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Abstract Cystic fibrosis (CF) is a life-limiting genetic disease
that affects approximately 30,000 Americans. When compared
to those of normal children, airways of infants and young
children with CF have thicker walls and are more dilated in
high-resolution computed tomographic (CT) imaging. In this
study, we develop computer-assisted methods for assessment
of airway and vessel dimensions from axial, limited scan
CT lung images acquired at low pediatric radiation doses.
Two methods (threshold- and model-based) were developed
to automatically measure airway and vessel sizes for pairs
identified by a user. These methods were evaluated on chest
CT images from 16 pediatric patients (eight infants and
eight children) with different stages of mild CF related lung
disease. Results of threshold-based, corrected with regres-
sion analysis, and model-based approaches correlated well
with both electronic caliper measurements made by experi-
enced observers and spirometric measurements of lung func-
tion. While the model-based approach results correlated
slightly better with the human measurements than those of
the threshold method, a hybrid method, combining these
two methods, resulted in the best results.

Keywords Cystic fibrosis . Computed tomography . Image
analysis . Semi-automated measurement

Introduction

Cystic fibrosis is the most common lethal genetic disorder in
the Caucasian population, affecting about 30,000 people in the
USA (Cystic Fibrosis Foundation, http://www.cff.org/
AboutCF/). In people with this disease, normal regulation of
the movement of chloride ions is disrupted due to a defective
transmembrane protein called cystic fibrosis conductance
transmembrane regulator. In the airways, this results in the
accumulation of thick, immobile mucus, leading to obstruc-
tion and infection. The result of these pathological changes is
chronic progressive lung disease and eventual death [1].

Lung inflammation begins early in life [2, 3] and produces
both structural and functional changes in the airways of infants
and young children with this disease [4–7]. Because this dam-
age can be present in patients who are relatively asymptomatic,
lung disease can progress insidiously [4, 5, 8]. Identifying and
treating early disease in children with CF is vital to prevent
progressive and irreversible disease. Multiple potentially cura-
tive therapies await clinical trials. However, clinical trials have
been hindered in children with CF by a lack of sensitive,
reproducible surrogate endpoints. Thus, there is an urgent need
for better outcome surrogates in this age group. In this regard,
quantitative high-resolution computed tomographic (HRCT)
lung imaging shows great promise due to its high sensitivity in
detecting early airway pathology and its widespread availabil-
ity. In 2004, Long et al. used HRCT lung imaging to show that
the airways of asymptomatic infants and young children with
CF have thicker walls and are more dilated than those of
normal children [4]. Before HRCT can be clinically applied,
computerized analysis tools need to be developed that result in
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rapid, reproducible, and accurate assessments of airway struc-
ture. The use of expert readers is not feasible as visual assess-
ment is too subjective, tedious, and labor intensive [9].

The purpose of this study was to develop objective com-
puterized methods, which would allow for rapid, reproduc-
ible, and accurate assessment of CT airway and vessel
dimensions in infants and young children from axial (2D)
CT lung images. For this population, full volumetric 3D
imaging of the lungs would not be feasible for clinical trials
due to radiation safety concerns. However, performing a
limited number of 2D axial slices to selectively survey the
lungs can lower the radiation dose considerably and provide
comparable information [10]. Working only with selected
2D slices is challenging because we cannot take advantage
of information such as airway tree structure and orientation
and utilize currently available automatic 3D airway tree
extraction methods [11–13]. Therefore, currently available
methods cannot be directly used for these low-dose, limited
scan (i.e., only selected regions in the lung are imaged) CT
images of pediatric patients.

Many lung CT image analysis studies and tools have
been reported in the literature [11–31]. The 2D and 3D
airway wall estimation problem has also been investigated
extensively. Some methods have been tested for very small
and thin airway walls. Among the methods developed, the
most well-known approaches are threshold-based methods
[13, 21–23], full-width-half-maximum (FWHM)-based
methods [24, 25], score-guided erosion [21], gradient-
based (first and second derivative) methods [19, 26, 27],
model-based methods [11, 28, 29], gradient vector flow
snakes [14], graph-cut methods [12, 15], and phase congru-
ency [16]. The FWHM method has been widely used to
investigate airway changes in obstructive lung diseases [25,
30, 31]. However, this method systematically overestimates
wall area and underestimates lumen area [29, 30]. Although
performance of the threshold and gradient-based methods
are often satisfactory, optimal parameters depend on the size
of the structure being imaged. Algorithms taking into ac-
count the point-spread function of the scanner were shown

to significantly improve the robustness of measurements
for all sizes of airways [11, 28, 29].

