
senting a volume of tissue in which the fluorophore distribution
may be similar. The concentration change in a specific com-
partment is modeled as a result of the exchange of fluorophores
between connected compartments. These changes are modeled
by a collection of coupled ordinary differential equations (ODE);
each equation describing the fluorophore exchanges between
the interacting compartments. The coefficients of the ODE’s
represent the rates of exchange between different compartments
and are called the pharmacokinetic rates.

In this paper, we are interested in imaging the pharmacoki-
netic rates of optical fluorophores using near infrared (NIR) dif-
fuse optical tomographic methods. As in magnetic resonance
imaging [5]–[7] and positron emission tomography [8]–[13],
pharmacokinetic rate analysis of optical fluorophores can pro-
vide valuable physiological information for tumor detection, di-
agnosis, and staging; treatment monitoring; and drug delivery
and feasibility studies.

In the NIR range, the most widely used optical fluorophore
is indocyanine green (ICG) [14]–[16]. ICG is a U.S. Food and
Drug Administration approved NIR absorbing and fluorescing
dye. It is an intravascular contrast agent that may extravasate
through vessels of high permeability, such as cancerous vessels.
Therefore, ICG pharmacokinetic-rate imaging of the tumor
region mainly probes permeability and vascularization. Several
research groups, including our group, have recently reported
compartmental modeling of ICG in animal and human subjects
and studied the parameters related to capillary permeability
as malignancy indicators [17]–[20]. In all these studies, the
pharmacokinetic rates are assumed to be constant over a tissue
volume that may be as large as the entire imaging domain.

Recently, we reported ICG pharmacokinetic-rate images of
three patients with breast tumors and demonstrated that the spa-
tially resolved pharmacokinetic rates may provide superior in-
formation than a single set of rates obtained for the entire breast
for cancer diagnosis [21]. We obtained ICG pharmacokinetic
images in two steps. First, we reconstructed the ICG concentra-
tion images based on the differential diffuse optical tomographic
forward model. Next, we fit a compartmental model to the time

0278-0062/$25.00 © 2009 IEEE

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on February 17,2010 at 10:12:18 EST from IEEE Xplore.  Restrictions apply. 



1338 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 9, SEPTEMBER 2009

sequence of voxels for each physical location. Therefore, we
refer to this algorithm as the voxel-by-voxel algorithm.

In this paper, we develop a new method to reconstruct spa-
tially resolved pharmacokinetic rates of fluorophores directly
from dynamic NIR boundary measurements. We first derive a
mathematical model that maps the boundary measurements to
the total fluorophore concentrations. We call this map concen-
tration-to-measurement (CTM) map. For this, we combine the
compartmental model with an NIR photon propagation model
which maps the total fluorophore concentrations to boundary
measurements. To model photon propagation, we use the dif-
fusion approximation to radiative transfer equation where the
propagation of excitation and emission light are modeled by two
coupled diffusion equations [30]. We derive two CTM maps:
linear time-invariant CTM map and nonlinear time-varying
CTM map for dynamic boundary measurements. In the linear
time-invariant CTM map, the relationship between the total
fluorophore concentration and the boundary measurements is
linear and does not vary during the entire tomographic data
collection process. In the nonlinear time-varying CTM map, on
the other hand, the relationship between the total fluorophore
concentration and the boundary measurements is nonlinear at
every instant of the tomographic data collection process and it
varies during the data collection process. We form a state-space
model based on the compartmental model equations and the NIR
photon propagation model. We, then, derive a map that relates the
boundary measurements to spatially resolved pharmacokinetic
rates. We call this mapping pharmacokinetic-rates-to-measure-
ment (PTM) map. We introduce a spatio-temporal prior model
for the pharmacokinetic rate and volume fraction parameters
and incorporate this model to the state-space representation.
We addressed the resulting image reconstruction problem by
the extended Kalman filtering (EKF) framework.

We analyze the computational complexity of the resulting
algorithms (linear and nonlinear) and compare them with that
of the voxel-by-voxel algorithm [21]. We evaluate the perfor-
mance of our algorithms in numerical simulations using a tissue
like numerical phantom. Our numerical study shows that there
is a good agreement between the true and the estimated im-
ages in terms of localization of the heterogeneities and with re-
spect to normalized mean-squared error criterion. Furthermore,
the numerical studies show that the new method is more ro-
bust than the voxel-by-voxel algorithm with higher signal-to-
noise ratio. Additionally, we present reconstruction of pharma-
cokinetic-rate images from in vivo data acquired from three pa-
tients with breast tumors. The reconstructed images show that
the pharmacokinetic rates are higher inside the tumor region as
compared to the surrounding tissue.

B. Related Work and the Advantages of Our Approach

EKF framework was previously used to address the recon-
struction of optical parameters [22]–[24]. In [22], Eppstein et
al. utilized EKF to reconstruct images of absorption coefficient,
fluorescence lifetime, and quantum efficiency using simulated
noisy measurements. This study uses a dynamic model to im-
pose spatial smoothing on the unknown optical parameters, but
does not consider dynamic imaging of time-varying optical pa-
rameters. In [23] and [24], Kolehmainen et al., and Prince et

al. used EKF to reconstruct time-varying absorption images of
human motor cortex. These studies demonstrate that EKF pro-
vides an effective framework in dynamic tomography problems
in diffuse optical imaging. The underlying dynamic model in
these studies assume that the unknown optical image, i.e., the
state variables, remains constant up to an additive noise term
and the measurement model is given by the diffusion equation.
In our work, on the other hand, the dynamic model is based on
the coupled ODE’s of the compartmental model, while the mea-
surement model is based on the CTM map derived from the two
coupled diffusion equation representing the fluorescence light
propagation.

An important feature of the method introduced here is the
direct reconstruction of the pharmacokinetic-rate images of op-
tical fluorophores as opposed to voxel-by-voxel reconstruction
algorithm that we reported in [21]. While the voxel-by-voxel
algorithm can be modified to take into account spatial corre-
lations in total concentration images, it does not take into ac-
count the temporal correlations present in dynamically changing
fluorophore concentrations due to the decoupled nature of the
two-step algorithm described above. The new method, on the
other hand, makes effective use of the temporal correlations
present in the dynamic measurements by coupling the two steps
and incorporating a spatio-temporal a priori model. This has
the advantage of improved robustness and signal-to-noise ratio
as compared to the voxel-by-voxel reconstruction method.

