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Abstract

Importance sampling (IS) is a variance reduction method for simu-
lating rare events. A recent paper by Dupuis, Wang and Sezer (Ann.
App. Probab. 17(4):1306- 1346, 2007) exploits connections between IS
and subsolutions to a limit HJB equation and its boundary conditions
to show how to design and analyze simple and efficient IS algorithms for
various overflow events for tandem Jackson networks. The present paper
uses the same subsolution approach to build asymptotically optimal IS
schemes for stable open Jackson networks with a tree topology. Cus-
tomers arrive at the single root of the tree. The rare overflow event we
consider is the following: given that initially the network is empty, the
system experiences a buffer overflow before returning to the empty state.
Two types of buffer structures are considered: 1) A single system-wide
buffer of size n shared by all nodes, 2) each node i has its own buffer of
size βin, βi ∈ (0, 1).

1 Introduction

Importance sampling (IS) is a method for simulation of rare events. It is
used in many applications including simulation of communication systems,
computation of credit risk and pricing of financial derivatives. The idea in
IS is to change the sampling distribution (and modify the Monte Carlo esti-
mator accordingly) to reduce estimator variance. Queuing processes are basic
stochastic models that are commonly used in a wide range of application ar-
eas. The simplest type of queuing processes are Jackson networks, in which
the arrival and service times at the nodes of the network are assumed to be
independent and exponentially distributed with constant rates.

http://arxiv.org/abs/0708.3260v3


In the present paper we build an IS algorithm, which is optimal in a certain
asymptotic sense (see Section 3), to simulate buffer overflows of stable open
Jackson networks with a tree topology. The system is stable in the sense that
the average service rate at each node is faster than the average arrival rate to
that node. Customers arrive at the single root of the tree. The rare overflow
event we consider is the following: given that initially the network is empty
the system experiences a buffer overflow before returning to the empty state.
Two types of buffer structures are considered: 1) A single system-wide buffer
of size n shared by all nodes 2) each node i has its own buffer of size βin,
βi ∈ (0, 1).

To construct our optimal IS algorithms we use an optimality result from
[16] which was obtained using the optimal control/subsolution approach to IS
of [12, 3, 4, 6, 5]. This result states that to construct optimal IS algorithms for
the simulation of a wide range of buffer overflow events of any stable Jackson
network it is sufficient to build appropriate smooth subsolutions to a Hamilton
Jacobi Bellman (HJB) equation and its boundary conditions (these are given
in (7) in the context we study in the current paper). This HJB equation and
the boundary conditions are the main tools of the optimal control/subsolution
approach and are derived from an optimal control representation of the IS
distribution construction problem.

The main contribution of the present paper is a recursive algorithm which
takes as input the parameters of an arbitrary Jackson network with a tree
topology and constructs a smooth subsolution to the HJB equation and its
boundary conditions given in (7). The constructed subsolution is of the form
of a smoothed minimum of affine functions, as was the case in previous works
using the subsolution approach, e.g. [12, 16]. The quantities that appear in the
subsolution (and hence the algorithm) have simple heuristic interpretations
as effective utilities and rates of nodes in the system. They are “effective”
in the sense that they depend on whether a node is empty or nonempty.
These concepts are explained in detail in subsection 4.1. The main results of
the paper are Lemmas 4.2 and 6.1 which prove that the subsolutions arising
from the effective rates and utilities satisfy all the conditions of the general
optimality theorem in [16] for both type of buffer structures that we will be
studying in this paper. Numerical results in Sections 5 and 6 demonstrate the
practical usefulness of the resulting IS algorithms.

Since the initial writing [15] of the present paper a recent paper by Dupuis
and Wang [7] appeared that treat the IS problem for any stable Jackson
network using the subsolution approach. The relation between the results in
the current paper and those in [7] is discussed in Section 7.

There is a tremendous amount of work on the IS of queueing networks,
which include, [13, 18, 14, 2, 10, 9, 11, 8, 1]. The problem of constructing
IS algorithms for buffer overflow of queuing networks was first posed for the
simple two node tandem network in [11], which also proved that a static
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large deviations based change of measure is asymptotically optimal for certain
parameter values of the system. An asymptotically optimal IS algorithm with
optimality proofs for buffer overflow of stable tandem Jackson networks was
first developed in [12] using the optimal control/subsolution approach. The
discontinuous dynamics of the queuing process near the boundaries of its state
space (i.e., when few customers remain in some of the nodes) makes the IS
construction problem for queuing networks difficult [12, 8]. This property
rules out iid sampling distributions (such as those developed in [17] in the
context of a random walk on the real line and in [11] in the context of two
tandem Jackson nodes) as candidates for efficient IS samplers and forces one to
search for a good IS distribution among dynamic distributions, where indeed
the subsolution approach locates the optimal IS distributions. For a more in
depth discussion of these issues we refer the reader to [12, 16, 8, 3].

2 Setup

We consider Jackson networks with a tree topology. Customers arrive only
at the root of the tree. Our goal is to construct optimal IS algorithms to
estimate the following probability:

P0(system experiences an overflow before it empties). (1)

This overflow event depends on the buffer structure of the network, which will
be made precise in subsection 2.2. For the computation of p0 it is enough
to consider the embedded discrete time random walk of the Jackson network.
The normalized service and arrival rates and the routing probabilities of the
Jackson network are the jump probabilities of the embedded random walk.

2.1 Notation and Definitions

The tree consists of d nodes. X(i) is the population of ith node at the jump
times in the network. i → j denotes that node j is a child of node i. For
i → j, µi,j > 0 is the rate at which customers are served in node i and are
either [sent to node j if j > 0] or [ leave the system if j = 0].

