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We first reconstruct the conserved (Abbott-Deser) charges in the spin connection

formalism of gravity for asymptotically (Anti)-de Sitter spaces, and then compute the

masses of the AdS soliton and the recently found Eguchi-Hanson solitons in generic

odd dimensions, unlike the previous result obtained for only five dimensions. These

solutions have negative masses compared to the global AdS or AdS/Zp spacetimes.

As a separate note, we also compute the masses of the recent even dimensional

Taub-NUT-Reissner-Nordström metrics.

PACS numbers: 04.20.Cv, 04.50.+h

I. INTRODUCTION

Energy definition in theories with gravity has been a thorny issue since the inception of
General Relativity. Even though Einstein’s equation relates local properties of geometry
to the local properties of matter, when integrated it, nevertheless, requires one to express
the properties (such as mass) of gravitating matter in terms of diffeomorphism invariant
geometric quantities. In a theory without gravity, such as quantum field theory in flat
spacetime, obtaining the conserved charges, a la Noether, would be a straightforward task.
However, Noether’s method, as employed by Komar [1], leads to certain ambiguities with
gravity; such as assigning different normalization factors - to match the weak field Newtonian
limits - for the mass and angular momenta of asymptotically flat black hole spacetimes.
[Unlike the conserved charges of isolated local objects in gravity-free theories, one can only
talk about the total energy of a spacetime since gravity cannot be confined to a region and,
as long as diffeomorphism invariance is required, one has to talk about the energy of a whole
spacetime as opposed to a finite domain.]

There are remedies for Komar’s method but the problem is that there are simply ‘too
many’ different ones for various spacetimes. There is the classic work of Arnowitt, Deser and
Misner (ADM) [2] which defines a Hamiltonian for asymptotically flat spacetimes. The later
work of Regge and Teitelboim [3] introduces the conserved charges as boundary terms that
are required for a proper variational formulation of the problem. For spacetimes which are
asymptotically Anti-de-Sitter (AdS) (or asymptotically locally AdS), one can find plenty
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of energy definitions given e.g. by Abbott-Deser [4, 5], Ashtekar-Magnon [6], Hawking-
Horowitz [7], Aros et. al. [8], Cai-Cao [9], Henneaux-Teitelboim [10], Henningson-Skenderis
[11] and Balasubramanian-Kraus [12]. [See also Barnich et. al. [13, 14] for conserved charges
in generic gauge theories, including gravity.] Unfortunately, each one of these methods have
strong and weak points. A recent detailed comparison of some of these definitions was nicely
carried out by Hollands et. al. [15]. Therefore, when an “interesting” solution for a gravity
theory is found, one wonders about the conserved charges, and more specifically, the mass
of that solution computed by the above methods. Although these methods frequently agree,
one can easily find examples where they don’t [See e.g. [16] in which it was shown that the
existence of long-range scalar fields leads to discrepancies between the Abbott-Deser and
Ashtekar-Magnon definitions for certain spacetimes.]

Recently Clarkson and Mann [17] found new solitons in cosmological spacetimes that have
quite interesting properties: They resemble the Eguchi-Hanson [18] metrics with AdS/Zp

asymptotics. For the case of a negative cosmological constant, these solutions have lower
energy than the global AdS/Zp spacetime. Clarkson and Mann computed the energy of the
5-dimensional solution using the boundary counterterm method of Henningson and Skenderis
[11]. The authors of [17] also claimed that these solutions have the lowest energy in their
asymptotic class. In fact, by now, we are used to such novel properties of AdS spacetimes:
Horowitz and Myers [19] provided us with the first example of a negative mass soliton, called
the “AdS soliton”. These negative energy solutions do not cause any instabilities, as in the
case of a scalar field of negative mass-squared satisfying the Breitenlohner-Freedman [20]
bound. The stability of negative mass solitons in the context of the AdS/CFT correspon-
dence is expected since the field theory vacuum is stable.

In this paper, we shall compute the masses of both the AdS soliton and the recently found
Eguchi-Hanson (EH) solitons using the Abbott-Deser [4] procedure which can be quite easily
generalized to higher curvature models of gravity [5]. We would like to stress that, unlike the
boundary counterterm approach which works for a given fixed dimension, our method applies
to generic dimensions and here we will compute the masses for arbitrary (odd) dimensions.
However, before computing the charges, we will first reconstruct the conserved charges for
cosmological Einstein’s theory formulated with the spin connection and the vielbein instead
of the metric. This is a straightforward, yet a tedious task. Whenever fermionic fields are
to be taken into account, such as in supergravity theories, one has to use the “first order”
spin connection formulation. We believe that this provides an important motivation as to
why conserved charges in the latter formalism needs to be worked out.