One of the main challenges in airway wall and vessel
estimation is the fact that airway wall thickness of infants
and young children is close to CT resolution limits. Addi-
tionally, any surrounding high-intensity tissue such as vessel
structures or lung parenchymal pathology can create distor-
tions in the algorithm especially on a limited 2D dataset. To
address these challenges, we are proposing two new
computer-assisted tools for airway and vessel dimension
estimation: (a) modification of a previously described
threshold-based method we presented [32] and (b) a model-
based method. A hybrid method, which is a simple combina-
tion of these two methods, has also been investigated. The
only user input required by these methods is designation of the
approximate centers of the airway and vessel, which can be
easily marked by two mouse clicks on the displayed CT image
(Fig. 1). Our threshold method has similarities to earlier
methods [24, 25, 32]; however, it includes a regression-based
correction to improve its performance. Likewise, our model-
based approach is different from previously published
approaches [11, 28, 29] in that (a) a 2D model is integrated
into the cost function (instead of 1D profile matching for rays
originating from the center), (b) it incorporates airway and
vessel estimation in the same model (to better estimate
airway–vessel pairs in close proximity), and (c) nearby high-
intensity regions (other airways/vessels) are automatically
eliminated from the model, instead of rejecting whole rays,
and hence less information is lost. All these novel approaches
result in much improved performance for this particularly
difficult infant and child dataset with limited CT slices.

Material and Methods

Dataset

HRCT images from 16 patients (eight infants, eight children,
ten females, sixmales, age 6.3±4.5 years, range 0.8–13.1 years)

Fig. 1 Representative HR CT
lung images of two different
airway and vessel pairs.
Short-axis lumen diameters
for a02.6 mm, b02.87 mm.
Red and green dots show the
centers of airway and vessel,
respectively
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with varying degrees of early CF related lung disease were
selected for evaluation. These patients were selected to span the
range of disease severity levels seen in these age groups. HRCT
scans were performed using either a General Electric Hi Speed
Advantage or Volume CT scanner (General Electric Medical
Systems, Milwaukee, WI, USA) with 1.0–1.25 mm slice
thickness, 400–1,000 ms scan time, 80–120 kVp, 60–
80 mA, 512×512 matrix (pixel size is ∼0.5 mm), and the
smallest possible field of view (15–25 cm). Images were
acquired near full inspiration without respiratory motion arti-
facts using a controlled-ventilation or volume monitored tech-
nique according to age [33–35]. Images of the lung were
obtained at four anatomical levels: (a) at the top of the aortic
arch, (b) 1 cm below the carina, (c) at the lower edge of the left
hilum, and (d) 1 to 2 cm above the top of the diaphragm. The
study was approved by the human subjects internal review
board of the Research Institute at Nationwide Children’s
Hospital.

Airway and Vessel Dimension Measurement
by Human Expert Observers

From the HRCT images of the 16 patients, all clearly visible
segmental and sub-segmental airway/vessel pairs (bronchus
and accompanying pulmonary artery within 1 mm of each
other) that had a rounded cross-sectional circumference
(ratio of long-axis to short-axis diameter <1.5) were mea-
sured manually by three observers working independently
using electronic callipers available in the General Electric
Medical Systems Advantage Windows 3.1 workstation.
Three observers were a radiologist, a medical student, and
an experienced laboratory technician with 12 years of expe-
rience working in research labs. The medical student and the
technician were trained by the radiologist in how to measure
vessels and airways using the electronic calipers, but they
made their measurements independently.

We used a window width and window level of −1,450 and
−500 HU, respectively [36]. For each airway/vessel pair, the
shortest axis of the airway outer diameter (AOD), airway inner
or lumen diameter (AID), and adjacent pulmonary artery or
vessel diameter (VD) were measured [4]. Airway and vessel
pairs with AIDs that measured less than 0.5 mm were consid-
ered too near the limits of line pair resolution of the scanner to
be measured accurately and were thus excluded. All human
observers chose airway vessel pairs independently as per
methods above. Then only pairs picked by all three observers
were used in the analyses yielding a final total of 155 airway–
vessel pairs measured. The combined expert manual measure-
ments were used in the creation of the “gold standard” for the
experiment evaluation.

From these manual measurements, the airway wall thick-
ness (AWT) was derived as (AWT0[AOD−AID]/2). Next, the
key radiology rule of thumb ratios (AWT/VD and AID/VD)

were computed [37] from the measurements made by each
observer. These rule of thumb ratios represent assessments of
disease severity using the accompanying vessel as an internal
reference standard.

Clinical Measurements

Spirometric measures of pulmonary function tests including
forced vital capacity (FVC) and forced expiratory flows
between 25 and 75 % of FVC (FEF25-75) were measured
using standard methods [38, 39]. All results were expressed
as percentages of predicted values calculated from the
normative data [40, 41].

Threshold-Based Computerized Airway and Vessel
Short-Axis Diameter Measurement Method

We previously developed a threshold-based airway and vessel
short-axis diameter measurement method [32]. Although the
results presented were promising, the method had some draw-
backs: (a) It had a few parameters determined in an ad hoc
fashion, and no formal methodology was proposed regarding
how to generalize the method for another image reconstruc-
tion setting and/or CT scanner; (b) there was some overesti-
mation in the lower ranges of AWT/VD ratio. In this section,
firstly, our previous method [32] is briefly summarized, and
then the modifications to the previous method to address
these issues are explained.