In [25], Milstein et al. presented a direct reconstruction
method for the pharmacokinetic-rate images of optical flu-
orophores. This work uses an exponential curve model for
compartmental modeling and a linear time-invariant fluo-
rescence light propagation model derived based on authors’
prior work in [26] and [27]. The reconstruction of pharma-
cokinetic-rate images is addressed based on the maximum a
posteriori (MAP) estimation together with a parametric itera-
tive coordinate descent optimization technique similar to the
approach reported in [13].

Our work has the following advantages as compared to the
other direct reconstruction methods: 1) We use coupled ODEs
with a model mismatch term for compartmental modeling. This
has the advantage of providing better fit than the exponential
curve models for modeling the pharmacokinetics of optical flu-
orophores. 2) Our compartmental modeling and reconstruction
technique is not specific to a particular optical fluorophore, but
applicable to the pharmacokinetic-rate imaging of any optical
fluorophore. 3) Unlike the methods in [18], [19], and [25] our
method estimates the pharmacokinetic-rate parameters, volume
fractions, and concentrations in different compartments explic-
itly. 4) Our method addresses the pharmacokinetic-rate imaging
based on both linear time-invariant and nonlinear time-varying
CTM maps. Nonlinear time-varying CTM map provides a more
accurate relationship between the total fluorophore concentra-
tion and boundary measurements. 5) MAP estimation-based
approach requires an explicit solution for the coupled ODEs
used for the compartmental modeling. These solutions are
often obtained under some assumptions which often limit the
applicability of the resulting compartmental model. EKF-based
approach, on the other hand, can accommodate stochastic
coupled ODEs, eliminating any limitations on the applicability
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of the compartmental model. 6) While MAP inverse problem
formulation can accommodate arbitrary non-Gaussian prior
models and provides theoretically better noise suppression,
the noise suppression property of Gaussian-based EKF can
be improved by backward smoothing [28] or by adapting a
non-Gaussian approach to EKF [29]. 7) As compared to the
nonlinear least squares curve fitting techniques, the EKF-based
approach can accommodate spatio-temporal prior models. 8)
The EKF-based reconstruction techniques can be used for
real-time pharmacokinetic-rate imaging.

C. Organization of the Paper

The rest of the paper is organized as follows. Section II
describes the spatially resolved compartmental modeling and
the two-compartment model for ICG pharmacokinetics. In
Section III, we present the NIR photon propagation model
based on coupled diffusion equations. In Section IV, we present
the pharmacokinetic-rate-to-measurement map for optical
fluorophores. In Section V, we present the spatio-temporal
prior model, the method of direct reconstruction of pharma-
cokinetic-rate images based on EKF framework, initialization
of the EKF and the computational complexity of the resulting
algorithms. In Section VI, we present the numerical simulations
and the reconstructed pharmacokinetic-rate images using the in
vivo breast data. Finally, Section VII summarizes our results.

II. SPATIALLY RESOLVED COMPARTMENTAL MODELING AND

THE TWO-COMPARTMENT MODEL FOR ICG

A. Spatially Resolved Compartmental Modeling

In general, a compartmental model is given by time-depen-
dent coupled ODEs and a measurement model [2]–[4]. Such a
model can be extended to include spatial variations in a straight-
forward manner.

Let denote the domain of interest. For an -com-
partment model, let represent the concentration
vector in different compartments at location , and at time

; and let denote the parameter vector whose
elements are the pharmacokinetic rates and volume fractions at
location . Then, a spatially-resolved compartmental model can
be expressed as the following state-space model:

(1)

(2)

where denotes the elementwise time-derivative of ,
is the system matrix whose entries are

the pharmacokinetic rates, is the total fluorophore con-
centration at location and time , and is the
vector comprised of volume fractions.

Although our study is applicable to pharmacokinetic mod-
eling of any optical fluorophore, in the following subsection,
we will specifically discuss the spatially-resolved pharmacoki-
netic modeling of ICG using a two-compartment model due to
its relevance to breast cancer studies.

B. Two-Compartment Model for the ICG Pharmacokinetics

ICG is an optical dye commonly used in retinopathy and he-
patic diagnostics. Given its low toxicity and FDA approval, it

Fig. 1. Block diagram of the two-compartment model for the ICG pharmaco-
kinetics.

has recently been utilized as a blood pooling agent for the detec-
tion and diagnosis of cancerous tumors in conjunction with NIR
optical methods [14], [15], [17], [21]. In normal tissue, ICG acts
as a blood flow indicator in tight capillaries of normal vessels.
However in tumors, ICG may act as a diffusible (extravascular)
flow in the leaky capillary of cancer vessels. Therefore, the phar-
macokinetics of ICG can be used for tumor detection, diagnosis,
and staging. Fig. 1 shows the two-compartment model for the
ICG kinetics. The two compartments are comprised of plasma
and extracellular-extravascular space (EES). Spatially resolved
ICG transition between plasma and the EES can be modeled
using the following coupled ODEs:

(3)

where , , , and are the spa-
tially-resolved pharmacokinetic rates that govern the leakage
into and the drainage out of the EES, describes the ICG
elimination from the body through kidneys and liver. The vector

in (1) and (2) is composed of , and , rep-
resenting the ICG concentration in plasma and the EES at
and , respectively.

The ICG concentration in tissue, , is given as a linear
combination of the ICG concentration in plasma and the EES

(4)

where , are spatially-resolved plasma and EES
volume fractions, respectively. Here, the unknowns are con-
centrations in different compartments, pharmacokinetic rates,
and volume fractions.

We combine all the pharmacokinetic parameters into a single
vector and define

(5)

III. CONCENTRATION-TO-MEASUREMENT MAP FOR FDOT

In this work, the quantity we wish to reconstruct is the spa-
tially resolved pharmacokinetic-rate images from a sequence
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Fig. 2. Total fluorophore concentration versus slow-time variable, �.

of boundary measurements obtained by diffuse optical tomo-
graphic methods. To do this, we first develop a map which re-
lates sequence of boundary measurements to the spatially re-
solved fluorophore concentrations. We call this map concentra-
tion-to-measurement (CTM) map.