Before we move on to the bulk of the paper, we would like to mention that observations
point out that the Universe might have a small positive cosmological constant. For this very
exciting possibility, in principle, one would like to study various properties, such as conserved
charges, stability, etc. of de Sitter (dS) spacetimes as opposed to the AdS spacetimes.
But ironically, most of the recent theoretical progress (such as the remarkable AdS/CFT
dictionary) has been on spacetimes with a negative cosmological constant. Global properties
of the latter has little, if any, resemblance to the former: Therefore, it is not exactly clear
how one would make use of the enormous amount of information gained in negatively curved
spacetimes. This is a serious challenge but it does not deter us from studying the AdS
spacetimes. In fact, for “small” objects (black holes and so on) that do not change the
location of the cosmological horizon, we want to emphasize that, our formulas will define
mass within the cosmological horizon in de Sitter spacetimes. Moreover they are also easily
modifiable to apply to the higher curvature models, such as the Gauss-Bonnet theory.
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II. CONSERVED CHARGES IN ASYMPTOTICALLY AdS SPACETIMES

In this section, we shall first briefly recapitulate the construction carried out in Abbott-
Deser [4] and Deser-Tekin [5] papers and then redrive the surface integrals for conserved
charges in cosmological Einstein theory using the modern language of differential forms. As
mentioned above, the charge definition that we are about to present is neither unique nor, in
general, in agreement with some other definitions for all spacetimes. However, we would like
to point out that our definition is quite intuitive and physical: the background spacetime (the
global AdS) has zero energy and the asymptotically AdS spacetimes have energy measured
with respect to the background. In some sense, an observer sitting at the boundary of
the spacetime (that is, at the spatial infinity), sees a black hole as a perturbation to the
background spacetime. Let us formulate this idea by splitting the metric into a background
plus a perturbation:

gµν ≡ ḡµν + hµν , (1)

where gµν is a solution to a certain gravity theory coupled to matter sources. Note that
this theory need not be Einstein’s theory: It could be a complicated higher curvature grav-
ity model. What we require from this model is that, it either come from a proper local
Lagrangian or it be endowed with the Bianchi identities and covariant conservation of the
matter tensor (or identically, the left hand side - i.e. the geometry part - of the equations
of motions). In what follows “barred” quantities refer to the background spacetime that
is a solution to the equations of motion without a source term. We assume that there are
background Killing vectors (to be able to define energy, one of these vectors has to be a
timelike vector everywhere)

∇̄µ ξ̄
(a)
ν + ∇̄ν ξ̄

(a)
µ = 0 . (2)

Having the Killing equation at our disposal, we can construct partially conserved vector
currents out of the covariantly conserved tensor currents of the linearized equations. For
example, this procedure (worked out in detail in [5]) leads to the following conserved charges
in cosmological Einstein theory

Qµ(ξ̄) =
1

4ΩD−2GD

∫

∂M

dSi

{

ξ̄ν∇̄
µhiν − ξ̄ν∇̄

ihµν + ξ̄µ∇̄ih− ξ̄i∇̄µh

+hµν∇̄iξ̄ν − hiν∇̄µξ̄ν + ξ̄i∇̄νh
µν − ξ̄µ∇̄νh

iν + h∇̄µξ̄i
}

, (3)

where h = hµν ḡ
µν and the gravitational charge has been normalized by the D-dimensional

Newton’s constant GD and the solid angle of a (D− 2)-sphere SD−2. Recently, this formula
was successfully applied [21] to the D-dimensional Kerr-AdS black holes [22] and a modified
version of it [23] was used to calculate the charges of the BTZ black hole [24] and the charges
of the only known supersymmetric solution to the topologically massive gravity [25] in D = 3
[26]. If there are higher curvature terms present, the construction gets modified as worked
out in detail in [5] and outlined below.