Total service rate at node i is defined as µi
.
=
∑

k µi,k. Arrival rate to node
Λj at node j equals λ if j is the root node. Otherwise it equals Λj

.
= Λi

µi,j

µi

where node i is the parent of node j. It is no loss of generality to assume that
λ +

∑d
i=1 µi equals 1 ; otherwise one can change the time unit so that the

equality holds. The utility of node i is defined as: ρi
.
= Λi/µi. The Jackson

network is called stable if ρi < 1 for all i ∈ {1, 2, ..., d}. Therefore we assume
that ∨d

i=1ρi < 1. This stability assumption implies that the buffer overflow
events of interest we study in the present paper decay exponentially in n (see
(10) and (19)). Asymptotic optimality of an IS algorithm is stated in terms
of this exponential decay (see Section 3).
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The evolution of the random walk X takes place in the state space Z
d
+.

This set has 2d − 2 different boundaries: ∂i
.
= {x = (x1, x2, ..., xd) ∈ Z

d
+ : xi =

0}, i ∈ {1, 2, ..., d}, ∂{i1,i2,...,ik}
.
=
⋂k

l=1 ∂il , {i1, i2, ..., ik} ⊂ {1, 2, ..., d}. As we
have remarked earlier the dynamics of X depends on whether X is on one of
these boundaries and if so it further depends on which one. We will find it
convenient to identify these boundaries with bitmaps b ∈ {0, 1}d. b describes
the following state of the network: b(i) = 0 signifies that node i is empty,
b(i) = 1 signifies that it is non-empty. Define v0,1 = (1, 0, ..., 0) and

V2
.
= {vi,j , i, j ∈ {1, 2, ..., d} : i → j,

vi,j(i) = −1, vi,j(j) = 1, vi,j(k) = 0, k ∈ {1, 2, ..., d} − {i, j}}

V3
.
= {vi,0, i ∈ {1, 2, ..., d} : vi,0(i) = −1, vi,0(k) = 0, k ∈ {1, 2, ..., d} − {i}}

Let V
.
= {v0,1}∪V2∪V3. V are the set of all possible jumps the process X can

make. v0,1 corresponds to a new customer arriving at the root node, vi,j ∈ V2

corresponds to server i serving a customer in queue i and sending it to queue j
with i → j, and finally vi,0 ∈ V3 corresponds to a customer leaving the system
after being served by server i.

Let Y = {Yk : k = 0, 1, 2, ...} be an iid sequence such that Px(Yk = v0,1) =
p(v0,1)

.
= λ, Px(Yk = vi,j) = p(vi,j)

.
= µi,j for vi,j ∈ V2, Px(Yk = vi,0) =

p(vi,0)
.
= µi,0 for vi,0 ∈ V3, for all x ∈ Z

d
+. Yk are the unconstrained increments

of the process X. We assume the existence of a probability space (Ω,F)
equipped with the probability distributions Px. The subscript x denotes the
initial position of the queuing system X0: under Px, X0 = x almost surely.

X ∈ ∂{i1,i2,...,ik} if the Jackson network has no customers in queues i1,
i2,...,and ik. Therefore vl,j, j ∈ {0, 1, 2, .., d}, l ∈ {i1, i2, ..., ik}, cannot be an
increment of X when X ∈ ∂{i1,i2,...,ik}. The constraining map π : Rd

+ × V →
V ∪ {0} will make sure that this does not happen:

π(x, v) =

{

0, if x ∈ ∂i for some i ∈ {1, 2, ..., d} and 〈v, ni〉 < 0,

v, otherwise,

where ni is normal to the boundary ∂i: ni(i) = 1 and ni(j) = 0 for j 6= i. X
can now be written as

Xk+1
.
= Xk + π(Xk, Yk). (2)

X0 is the initial state of the system and under Px it equals x ∈ Z
d
+ almost

surely.

2.2 Overflow event of interest

We would like to develop IS algorithms to estimate (1). We now define what
we mean by an overflow. Let ∂d

+
.
= {x ∈ R

d
+ : ∨ix(i) = 1}.
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Assumption 1. The system has a buffer whose structure is determined by
a normalized exit set S ⊂ [0, 1]d with the following properties: 1) S is closed
and connected, 2) 0 /∈ S, 3) Any continuous curve in [0, 1]d that contains 0
and a point from ∂d

+ must also contain a point from S. 4) For Sn
.
= {x ∈ Z

d
+ :

x/n ∈ S},

γ
.
= lim

n→∞
−
1

n
log Ps(X hits Sn before 0) (3)

exists and is nonzero.

In this article we are interested in two types of buffer structures: 1) S1
.
=

{x ∈ R
d
+ : x(1) + x(2) + · · · + x(d) = 1}. Sn

.
= {x ∈ Z

d
+ : x/n ∈ S1}

corresponds to a single buffer of size n shared by all queues. For β ∈ R
d
+

S2 = {x ∈ R
d
+ : x(i) = β(i) for some i and x(j) ≤ β(j) for all j}. Then

Sn
.
= {x ∈ Z

d
+ : x/n ∈ S2} corresponds to d independent buffers, one for each

node. The size of the buffer for node i is given by nβ(i). Without loss of
generality we will assume that ∨iβ(i) = 1.

Define the initial point s
.
= (1, 0, 0, 0, . . . , 0). Fix a buffer structure S and

define the exit boundaries Sn as above. We now rewrite the exit probability
of interest precisely as: pn

.
= Ps(X hits Sn before it hits 0). We consider the

case S = S1 (all nodes share a single buffer) in Section 4 and the case S = S2

(one buffer for each node) in Section 6.