Our earlier threshold-based airway short-axis diameter
measurement method [32] had four main steps (the first four
blocks of Fig. 2): (1) fine-tuning the center coordinates of
the airway to correct any small human mistakes by local
minima search, (2) computing radial intensity profiles cov-
ering all angles from the center, (3) angular smoothing (to
minimize the sampling problem [11]) and estimating the
airway wall peak on each radial profile (with a special
correction method for vessels or other high-intensity struc-
tures nearby), and (4) estimating the inner (lumen) and outer
airway interfaces. For very small and thin airways, FWHM
method (50 % intensity level) is not accurate to determine
airway lumen, as reported in the literature [13, 25, 30, 31].
In our experiments, a 75 % level between airway wall peak
intensity and air intensity was found to provide good esti-
mate of the lumen radius [32]. For determining the outer
airway boundary, the threshold method was not helpful
since there are often other vessels and/or high-intensity
structures nearby. Therefore, the measurement in the inward
direction (between peak and lumen) was used as an
estimate for the outward direction measurement. Howev-
er, the central differencing method that we used in peak
detection together with a relatively lower slope of the outer
edge when compared with that of the inner slope resulted in
a slight overestimation of airway wall peak position [32].
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Therefore, we found it to be more accurate to estimate the
outer boundary at a location 0.8 times the distance between
lumen and peak (i.e., further away from the detected peak)
[32]. For vessel diameter estimation, a 75 % level (rather than
50 %) of peak intensity was observed to be a good estimate of
the vessel boundary [32]. Using the extended data set of this
study, our previous method [32] is evaluated again, and
results are shown in Fig. 3. These results indicate that
airway lumen and outer boundary estimates are acceptable
(Fig. 3a, b), but vessel diameter is underestimated for large
vessels (Fig. 3c) and the slope is less than “1.0.”

As reported in the literature [11, 25], optimum threshold
settings depend on (a) size/thickness of the airways and (b)
image reconstruction filter settings of the CT scanner. For
the range of airway size/thickness of CF patients and for the

CT scanner settings of our data, the selected threshold set-
tings showed a linear relationship (Fig. 3a–c). However, for
other CT scanners and/or image reconstruction settings, the
issue of how to determine the optimum threshold settings
and how to correct remaining systematic error is not known
and needs to be researched further. In this paper, we propose

Fig. 2 Flowchart of the threshold-based airway short-axis measure-
ment algorithm

Fig. 3 Measurements of primary variables (AID, AOD, VD) using the
previous threshold-based computerized method [32] versus three hu-
man observers: a AID measured for threshold value of 75 %; b AOD
measured for 0.8 fraction (of the inner thickness); c VD measured for
threshold value of 75 %
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a regression-based measurement correction (the last block of
Fig. 2), keeping all the other steps the same as in our
previous work [32]. This requires a training step using a
phantom or manual measurements together with a regres-
sion analysis that provides a model of systematic measure-
ment bias. After obtaining the regression coefficients (b1
and b2 in the relationship y0b1+b2x), the measure-
ments (y) can be simply corrected by the inverse relation-
ship x0(y−b1)/b2 where x represents the regression corrected
value. To test the performance of this regression correction
approach, a separate data set is typically utilized. This training
and correction approach makes the method generalizable to
other image reconstruction settings and/or CTscanners. In this
study, phantom measurements were not available and dataset
was limited. Therefore, the leave one out training/testing
method was applied.

Model-Based Computerized Airway and Vessel
Segmentation Method

Our second approach for the airway and vessel segmenta-
tion is model-based. In this approach, a model image is
created and parameters of this model image are estimated
to match the original image. The estimation step is usually
in the form of automatic optimization of a cost function with
respect to model parameters, which penalizes the difference
between the actual image and model image pixel intensities.
This approach also models the effect of the CT scanner in
the form of a low-pass filter [42, 43].

A representative model is shown in Fig. 4b where airway/
vessel cross-sectional images are modeled using ellipse
shaped boundaries. This model includes four uniform intensi-
ty regions: airway wall intensity, parenchymal intensity, air-
way air intensity (center of airway), and vessel intensity. The
last two are preset as −996 HU [13] and 0 HU, respectively.
Since airway wall and parenchymal intensities are quite var-
iable, they are estimated for each airway–vessel pair.

There were previous efforts to use model-based
approaches for airway measurements. For instance, Saba et
al. [28], Reinhardt et al. [29], andWeinheimer et al. [11] have

shown that the absolute airway measurement errors when
using a model-based approach were statistically smaller than
those when using the FWHM-based method. Our model-
based approach is different from the previous approaches
[11, 28, 29] in that (a) a 2D model is integrated into the cost
function (instead of 1D profile matching for rays originating
from the center), (b) it incorporates airway and vessel esti-
mation in the same model (to better estimate airway–vessel
pairs in close proximity), and (c) nearby high-intensity
regions (other airways/vessels) are automatically eliminated
from the model, instead of rejecting whole rays originating
from the center, and hence, less information is lost.

Due to the partial volume effect introduced by the X-ray
beam collimation and the sampling process in the CT scanner,
to which the thinner airway walls are more sensitive, airway
wall intensity is variable between different airway generations
[19, 44]. For this reason, we initially set the airway wall
intensity value to the median intensity of the airway wall.
Using the inner and outer boundary estimates (of the threshold
method), airway wall intensity at mid-wall position is mea-
sured for all radial angles, and the median intensity is calcu-
lated. To determine a more accurate value for each airway, the
wall intensity is included among the parameter set of the
optimization algorithm.