A suitable CTM map can be developed based on a photon
propagation model in fluorescing medium. We use diffusion
approximation of radiative transfer equation to model photon
propagation where the propagation of excitation and emission
light are modeled by two coupled diffusion equations.

To relate time-varying fluorophore concentrations to a se-
quence of boundary measurements, we parameterize time evolu-
tion of the fluorophore concentration by a slow-time parameter
; and photon propagation during one instance of a tomographic

data collection process by a fast-time parameter . Note that
is in the order of the speed of light whereas is in the order
of seconds. Thus, we assume that the absorption and scattering
coefficients of tissue are constant during one instance of the to-
mographic data collection period but vary with the slow-time
variable . As a result, frequency domain couple diffusion equa-
tion is adequate to model light propagation during the dynamic
data collection process. Fig. 2 illustrates a typical time evolu-
tion of the fluorophore concentration with respect to slow-time
variable .

In the following subsections, for notational brevity, we drop
the slow-time dependence in our equations and set

, , , etc.
Note that is a shorthand notation for the quantity at
either excitation or emission wavelengths.

A. Model for Light Propagation in Fluorescing Medium

The light propagation at the excitation and emission wave-
lengths can be modelled by the following coupled diffusion
equations [30]:

(6)

(7)

where the subscripts and denote the excitation and emis-
sion wavelengths, respectively. represents the spa-
tially varying optical field in the medium; denotes the modu-
lation frequency of the source (the Fourier transform with re-
spect to the fast-time variable ); is the speed of light in-
side the medium ; is the fluorophore lifetime; is the
fluorophore’s quantum efficiency; stands for the spa-
tially varying absorption coefficient of the medium at the ex-
citation and emission wavelengths, respectively, is the
fluorophore’s absorption coefficient; and is the flu-
orophore yield; is the excitation source, is
the spatially varying diffusion coefficient given by

, where is the reduced scat-
tering coefficient.

The optical coefficients at the excitation and emission wave-
lengths are due to both the endogenous chromophores and ex-
ogenous fluorophore. Thus

(8)

(9)

Here, the subscript denotes the endogenous chromophores,
and the subscript denotes the exogenous fluorophore.

We choose Robin-type boundary conditions given as [31]

(10)

(11)

where denotes the boundary of , denotes the outward
normal of the boundary , is a constant accounting for the
refractive index mismatch between the two regions separated
by .

Let denote the concentration of fluorophores at .
The relationship between and the fluorophore absorption
coefficient, , is given by [32]

(12)

where denotes the fluorophore extinction coefficients at the
excitation and emission wavelengths, respectively.

B. Nonlinear Concentration-to-Measurement Map

Let denote the ratio of the emission data to
the excitation data (normalized Born data [31]) at the emis-
sion wavelength at the detector location due to an excitation
source at . The relationship between and
is given by

(13)
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where is the photon density at location due to a
source at at the excitation wavelength; is the
Green’s function of (7) and (11) at , due to a point source at
, and is the nonlinear operator that maps the total flu-

orophore concentration to the normalized measurements .
Note that the non-linearity in (13) is due to the dependence
of , and dependence of .

We assume that 1) The endogenous absorption coefficients
at the emission and the excitation wavelengths are approxi-
mately equal, i.e., . This is a valid assumption
for a number of different applications such as small animal
and breast imaging [33]. 2) The diffusion coefficients at both
the excitation and emission wavelengths are independent of
the endogenous and exogenous absorption coefficients, i.e.

. Furthermore, the diffusion coeffi-
cients are known but can be spatially varying. 3) The lifetime
parameter, , , is known, and not necessarily constant.

Let and denote the number of detectors and sources,
respectively. Let be the measurement vector formed by con-
catenating the measurements for each source-detector pair as
follows:

(14)

Using (13) and (14), we form the following relationship between
and :

(15)

where is an operator with matrix kernel in which
for , .

Note that for notational brevity, we assume a single-frequency
measurement model. A multifrequency measurement model is a
straightforward extension of the single-frequency measurement
model.

C. Linear Concentration-to-Measurement Map

An approximate linear map between the normalized measure-
ments and the total fluorophore concentration can be obtained
based on the assumption that the presence of exogenous flu-
orophores does not change the optical coefficients and

[30]. This assumption leads to the following relationship
between the measurements and the fluorophore concentrations:

(16)

where is the Green’s function of (7) and (11) when
, is the predicted optical field at due

to a source located at when , and de-
notes the linear operator that maps the normalized measurement
at due to a source at to the total fluorophore concentration.

Forming a measurement vector as in (14), we write

(17)

where is the linear operator with a matrix kernel in which
for .

Note that the reconstruction of the pharmacokinetic-rate im-
ages that will be discussed in the subsequent sections is not
tied to any specific linearization method. Alternatively, a dif-
ferent linear approximation to can be obtained by computing
its first-order Fréchet derivative to yield a relationship between
measurements and total fluorophore concentration. However,
we adopted the model in (17) for image reconstruction using
in vivo breast data.

IV. PHARMACOKINETIC-RATES-TO-MEASUREMENT MAP

In this section, we combine the CTM map with the spatially
resolved compartmental model to obtain a mapping between
the spatially resolved pharmacokinetic rates and sequence of
boundary measurements. We call this composite map the phar-
macokinetic-rate-to-measurement (PTM) map.

Recall that

(18)

Let denote the measurement vector (16) and de-
note the flourophore concentration at slow-time parameter .
Combining the CTM map (15) with the compartmental model
(2), we obtain the following nonlinear relationship:

(19)

For the linear CTM map, (19) becomes

(20)

The (18) and (19), and (18) and (20) constitute the PTM map.
We next discretize these equations and incorporate dynamic
model uncertainties and measurement noise to the PTM map.