3 Importance Sampling

In order to simulate X using importance sampling one specifies a sampling
distribution p̄(v|x), v ∈ V and x ∈ Z

+ and simulates X from this distribution.
Note that we allow p̄ to depend on x, the current position of X. Define An to
be the set of sample paths that hit the exit set Sn before 0 and let Tn denote
the first time X hits Sn or 0. The IS estimator of pn using K sample paths is
then:

1

K

K
∑

k=1

p̂kn, p̂kn
.
= 1An(X

k) ·

Tn−1
∏

i=1

p(Y k
i )

p̄(Y k
i |X

k
i )

, (4)

where Xk denotes the kth independent sample path used in the simulation.
The increments {Y k} are iid copies of the increment process Y sampled from
p̄. Xk is built along with Y k using the dynamics (2). The product is the
likelihood ratio of Ps and P̄ , which appears in the estimator to cancel off the
effect of changing the sampling distribution from p to p̄.

p̂n
.
= p̂1n is an unbiased estimator of pn and therefore the variance of p̂n

depends on the sampling distribution only through the second moment of p̂n.
Because pn decays exponentially, one would like the second moment of p̂n to
decay exponentially as well. However, Jensen’s inequality implies that

lim sup
n

−
1

n
log Ê[p̂2n] ≤ lim sup

n
−
2

n
log Ê[p̂n] ≡ 2γ.
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In other words, the exponential decay rate of the second moment can be at
most twice that of the probability. The IS estimator is said to be asymptoti-
cally optimal if the upper bound is achieved, i.e., if lim infn−

1
n logE[p̂2n] ≥ 2γ.

3.1 Definitions from the subsolution approach

In this subsection we will give only the definitions from the subsolution ap-
proach that we need to present the results and the algorithm for the tree
Jackson networks. A full development of the subsolution approach ideas can
be found in [6, 5, 12].

Hamiltonians, the limit HJB equation and the boundary conditions.

For a bitmap b ∈ {0, 1}d and q ∈ R
d define

Nb(q)
.
= λe−q(1)/2 +

∑

i:b(i)=1

∑

i→j

µi,je
q(i)−q(j)

2 +
∑

i:b(i)=1

µi,0e
q(i)
2 +

∑

i:b(i)=0

µi,

Hb(q) = −2 logNb(q). (5)

Hb is the Hamiltonian associated with boundary b. We denote Hb by H if
b = (1, 1, 1, . . . , 1, 1).

For x ∈ R
d
+, define bx ∈ {0, 1}d as follows:

bx(i)
.
=

{

0, if x(i) = 0,

1, otherwise.
(6)

bx indicates which boundary x is on (if bx = (1, 1, . . . , 1, 1) then x is in the
interior of Rd

+).

Definition of a subsolution. The limit HJB equation and its boundary
conditions that are in the center of the subsolution approach are as follows:

H(DV (x)) = 0, Hbx(DV (x)) = 0, (7)

whereDV denotes the gradient of V . A subsolution to (7) is defined as follows:

Definition 3.1. V̄ is an ǫ-subsolution to (7) if it is C1(Rd,R) and

(a) Hbx(DV̄ (x)) ≥ −ǫ for all x ∈ R
d
+,

(b) V̄ (0) ≥ 2γ − ǫ,

(c) V̄ (x) ≤ ǫ, x ∈ S,

where γ is the decay rate associated with the buffer structure S.
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For q ∈ R
d and bitmap b define the jump probabilities:

p̄∗b(q)(vi,j) =























λ exp(−q(j)/2)
Nb(q)

, i = 0, j = 1

µi,j
exp((q(i)−q(j))/2)

Nb(q)
, i 6= 0, b(i) = 1, i → j

µi,0
exp(q(i)/2)

Nb(q)
, i 6= 0, b(i) = 1

µi,j
1

Nb(q)
, i 6= 0, b(i) = 0, i → j or j = 0.

(8)

Any smooth function W : Rd → R can be used to define a stochastic kernel p̄
as follows:

p̄W (v|x) = p̄∗bx(v|DW (x/n)), (9)

where DW is the gradient of W .
Theorem 4.1.1 of [16] asserts that the IS transition kernel defined by

smooth subsolutions to (7) satisfying growth conditions on their Hessians are
asymptotically optimal. For completeness we quote this theorem below.

Theorem 3.1 (Theorem 4.1.1 of [16]). Let {V̄n} be a sequence of C2([0, 1]d,R)

functions that satisfy 1) V̄n is a ǫn-subsolution 2)
∣

∣

∣

∂2V̄n

∂xi∂xj

∣

∣

∣
≤ C

δn
for i, j ∈

{1, 2, ..., d}, for some fixed constant C < ∞ and a pair of non negative se-
quences {δn} and {ǫn} that converge to 0 and satisfy nδn → ∞. Then the IS
scheme defined by the subsolutions V̄n is asymptotically optimal.

In the next section we will construct a sequence of smooth subsolutions to
(7) that satisfy the conditions of this theorem by piecing together at most 2d

affine functions for the buffer structure S1. We will find out in Section 6 that
the same sequence also works for S2 (one individual buffer for each node).

4 Single shared buffer

In this section we will be working with S = S1 = {x ∈ R
d
+ : x(1)+x(2)+ · · ·+

x(d) = 1}. As noted before, S1 corresponds to a single buffer shared by all
queues in the system. To remind the reader, we are interested in the overflow
probability: pn

.
= Ps(X hits Sn before it hits 0), where and Sn

.
= {x ∈ Z

d
+ :

x/n ∈ S1}. It is proved in [8] that

lim
n→∞

−
1

n
log pn = γ1 = min

i
− log ρi. (10)

In particular, this implies that S1 satisfies the conditions of Assumption 1.

4.1 The smooth subsolution

We define the following quantities to write down the subsolution to (7) that
we have in mind.
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The effective rate Mi(b) of node i at boundary b.

Mi(b)
.
=

{

µi, if b(i) = 1,

min
(

µi,
∑

k:i→kMk(b) + µ′
i,0

)

, if b(i) = 0,
(11)

where µ′
i,0

.
= Λi

µi,0

µi
is the traffic that leaves the system through node i. The

recursive formula (11) is the main ingridient of our construction and is sug-
gested by the definition of the Hamiltonians (5) and the HJB equation (7) to
which we are constructing a subsolution. The form of (11) and the role Mi(b)
plays in the solution to the problem suggests the following interpretation of
(11). (11) seems to compute an “effective” service rate for each node taking
into account whether the node is empty or nonempty. If a node is nonempty
its effective service rate is simply its service rate. If the node is empty, (11)
seems to consider it as a system whose components are the nodes it directly
feeds and computes the effective rate as the total effective rates of the compo-
nents. There is also an upper bound on the effective rate, namely the service
rate and if the aforementioned total exceeds this bound then again the effec-
tive rate is set to be the service rate. In this interpretation µ′

i,0 can be thought
of as the effective rate of outside of the network for the empty node i.