Image resolution, hence the point-spread function (PSF), is
an important component of the model-based technique. Since
the images used in this study are 2D, we approximate the PSF
as a symmetric 2D Gaussian function of unit area. Before
assessing the similarity of the model image to the CT image,
the model image has to be filtered with the PSF of the CT
scanner. Although 2D CT resolution can be quantified using
point-source measurements [28], the spatially varying nature
of the spiral CT [45] makes the measurement approach not
feasible. Our experiments demonstrated that spatially invari-
ant sigma setting works quite well and the results are not very
sensitive to changes within some reasonable range.We set this
parameter experimentally such that CT image and model-
generated images look visually similar.

Figure 5 shows flowchart of our model-based algorithm.
The algorithm starts by fitting three ellipses to the boundary

Fig. 4 a Ellipse parametrization
used to model airway and vessel
boundaries; b model of an
airway–vessel pair. Note that
airway (left) is modeled by two
ellipses, which are concentric
and having same orientation and
the vessel is shown to the right
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points of the inner airway, outer airway and vessel obtained
from the threshold-based method. Each ellipse is represented
by the following set of parameters: center coordinates (cx, cy),
major (long) and minor (short) axis radii (rmaj, rmin), and
orientation (angle, θ) of major axis (Fig. 4a). Since inner and
outer ellipses may be slightly off in their center coordinates
and angle of orientation, cx, cy, and θ are averaged. In addition,
if rmaj/rmin ratio is estimated more than 1.5, rmaj is set to

1.5rmin because the ratio of long-axis to short-axis diameter
is limited by 1.5 in airway/vessel pairs selected for evaluation.
This constitutes the initial model parameters to represent the
airway–vessel model (Fig. 4b) for the following iterative
model-fitting steps.

The cost function for model fitting is defined in Eq. 1:

min
Γ

X

i;jð Þ2@
w i; jð Þ: u i; jð Þ � v i; jð Þj j1=2 ð1Þ

Here, u and v are CT and model intensity values at location
(i,j) and ∂ is the image domain of pixels. The w(i,j) term, a
number between 0.0 and 1.0, adjusts the contribution of the
pixel at location (i, j) to the cost function, hence referred to
as weighting term (described in detail below).

For oblique airways, airway wall, parenchymal, and air
(inside airway) region intensities are not uniform on a cross
section due to partial volume averaging along axial direction
(slice thickness). This creates deviation between our model
and the CT image. However, by using the square root of the
absolute differences in Eq. 1, the deviation of our 2D model
image from CT image is minimized. The square root func-
tion provides a decreasing rate of penalty for increasing
difference magnitudes.

The w(i,j) term in Eq. 1 adjusts the contribution of each
pixel to the cost function. The goal of including this cost
function is to minimize the effect of nearby airways/vessels
or other high-intensity structures on segmentation (Fig. 7).
Our approach was to detect these high-intensity regions so
that we could exclude them from the estimation (by assign-
ing 0.0 to the w(i,j), which otherwise would be 1.0). These
structures can be easily detected if the average local pixel
intensity in the parenchymal region of each airway and
vessel is above a threshold value. Experimentally we have

Fig. 5 Flowchart of the model-based airway–vessel wall estimation
algorithm

Fig. 6 Soft-threshold function, w(θ), as a function of local parenchy-
mal intensity at α · radius(θ) from center of airway/vessel. Break point
(Pintensity) was estimated as the median parenchymal intensity around
the airway–vessel regions. As the parenchymal local intensity gets
higher, the function value gets smaller (<1), and hence, the zone
outside the airway/vessel will lose its weight (contribution) proportion-
ally in estimation of model parameters. Horizontal axis intercept point
chosen in the range of [−600 HU, −350 HU] worked quite well
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found that excluding such regions makes the model estima-
tion more robust with the remaining pixels providing
enough data points for an accurate model fitting (see the
“Results” section). However, an intrinsic drawback of a
binary (0/1) weighting is that a small change in parenchyma
intensity can switch that pixel in and out of the optimization
domain. To address this problem, we used a soft-threshold
function, w(θ) (Fig. 6). The break point in Fig. 6 (Pintensity)
was estimated as the median intensity of the parenchymal
sub-region. This function, w(θ), is computed for each angle
with respect to the center of airway/vessel. To obtain w(i,j)
for each pixel within the sub-region, the following method
was used: For each angle θ in radial direction from the

center to the perimeter of airway/vessel, w(i,j)01.0, and
from perimeter to α×perimeter, w(i,j)0w(θ) (Fig. 7d). α is
a scaler larger than 1.0, defining the parenchyma region
(values in the range of [1.5, 1.8] worked quite well, so the
mid-point value1.65 was used). Perimeter, radius(θ), is de-
fined by the ellipse fitted threshold method boundary. Note
that detecting and excluding those outside high-intensity
regions from the estimation (instead of rejecting whole rays
originating from the center) makes it possible to use the
airway region (air and wall) for better estimation of the airway
lumen (Fig. 7d). Hence, more image information is utilized.