We now turn on to a detailed computation of the conserved gravitational charges formu-
lated with the spin connection and the vielbein. As already mentioned in the introduction,
such a formulation is forced on us in the presence of fermions, for example, in any su-
pergravity theory. [As a side note, recall that if the vielbein is assumed to be invertible
(non-degenerate), then the spin-connection formulation is equivalent to the metric formula-
tion.]
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Consider a generic gravity theory coupled to a covariantly conserved bounded matter
source which is described by the following ‘Einstein’ equations:

Ga + Λ ⋆ ea = κTa . (4)

Here Ga is the ‘Einstein (D− 1)-form’ of a local generic gravity action, ⋆ is the Hodge star
operator and κ is the relevant ‘coupling constant’ of the model under investigation. Suppose
now that the metric tensor g

g = ηab e
a ⊗ eb,

is decomposed such that the ‘full’ orthonormal coframe 1-forms ea can be written as the sum
of a ‘background’ orthonormal coframe ēa [which satisfies (4) for Ta = 0] plus a ‘deviation’
piece as

ea ≡ ēa + ϕa
b ē

b , (5)

where the 0-forms ϕa
b are assumed to vanish sufficiently rapidly at ‘infinity’. [Note that the

decomposition described by (5) is always possible given a metric tensor g and a choice for the
‘background’ coframes ēa, since one can always write ea = ēa + ψa

µ dx
µ and dxµ = Ēµ

b ē
b,

for some 0-forms ψa
µ and Ēµ

b, which means ϕa
b = ψa

µ Ē
µ
b in (5).] One can now separate

the field equations (4) into a part linear in ϕa
b plus all the remaining nonlinear parts so

that, one obtains
Ḡa(ϕ

b
c) = κ τa ,

the ‘linearized’ version of the field equations (4). Here Ḡa(ϕ
b
c) is a (D−1)-form that involves

only terms linear in the deviation parts ϕb
c and depends only on the background coframes

ēa (and, of course, the differential geometric structures that they define); the (D − 1)-form
τa naturally contains all the nonlinear terms in ϕb

c plus the contributions from the original
matter source Ta.

It can be shown that due to the background Bianchi identity and the background gauge
invariance, there exists a set, denoted by the index I, of Killing vectors ξ̄a

(I)

D̄a ξ̄b
(I) + D̄b ξ̄a

(I) = 0 , (6)

for the background geometry described by ēa. Here D̄a ≡ ῑa D̄; ῑa denotes the interior
product operator with respect to a ‘background’ frame vector that acts on the space of
forms and creates a (p − 1)-form out of a p-form so that, e.g. ῑb ē

a = δb
a; D̄ denotes the

covariant derivative operator with respect to the Levi-Civita connection 1-forms ω̄a
b of the

background coframes that satisfy the Cartan structure equations dēa + ω̄a
b ∧ ē

b = 0. Since
D̄ τa = 0 by the background Bianchi identity, it readily follows that one also has

D̄ (τ c ξ̄c
(I)) = d(τ c ξ̄c

(I)) = 0 .

However, using the fact that the torsion 2-form vanishes, i.e. D̄ ēa = 0, and defining
τ c = τ ca ⋆̄ ēa for some 0-forms τ ca, one can come up with a conserved density current that
leads to the following conserved Killing charges

Qa(ξ̄(I)) =

∫

M

⋆̃1 τ ca ξ̄c
(I) =

∫

∂M

dSi q
ai(I) . (7)

Here M is a spatial (D−1)-dimensional hypersurface, ⋆̃1 is the oriented ‘volume’ element of
M , ∂M denotes its (D − 2)-dimensional boundary, we use dSi to denote the corresponding
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‘area’ element of ∂M , and qai(I) is obtained from Ḡa(ϕ
b
c) whose explicit form depends on

the theory being studied. Here the index i ranges over 1, 2, . . . , D − 2 and we have used
Stokes’ theorem (and the usual accompanying assumptions of it) to obtain this final form
for the Killing charge. [Note that to apply the Stokes’ theorem, it is of course necessary to
write τ ca ξ̄c

(I) = D̄c q
ac(I), which is the tricky part but holds for all ‘physically reasonable’

theories that we know.]
Let us be more explicit now and consider the most “relevant” example of the D-

dimensional cosmological Einstein theory for which the vacuum equations read

−
1

2
Rab ∧ ⋆ eabc + Λ ⋆ ec = 0 . (8)

Here eabc is a shorthand notation for ea ∧ eb ∧ ec and we use analogous expressions for eab,
etc. Vacuum equations are solved by a space of constant curvature which satisfies

R̄abcd =
2Λ

(D − 1)(D − 2)
(ηac ηbd − ηad ηbc) ,

R̄ab =
1

2
R̄abcd ē

cd =
2Λ

(D − 1)(D − 2)
ēab , (9)

R̄ = ῑb ῑa R̄
ab =

2ΛD

D − 2
.

