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BILAL GÜNEŞ and PERVIN GÜNEŞ
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Structural stability and energetics of nickel clusters, NiN (N = 3−459), have been inves-
tigated by molecular-dynamics simulations. A size-dependent empirical model potential
energy function has been used in the simulations. Stable structures of the microclus-
ters with sizes N = 3 − 55 and clusters generated from fcc crystal structure with sizes
N = 79 − 459 have been determined by molecular-dynamics simulations. It has been
found that the five-fold symmetry appears on the surface of the spherical clusters. The
average coordination number shows a size-dependent characteristic, on the other hand
the average nearest-neighbor distance does not show a size-dependence.
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1. Introduction

Clusters play an important role in understanding the transition from microscopic

structure to macroscopic structure of matter. At very small cluster sizes, the

structures are molecular where at large cluster sizes, they are bulk like. It is

the intermediate region in which the properties and structures change between

these limits. The research field of clusters, particularly microclusters, has shown

a rapid development in both experimental and theoretical investigations in the

last decade.1,2 The geometrical structure of clusters is undoubtedly important

in understanding physical and chemical properties in processes such as catalysis,
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sintering, and cluster assembled interfaces.3 Although there are considerable im-

provement in the experimental techniques, there are still difficulties in the pro-

duction and/or investigation of isolated microclusters of some elements. Transition

metal clusters have been investigated experimentally by the use of chemical probes4

that determine the number and types of binding sites, but cannot determine di-

rectly the structure. Computer simulations provide help for a deeper understanding

of the experimental observations in one hand, and they can also be applied for the

systems which are practically difficult to make experiments on the other hand.

Atomistic level computer simulations using empirical model potentials have been

used successfully in investigating bulk, surface, and cluster properties of elements.

In the literature, there are many empirical potential energy functions which are

proposed and applied to various systems in the last decade.5,6

Nickel clusters are interesting and have potential importance in the physics

and chemistry of transition metals.7 Nickel clusters are of special interest be-

cause of their practical applications in ferromagnetism and their superparamagnetic

behavior.8,9

There exist several experimental8–12 and theoretical13–32 studies of nickel clus-

ters. Density functional theory (DFT) method was used to investigate the structural

and electronic properties of nickel clusters upto 13 atoms13 and for Ni5 and Ni6
clusters.14 Empirical potential energy functions (EPEF) were used to study the

structural properties of nickel clusters upto 40 atoms,15 55 atoms,16 4 atoms,17 and

7 atoms.18 Tight-binding molecular-dynamics (TB-MD) method was used to inves-

tigate the magnetic properties of nickel clusters of sizes from 5 to 60 atoms,19 from

2 to 6 atoms,20 from 5 to 16 atoms,21 from 2 to 7 atoms,22 and structural proper-

ties of nickel clusters upto 55 atoms,23 and upto 10 atoms.24 Embedded atom (EA)

method was used to study the structural properties of nickel clusters of sizes from

13 to 147 atoms,25 and melting properties of nickel clusters upto 19 atoms.26,27 Ef-

fective medium (EM) method was used to study the structural properties of nickel

clusters of sizes from 4 to 23 atoms28 and from 24 to 55 atoms.29 Friedel’s model

was used to study the structural and magnetic properties of nickel clusters of sizes

from 5 to 26 atoms.30 Another EPEF was used to investigate the structural prop-

erties of nickel clusters of sizes upto 23 atoms.31 EA method was used to study the

energetics of nickel clusters of sizes from 142 to over 5000 atoms.32

In this work, we have investigated the structural properties of isolated nickel

clusters containing 3 to 459 atoms. Using a recently developed empirical potential

energy function for nickel,6 we performed Molecular-Dynamics (MD) simulations

to predict the stable structures of nickel clusters.

2. The Potential Energy Function

In this work, we have used for the first time a size-dependent empirical potential

energy function (SDEPEF) developed for a finite system and parameterized for

nickel.6 The total interaction energy (Φ) of an N particle system may be calculated
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from the sum of pair interactions and scaled by a size dependent function f(N),

Φ = f(N)
N∑
i<j

U(rij) . (1)

The pair potential energy function U(r) is in the form,17,18

U(r) = A

[(r0
r

)2n

e−2α(r/r0)2 −
(r0
r

)n
e−α(r/r0)2

]
. (2)

The size dependent function f(N) is in the form,6

f(N) =
√
β1 + β2/N . (3)

The potential parameters used for nickel are: A = 8.28, r0 = 2.2, n = 2.89247,

α = 0.693147181,17,18 and β1 = 0.081, β2 = 1.532.6 In these parameters, energy is

in eV and distance is in Å.