We use first-order Lagrange basis to discretize the domain
of interest (see Section V-B). Let , be the
discrete points representing the spatial location of the voxels in

. Let represent the concentration vector at time in
different compartments, and represent the pharmacoki-
netic rates and volume fractions at the th voxel centered at ,

. Assuming that the dynamic measurements are
collected at time instances, , , where
is the sampling period, we define , and
express the discrete spatially resolved compartmental model as
follows:

(21)

where , , is a zero-mean
Gaussian process with

, representing the dynamic model uncertainty;
is the discrete-time system matrix

as described in [34] and, represents the discrete-time
parameter vector for the pharmacokinetic rates and volume
fractions. For a detailed discussion of the discretization proce-
dure and an explicit relationship between the parameters
and , see [17] and [34].
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Let . Replacing with , (19) and
(20) are discretized as

(22)

(23)

where , , and are the resulting
operators when is replaced with in (13) and
(16), respectively; is a zero-mean Gaussian process with

representing the measurement
noise, and is the vector of discrete volume fractions
at .

For the two-compartment ICG pharmacokinetic model com-
bined with the linear CTM map, the explicit form of (21) and
(23) are given by

(24)

(25)

where

Here, is the 2 2 system matrix in (24), for
and .

V. RECONSTRUCTION OF PHARMACOKINETIC-RATE

AND CONCENTRATION IMAGES FROM

THE BOUNDARY MEASUREMENTS

The forward model in (21) and (22), (23) forms a state-space
model, (21) being the state equation and (22), (23) being the
measurement equation. In this section, we discuss the estimation
of the system parameters, , and the states for

, from the measurements ,
using the extended Kalman filtering (EKF) framework. For the
advantages of EKF framework see Section I.

Note that both the fluorophore concentrations in different
compartments, , and the system parameters, ,
are unknown. In this case, we estimate both the states and
system parameters from measurements within the EKF frame-
work. To do so, we regard the state equation in (21) as a
nonlinear equation in which the system parameters and states
are combined to form the new states of the nonlinear equation.
We then iteratively linearize the nonlinear state equation and
solve for the new unknown states using the EKF framework.
This approach requires use of temporal prior models on .
We describe one such model in the following subsection.

A. A Priori Model for Pharmacokinetic Rates and Volume
Fractions

To impose a temporal prior model on , we extend our
notation to , . Note that is a
vector containing pharmacokinetic rates and volume fractions
at location and time . For each element, , of
the vector , we impose the following dynamic model:

(26)

where is a zero-mean Gaussian process with
, .

Note that is modeled as a time-independent parameter,
and the model in (26) relates and with an
all-pass filter. If, on the other hand, is time-dependent,
a different filter can be chosen based on a priori physiological
information and/or robustness considerations.

In addition to the temporal prior, we impose a spatial
smoothing prior on to improve the robustness of
the reconstruction with respect to measurement noise and
to incorporate a priori physiological information into image
reconstruction. This model is given as

(27)

where , are the indices of the voxels
in the neighborhood of the th voxel; , are the
spatial weighting coefficients, which may be different for each
pharmacokinetic-rate or volume fraction image; and ,
is a zero-mean Gaussian process with

, .
The weighting coefficients may be spatially varying and

can be chosen based on a variety of physiological information,
i.e., tumor location, size, or shape. In our numerical simulations
and in vivo data processing, we assumed that no such specific
information about the tumor is available and used equal weights,
i.e., . This choice imposes an isotropic smoothing on
the estimates.

Inserting the right-hand side of (27) for in (26),
we obtain the following spatio-temporal model for each entry

of the vector :

(28)

where is a zero-mean Gaussian process with
, ,

and is a function of and . Fig. 3 illustrates the resulting
neighborhood system for 2-D images for .

Note that it is possible to develop an alternative spatio-tem-
poral neighborhood system taking into account the 4-D nature
of the parameter space.

To simplify our notation, we express (28) in vector notation
for all entries of the vector as follows:

(29)
where is a vector-valued linear function of ,

as defined in (28) and is formed
by concatenating the into a column vector. It is a
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Fig. 3. An illustration of the spatio-temporal neighborhood system for 2-D
pharmacokinetic-rate and volume fraction images for � � �. Based on the
model in (28)–(30) the neighborhood of the voxel at � (gray square) is
given by the voxels at � , � , � and � denoted by gray-dashed
squares.

zero-mean Gaussian process with
.

B. Estimation of Pharmacokinetic-Rate Images by Extended
Kalman Filterin

Our objective is to estimate the fluorophore concentration im-
ages in different compartments, and pharmacokinetic-rate im-
ages. To do so, we first concatenate the concentration vectors

and the parameter vectors for all voxels,
and form the following vectors:

Next, we concatenate the vectors and and form the
new state-space model based on (21) and (29)

(30)

(31)

(32)

where

...

...

...

(33)

where and are zero-mean Gaussian processes with
covariance matrices and , respectively. is the zero-
mean Gaussian process with covariance matrix as defined
before.

Note that although is linear in , ,
(30) is nonlinear in new states. Furthermore, the state (30) is
not block diagonal.

We next utilize the EKF framework to estimate the fluo-
rophore concentration images in different compartments and
pharmacokinetic-rate images based on (30)–(33). Table I tab-
ulates the steps of the EKF algorithm. The terms in Table I
are defined as follows: and are the
concentration and parameter estimates at time given all the
measurements up to time , respectively. Similarly,
and are the concentration and parameter estimate updates
at time , respectively. denotes the error covariance
propagation at time given all the measurements up to time

; is the error covariance update at time . is the
recursive Kalman gain matrix at time and is the identity
matrix. is the Jacobian matrix due to iterative linearization
of the (30) around and . is the
matrix formed by the discretized Fréchet derivatives of with
respect to and at the updates and .
In Table I, the EKF algorithm is presented for the nonlinear
case. For the linear case, the nonlinear operator is simply
replaced by the linear operator .