The effective utility ρi(b)
.
= Λi

Mi(b)
. The effective utility of a node is the

ratio of its arrival rate to its effective service rate. If node i is nonempty then
it coincides with the ordinary utility ρi.

The effective gradient q ∈ R
d associated with boundary b.

q(i)
.
= 2 log ρi(b) = 2 log

Λi

Mi(b)
, (12)

where q(i) denotes the ith component of the vector q. We will use the affine
functions defined by the effective gradients to construct our subsolution of (7).
The effective gradient q of the boundary b will be the gradient of the smooth
subsolution around that boundary.

For each boundary b there is an effective gradient q. It may happen that
two boundaries b1 and b2 have the same effective gradients. Let EG

.
= {q1,

q2,...,qL}, L ≤ 2d, be the set of unique effective gradients. We identify two
extreme elements of the set EG: firstly, the effective gradient corresponding to
the boundary 0 = (0, 0, 0, . . . , 0, 0) (all nodes empty) is 0 = (0, 0, 0, . . . , 0, 0)
(this follows from (11) and the definition of µ′

i,0). Secondly, the effective
gradient corresponding to the boundary 1 = (1, 1, 1, . . . , 1, 1) (all nodes non-
empty) is the vector whose ith component is log Λi/µi.

Now define

mi(b)
.
=

{

µi, if b(i) = 1,
∑

k:i→k mk(b) + µ′
i,0, if b(i) = 0.

(13)
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The simple gradient q = (q1, q2, ..., qd) associated with boundary b is defined as
q(i)

.
= 2 log Λi

mi(b)
where as before Λi is the arrival rate to node i. The following

lemma relates simple and effective gradients. Bitmaps b′ and b satisfy b′ ≥ b
if b′(i) ≥ b(i) for all i ∈ {1, 2, 3, ..., d}.

Lemma 4.1. Let q be the effective gradient associated with boundary b. Then
there exists a boundary b̄ ≥ b such that q is the simple gradient associated with
b̄.

Proof. If b = (1, 1, 1, ..., 1, 1) then there is nothing to prove because for this
boundary the effective gradient and the simple gradient are the same. Then we
assume that there are some empty nodes indicated by b. b̄ ≥ b is constructed
as follows. Initially set b̄ = b. For each empty node i in b set b̄i to 1 if
Mi(b) = µi. (see (11)). It is clear that 1) b̄ ≥ b and 2) the effective and simple
gradients of b̄ are the same vector which is the effective gradient of b.

Definition 4.1. For an effective gradient ql ∈ EG let b̄ be the boundary whose
simple gradient equals ql. Define αl to be the number of 0’s in b̄ plus 1.

The αl’s will determine the size of the regions where the change of measure
defined by ql is used for IS. Now define the piecewise affine subsolution

W ǫ
l (x) = 2γ1 − αlǫ+ 〈ql, x〉, W ǫ(x) =

L
∧

l=1

W ǫ
l (x), (14)

where L is the number of effective gradients and ql are the effective gradients.
W ǫ is piecewise affine and not smooth in general. To obtain the sequence of
smooth subsolutions satisfying the assumptions of Theorem 4.1.1 of [16] one
has to let ǫ depend on n and then smooth W ǫ. One smoothing method that
is simple and easy to implement on a computer is the following [6]. Define

W ǫ,δ(x)
.
= −δ log

L
∑

l=1

exp

{

−
1

δ
W ǫ

l (x)

}

. (15)

This smoothing algorithm is based on the following fact: For d real numbers

a1, a2 ,..., ad: − limδ→0 δ log
(

∑d
i=1 e

−ai/δ
)

=
∧d

i=1 ai. By Lemma 3.12 of

[12], W ǫ,δ → W ǫ uniformly as ǫ → 0. In addition, W ǫ,δ is continuously
differentiable and a simple direct calculation gives

DW ǫ,δ(x) =
L
∑

l=1

wǫ,δ
l (x)ql, wǫ,δ

l (x)
.
=

exp {−W ǫ
l (x)/δ}

∑L
k=1 exp

{

−W ǫ
k(x)/δ

} . (16)

Lemma 4.2. W ǫ,δ defined in (15) satisfies:

1. Hbx(DW ǫ,δ(x)) ≥ −C1 exp
(

− ǫ
δ

)

,

9



2. W ǫ,δ(0) ≥ 2γ1 − ǫ
(

δ
ǫ log

∑L
l=1 exp

{

αl

δ/ǫ

})

,

3. W ǫ,δ(x) ≤ 0 for x ∈ S1,

4.
∣

∣

∣

∂2W ǫ,δ

∂xi∂xj

∣

∣

∣
≤ C2

δ ,

where C1 and C2 are constants that only depend on the parameters of the
network (arrival and service rates and the routing probabilities).

The proof of Lemma 4.2 is in Appendix A. This lemma directly implies
that, for ǫn = −δn log δn and δn chosen such that δn → 0 and nδn → ∞,
the sequence of smooth subsolutions W ǫn,δn (where W ǫ,δ is defined as in (15))
satisfy the conditions of the optimality Theorem 4.1.1 [16]. This means that
the IS scheme defined by these subsolutions through (9) is asymptotically
optimal.

Here we repeat an idea from [6, 12]. The formula (9) can be used to
translate any smooth function into an IS transition kernel. However, for the
smooth subsolutions there is a slightly different way of defining IS transition
kernels which turn out to be very convenient in computer simulations.