Using this SDEPEF, we have performed molecular-dynamics simulations to

obtain the stable structures of nickel clusters with the number of atoms from 3

to 459.

3. Results and Discussion

The nickel clusters having 3 to 459 atoms have been investigated by performing

molecular-dynamics simulation at constant temperature to obtain the stable struc-

ture of each cluster. The motion equations of the particles are solved by consider-

ing the Nordsieck–Gear algorithm33,34 within the seventh order predictor-corrector

method.35 The simulations are carried out by starting at 600 Kelvin, then the tem-

perature was reduced to 1 Kelvin in four stages, namely 600, 300, 100, and 1 Kelvin.

We have done this procedure to increace the probability of catching the stable con-

figuration of potential energy surface of the simulated cluster. This type of temper-

ature reduction with smaller steps is already known in the literature; the simulated

annealing method36 is well known in the optimization of many-particle systems via

the Monte Carlo type simulations. The sudden reduction of temperature does not

change much the energetics of the system studied, however a slight change in the

geometry may take place, which does not affect the conclusions in this work. A sim-

ilar method was applied before for silver37 and gold38 clusters. The time step has

been taken as 1.0×10−15 seconds. In the simulations, we have taken the number of

MD steps at most 50 000 for clusters with the number of atoms from 3 to 55. In the

last 10 000 steps, the temperature rescaling is turned off and the system was relaxed

to reach the thermal equilibrium. For clusters with the number of atoms N > 55,

the number of MD steps were taken as 90 000, again in the last 10 000 steps, the

system allowed to relax and reach the thermal equilibrium. This steps were enough

to reach the equilibrium in total energy and to get the thermal equilibrium of the

system studied. We performed this procedure for every temperature reduction in

the simulations.
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Like conventional molecules, most clusters, in general, have some well-defined

geometry corresponding to the absolute minimum energy of their potential surfaces.

There might be many local minima on the potential energy surface of a many-

particle system and also there might be many isomers of a many-particle system. In

the present study, we have generated the microclusters starting from three particles.

Adding one atom at a time, we relaxed the system by the temperature reduction

procedure to obtain the stable structure of the considered cluster. We applied this

method for microclusters with sizes N = 3 − 55. The stable structures of nickel

clusters with sizes N = 3 − 55 obtained by the MD simulations are shown in

Figs. 1(a), 1(b), and 1(c). These structures represent the configuration of the system

studied at the last MD step. We have also simulated spherical nickel clusters, which

are generated from the fcc crystalline structure by taking the fifth, sixth and so on

upto 17th neighbors to a central atom in the bulk. The cluster models generated

in this form contain the number of atoms N = 79, 87, 135, 141, 177, 201, 225, 249,

321, 369, 381, 429, and 459. We applied the same simulation procedure for these

spherical clusters. The three-dimensional structures of these clusters are presented

in Fig. 1(d).

The binding energy, namely the average interaction energy per atom in the

cluster, versus the cluster size, the number of atoms in the cluster, is plotted for

the stable structures in Fig. 2. The average binding energy per atom decreases as

the cluster size increases, it shows an exponential like decaying. From the energetics

point of view, we may classify the studied nickel clusters into three groups (3–13;

13–55; 55–459). In the first group of clusters, the variation of average binding energy

N=3 N=4 N=5 N=6

N=7 N=8 N=9 N=10

N=11 N=12 N=13

(a)

Fig. 1. The structures of energetically most stable nickel clusters, NiN . (a) for N = 3 − 13,
(b) for N = 13− 40, (c) for N = 41− 55, and (d) for N = 79− 459.
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Fig. 1. (Continued)
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Fig. 2. The variation of average interaction energy, Eb = EN/N , versus the cluster size (N),
N = 3− 459. Starred values are from Eq. (4).

with respect to the cluster size is fast. However, the variation of average binding

energy with respect to the cluster size for the second group of clusters changes

relatively slow. This trend appears in the third group of clusters even more slowly.