The first-order Fréchet derivative of (or ) with re-
spect to the fluorophore concentration at the EKF total concen-
tration estimate at the th step is given by [31], [35], [36]

(34)

where we define as the solution of (6)
and (10), as the solution of (7) and (11),

as the Green’s function of (7) and (11),
and as the solution of (6) and (10) where

in (6) is replaced by given the
EKF estimates of the fluorophore concentrations at different
compartments at the th step [35]. In (34), the first
integral results from the right-hand side of (7), while the second
and third integrals originate from the dependence of and
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TABLE I
EKF ALGORITHM FOR THE SIMULTANEOUS ESTIMATION OF FLUOROPHORE CONCENTRATION, PHARMACOKINETIC-RATE, AND VOLUME FRACTION IMAGES

, respectively, on the unknown fluorophore absorption
coefficient. We note that the kernels of the second and thirds
integrals are much smaller than the kernel of the first integral.
Therefore, the first integral in (34) dominates and the rest can
be neglected. As a result, The first-order Fréchet derivative of

(or ) with respect to the fluorophore concentration
at the EKF total concentration estimate at the th step
can be approximated by

(35)

Based on the assumptions 1)–3) in Section III-A, the terms
in the kernel of (35) can be computed as follows: Based on the
assumption i), . Furthermore, and are
linearly dependent by (12). Thus, given the reconstruction
based on (6) and (10) at the th step, and obtained via EKF
estimates (fluorophore concentrations at different compartments
and volume fractions) at the th step,
can be computed using (7) and (11). Similarly, given the
reconstruction based on (6) and (10) at the th step, and
estimate obtained via the EKF estimates of fluorophore concen-
trations at different compartments and volume fractions at the

th step, can be computed as the so-
lution of (6) and (10). Finally, we assume that

is known.
Note that the calculation of the Fréchet derivative can be sim-

plified under some additional assumptions. If does not vary
with the slow-time variable , and that , then

can be computed with respect to and remains
invariant with respect to the slow-time variable . Using the
chain rule, the first-order Fréchet derivative of with re-
spect to each element of is given by

(36)

where , , denotes the volume fractions.
Similarly, the first-order Fréchet derivative of with re-

spect to each element of is given by

(37)

Note that contains both pharmacokinetic-rate and volume
fraction parameters. However, the Fréchet derivative of with
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respect to pharmacokinetic rates is zero since depends only
on the volume fractions.

In our numerical simulations, we used finite elements with
piecewise linear first-order Lagrange polynomials to discretize
the domain and thus to discretize the Fréchet derivatives given
in (36) and (37).

The EKF algorithms for the estimation of concentration and
parameter images are different for the linear and nonlinear mea-
surement models given in (13) and (16). When the linearized
measurement model (16) is employed, the operator is as-
sumed to be constant throughout the dynamic update of the flu-
orophore concentration. This leads to the inherent assumption
that the dynamic changes in the fluorophore concentration can
be modeled as a perturbation on the endogenous chromophore
concentrations. For the nonlinear measurement model (13), on
the other hand, the Fréchet derivative is updated at every itera-
tion of the EKF algorithm based on the th update of
the concentration and volume fraction estimates. While compu-
tationally more intense, the EKF algorithm based on the non-
linear measurement model eliminates the limiting assumption
of restricting the dynamic changes to perturbations from a con-
stant endogenous chromophore concentration.

C. Convergence of EKF and Compartmental Model Mismatch

The convergence of the EKF algorithm is related to the appro-
priate compartmental model selection. In the context of EKF,
compartmental model selection involves compartmental model
order selection and the initialization of the covariance matrices

, and . From the biological point of view, the higher the
number of compartments, the better the pharmacokinetic model
would be. However, ICG being effectively a large molecule, a
two-compartment model is assumed to be sufficient to capture
its pharmacokinetics [17]–[19]. Furthermore, higher order com-
partmental modeling involves estimation of larger number of
unknown parameters. In [17], we proposed the Bayesian infor-
mation criterion (BIC), to select the best model order. BIC pro-
vides a quantitative model order selection metric representing
a compromise between the accuracy of the estimates and the
number of unknowns to be estimated given the available data. In
this paper, we assume that an appropriate model order is deter-
mined a priori based on biological and/or estimation-theoretic
criteria for the fluorophore of interest and focus on the conver-
gence of the EKF and the initialization of the covariance ma-
trices , , and .

The convergence properties of the EKF has been well-studied
in the literature [28], [37]–[40]. In general, for the joint estima-
tion of parameters and states, the estimates may be biased or
divergent.

In [39], it was shown that the main cause of divergence in
EKF is due to lack of coupling between the Kalman gain and
the discrete parameter vector and a modification to overcome
this issue was described.

However, this modification imposes a high computational
load on the resulting algorithm [38], [39]. In [37]–[39], it was
shown that the asymptotic convergence rate of EKF depends
on the proper selection of the covariance matrices , ,
and ; with being the most important term controlling the
convergence rate of the EKF [37]. Therefore, in many practical

TABLE II
RANGE OF VALUES FOR THE PARAMETERS USED

IN COMPUTATIONAL COMPLEXITY ANALYSIS

applications, “tuning of the filter” approach, which involves
manual adjustments of the covariances matrices , , and ,
is adopted. In our work, as proposed in [38] and [39], we regard
the covariance matrices , , and as tuning parameters and
choose the values that lead to the minimum norm (trace sum)
of the error covariance matrix within biological limits. We
empirically evaluate the convergence of EKF and the goodness
of the compartmental model fit by studying the change in
the residuals of measurements with respect to the number of
iterations given the covariance matrices , , and [41]. For
numerical results, see Sections VI-A and VI-B.

D. Computational Complexity of the EKF-Based
Reconstruction Algorithms

In this section, we derive the computational complexity of the
EKF-based direct reconstruction algorithms based on the linear
and nonlinear models in (31) and (32) under the assumptions
outlined in Sections VI-A and VI-B. We next derive the com-
putational complexity of the EKF-based voxel-by-voxel phar-
macokinetic-rate and concentration image reconstruction algo-
rithm that we introduced in [21] and compare it with the compu-
tational complexity of the algorithms introduced in this paper.

The computational complexity of one recursion of the EKF
is , where denotes
the dimension of the measurement vector, and denotes the
dimension of the states [42].

For the EKF-based direct reconstruction algorithm based on
the linear measurement model (32), the number of states is

, where is the number of compartments, and
is the number of voxels. Typical values of , , , and are
tabulated in Table II. Thus, assuming that ,

, , and
, the computational complexity of direct reconstruction al-

gorithm for one recursion of the EKF algorithm is given by
, which is dominated by

the term. For the nonlinear measurement model (31), the
Fréchet derivative of has to be computed at every recursion,
which has a computational complexity of
[43]. Assuming that and , the computational com-
plexity of every recursion of the EKF algorithm using the non-
linear measurement model is . Hence, the EKF-based
direct reconstruction algorithms using either the nonlinear or
linear measurement model have the computational complexity
of .