The ‘linearization’ process of (8) coupled to a matter source in the sense described above
involves the use of many nontrivial identities and somewhat complicated calculations. We
present these technical derivations in Appendix A and proceed with the explicit form of the
first integrand in (7) which reads

ξ̄c τ
ca =

(

−D̄c D̄
b ϕc

b + D̄c D̄
c ϕb

b +
2Λ

D − 1
ϕc

c

)

ξ̄a −
2Λ

D − 1
ξ̄c ϕ

ac

−ξ̄c D̄
c D̄a ϕb

b + ξ̄c D̄
c D̄b ϕa

b − ξ̄c D̄b D̄
b ϕac + ξ̄c D̄b D̄

a ϕbc (10)

for a given Killing vector ξ̄c of the ‘background’. Here, and in what follows, we suppress the
further use of the index I which labels the Killing vectors of the background geometry.

The nontrivial task to fulfill now is to put everything on the right hand side of (10) in
the form D̄c(something) and the details of this are given in appendix B. The outcome of
this procedure is

ξ̄c τ
ca = D̄c

(

−ξ̄a D̄b ϕc
b + ϕbc D̄b ξ̄

a − ϕb
b D̄

c ξ̄a + ξ̄a D̄c ϕb
b

−ξ̄c D̄a ϕb
b + ξ̄c D̄b ϕa

b − ξ̄b D̄
c ϕab + ϕab D̄c ξ̄b + ξ̄b D̄

a ϕcb
)

, (11)

which explicitly yields the following conserved Killing charge corresponding to (7)

Qa(ξ̄) =
1

4ΩD−2GD

∫

∂M

dSi

(

−ξ̄a D̄b ϕi
b + ϕbi D̄b ξ̄

a − ϕb
b D̄

i ξ̄a + ξ̄a D̄i ϕb
b

−ξ̄i D̄a ϕb
b + ξ̄i D̄b ϕa

b − ξ̄b D̄
i ϕab + ϕab D̄i ξ̄b + ξ̄b D̄

a ϕib
)

.(12)

As expected, this is similar in form to the metric formulation (3), but the details were
needed to be worked out carefully since the spin-connection and the metric formulation are
quite distinct in spirit. Had we considered a generic higher curvature model in the spin
connection formulation, the charges would have been modified along the lines of [5]. Here,
we will not do that computation, but simply say that, for quadratic gravity models, such
as the Gauss-Bonnet or any R2 theory, a non-trivial factor (depending on the coefficients of
the higher curvature terms and the cosmological constant) will multiply the charge in (12).
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III. COMPUTATION OF THE CHARGES FOR THE SOLITONS

A. AdS Soliton

Our first example is the “AdS Soliton” of Horowitz-Myers [19]

ds2 =
r2

ℓ2

[

(

1−
rp+1
0

rp+1

)

dτ 2 +

p−1
∑

i=1

(dxi)2 − dt2

]

+

(

1−
rp+1
0

rp+1

)−1
ℓ2

r2
dr2, (13)

which was obtained by the double analytic continuation of a near extremal p-brane solution.
Here xi (i = 1, ..., p−1) and the t variables denote the coordinates on the “brane” and r ≥ r0.
To avoid a conical singularity at r = r0, τ necessarily has a period β = 4πℓ2/(r0(p + 1)).
Its energy was computed in [19] using the method of [7]. Here we compute the energy using
the method described so far. The background (r0 = 0) is the usual globally AdS spacetime
in the horospherical coordinates, with the timelike Killing vector

ξ̄µ = (−1, 0, ..., 0). (14)

Defining the metric perturbation as outlined above and carrying out the integrations, we
have

E = −
VD−3 π

(D − 1) ΩD−2GD

rD−2
0

ℓD−2
, (15)

where VD−3 is the volume of the compact dimensions. Upto trivial charge normalizations,
our result matches that of [19], which uses the energy definition of Hawking-Horowitz [7].

