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Abstract: We develop a new compressive spectral imaging modality that utilizes a
coded aperture and a photon-sieve for dispersion. The 3D spectral data cube is successfully
reconstructed with as little as two shots using sparse recovery.
OCIS codes: (110.1758) Computational imaging, (110.4234) Multispectral and hyperspectral imaging.

1. Introduction

Compressive spectral imaging has the remarkable advantage of reconstructing the entire spectral cube from a few mul-
tiplexed measurements through sparse recovery. Inspired by compressed sensing, various different optical configura-
tions have been suggested for compressive spectral imaging. Examples include compressive coded aperture snapshot
spectral imager (CASSI) [1], and compressive hyperspectral imager by separable spectral and spatial operators [2].

In this paper, we present a new compressive spectral imaging modality called compressive photon sieve spectral
imaging (CPSSI). The CPSSI utilizes a coded aperture to modulate the optical field from a scene and a diffractive
imaging element such as a photon-sieve [3] for dispersion. The coded field passed through the photon sieve is recorded
at a few measurement planes using a moving detector. A fast sparsity-based reconstruction approach is developed
to reconstruct the spectral data cube from these measurements. Simulation results show promising reconstruction
performance with as little as two measurements.

2. Forward Problem

As illustrated in Fig. 1a, CPSSI requires a simple optical system involving (1) an objective lens, (2) a coded aperture,
(3) a photon sieve as a diffractive imaging element, and (4) a monochrome detector. The objective lens forms the
image of the scene on the plane of the coded aperture. The resulting coded field is passed through the photon sieve —
a modified Fresnel lens with the open zones replaced by circular holes. Because of the wavelength-dependent focal
length of the sieve, each wavelength component is focused differently on the detector. Hence resulting measurement
is a superposition of coded and differently blurred spectral bands. A total of K such measurements are obtained using
a moving detector, each at a different distance from the sieve.

The image formation model that relates the discretized spectral cube to the measurements can be obtained as follows:

yk[m,n] =
S

∑
s=1

(cs[m,n]xs[m,n])∗hdk,λs [m,n]+wk[m,n]. (1)

Here yk[m,n] represents the kth measurement obtained at distance dk over N ×N pixels and wk[m,n] accounts for
the noise. The spectral cube is discretized into S spectral bands, and xs[m,n] denotes the intensity of the sth discrete
band with wavelength λs. This spectral band is modulated with the coded aperture cs[m,n], as differently from the
non-compressive setting [3], and then convolved with the PSF, hdk,λs [m,n], of the photon sieve at distance dk. The
closed-form expression for this PSF is given elsewhere [3, 4]. If a traditional block-unblock (i.e. uncolored) mask is
used, cs[m,n] is same for all spectral bands (s = 1, . . . ,S); however, this is not the case if a colored coded aperture [5]
is used instead, since in this case different wavelengths are modulated differently.

Using lexicographic ordering, the above image-formation model can be cast in matrix-vector form as follows:
y = HCx+n, (2)

y =

 y1
...

yK

 , x =

 x1
...

xS

 , H =

 H1,1 . . . H1,S
...

...
HK,1 . . . HK,S

 , C =

 diag(c1) . . . 0
...

. . .
...

0 . . . diag(cS)

 .

Here y is the overall measurement vector containing all the K measurements, and x is the complete data cube in vector
form. The N2×N2 matrix Hk,s represents the convolution operation with hdk,λs , and H is the overall sensing matrix of
size KN2×SN2. The diagonal matrix C corresponds to the coding operation, and takes values 1 or 0 along its diagonal.
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Fig. 1: (a) CPSSI system. (b) Reconstructed images from compressive measurements (K = 2). Top to bottom: true
images, reconstructions with no mask, uncolored mask, colored mask. (c) PSNR versus K for the colored mask case

3. Image Reconstruction Approach
In the inverse problem, the goal is to recover the unknown spectral images, x, from their noisy, superimposed, coded
and blurred measurements, y. To enforce sparsity, this underdetermined problem is formulated as follows:

min
x,b

ν ||y−HCx||2 + ||Wx−b||2 s.t. ||b||0 ≤ β (3)

Here W represents the patch-based 3D DCT operator, and b is the corresponding sparse code vector. To solve this
optimization problem, we develop a fast alternating minimization approach which alternately minimizes the objective
term in Eqn. (3) over the spectral images x and sparse codes b. In the sparse coding step, the objective is minimized
over b while x is kept fixed; the optimal solution is obtained by assigning the largest β elements of Wx to b, and
zeroing the others. In the spectral cube update step, the minimization problem over x is solved while b is kept fixed.
This is a least-squares problem whose linear normal equations, in the form of Ax = t with A = νCH∗HC+W ∗W and
t = νCH∗y+W ∗b, are solved efficiently using a conjugate-gradient algorithm.

4. Numerical Results
Here we present numerical simulations to illustrate the performance of the proposed imaging technique. We consider
a dataset of size 128× 128× 6 (6 wavelengths from 540− 590 nm with 10 nm spacing), which was obtained from
an online hyperspectral image database at the University of Manchester. For the photon sieve, the outer diameter is
selected as 3.36 mm and the diameter of the smallest hole as 15 µm, resulting in a focal length of 9 cm at 560 nm. The
measurements are simulated using the model in (2) with randomly generated colored or uncolored coded masks.

In the first analysis, 2 noiseless measurements are taken at the focal planes of the second and fifth spectral com-
ponents by using no mask, uncolored and colored coded apertures. Reconstructed images for these three cases are
given in Fig. 1b together with the true images. The results demonstrate successful reconstruction of the spectral cube
from compressive measurements with a PSNR of more than 40 dB when either uncolored or colored masks are used.
For the second analysis, the above experiment is repeated for K = 1, 3, and 6 cases, with the 3 measurements taken
at the midpoints of successive wavelength sources in the two extreme ends, and one in the center. Fig. 1c shows the
reconstruction performance for different compression ratios for the colored mask case. This suggests that compression
ratios of up to 33% allows almost perfect recovery. In the third analysis, the effect of noise is explored by generating
noisy measurements with different SNRs. Table 1 shows the reconstruction PSNRs for the K = 2 and K = 3 cases with
a colored mask, and demonstrates that the reconstruction performance degrades gracefully at noisy regimes.

In conclusion, the developed compressive spectral imaging modality, which relies on a novel and simple optical
configuration with one diffractive imaging element, offers promising performance with as little as two shots. The
performance can be improved further with the optimization of coded apertures and use of adaptive sparsity priors.

Table 1: Comparison of average PSNRs (dB) for different compressive measurement scenarios and SNRs.

SNR (dB) K=2 (33% compression) K=3 (50% compression)

20 30.69 33.97

30 32.92 34.98

Infinite 40.25 44.45
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