For the EKF-based voxel-by-voxel construction algo-
rithm that we introduced in [21], the number of states, ,
is and . In this algorithm, the absorption
coefficient images are reconstructed prior to pharmacoki-
netic-rate images. In general, the computational complexity
of this step is for a linear reconstruction algorithm,
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where is the number of slow-time steps. Assuming that,
, , and ,

the computational complexity of the voxel-by-voxel recon-
struction algorithm for one recursion of the EKF is given by

, which
is dominated by the term. For the nonlinear measure-
ment model, the computational complexity of reconstructing
the absorption images of fluorophore is where
is the number of iterations performed in Born-type nonlinear
iterative reconstruction schemes. Clearly, if the number of
slow-time samples multiplied with the iteration number, ,
is of higher order than the total number of voxels, , then,
the computational complexity of the direct reconstruction
algorithm is smaller than that of the voxel-by-voxel algorithm.
However, for the current dynamic imaging systems, , is
smaller than . On the other hand, the EKF-based direct recon-
struction algorithms offer a number advantages as discussed in
Section I, that may justify such an increase in computational
requirements.

The algorithm stores three covariance matrices , , and
with size , , and , respec-
tively. For each iteration, the algorithm stores a measurement
matrix of size , stores and updates the error covariance
matrix, , of size , Kalman gain ma-
trix, , of size , matrix of size ,
and matrix of size . The algorithm
also stores all the updates of the concentrations and parameters
which are of size .

VI. NUMERICAL SIMULATIONS AND PHARMACOKINETIC-RATE

IMAGE RECONSTRUCTION FROM in vivo BREAST DATA

We tested the performance of our algorithms using simulated
data, and in vivo data acquired from three patients with breast
tumors. We first present the numerical simulation results per-
taining the convergence and initialization of EKF-based algo-
rithms and performance comparison of the EKF-based direct
reconstruction algorithms with that of the voxel-by-voxel recon-
struction algorithm presented in [21]. Next, we present the phar-
macokinetic-rate images reconstructed from in vivo breast data.

A. Numerical Simulations

We tested the performance of EKF-based direct reconstruc-
tion algorithm based on both the nonlinear (31) and linear (32)
measurement models. In the linear model, we computed the ma-
trix based on the background , and assumed that it is
constant throughout the dynamic update of the fluorophore con-
centrations. For the nonlinear model, we updated the Fréchet
derivative of , at every iteration of the EKF algorithm based on
the th update of the concentration and volume fraction
estimates as defined in (35)–(37). In the update of the Fréchet
derivatives, we assumed that is constant, and

. As a result, we computed once, and did not
update at every recursion, but updated the at
every recursion as described in Section V-B.

We used the two-compartment model for the ICG pharma-
cokinetics described in Section II-B and the light propagation
model described in Section III-A.

TABLE III
PHYSIOLOGICAL VALUES FOR NUMERICAL SIMULATIONS

Fig. 4. The source detector configuration used in numerical simulations. Rect-
angular shapes represent the detectors and the triangular ones represent the
sources.

As a prior model, we employed a four-pixel neighborhood
model with due to the rectangular nature of the
phantom geometry.

1) Data Generation and Phantom Description: Using phys-
iologically relevant values for the pharmacokinetic rates, ,

, , and volume fractions, , , given in Table III, we
simulated the boundary measurements, , ,
for a tissue-like 2-D phantom. The maximum transition rates
of and are simulated at the center of the image and
smoothly decreased towards the boundaries based on the re-
sults given in [18], [21]. Note that since the heterogeneity in the

and images is expected to arise from the same phys-
ical tumor location and shape, we chose and images to
be similar. The fluorescence quantum efficiency and lifetime of
ICG are assumed to be constant and set to 0.016 and 0.56 ns, re-
spectively. The modulation frequency was set to 300 MHz. The
physical dimension of the 2-D phantom was chosen 6 cm 6
cm. The image domain was discretized into 24 24 pixels each
of size 0.25 cm 0.25 cm. 24 sources and 24 detectors along the
boundary of the phantom were used to generate simulated data,
as shown in Fig. 4. The values of , , and in Table III
correspond to the average values of the heterogeneities from the
24 24 pixel phantom images.

2) Initialization of the EKF-based Algorithms: We studied
the effect of the initialization of the covariance matrices ,

, and in the reconstructed pharmacokinetic-rate images.
We chose the initial values of concentrations, pharmacokinetic
rates, volume fractions and , , and matrices within biolog-
ical limits that lead to an error covariance matrix with minimum
norm (trace sum). Let , , and , where

is an identity matrix, and . Table IV presents
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TABLE IV
TRACE NORM OF THE ERROR COVARIANCE MATRIX, ��� �
������ ����� �������, AND ��� � ������ ����	 ����
��
FOR THE LINEAR AND NONLINEAR MEASUREMENT MODELS

the norm of the error covariance matrix for and for dif-
ferent values of using both the linear and nonlinear direct re-
construction algorithms for the noise-free measurements. The
value corresponding to the minimum error covariance norm is
equal to [0.012 0.051 0.0025], and [0.014 0.048 0.0034] for the
linear and nonlinear reconstructions, respectively. For the rest of
the simulation study, we used the optimal value to initialize
the covariance matrices and . The covariance of the mea-
surement noise, i.e., was updated based on the additive noise
level in the measurements.

3) Performance Comparison: Noise-free Measurements
Case—To quantify the difference between the reconstructed
and true images, we used the normalized mean square error
(NMSE):

Note that where SNR stands for signal-to-
noise-ratio. For the direct reconstruction algorithm with the non-
linear measurement model, the NMSE for and images
are 19.77 dB and 18.49 dB, respectively. For the direct re-
construction algorithm with the linear measurement model, the
NMSE for and images are 18.45 dB and 17.65 dB,
respectively. Finally, for the voxel-by-voxel construction algo-
rithm, the error for and images are 16.88 dB and

15.90 dB, respectively.
Fig. 5(a) and Fig. 6(a) show the phantom images of the phar-

macokinetic-rates and . Fig. 5(b) and Fig. 6(b) display
the corresponding and images reconstructed by the
EKF-based direct reconstruction algorithm using the nonlinear
measurement model. Fig. 5(c) and Fig. 6(c) display the corre-
sponding and images obtained by the direct reconstruc-
tion algorithm using the linear measurement model. Fig. 5(d)
and Fig. 6(d) display the corresponding and images re-
constructed by the voxel-by-voxel algorithm that we introduced
in [21]. We observe that there is a good agreement between
the true and the estimated images in terms of the localization
of the heterogeneities. In all three reconstruction algorithms,
the center of the heterogeneity (the location corresponding to
the maximum value) is consistent with the ones in the original
phantom images.