For x ∈ Z
d
+ define

p̄∗(vi,j|x) =
L
∑

l=1

wǫ,δ
l (x/n)p̄∗bx(ql)(vi,j), (17)

i.e., we switch the order of taking the average against the weights wǫ,δ
l and

applying the map p̄∗bx(·) of (8). The advantage of p̄∗ of (17) is that it requires
the computation of p̄∗b(ql) only once at the beginning of the estimation pro-
cedure. During the simulation only the weights are computed dynamically
and averages of the precomputed p̄∗b(ql) will be the IS rates. Theorem 4.1.1 of
[16] doesn’t cover this way of computing the IS rates. However, the modifi-
cation of this theorem to accommodate direct averaging entails no significant
changes. In the next section we report on the numerical performance of these
algorithms.

4.2 Interpretation of the IS algorithm defined by the subsolu-

tion

Let b a boundary and q its effective gradient. (17) essentially uses p̄b(q) as
the IS change of measure when the queueing process is on the boundary b and
away from the lower dimensional boundaries contained in b. Looking at (12)
and (8) one sees that p̄b(q) is simply the following change of measure:

µ̄i,j =

{

µi,j, if node i is empty,

µi,j
ρi(b)
ρj(b)

, if node i is nonempty,
(18)
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where ρi(b) and ρj(b) are the effective utilities of nodes i and j. These new
rates are renormalized so that they sum to 1. By convention ρ0(b) = 1, i.e.,
the outside of the system is thought of as a node with utility 1. The IS scheme
given by (17) uses a convex combination of (18) when the simulated queuing
process transitions from one boundary to another.

(18) illustrates well how the IS change of measure given by the subsolution
approach works. In the course of a simulation, the IS change of measure
depends on which nodes are currently empty and nonempty. The service
probabilities of empty nodes are not modified. The service probability µi,j

of a nonempty node i is modified through a comparison of the traffic at the
source i and the target j; the service rate is increased if the source is busier,
decreased otherwise. The goal seems to be to direct traffic to the less strained
node. The traffic is measured by the effective utilities. For an empty node
the effective utility is a value that takes into account the traffic in the nodes
that follow it immediately. We also note that the arrival rate λ is replaced by
λ̄ = λ 1

ρ1(b)
which is always larger than λ. Therefore the rate of traffic from

outside is always increased. Similarly, the rate of traffic to outside is always
decreased.

We would like to also note that the standard state independent heuristic
IS algorithms based on large deviations results can be thought of as variants
of (18) in which the standard utilities are used instead of the effective utilities.

5 Numerical Results

Choice of ǫ and δ. The IS algorithm defined by W ǫ,δ of (15) has two
parameters ǫ and δ. The optimality Theorem 3.1 suggest δ ≈ C/n and ǫ ≈
−δ log δ. Asymptotic optimality criterion is not precise enough to impose a
value for C. For the choice of this constant we used experimental evidence.

Once ǫ and δ are fixed, p̄∗(v|x) of (17) is used as the IS change of measure.
The effective gradients q1, q2, ..., qL and their αl’s are computed by iterating
over all boundaries b and computing the effective gradient of each of them
using the formulas (11) and (12) and the Definition 4.1.

In the following subsections we present simulation results for various Jack-
son networks with a tree topology. In all the estimations K = 10000 sample
paths were used.

Example 1. We first consider the network in Figure 1. Let us consider
the case when λ = 0.04, µ1,2 = µ1,0 = 0.12, µ2,0 = µ2,3 = µ2,4 = 0.08,
µ3,0 = µ3,1 = µ4,0 = µ4,1 = 0.12. The node utilities in this case are: ρ1 =
1/6, ρ2 = 1/12, ρ3 = ρ4 = 1/36. In this example, the utilities are unevenly
distributed and node 1 is the most strained node. We take n = 30. For
n = 30, and with this four dimensional system, it is possible to compute

11
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Figure 1: Example 1

Exact probability p30 = 3.269 × 10−23

Estimate p̂n Standard Error 95 % CI

Est. 1 3.50 × 10−23 0.19 × 10−23 [3.12, 3.88] × 10−23

Est. 2 3.22 × 10−23 0.16 × 10−23 [2.89, 3.54] × 10−23

Est. 3 3.28 × 10−23 0.17 × 10−23 [2.94, 3.61] × 10−23

Est. 4 3.32 × 10−23 0.17 × 10−23 [2.98, 3.66] × 10−23

Est. 5 3.16 × 10−23 0.16 × 10−23 [2.84, 3.48] × 10−23

Table 1: Simulation Results for Example 1

p30 without any simulation using the Markov property and straight-forward
iteration. Such a computation yields p30 = 3.269×10−23 . For the subsolution
based IS algorithm we take ǫ = 0.25 and δ = 0.08. There turns out to
be only five effective gradients for the given rate values above. The results
of five consecutive estimations using the subsolution based IS algorithm are
displayed in Table 1. The ‘standard error’ column is the standard error of
each estimation. The 95% confidence intervals are p̂n + [−2SE, 2SE], where
SE is the standard error displayed under the standard error column . These
intervals are only formal, i.e., we make no assertion about the normality of
these errors. Note that the estimation results are very close to the exact value
and the “95% confidence intervals” are accurate: in all these estimations the
exact value happened to be in the computed confidence interval. In total all
five estimations took around 20 seconds on an ordinary laptop manufactured
in 2004.