The general decaying behavior in the average binding energy with respect to the

cluster size is common almost for all metal clusters.3 The size dependence of average

binding energy per atom for metal clusters is predicted by the empirical relation,2

Eb(N) = Φ + 21/3

(
1

2
De − Φ

)
N−1/3 , (4)

here, Φ is the bulk cohesive energy of element forming the cluster, and De is the

dimer binding energy. For nickel, Φ = −4.44 eV/atom39 and De = −2.07 eV.40

Figure 2 contains also the binding energy variation with respect to the cluster

size using Eq. (4). The functional dependence of both predicted [from Eq. (4)] and

present calculation looks similar, but there is a small shift in the energy. One should

not expect a perfect curve as obtained from Eq. (4) for finite size systems. Stability

of clusters change from cluster to cluster; a size dependent fluctuation always exist

in finite size systems, which shows the relative stability among the clusters. The

variation of the average binding energy versus the cluster size for the number of

atoms 3− 55 is shown in Fig. 3 to see the relative stability of microclusters clearly.

On the other hand, for isolated clusters, the average binding energy per atom in

the cluster Eb = Φ/N may also be expressed as a function of cluster size N ,3

Eb = Ev +EsN
−1/3 +EcN

−2/3 , (5)

where the coefficients Ev, Es, and Ec correspond to the volume, surface, and cur-

vature energies of the particles forming the cluster respectively. The variation of Eb
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Fig. 3. The variation of average interaction energy, Eb = EN/N , versus the cluster size (N),
N = 3− 55. Starred values are from Eq. (4).
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Fig. 4. The variation of average interaction energy, Eb = EN/N , versus the cluster size (N−1/3),
N = 3− 459. Starred values are from Eq. (4).

versus N−1/3 is shown in Fig. 4. The linear fit of data to Eq. (5) gives Ev = −4.842

and Es = 4.237, the quadratic fit gives Ev = −4.738, Es = 3.600, and Ec = 0.864.

The volume energy Ev corresponds to the bulk cohesive energy of the element

considered is −4.44 eV/atom for nickel. The present calculation (quadratic fit)

gives a result about 7% lower than the experimental value, which may be con-

sidered reasonable. Using the Eb values obtained from Eq. (4), linear fit gives
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Ev = −4.440 and Es = 4.290, the quadratic fit gives Ev = −4.440, Es = 4.290, and

Ec = −0.879× 10−8. The volume energy obtained from the fit of data generated

from Eq. (4) is equal to the experimental value, as expected. The plot of Eb versus

N−1/3 from Eq. (4) is also shown in Fig. 4.

The stable structures of the microclusters with sizes n = 3 − 7 have a

regular symmetry. The corresponding point groups of these clusters are: Ni3(D3h),

Ni4(Td), Ni5(D3h), Ni6(Oh), and Ni7(D5h). On the other hand, the clusters with

the sizes N = 9−12 seem to be formed by adding one by one to the seven-atom clus-

ter. In these structures, the configuration of seven-atom cluster keeps its symmetry.

However, the eight-atom cluster does not show this property, there is no pentagonal

bipyramidal seed in the eight-atom cluster. The Ni13 has the symmetry Ih.

DFT calculation13 gives the stable structure of Ni3 as trigonal, Ni4 as trigonal

bipyramid and square, Ni5 as trigonal bipyramid, Ni6 as square bipyramid (or

octahedron), Ni8 as cube, and Ni13 as icosahedron. Another DFT calculation14

gives Ni5 as trigonal bipyramid, and Ni6 as square bipyramid. An empirical po-

tential energy function (EPEF) calculation15 gives Ni3 as trigonal, Ni4 as trig-

onal pyramid, Ni5 as trigonal bipyramid, Ni6 as octahedron, Ni7 as pentagonal

bipyramid, Ni8 as deformed central tetrahedron, and Ni13 as icosahedron. Another

EPEF calculation16 gives similar structures for Ni3−Ni13 as found in the present

work. Another EPEF calculation16 gives similar structures for Ni3 and Ni4,17 and

for Ni3 − Ni718 as found in the present work. Tight-binding molecular-dynamics

calculations21,23 give similar structures for Ni3−Ni13 as found in the present work.

In an embedded atom method calculation,25 the icosahedral structures of nickel

clusters were studied. The effective medium calculations28,29 give similar structures

for Ni3−Ni13 as found in the present work. Friedel’s model calculation30 predicted

the structures of nickel clusters Ni5−Ni14 as based on hexadron, and Ni15−Ni26

as based on cubic and hexagonal antiprism. Another EPEF calculation31 gives sim-

ilar structures for Ni3−Ni23 as found in the present work. In another EA method

calculation,32 the various crystallite forms of large nickel clusters were investigated.

In Ref. 32, it was found that the five-fold symmetry is favorable on spherical nickel

clusters. Similar trend appears in the present calculations.