Noisy Measurements Case—Next, we studied the effect of
the measurement noise in the performance of the direct recon-
struction algorithms and compared it with that of the voxel-by-
voxel algorithm. We added zero-mean white Gaussian noise

Fig. 5. Pharmacokinetic-rate images of � for three different reconstruction
algorithms. (a) Original phantom image. (b) EKF-based direct reconstruction
using the nonlinear measurement model. (c) EKF-based direct reconstruc-
tion using the linear measurement model. (d) EKF-based voxel-by-voxel
reconstruction.

with standard deviation equal to 5%–15% of the average value
of the measurements with a step size of 2.5%. We generated
15 realizations of the Gaussian noise at each level and deter-
mined the NMSE based on 15 different realizations of noise.
Fig. 7(a) and (b) shows the NMSE versus the measurement noise
for five different noise levels for and images, respec-
tively. Clearly, the NMSE in the reconstructed and im-
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Fig. 6. Pharmacokinetic-rate images of � for three different reconstruction
algorithms. (a) Original phantom image. (b) EKF-based direct reconstruction
using the nonlinear measurement model. (c) EKF-based direct reconstruc-
tion using the linear measurement model. (d) EKF-based voxel-by-voxel
reconstruction.

ages increases as the measurement noise increases. The phar-
macokinetic-rate images obtained with the direct reconstruction
algorithm (both linear and nonlinear cases) together with the a
prior information results in smaller error values as compared to
the voxel-by-voxel reconstruction algorithm. Additionally, the
direct reconstruction algorithm using the nonlinear measure-
ment model results in smaller error values as compared to the

Fig. 7. NMSE vs measurement noise levels for the direct and voxel-by-voxel
reconstruction algorithms (a) � images (b) � images.

direct reconstruction algorithm based on the linear measurement
model.

4) Convergence of the EKF-Based Algorithms: We checked
the convergence of the EKF algorithm by studying the -norm
of the residuals of the measurements with respect to the iter-
ation number for the choice of the , , and matrices de-
scribed in Section VI-A-2. Note that the norm of the residuals
are normalized so that the maximum value is equal to unity for
ease of comparison. Fig. 8 shows the normalized -norm of
the residuals versus the iteration number. The decrease in the
norm of the residuals confirms the convergence of the EKF al-
gorithm for the choice of , , and matrices. We see that
in the nonlinear measurement model produces smaller residual
norms than that of the linear measurement model. We also ob-
serve that the norm of the residuals for the nonlinear reconstruc-
tion decays at a faster rate than that of the voxel-by-voxel and
linear reconstruction. These can be attributed to the more ac-
curate representation of light propagation and the update of the
Fréchet derivatives at the prediction step of the EKF-based non-
linear direct reconstruction algorithm.
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Fig. 8. The normalized � -norm of the residuals versus the number of itera-
tions for the linear and nonlinear direct and voxel-by-voxel reconstruction algo-
rithms in the simulation study.

B. Pharmacokinetic-Rate Images Reconstructed From in vivo
Breast Data

1) Apparatus and Data Collection Protocol: We used in vivo
breast data acquired by a continuous wave (CW) NIR imaging
apparatus to reconstruct the pharmacokinetic-rate images of
ICG. The apparatus has 16 light sources and 16 detectors located
on a circular holder at an equal distance from each other with
22.5 apart. Sources and detectors were collocated and were in
the same plane. The breast was arranged in a pendular geometry
with the source and detector probes gently touching its surface.
A set of measurement for each source was collected at every
500 ms. The total time for the whole scan of the breast including
16 sources and 16 detectors was 8.8 s. The detectors used the
same positions as the sources to collect the light originating
from one source at a time. We used only the measurements
from the farthest 11 detectors with high signal-to-noise ratio
in image reconstruction. This resulted in approximately 115
viable measurements out of 256 measurements collected at each
time instant. ICG was injected intravenously by bolus with a
concentration of 0.25 mg per kg of body weight. Data acquisition
started before the injection of ICG and continued for 10 min.

2) Patient Information: Three patients with different tumor
types were included in the study. First case, Case 1, is a fibroade-
noma, which corresponds to a mass estimated to be 1–2 cm in di-
ameter, and located 1 cm below the skin at 6–7 o’clock. Second
case, Case 2, is an adenocarcinoma corresponding to a tumor
estimated to be 2–3 cm in diameter, and located approximately
2 cm below the skin at 4–5 o’clock. Third case, Case 3, is an in-
vasive ductal carcinoma, which corresponds to a mass estimated
to be 3–4 cm in diameter, and located 2 cm below the skin at 6
o’clock. Diagnostic information was obtained by biopsy after
data acquisition. A more detailed explanation of the apparatus,
the data collection protocol and tumor information can be found
in [20].

3) Compartmental Model and EKF-Based Reconstruction:
We used a two-compartment model for the ICG pharmacoki-
netics as described in (3)–(5). We combined the two-compart-

Fig. 9. The � -norm of the residuals versus the number of iterations for the
direct linear reconstruction using the in vivo breast data.

ment model with the linear measurement model (16). For com-
putational tractability, we used a 2-D diffusion model for image
reconstruction. (See [44]–[47] for a detailed discussion of errors
resulting from using a 2-D diffusion model for 3-D light propa-
gation in breast tissue.) We made the following simplifying as-
sumptions: The diffusion coefficient is constant and is equal
to 0.0416 cm. The endogenous absorption coefficients at the ex-
citation and emission wavelength are approximately the same,

. Thus, we determined and based on (7)
using the excitation measurements prior to ICG injection. We
next set the left-hand side of (16) to the excitation measurements
after the ICG injection and reconstructed two-dimensional ICG
pharmacokinetic-rate and concentration images based on (30)
and (32). The resulting measurement model is known as the dif-
ferential diffuse optical tomography model. A more detailed de-
scription of the model can be found in [20], [21], and [48]. As
a prior model, we employed a six-pixel neighborhood model
with due to the circular nature of the data acquisi-
tion geometry. The covariance matrices , and were set
to the multiples of identity, i.e., , ,
where , ,
and for Case 1, 2, and 3, respec-
tively. We determined these values empirically as described in
Section VI-A2.