Г in Eq. 1 is the parameter set in optimization that defines
the model image:

Γ ¼ AWcx;AWcy;AWIrmaj;AWIrmin; AWangle; AWthicknessmin; AWIOratio; AWwall intensity; Vcx; Vcy; Vrmaj; Vrmin; Vangle
� �

In this set, the first eight parameters are defined for airway:
AWcx and AWcy are center coordinates, AWIrmaj and AWIrmin

are major and minor axis radii of inner boundary, AWangle is
the orientation of major (long) axis, AWthicknessmin is the
minor (short) axis thickness (between outer and inner bound-
aries), and AWwall_intensity is the airway wall intensity. The

remaining parameters are defined similarly for the vessel: Vcx,
Vcy, Vrmaj, Vrmin, Vangle.

For airways that are oblique to the image plane, the inner
and outer boundaries of the airway cross-sectional image do
not show similar rmaj/rmin ratios, due to the finite thickness
of the imaging plane. Typically, a larger ratio is observed for

Fig. 7 a A portion of a CT lung image with a labeled airway and vessel
pairs of Fig. 1a (red and green dots show the centers of airway and vessel
respectively); b overlayed are the automatically computed airway wall
peak (blue). Also shown in purple is the preliminary computed airway
wall peaks by simple peak detection (before the correction applied [32]); c
threshold-based airway (lumen and outer) and vessel boundaries (blue)
and simple ellipse fitting results (red). Also shown are the markers
corresponding to short-axis threshold-based method estimated bound-
aries; d ellipse fitted boundaries (red) which define the w(i,j) function,
shown in gray scale (black00.0, white01.0). Note that as the local
average intensity at α×radius(θ) gets higher (i.e., there another high-
intensity region), w(i,j) gets smaller, meaning that the zone outside the

airway/vessel will lose its weight (importance) in estimation; e CT image
within the optimization region. Black holes correspond to w(i,j)00.0
regions; f estimatedmodel image after ten iterations of algorithm; gmodel
image blurred with the convolution kernel; h model-based estimated
boundaries (green), ellipse fitted threshold method boundaries (red) and
short-axis threshold method markers (blue). Model-based method short-
axis markers are not shown, since they are obvious to the reader along the
thinnest part of the ellipse. Note how the short-axis direction changes
between different methods. Also, note that CT image on a–c are displayed
at reconstructed image pixel size, whereas (e–h) are six-times up-sampled
(in x–y-axis) by interpolation, on which the estimation algorithm was run
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the outer boundary [21, 46]. Therefore, we define a variable
called AWIOratio which allows a higher long-/short-axis
ratio for the outer boundary than for the inner one (we limit
its values to the range of [1.0, 1.5]):

AWOrmaj

AWOrmin
¼ AWIOratio

AWIrmaj

AWIrmin
ð2Þ

The reason for defining AWthicknessmin and AWIOratio
parameters rather than AWOrmaj and AWOrmin was to sim-
plify the optimization. Note that with this parameter set,
some of the parameters have to be optimized under simple
constraints: AWthicknessmin>0 and AWIOratio ε [1.0, 1.5].
Many optimization methods can easily be adapted with such
constraints [47]. On the other hand, a more straightforward
parameterization of the outer boundary ellipse as (AWOrmaj,
AWOrmin) results in a more complex constraint set to be
dealt with: AWOrmaj/AWOrmin.≥AWIrmaj/AWIrmin, therefore
not preferred. In order to evaluate the cost function (Eq. 1)
more accurately, CT and model images were up-sampled
by a factor of six in the x,y-axis using bilinear interpo-
lation in a local region covering airway and vessel.

In the case of oblique airways, slice thickness causes partial
volume averaging, and if an airway-vessel pair is in very close
proximity, they can appear to be overlapping in cross-sectional
images. To adapt our model for these cases, we allowed our

model to have parameters that resulted in partial overlapping
of airway and vessel regions. To restrict the overlap regions,
the intersectional region was assigned a higher intensity value,
which forced the optimization (below) to converge to a model
with minimal overlap. Any overlapping pixel of the model
image (at each iteration) is assigned a higher intensity value
than vessel intensity. Percent increase values in the range of
20–30%worked quite effectively to provide close to expected
airway and vessel region boundaries (judged by visual analy-
sis by experts), so the mid-point value 25 % was used.

Optimization of theModel-Based Segmentation Cost Function

To optimize the cost function given by Eq. 1, which is not
quadratic, gradient-based techniques were used. The gradi-
ent can be computed numerically by a finite difference
method at each iteration. Among the gradient-based techni-
ques, the conjugate gradient is one of the most computa-
tionally efficient and fast converging methods [47]. Here,
we used the Polak–Ribiera form of the conjugate gradient
method [47]. Although conjugate gradient methods are gen-
erally more effective for quadratic cost functions, we observed
at least 50 % improvement in convergence speed could be
achieved when compared to the steepest-descent method.