Example 2. Now we look at the 8-node network depicted in Figure 2. We

1

2

3

4

5

6

7

8

Figure 2: Example 3
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Estimate p̂n Standard Error 95 % CI

Est. 1 1.11 × 10−6 0.17 × 10−6 [0.78, 1.44] × 10−6

Est. 2 1.69 × 10−6 0.32 × 10−6 [1.04, 2.34] × 10−6

Est. 3 1.25 × 10−6 0.18 × 10−6 [0.89, 1.61] × 10−6

Est. 4 1.94 × 10−6 0.51 × 10−6 [0.92, 2.97] × 10−6

Est. 5 1.23 × 10−6 0.17 × 10−6 [0.89, 1.56] × 10−6

Table 2: Simulation results for the network with eight nodes

take the arrival rate λ = 0.1248, The service rates are taken to be: µ1,2 =
0.062442, µ1,3 = 0.1874, µ1,4 = 0.062442 µ1,0 = 0.062517 µ2,0 = 0.06, µ3,0 =
0.036, µ3,5 = 0.072, µ3,6 = 0.072, µ4,0 = 0.03, µ4,7 = 0.03, µ5,0 = 0.0365,
µ5,8 = 0.0365, µ6,0 = 0.073, µ7,0 = 0.025, µ8,0 = 0.028. For this choice of the
network parameters, the utility of each node turns out to be approximately:
ρ1 = 0.331738, ρ2 = 0.3465, ρ3 = 0.3466, ρ4 = 0.3465 , ρ5 = 0.3419, ρ6 =
0.3466, ρ4 = 0.3465, ρ8 = 0.4158. All nodes are similarly utilized, although the
load on node 8 is slightly heavier then the rest. A straightforward simulation
with 108 samples estimate p30 to be 1.2 × 10−6 with a standard error of
1.1 × 10−6. The subsolution based IS simulation results are given in Table
2. The parameters of the algorithm are taken to be ǫ = 0.4 and δ = 0.1.
Each estimation uses 10000 samples. For this network there are 256 effective
gradients. Total run time for all these five estimations was about 20 minutes.

As can be seen, the subsolution based IS algorithm performs very well for
this high dimensional system too: the estimate is within the 95% confidence
interval of the MC estimator and the formal 95% confidence inervals of the IS
simulation do not wildly fluctuate.

6 Individual Buffers for each Node

In this section we look at the buffer structure S2: for β ∈ R
d
+

S2 = {x ∈ R
d
+ : x(i) = β(i) for some i and x(j) ≤ β(j) for all j}.

As we noted before, Sn
.
= {x ∈ Z

d
+ : x/n ∈ S2} corresponds to d independent

buffers, one for each node. The size of the buffer for node i is given by nβ(i).
Without loss of generality we will assume that ∨iβ(i) = 1. We are, as before,
interested in: pn

.
= Ps(X hits Sn before it hits 0), where s = (1, 0, 0, . . . , 0).

One can prove, using arguments similar to those in [8] that

lim
n→∞

−
1

n
log pn = γ2 = min

i
−β(i) log ρi, (19)

where ρi are the node utilities. In particular, this implies that S2 satisfies the
conditions of Assumption 1. Our goal now is to prove that the IS algorithm
defined by W ǫn,δn is asymptotically optimal for the buffer structure S2 as well
(when buffer structure is changed to S2, γ1 in (14) needs to be replaced with
γ2). To prove this, it is enough to prove a version of Lemma 4.2 for S2. Note
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Exact probability p19 = 6.8601× 10−9

Estimate p̂n Standard Error 95 % CI

Est. 1 7.33 × 10−9 0.42 × 10−9 [6.50, 8.17] × 10−9

Est. 2 6.81 × 10−9 0.34 × 10−9 [6.12, 7.50] × 10−9

Est. 3 7.30 × 10−9 0.38 × 10−9 [6.53, 8.06] × 10−9

Est. 4 7.05 × 10−9 0.39 × 10−9 [6.28, 7.83] × 10−9

Est. 5 7.01 × 10−9 0.37 × 10−9 [6.26, 7.76] × 10−9

Table 3: Simulation results for the case when each node has a separate buffer

that only item 3 of this lemma depends on S and therefore we only have to
prove that the same item holds for S2, which is done in the next lemma.

Lemma 6.1. Define W c,ǫ
l (x)

.
= 2γ2−αlǫ+ 〈ql, x〉, where αl and ql are defined

as in (12) and Definition 4.1 and γ2 is the large deviation rate associated with
the boundary S2 (19). Define W ǫ,δ by the expression (15). Then: W ǫ,δ(x) ≤ 0.
for x ∈ S2.

Proof. Take any x ∈ S2. Then, there is an i ≤ d such that x(i) = β(i). Let
qL be the effective gradient of the boundary 1 = (1, 1, 1, . . . , 1, 1).

W (x) = −δ log

L
∑

l=1

exp

{

−
1

δ
(2γ2 − αlǫ+ 〈ql, x〉)

}

≤ 2γ2 + 〈qL, x〉 − αLǫ.

By definition, qL(i) = 2 log µi

Λi
and the rest of the components of qL are nega-

tive. These facts, (19), x ∈ R
d
+, and x(i) = β(i) imply that the last display is

less than −αLǫ. This finishes the proof of this lemma.

Numerical example Consider a network with five nodes with the following
service rates: µ1,2 = 0.038, µ1,3 = 0.057, µ1,0 = 0.095, µ2,4 = 0.076, µ2,0 =
0.114, µ3,5 = 0.095, µ3,0 = 0.095, µ4,0 = 0.19, µ5,0 = 0.19 and λ = 0.1. We will
suppose that the buffer sizes for the nodes are respectively: 15, 15, 17, 18, 19
Then n = 19 and β(1) = β(2) = 15/19, β(3) = 17/19, β(4) = 18/19, β(5) = 1.
The choice of the buffer sizes are rather arbitrary. We chose them relatively
small so that it was possible to compute the buffer overflow probability p19
using the Markov property and direct iteration. The exact value of p19 turns
out to be p19 = 6.8601 × 10−9.

The relative node utilities are: β(1)ρ1 = 0.208, β(2)ρ2 = 0.042, β(3)ρ3 =
0.013, β(4)ρ4 = 0.0004, β(5)ρ5 = 0.0008. Node 1 is clearly the most strained
node and the loads on the rest of the nodes are spread. Following the same
reasoning as in Section 5 we take ǫ = 0.3 and δ = 0.1. The IS simulation
now proceeds as before. One uses p̄(·|x) = p̄∗(·|x) given in (17) for the IS
change of measure. There turns out to be only eight effective gradients (out
of a maximum of 32). The results of five consecutive estimations using the
subsolution based IS algorithm are displayed in Table 3. Once again, the
estimation results are close to the exact value p19 = 6.8601 × 10−9 and the
formal 95% confidence intervals are tight and happen to contain the exact
value.
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7 Discussion

The goal of the present paper was to extend the IS algorithms in [12], which
looked at tandem Jackson networks, to more general networks. We thought
tree networks were an interesting generalization and a comparison with the
algorithms in [12] will reveal that the tree networks require much more sophis-
ticated subsolutions and IS algorithms for asymptotic optimality. [7] proves
a further generalization to arbitrary stable Jackson networks. In this section
we would like to discuss how the results in [7] relate to our results.