4) Results: The resulting ICG pharmacokinetic-rate images
are shown in Figs. 10–12. The images show that there is a good
agreement with the location of the heterogeneity in the images
and the physical location of the tumors in axial direction. Ad-
ditionally, we reconstructed the ICG concentration images for
plasma and the EES compartments. Fig. 13(a)–Fig. 18(c) show
the ICG concentration in plasma and the EES for three different
time instants for Case 1, 2, and 3, respectively. We observed that
the pharmacokinetic rates and ICG concentrations in plasma and
the EES compartments are higher around the tumors agreeing
with the hypothesis that around the tumor region ICG leaks out
of compromised capillaries of tumor vessels [49], [50].

Fig. 9 shows the normalized -norm of the measurements
versus the number of iterations for the direct reconstruction al-
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Fig. 10. Direct reconstruction of pharmacokinetic-rate images of (a) � , (b)
� . Case 1: Fibroadenoma corresponding to a mass of 1–2 cm in diameter
located at 6–7 o’clock.

Fig. 11. Direct reconstruction of pharmacokinetic-rate images of (a) � , (b)
� . Case 2: Adenocarcinoma corresponding to a mass of 2–3 cm in diameter
located at 4–5 o’clock.

Fig. 12. Direct reconstruction of pharmacokinetic-rate images of (a) � , (b)
� . Case 3: Ductal carcinoma corresponding to a mass of 3–4 cm in diameter
located at 6 o’clock.

gorithm using a linear measurement model. The decrease in the
norm of the residuals confirms the convergence of the EKF-
based reconstruction algorithm and the goodness of the fit of
the two-compartment model for the ICG pharmacokinetics in
breast tissue.

Although the number of patient data is limited, our results in-
dicate that the pharmacokinetic-rate imaging may provide new
approaches to evaluate and improve breast cancer diagnosis,
staging, and treatment monitoring. Such approaches may in-
clude extraction of new quantitative features from ICG phar-
macokinetic-rate images, and statistical analysis of spatial dis-
tribution of pharmacokinetic rates.

VII. CONCLUSION

In this paper, we presented a new method for the reconstruc-
tion of spatially resolved pharmacokinetic rates, volume frac-
tions and concentrations in different compartments for optical

Fig. 13. ICG concentration images in plasma for Case 1 at (a) 246.4th, (b)
334.4th, and (c) 422.4th seconds.

Fig. 14. ICG concentration images in the EES for Case 1 at (a) 246.4th, (b)
334.4th, and (c) 422.4th s.

fluorophores directly from dynamic NIR boundary measure-
ments. We first derived a mathematical model that maps the
boundary measurements to the spatially resolved pharmacoki-
netic rates and volume fractions. For this, we combined the
compartmental modeling with the diffusion approximation to
derivative transfer equation to model NIR light propagation in
tissue. We next formed a state-space model and introduced a
spatio-temporal prior model on the pharmacokinetic-rate and
volume fraction images and addressed the resulting image for-
mation problem by the EKF framework. We discussed the ini-
tialization of our algorithms and analyzed their computational
complexity.
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Fig. 15. ICG concentration images in plasma for Case 2 at (a) 228.8th, (b)
316.8th, and (c) 404.8th s.

Fig. 16. ICG concentration images in the EES for Case 2 at (a) 228.8th, (b)
316.8th, and (c) 404.8th s.

We performed two sets of reconstructions, first set is based on
a numerical phantom and the second set is based on in vivo data
obtained from patients with breast tumors. The first set demon-
strates the performance of the proposed algorithms under dif-
ferent noise levels and compares them with the voxel-by-voxel
reconstruction algorithm that we presented in [21]. Our simula-
tion study shows that there is a good agreement between the true
and the estimated images in terms of localization of the hetero-
geneities. Additionally, the EKF-based direct reconstruction al-
gorithms lead to better performance than the voxel-by-voxel re-
construction algorithm with respect to normalized mean-square
error criterion.

Fig. 17. ICG concentration images in the plasma for Case 3 at (a) 246.4th, (b)
378.4th, and (c) 510.4th s.

Fig. 18. ICG concentration images in the EES for Case 3 at (a) 246.4th, (b)
378.4th, and (c) 510.4th s.

The improvements in the direct reconstruction technique can
be attributed to better use of the temporal correlations between
the dynamic NIR measurements by combining spatial and tem-
poral modeling into a single step and the use of prior models on
pharmacokinetic-rate images.

Although our simulation study is limited to the time-invariant
pharmacokinetic-rate imaging, the compartmental models, and
the reconstruction method outlined in our paper is applicable to
imaging of time-varying compartmental model parameters.

For the processing of the in vivo breast data, we used a
two-compartment model for the ICG pharmacokinetics and
combined it with the linear NIR photon propagation model.
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We reconstructed the pharmacokinetic-rate images of ICG
using the direct reconstruction method. Our results show that
the pharmacokinetic rates are higher around the tumor region
agreeing with the fact that permeability increases around the
tumor region. Additionally, spatially resolved pharmacokinetic
rates coupled with image understanding techniques may lead
to new approaches to breast cancer diagnosis, staging and
treatment methods.

While the two-compartment model is sufficient to model the
ICG pharmacokinetics, higher-order compartmental models
may be advantageous for modeling the pharmacokinetics of
functionalized optical contrast agents that actively accumu-
late or activate in diseased tissue [51]–[53]. Additionally, the
formalism and the algorithms introduced in this study can be
utilized to address the reconstruction of pharmacokinetic-rate
images for PET or MR contrast agents by replacing the NIR
photon propagation model with the appropriate forward models
for PET and MR imaging.
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