B. Eguchi-Hanson Solitons

Recently, Clarkson and Mann [17] found very interesting solutions to the odd dimensional
cosmological (for both signs) Einstein equations. These solutions resemble the even dimen-
sional Eguchi-Hanson metrics [18] - thus the name Eguchi-Hanson solitons - and asymptot-
ically approach AdS/Zp, where p ≥ 3. As shown in [17], these solutions have lower energy
compared to the global AdS spacetimes (or the global AdS/Zp spacetimes). The energies
of these solutions (for the case of 5 dimensions) were computed in [17] with the help of the
boundary counterterm method [11, 12]. It is important to note that boundary counterterm
method needs to be worked out for a given fixed dimension. Here, we use the prescription
outlined in the previous section and find the energy of the EH solitons for generic odd di-
mensions. For a detailed description of the metrics, we refer the reader to [17]. We simply
quote their result: the EH soliton reads

ds2 = −g(r) dt2 +

(

2r

D − 1

)2

f(r)



dψ +

(D−3)/2
∑

i=1

cos θi dφi





2

+
dr2

g(r) f(r)
+

r2

D − 1

(D−3)/2
∑

i=1

(

dθ2i + sin2 θi dφ
2
i

)

, (16)

and the metric functions are given by

g(r) = 1∓
r2

ℓ2
, f(r) = 1−

(a

r

)D−1

. (17)
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In the AdS case, to remove the string-like singularity at r = a, one finds that ψ has a period
4π/p and there is a constraint on the parameter a:

a2 = ℓ2 (
p2

4
− 1) . (18)

The background is obtained simply by setting a = 0 in (17). The details of the energy (the
charge for ξ̄µ = (−1, 0, ..., 0)) computation is rather lengthy and not particularly illuminating
to present here. Instead, we will only write down our result. For convenience, we define

E(ξ̄) ≡
1

4ΩD−2GD

∫

∂M

dSr E(ξ̄) ,

and only present E(ξ̄), in the r → ∞ limit:

lim
r→∞

E(ξ̄) = −
2 aD−1

ℓ2 (D − 1)(D−1)/2

(D−3)/2
∏

i=1

sin θi. (19)

After the angular integrations are carried out, one obtains the energy of the EH soliton in
generic odd dimensions

E = −
(4π)(D−1)/2 aD−1

p ℓ2 (D − 1)(D−1)/2 ΩD−2GD
. (20)

Specifically, when D = 5, one finds

E = −
a4

4 p ℓ2G5
. (21)

We note that this result differs from that of [17] in two respects: one of which is a trivial
numerical factor that can be attributed to normalization of the conserved charges (12); the
second, and the more important one, is the presence of an additive constant which is exactly
equal to the energy of the AdS/Zp spacetime. Recall that in the formalism we use, the
background always has zero energy, unlike the boundary counterterm method for which it
has a finite energy.

IV. CONCLUSIONS

In this paper, we have constructed the conserved charges for asymptotically AdS space-
times using the spin connection and the vielbein formalism of gravity and then computed
the gravitational energies of the AdS soliton and the recently found EH solitons. For the
latter, our method provided us with a computation of the masses for generic odd dimen-
sions, unlike the boundary counterterm method which was employed only for D = 5. These
solitons all have lower energies than the global AdS or the global AdS/Zp spacetimes.

We would like to stress that the Abbott-Deser [4, 5] method, which we used here, is a
powerful tool that can have a wide range of applications. For example, one can use it to
compute the masses of the new charged solutions [27, 28, 29] in AdS spacetimes that have
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non-trivial topology. Here, we only consider two examples that were presented in [27]. In
D = 4, the “Taub-NUT-Reissner-Nordström” solution reads

ds2 = −F (r) (dt− 2N cos θ dφ)2 +
dr2

F (r)
+ (r2 +N2) (dθ2 + sin2 θ dφ2) , (22)

where N is the nut charge and

F (r) =
r4 + (ℓ2 + 6N2) r2 − 2mℓ2 r − 3N4 + ℓ2 (q2 −N2)

ℓ2 (r2 +N2)
. (23)

To find the energy of this solution, the correct background (that has zero energy) needs to
be carefully chosen. If we naively set m = q = 0 and the nut charge N = 0, then the energy
of the solution with nonzero m, q,N diverges. This is to be expected since N = 0 solution
is not in the same topological class as that of the N 6= 0 solutions. The background has to
be chosen as m = q = 0 but N 6= 0 as was shown by Deser-Soldate [30] in the case of the
(asymptotically locally flat) Kaluza-Klein monopole. In the light of these arguments, using
(12) one gets