Using a suitable preconditioner matrix (P) may also
significantly enhance the convergence speed of the

Table 1 AID measurement error and R2 value after regression correction for various airway inner threshold settings of the threshold method, using
leave-one-out training/testing

Airway inner
threshold (%)

Mean squared
error (%)

Maximum
error (%)

R2 y0b1+b2x
Regression function (all data)

Maximum % difference between the
regression function and y0x function

50 10.7 47.1 0.947 −0.22+0.89x 39.1

65 9.9 43.2 0.955 −0.11+0.95x 18.7

70 9.7 42.1 0.956 −0.06+0.96x 11.5

75 9.6 42.6 0.957 −0.02+0.98x 4.0

80 9.8 41.8 0.956 0.03+1.00x 4.3

85 10.2 41.4 0.954 0.10+1.02x 13.4

90 10.6 41.7 0.951 0.16+1.03x 23.8

Also shown are regression function and maximum percent difference between the regression function and y0x function for each setting

Table 2 AOD measurement
error and R2 value after regression
correction for various airway
outer thickness fraction settings
of the threshold method, using
leave-one-out training/testing (for
AID threshold setting of 75 %)

Also shown are regression
function and maximum percent
difference between the regres-
sion function and y0x function
for each setting

Airway outer
thickness fraction
(of inner thickness)

Mean squared
error (%)

Maximum
error (%)

R2 y0b1+b2x
Regression function
(all data)

Maximum % difference
between the regression
function and y0x function

0.40 11.1 65.8 0.925 0.00+0.90x 10.3

0.50 11.3 67.4 0.924 0.04+0.91x 8.6

0.60 11.5 68.4 0.922 0.08+0.92x 7.0

0.70 11.7 69.3 0.919 0.12+0.93x 5.4

0.75 11.9 70.1 0.918 0.15+0.93x 4.6

0.80 11.9 70.8 0.924 0.17+0.94x 3.8

0.90 12.2 71.7 0.914 0.21+0.95x 5.1
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conjugate gradient method. Here, it is selected as P0diago-
nal−1{Hessian} [47], where Hessian represents the Hessian

matrix of the cost function (Eq. 1) computed numeri-
cally by finite differencing:

P ¼ diagonal 1:0; 1:0; 1:0; 1:0; 0:1; 1:0; 0:02; 750; 1:0; 1:0; 1:0; 1:0; 0:1f g

in units of pixels for distance related terms and in radians for
angular terms. Using this preconditioner, the update equa-
tion for the conjugate gradient algorithm is defined in Eq. 3
[47]:

gðnþ1Þ ¼ gðnÞ þ bP d nð Þ ð3Þ

where γ(n) denotes the vector form of the parameter set (Г,
defined above of size013) at iteration n, β is the optimum step
size (calculated at each iteration as explained below), P is the
preconditionermatrix, and d(n) is the direction vector computed
using the gradient and previous direction vectors [47].

In each iteration, the conjugate gradient method requires an
accurate line search (to determine the optimum step size, β),
along the direction vector. Our line searchmethodwas as follows:

1. Initialize β02.0.
2. Compute the initial cost using Eq. 1.
3. Reduce β by a factor of 0.7; if AWIOratio goes beyond

the range of [1.0, 1.5], truncate, and compute a new cost.
4. Repeat step “3” until (a) the cost starts increasing and

(b) the cost is less than the initial cost or the maximum
number of iterations (15) is reached.

Ten iterations of conjugate gradient method (Eq. 3) were
found to provide enough convergence using the above pre-
conditioner and line search method.

Hybrid Method

Our final method, called the hybrid method, is just the
simple averaging of the short-axis measurements of our
model-based and threshold-based methods.

Results

To test the performance of our new threshold method with
regression correction, leave-one-out training/testing method
was applied. Tables 1, 2, and 3 display the measurement
error and R2 values (after regression correction) for various
parameter settings. Our observations on these tables can be
summarized as follows:

1. Low mean squared error rate (column 2) (∼10 %) and R2

values close to 1.0 after regression correction (column
4) are indicative of the success of the linear regression
approach taken.

2. As the linear regression curve deviates from y0x (i.e.,
b1≠0.0, b2≠1.0 in y0b1+b2x), correction in the form
of x0(y−b1)/b2 is applied. Although this correction
does not cause any problems for measurements close
to regression curve, it may result in amplification of
some outliers. To minimize this problem, parameter
setting for which the regression curve has minimal

Table 3 VD measurement error and R2 values after regression correction for various vessel threshold settings of the threshold method, using leave-
one-out training/testing

Vessel threshold (%) Mean squared
error (%)

Maximum
error (%)

R2 y0b1+b2x
Regression function (all data)

Maximum % difference between the
regression function and y0x function

50 18.4 63.2 0.849 0.85+0.89x 73.3

60 14.4 45.6 0.891 0.48+0.89x 37.1

65 13.3 38.6 0.901 0.32+0.88x 20.2

70 12.7 35.0 0.907 0.14+0.87x 10.5

75 12.5 33.0 0.908 0.04+0.85x 14.9

80 12.5 34.7 0.907 −0.09+0.81x 27.7

90 14.3 47.9 0.883 −0.38+0.72x 65.5

Also shown are regression function and maximum percent difference between the regression function and y0x function for each setting

Table 4 Human and computer measurements for the example image
shown in Figs. 1a and 7

Method AID (mm) AOD (mm) VD (mm)

Human 1 2.30 3.80 2.80

Human 2 2.70 4.00 3.00

Human 3 2.80 4.20 3.10

Average human 2.60 4.00 2.97

Threshold-based 2.64 4.33 2.50

Model-based 2.66 4.33 2.92

Hybrid 2.65 4.33 2.71
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deviation from y0x curve (last column) has to be pre-
ferred. In fact, parameter settings with the lowest devi-
ation show approximately the lowest mean squared/
maximum error and also the highest R2 values. The
optimum parameter settings are selected as those
with the lowest deviation: 75 % for AID, 0.8 for
AOD, and 70 % for VD. The results (AWT/VD and

AID/VD) of the threshold method are presented for
these settings.