Let pi,j = µi,j/µi denote the routing probability from node i to j, where
j is allowed to take the value 0. In the notation of the present paper, the IS
algorithm in [7] can be described as follows. Define the effective rate for the
boundary b as:

Mi(b)
.
=

{

µi, if b(i) = 1,

min
(

µi,
∑

k:i→k
pi,kΛi

Λk
Mk(b) + µ′

i,0

)

, if b(i) = 0.
(20)

As before if a node is nonempty under b, i.e., b(i) = 0, then its effective rate
is just the service rate µi. If it is empty, one now takes a weighted sum of
the effective rates of its neighbors, as before this sum is min’ed with µi. The
weight of Mk(b) is the fraction of the kth node’s traffic in the fluid model that
is coming from node i. This fraction is always 1 for a tree network and thus
for such networks (20) reduces to (11). Once the effective rates are defined as
above one proceeds as in subsection 4.1.

We note that (11) is a recursive formula: one can start from the leaves of
the network and go up and compute all effective gradients using (11). In the
case of general Jackson networks (20) is an equation that needs to be solved;
as observed in [7], it can be solved by reducing it to a linear equation, which
is a generalization of (13). It can also be directly solved using (20) itself and
an iterative method.

Another contribution of [7] is the identification of the large deviation decay
rate γ of pn for any exit boundary S for which such a rate exists. In the
notation of the present paper, [7, Proposition 3.1] asserts that

γ = inf
x∈S

−〈q, x〉

where q is the effective or simple gradient of b = (1, 1, 1, . . . , 1). As noted in
[7] this implies that the IS change of measure given by (20), or (11) for the
case of tree networks, is asymptotically optimal for any buffer structure S for
which there is a large deviation decay rate.

Finally, we would like to point out a parametrization that seems most
natural for (20). Define Mi

.
= 1/ρi and Mi(b)

.
= Mi(b)/Λi. The first is the

ordinary service to arrival ratio of node i. The second can be thought of as
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the effective service to arrival ratio of the same node when the system is on
boundary b. By convention let M0(b) = 1, i.e., the service to arrival ratio of
the outside of the system is 1. In terms of these new variables (20) is simply:

Mi(b)
.
=

{

Mi, if b(i) = 1

min (Mi,
∑

k:i→k pi,kMk(b)) , if b(i) = 0,
(21)

where k = 0 value is allowed in the summation to denote the outside of the
system. If node i is empty, its effective service to arrival ratio is taken to be
the average of the effective ratios of the nodes that are directly connected to
i. The average is taken with respect to the routing probabilities. As before
the ordinary service to arrival ratio is an upperbound on the effective one. So
if the average exceeds the ordinary, the effective ratio is set to the ordinary
ratio.

The effective gradient q for b will have components −2 logMi(b). And the
change of measure p̄b(q) is:

µ̄i,j =

{

µi,j, if node i is empty

µi,j
Mj(b)
Mi(b)

, if node i is nonempty,

and this is renormalized so that µ̄i,j sum to 1. One can use (21) directly to
compute the IS algorithm.

A Proof of Lemma 4.2

Before we begin, a convention: the decay rate γ depends on the buffer struc-
ture. We used γ1 for the shared buffer (S1) and γ2 for the individual buffers
for each node (S2). In the proofs we will simply write γ.

Lemma A.1. Let q be the simple gradient associated with boundary b. Then
Hb̄(q) = 0 for any b̄ ≥ b.

Proof. We first prove that Hb(q) = 0, or equivalently Nb(q) = 1. Directly
from the definitions (5), (13) one sees that Nb(q) = 1 if and only if

∑

i:b(i)=1





∑

j:i→j

mj(b) + µ′

i,0



+m1(b) = λ+
∑

i:b(i)=1

µi.

The definition of µ′
i,0 directly imply that

∑d
i=1 µ

′
i,0 = λ. The above display

follows from this fact and (13).
Next fix a b̄ > b. We will show that Nb̄(q) = 1.

Nb̄(q)−Nb(q) =
∑

i:b̄(i)−b(i)=1,i→j

µi,je
q(i)−q(j)

2 +
∑

i:b̄(i)−b(i)=1

µi,0e
q(i)/2 −

∑

i:b̄(i)−b(i)=1

µi

(22)

16



Fix i such that b̄(i)− b(i) = 1 and let C denote the terms contributed by the
index i in the first two sums. Our goal is now to show that C = µi. This will
imply that first two sums and the last sum in (22) cancel each other and that
Nb̄(q) = Nb(q). Because b(i) = 0 we have that

mi(b) =
∑

j:i→j

mj(b) + µ′
i,0. (23)

Then

C = µi,0e
q(i)/2 +

∑

j:i→j

µi,je
q(i)−q(j)

2 = µi,0
Λi

mi(b)
+
∑

j:i→j

µi,j
Λi

mi(b)

mj(b)

Λj

At this point the facts Λj = Λi
µi,j

µi
and

µi,0Λi

µi
= µ′

i,0 and (23) and simple
arithmetic yield C = µi. Thus the difference in (22) is zero, i.e., Nb̄(q) =
Nb(q) = 1. This finishes the proof of this lemma.

Lemma A.2. Let q be the effective gradient associated with boundary b. Then
Hb′(q) ≥ 0 for all b′ ≥ b.