Experimental observations12 show that Ni3 is triangular, Ni4 is not certain

probably two-dimensional such as rhombic, Ni5 is three-dimensional in trigonal

bipyramid form, Ni6 is octahedron, Ni7 is in capped octahedron, Ni8 is in bisdi-

spheroid structure (D2d dodecahedron), Ni9 is in tricapped trigonal prism, Ni10

is in tricapped pentagonal bipyramid, Ni11 is not certain probably pentagonal,

Ni12 is in icosahedron minus one atom, Ni13 is in icosahedron, Ni14 is in bicapped

hexagonal antiprism, and finally Ni15 is in bicapped icosahedron form.

The average nearest neighbor distances (NND) vary around 2.2 Å at the last MD

step for almost all the clusters considered. This value is equal to the experimental

dimer distance of nickel-dimer, re = 2.20 Å.40 The variation of NND versus the

cluster size (N = 3− 459) is shown in Fig. 5. It seems that NND does not show a

dependence on the cluster size. On the other hand, the average coordination number
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(CN) that is the average number of nearest neighbors, shows a dependence on the

cluster size. The variation of CN versus the cluster size (N = 3 − 459) is shown

in Fig. 5. The variation of CN versus the cluster size (N = 3 − 55) is shown in

Fig. 6 to see the details clearly. The spherical clusters keep their spherical form

after the relaxation, but atoms on the surface region reconstructed slightly with
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Fig. 5. The variation of average coordination number (CN) and the average nearest neighbor
distance (NND) versus the cluster size (N), N = 3− 459.
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Fig. 6. The variation of average coordination number (CN) and the average nearest neighbor
distance (NND) versus the cluster size (N), N = 3− 55.
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respect to the original positions. Five-fold symmetry appears on the surface region

of relaxed spherical clusters; especially this feature appears on the clusters with

sizes N = 3− 55. This situation is clearly seen in Fig. 1. The icosahedral structure

dominates at small cluster sizes and the fcc structure becomes more prominent at

larger sizes. The structural change occurs because of competition between surface

and bulk energy components. The icosahedral structure minimizes surface energy

whereas the fcc structure minimizes bulk energy.

The relative stabilities of clusters can also be analyzed by considering the first

and second difference energies, namely ∆E(1) = EN −EN−1 and ∆E(2) = EN+1−
2EN +EN−1 respectively. In the limit of very large clusters, ∆E(1) will approach to

cohesive energy of the corresponding bulk solid. ∆E(1) is a measure of how different

the clusters are from their bulk limit in terms of stability. ∆E(2) is the difference

of energy of two fragmentation paths XN+1 → XN +X and XN → XN−1 +X. If

∆E(2) > 0, it means that the dissociation of XN+1 into XN leaving one atom free

is more favorable than the dissociation of XN into XN−1, so, ∆E(2) is nothing but

a measure of stability of clusters. The variation of ∆E(1) and ∆E(2) with respect

to the cluster size are shown in Figs. 7 and 8 respectively. From Fig. 3, one may

say that the clusters with the number of atoms N = 13, 18, 20, 23, 25, 29, 37,

44, 53, and 55 seem to be relatively more stable; from Fig. 7, the clusters with the

number of atoms N = 4, 13, 17, 20, 22, 25, 28, 31, 33, 35, 37, 44, and 55 seem to

be relatively more stable; from the Fig. 8, the clusters with the number of atoms

N = 4, 6, 13, 18, 20, 23, 25, 29, 33, 44, and 53 seem to be more stable. We may

conclude that the common numbers in these three sets of numbers might be the

magic numbers for the studied nickel clusters in the present work for the range of

0 10 20 30 40 50 60
Cluster size, N

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

F
irs

t D
iff

er
en

ce
 E

ne
rg

y 
(e

V
)

Fig. 7. The variation of first difference in the total energy, ∆E
(1)
N , versus the cluster size (N),

N = 3− 55.
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Fig. 8. The variation of second difference in the total energy, ∆E
(2)
N , versus the cluster size (N),

N = 3− 55.

cluster size 3 ≤ N ≤ 55. The common numbers are N = 13, 20, 25, and 44. We

may call these numbers as the primary magic numbers for nickel microclusters. The

numbers appearing in at least two groups, N = 4, 18, 23, 29, 33, 37, and 53 might

be the secondary magic numbers for nickel microclusters.

We have investigated the structural stability and energetics of isolated nickel

clusters containing 3 to 459 atoms. As a conclusion, we may say that nickel micro-

clusters prefer to form three-dimensional compact structures. On the other hand,

five-fold symmetry appears on the surface region of spherical clusters. The average

coordination number shows a size-dependent behavior, however, the average nearest

neighbor distance seems to be size-independent.
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