E =
m

G4
. (24)

In D = 6, the metric, for the details of which we refer to [27], reads

ds2 = −F (r) (dt− 2N cos θ1 dφ1 − 2N cos θ2 dφ2)
2 +

dr2

F (r)

+(r2 +N2) (dθ21 + sin2 θ1 dφ
2
1 + dθ22 + sin2 θ2 dφ

2
2) , (25)

where now

F (r) =
q2 (3r2 +N2)

(r2 +N2)4

+
1

3ℓ2(r2 +N2)2
[

ℓ2(−3N4 − 6mr + 6N2r2 + r4)− 15N6 + 45N4r2 + 15N2r4 + 3r6
]

.

Once again the correct background is found by setting m = q = 0 but N 6= 0, and the
energy is

E = 12
m

G6

. (26)

In both cases, the electric charge q does not appear in the total energy just like in the case
of ordinary Reissner-Nordström solution.

APPENDIX A: THE DERIVATION OF (10)

In this appendix, we present the technical calculations that lead to (10).
The interior product operator satisfies ιb e

a = δb
a, which implies that ῑb is related to ιb

by
ιb = ῑb − ϕb

c ῑc , (A1)
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upto terms first order in ϕa
b. Moreover, substituting (5) in the defining relation of the

Hodge operator

⋆ ea ≡
1

(D − 1)!
ǫa bc...d e

b ∧ ec ∧ . . . ∧ ed ≡
1

(D − 1)!
ǫa bc...d e

bc...d ,

yields

⋆ ea = ⋆̄ ēa +
1

(D − 2)!
ǫa bc...d ϕ

b
p ē

pc...d = ⋆̄ ēa + ϕb
p ē

p ∧ ⋆̄ ēa b

in terms of the Hodge operator ⋆̄ of the ‘background’. This identity can also be generalized
to

⋆ eabc = ⋆̄ ēabc + ϕd
p ē

p ∧ ⋆̄ ēabc d

in a straightforward fashion. When the Cartan structure equations Dea = dea+ωa
b∧e

b = 0
are solved for the Levi-Civita connection 1-forms, one finds

ωa
b =

1

2
(ιb de

a − ιa deb + ec(ιa ιb dec)) .

Since dea = dēa + dϕa
b ∧ ēb + ϕa

b dē
b, one obtains (using (A1) and (5)) that

ιb dec = ῑb dēc + (ῑb dϕck) ē
k − dϕcb + ϕck (ῑb dē

k)− ϕb
k (ῑk dēc)

and

ιa ιb dec = ῑa ῑb dēc + ῑb dϕc
a − ῑa dϕcb + ϕck (ῑ

a ῑb dē
k)− ϕb

k (ῑa ῑk dēc)− ϕak (ῑk ῑb dēc)

up to first order ‘deviation’ terms. Keeping in mind that the ‘background’ Levi-Civita
connection 1-forms satisfy D̄ ēa = dēa + ω̄a

b ∧ ēb = 0, and using the fact that D̄ ϕa
c =

dϕa
c + ω̄a

k ϕ
k
c − ω̄k

c ϕ
a
k, one thus finds

ωa
b = ω̄a

b + ēc [D̄b ϕ
a
c − D̄a ϕbc]

after some lengthy but straightforward calculations. Finally the defining expression Rab =
dωab+ωac∧ω

c
b yields that the curvature 2-forms of the ‘background’ and the ‘full’ geometry

are related via
Rab = R̄ab − ēc ∧ D̄ (D̄b ϕac − D̄a ϕbc) .

When all of these preliminary results are carefully used in (8), one obtains the following
expression for the ‘linearized’ energy-momentum tensor of the cosmological Einstein theory:

τc = −
1

2
R̄ab ∧ ϕd

p ē
p ∧ ⋆̄ ēabcd−

1

2
[D̄ (D̄b ϕa

k−D̄
a ϕb

k)] ∧ ē
k ∧ ⋆̄ ēabc+Λϕb

p ē
p ∧ ⋆̄ ēcb . (A2)

Let us now examine the terms in τc (A2) individually. Using (9), the fact that

ēabp ∧ ⋆̄ ēabcd = (D − 3) ēpa ∧ ⋆̄ ēacd = (D − 3) (D − 2) ēp ∧ ⋆̄ ēcd ,

one finds for the first term on the right hand side of (A2) that

−
1

2
R̄ab ∧ ϕd

p ē
p ∧ ⋆̄ ēabcd = −Λ

(

D − 3

D − 1

)