Proof. Hb′(q) ≥ 0 if and only if Nb′(q) ≤ 1. By Lemma 4.1 there exists b̄ ≥ b
such that q is the simple gradient associated with b̄. Then by Lemma A.1
Nb′(q) = 1 for all b′ ≥ b̄. Now take any b′ such that b′ < b̄ and b′ ≥ b. Because
b̄ > b′ ≥ b we have

Nb̄(q)−Nb(q)

=
∑

i:b̄(i)−b(i)=1





∑

j:i→j

µi,je
q(i)−q(j)

2 + µi,0e
q(i)/2



−
∑

i:b̄(i)−b(i)=1

µi

=
∑

i:b̄(i)−b(i)=1





∑

j:i→j

µi,j
Λi

Mi(b)

Mj(b)

Λj
+ µi,0

Λi

Mi(b)



−
∑

i:b̄(i)−b(i)=1

µi

=
∑

i:b̄(i)−b(i)=1

(

µi

∑

j:i→j Mj(b) + µ′

i,0

Mi(b)

)

−
∑

i:b̄(i)−b(i)=1

µi (24)

Now by the construction of b̄, b̄(i) − b(i) = 0 if and only if Mi(b) = µi ≤
∑

i→j Mj(b) + µ′
i,0, The last display and (24) imply Nb̄(q) ≥ Nb(q). Because

Nb(q) = 1 (because q is the simple gradient associated with boundary b) this
finishes the proof of this lemma.

Proof of Lemma 4.2. The proof is this lemma is similar to the proof of Theo-
rem 4.31 in [16]. For small positive real numbers δ, ǫ let W ǫ,δ be defined as in
(15). For ease of notation we will drop the superscript (ǫ, δ) and write W . We
would like to prove the following: there is a constant C1 that only depends on
the parameter system such that for all x ∈ R

d
+ Hb(DW (x)) ≥ −C1 exp(−ǫ/δ),
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where b defined in (6) is the boundary corresponding to x. Let E be the set
of effective gradients q such that there is a boundary b′ ≤ b with effective
gradient q. Define q′ =

∑

ql∈E
wǫ,δ
l (x)ql, where wǫ,δ

l are the weights defined in
(16). Once again to ease notation, we drop the superscript (ǫ, δ). Its definition
directly implies that Hb is concave and Lipschitz continuous. By Lemma A.2
we have that Hb(q) ≥ 0 for q ∈ E. This fact and the concavity of Hb and
Hb(0) = 0 imply that Hb(q

′) ≥ 0. This, (16) and the Lipschitz continuity of
Hb give

Hb(DW (x)) = Hb(q
′) +Hb(DW (x))−Hb(q

′) ≥ |Hb(DW (x))−Hb(q
′)|

≥ K|q′ −DW (x)| = −K
∑

ql∈Ec

wl(x)|q
l|.

The last inequality follows from (16) and the triangle inequality. Therefore to
prove the first part of Lemma 4.2 it is enough to prove wl(x) ≤ exp(−ǫ/δ),
for l such that ql ∈ Ec.

By its definition (16) wl equals

wl(x) =
exp {−W ǫ

l (x)/δ}
∑L

j=1 exp
{

−W ǫ
j (x)/δ

}
=

exp {(αlǫ− 〈ql, x〉)/δ}
∑L

j=1 exp {(αjǫ− 〈qj , x〉)/δ}

≤
exp {(αlǫ− 〈ql, x〉)/δ}

exp {(αj0ǫ− 〈qj0 , x〉)/δ}
, (25)

where qj0 is an effective gradient to be selected. By Definition 4.1, αl is one
plus the number of 0’s in the the boundary (bitmap) r whose simple gradient
equals ql. Form the bitmap r̃ from r as follows: if r(i) = 1 but bx(i) = 0
then set r̃(i) = 0 otherwise set r̃(i) = r(i). By this construction r̃ ≤ bx and
r̃ < r. The last inequality is strict, because otherwise we would have bx = r
which would imply, by Lemma A.2, Hbx(ql) ≥ 0 which in turn contradicts
ql /∈ E. Let qj0 be the effective gradient associated with the bitmap r̃. r̃ ≤ bx
and Lemma A.2 imply that Hbx(qj0) ≥ 0. This implies that qj0 ∈ E and
consequently qj0 6= ql ∈ Ec. These facts and the strict inequality r̃ < r imply
that αj0 − αl ≥ 1.

Furthermore, remember x is such that xi = 0 if bx(i) = 0. The bitmaps
r and r̃ differ only at such i. Then the effective gradients of these bitmaps,
namely ql and qj0 will also differ only at such i. This means 〈ql, x〉 = 〈qj0 , x〉.
These considerations and (25) imply wl(x) ≤ exp(−ǫ/δ) and hence the first
part of Lemma 4.2.

By its definition

W (0) = −δ log
L
∑

l=1

exp

{

−
2γ − αlǫ

δ

}

= 2γ − ǫ

(

δ

ǫ
log

L
∑

l=1

exp

{

αl

δ/ǫ

}

)

This proves the second part of Lemma 4.2.
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Now let us prove the third part. Let qL be the effective gradient of the
boundary 1 = (1, 1, 1, . . . , 1, 1). For x ∈ R

d
+ with x1 + x2 + · · · + xd = 1 we

have the following estimate:

W (x) = −δ log

L
∑

l=1

exp

{

−
1

δ
(2γ − αlǫ+ 〈ql, x〉)

}

≤ 〈qL, x〉+ 2γ − αLǫ.

By definition qL(i) = 2 log µi

Λi
. This and (10) imply that the last line is less

than −αLǫ. This finishes the proof of the third part of Lemma 4.2. It only
remains to prove the last part. Differentiating the first expression in (16)

gives: ∂2W
∂xj∂xi

(x) =
∑L

l=1
∂wl

∂xj
(x)ql(i). Differentiating the second expression in

(16) gives: ∂wl

∂xj
(x) = 1

δwl(x)
(

∑L
k=1wk(x)(qk(j) − ql(j))

)

. These imply the

bound in part 4 of Lemma 4.2, which is what we wanted to prove.
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