Results of each step of the threshold- and model-based
algorithms are shown in Fig. 7 for an airway–vessel pair.
Note the w(i,j) term calculated which minimizes or elimi-
nates the effect of outside high-intensity structures. Three
human and computer measurements for this image are listed
in Table 4. Figure 8 displays how well the model algorithm
duplicates the three human measurements at the primary
level. Note that no regression correction was employed to

Fig. 8 Measurements of primary variables (AID, AOD, VD) using the
model computerized method versus three human observers

Table 5 Slopes and R2 levels for the linear regression of the three
methods versus three readers

AID/VD Threshold-based Model-based Hybrid

Linear regression

R2 of method vs. 3
readers

0.71 0.74 0.79

Slope of method vs. 3
readers

0.91 0.97 0.94

Bland–Altman

Mean difference (bias) 0.00 −0.06 −0.03

Standard deviation of
differences

0.14 0.14 0.12

Frequency of outliers
(>±0.28)

9 7 3

Slope of regression 0.090 0.134 0.058

R2 of regression 0.023 0.057 0.013

Also tabulated are the mean differences (biases), variation (standard
deviations of the differences), frequency of occurrence of outlier meas-
urements, slopes, and R2 levels for the AID/VD Bland–Altman rela-
tionships shown in Fig. 9

Table 6 Slopes and R2 levels for the linear regression of the three
methods versus three readers

AWT/VD Threshold-based Model-based Hybrid

Linear regression

R2 of method vs. 3
readers

0.38 0.55 0.52

Slope of method vs. 3
readers

0.57 0.77 0.67

Bland–Altman

Mean difference (bias) 0.00 −0.03 −0.02

Standard deviation of
differences

0.08 0.07 0.07

Frequency of outliers
(>±0.16)

13 6 7

Slope of regression −0.093 0.054 −0.086

R2 of regression 0.009 0.004 0.011

Also tabulated are the mean differences (biases), variation (standard
deviations of the differences), frequency of occurrence of outlier meas-
urements, slopes, and R2 levels for the AWT/VD Bland–Altman rela-
tionships shown in Fig. 10
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obtain these results because there is no considerable system-
atic error left.

Mean AID/VD and AWT/VD ratios measured by the
three human observers were all linearly correlated with
those measured using the three computerized methods (p<
0.001); R2 values and slopes of linear relationships are
shown in Tables 5 and 6. The slopes and R2 values of linear

regression are slightly better (closer to 1.0) for model and
hybrid methods than those of the threshold method for both
ratios (i.e., AID/VD and AWT/VD). Comparisons of the
differences between the mean ratios measured by the three
human observers and the three different computerized
assessments (threshold, model, and hybrid) of AID/VD
and AWT/VD are shown in Figs. 9 and 10 for the 155

Fig. 9 Differences between the mean ratios measured by the three
human observers (three humans) and the three different computerized
assessments of AID/VD (threshold, model, and hybrid) plotted versus
the mean of three human and computerized ratios (Bland–Altman
plots, n0155 airway–vessel pairs)

Fig. 10 Differences between the mean ratios measured by the three
human observers (three humans) and the three different computerized
assessments of AWT/VD (threshold, model, and hybrid) plotted versus
the mean of three human and computerized ratios (Bland–Altman
plots, n0155 airway–vessel pairs)
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airway–vessel pairs. These are the Bland–Altman plots [48]
of the mean of measurements of the three human observers
and computerized ratios. Tables 5 and 6 also summarize the
mean differences (biases), variation (standard deviations of
the differences), frequency of occurrence of outlier measure-
ments, slopes, and R2 levels for the Bland–Altman relation-
ships shown in Figs. 9 and 10. While the differences and
variations around the mean in relation the ratio magnitudes
are similar for all three computerized methods, the hybrid
method reduced the frequency of outliers. Thus, the hybrid
method is the best match and most consistent with the
human observer measurements.

The mean of all AID/VD or AWT/VD ratio measure-
ments from an individual patient provides a coarse global
indication of airway involvement for that patient [4]. In
Figs. 11 and 12, these overall individual per patient ratios
measured by three observers using electronic calipers are
compared to those of the hybrid method. For both meas-
ures, it can be seen that these measures of airway disease
involvement are highly correlated. Figures 13 and 14

show correlations of per patient mean ratio measures
produced by the hybrid method with measures of pulmo-
nary function expressed as percent of predicted normal
levels. In both figures, higher mean per patient ratios,
indicative of relatively more advanced airway disease,
are associated with lower levels of function. In Fig. 13,
higher mean AID/VD ratios suggest more bronchiectatic
airways. These airways are more likely to close as forced
expiration proceeds, trapping air in the lung and reducing
the amount that can be voluntarily expelled, i.e., the FVC.
In Fig. 14, higher AWT/VD ratios, indicative of more
narrowed airways, are associated with lower ability to
force flows through those airways. These relationships
suggest that measurement of these ratios from limited
numbers of CT images provide clinically relevant infor-
mation about the levels of airway disease in individual
patients.