ϕb
p ē

p ∧ ⋆̄ ēcb ,
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which can be added to the last term in (A2) to yield

−
1

2
R̄ab ∧ ϕd

p ē
p ∧ ⋆̄ ēabcd + Λϕb

p ē
p ∧ ⋆̄ ēcb =

2Λ

D − 1
(ϕb

b ⋆̄ ēc − ϕb
c ⋆̄ ēb) ,

where we have also used ēp ∧ ⋆̄ ēcb = δp b ⋆̄ ēc − δp c ⋆̄ ēb. The middle term on the right hand
side of (A2) can be simplified by first noting that it can be written as

−
1

2
[D̄ (D̄b ϕa

k − D̄a ϕb
k)] ∧ ēk ∧ ⋆̄ ēabc =

1

4
(D̄p D̄

a ϕb
k − D̄p D̄

b ϕa
k) ē

pk ∧ ⋆̄ ēabc

−
1

4
(D̄k D̄

a ϕb
p − D̄k D̄

b ϕa
p) ē

pk ∧ ⋆̄ ēabc

and this in turn can be further reduced by the fact that

ēpk ∧ ⋆̄ ēabc = (δk b δ
p
a − δk a δ

p
b) ⋆̄ ēc + cyclic terms in (a, b, c) .

Using this, one finally obtains for the middle term on the right hand side of (A2) that

−
1

2
[D̄ (D̄b ϕa

k − D̄a ϕb
k)] ∧ ēk ∧ ⋆̄ ēabc = (D̄a D̄

a ϕb
b − D̄a D̄

b ϕa
b) ⋆̄ ēc

+(D̄c D̄
b ϕa

b − D̄c D̄
a ϕb

b + D̄b D̄
a ϕb

c − D̄b D̄
b ϕa

c) ⋆̄ ēa .

Combining all of these results finally gives

τc = ηca

(

−D̄p D̄
b ϕp

b + D̄p D̄
p ϕb

b +
2Λ

D − 1
ϕp

p

)

⋆̄ ēa

+

(

−D̄c D̄a ϕ
b
b + D̄c D̄

b ϕab − D̄b D̄
b ϕac + D̄b D̄a ϕ

b
c −

2Λ

D − 1
ϕac

)

⋆̄ ēa

for the ‘linearized’ energy-momentum tensor of the D-dimensional cosmological Einstein
theory. Hence (10) readily follows from this expression for τc.

APPENDIX B: THE DERIVATION OF (11)

In this appendix, we show the details of how (11) is obtained from (10). For this purpose,
first note the following identities:

Since ξ̄a is a Killing vector, it immediately follows from the Killing equation (6) that
D̄a ξ̄

a = 0. Moreover, the very definition of the Riemann tensor implies that

(D̄a D̄b − D̄b D̄a) ξ̄c = R̄abcd ξ̄
d .

This can be used together with the key property of the Riemann tensor [This identity can
easily be derived from Dθa = Ra

b ∧ eb = 0 where θa ≡ D̄ ēa denotes the torsion 2-form.].

R̄[abc]d = 0 and hence R̄[abc]d ξ̄
d = 0,

to obtain D̄b D̄c ξ̄
a = R̄a

cbd ξ̄
d. This further simplifies by making use of (9) and leads to the

useful identity that

D̄b D̄c ξ̄
a =

2Λ

(D − 1)(D − 2)
(δa b ξ̄c − ηbc ξ̄

a) . (B1)
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Consider, for example, the first term in (10). One has

ξ̄a D̄c D̄
b ϕc

b = D̄c (ξ̄
a D̄b ϕc

b)− D̄b (ϕc
b D̄c ξ̄

a) + ϕc
b (D̄

b D̄c ξ̄
a)

= D̄c (ξ̄
a D̄b ϕc

b − ϕbc D̄b ξ̄
a) +

2Λ

(D − 1)(D − 2)
(ϕc

a ξ̄c − ϕc
c ξ̄

a) .

We have carried the ξ̄a term ‘inside’ the derivative operator in the first line and used (B1)
to obtain the second line. One follows similar steps for the other terms in (10), and noting
that all terms of the type ϕab ξ̄b and ϕb

b ξ̄
a cancel out separately along the way, the final

expression for (11) is found.
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