Since the proposed method requires a user input, the
reproducibility of the results is a question. To test the repro-
ducibility of the methods, inputs 0.5 mm away from the
already selected centers were selected (in random directions)

Fig. 11 Individual per patient overall AID/VD ratios measured by
three observers using electronic calipers plotted versus the same indi-
vidual per patient overall AID/VD ratios assessed using the hybrid
computerized method

Fig. 12 Individual per patient overall mean AWT/VD ratios measured
by three observers using electronic calipers plotted versus the same
individual per patient overall mean AWT/VD ratios assessed using the
hybrid computerized method

Fig. 13 Individual per patient overall mean AID/VD ratios measured
by the hybrid method plotted versus FVC expressed as percents of
predicted normal levels

Fig. 14 Individual per patient overall mean AWT/VD ratios measured
by the hybrid method plotted versus FEF25–75 expressed as percents
of predicted normal levels
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for each of the 155 airway–vessel pairs, and the methods
were run again with these random input selections. This
experiment simulates potential selection point location dif-
ferences of the user for each airway/vessel. The value 0.5
is considered as close as possible to the maximum user
error with the resolution of the CT images. The mean and
standard deviation of percent error in AID, AOD, and VD
measurements obtained are shown in Table 7 for all three
methods. The error is relatively small given the fact that
algorithm starts by searching for the local minimum (max-
imum) for every airway (vessel) within the close
proximity.

In order to demonstrate the inter-observer variability,
assessments of overall mean patient ratios (AID/VD and
AWT/VD) made by three experts using electronic cali-
pers are displayed in Fig. 15. Red, blue, and green are
caliper measurements by three expert observers; algo-
rithmically derived (hybrid method) mean patient ratios
are in black.

We also measured the average time required to make
manual and automatic measurements of one airway–vessel
pair. To make one set of three manual measurements per
airway–vessel pair took approximately 30 s once that air-
way/vessel pair had been identified and magnified on the
workstation. Threshold and model-based methods run times
were approximately 1.5 s and 2 min, respectively, once the

center point was chosen. The algorithms were developed
using MATLAB® (Signal Processing Toolbox; Natick, MA,
USA) (http://www.mathworks.com/) and not optimized for
speed.

Discussion and Conclusion

In this study, threshold-based (regression corrected) and
model-based estimation methods were developed to mea-
sure airway and vessel wall short-axis diameters from 2D
HRCT images in pediatric patients at low pediatric radiation
dose exposures. The threshold-based method requires a
training step for setting three algorithm parameters and
regression function. This training and correction approach
makes the method generalizable to other image reconstruc-
tion settings and/or CT scanners. The model-based approach
requires only an approximately determined system resolu-
tion parameter.

The developed model-based algorithm runs iteratively to
minimize a cost function. This cost function may have some
local minima. Although there are techniques that can guar-
antee the global convergence, they usually result in much
longer and sometimes impractical computational times. In
our approach, we tried to find a good compromise between
very long computational times and local minima problems
by initializing with the threshold-based method estimate.

Our evaluations on a data set of 16 infants and children
with early CF related airway disease demonstrated that both
threshold-based and model-based approaches correlated
well with the measurements made by experienced observers
using electronic calipers as well as with the spirometric
measurements of lung function. However, the model-based
approach correlates slightly better with the human measure-
ments when compared with the threshold method. Addition-
al improvements were observed when the hybrid approach,
which resulted in less number of outliers, was used.

The current methods require minimal user input for the
identification of airway and vessel pairs. We observed that

Table 7 Mean and standard deviation of percent error in AID, AOD,
and VD measurements (among 155 airway–vessel pairs) for randomly
selected seed points (0.5 mm away from already selected points in
random directions)

Method AID error (%) AOD error (%) VD error (%)

Threshold-
based

0.2±5.1 0.0±3.9 0.1±3.7

Model-based 0.6±5.9 −0.4±5.5 0.6±4.2

Hybrid 0.3±4.0 −0.3±3.9 0.3±2.4

This simulates a test for reproducibility of the methods

Fig. 15 Mean AID/VD and AWT/VD ratio plots for 16 patients. Red, blue, and green are caliper measurements by three expert observers; hybrid
method estimates are in black
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initialization (of the model-based method) by the threshold
method estimate is very effective, and initialization by a
random set of parameters does not converge to acceptable
solutions. Efforts are underway to develop methods for auto-
matically detecting these pairs, thereby resulting in a com-
pletely automated system. For additional future work, we will
improve the study by validating the hybrid method on a larger
number of cases (with separate training and test data sets) and
observing the variation of the model for different age groups
and different stages of the disease.
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