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a b s t r a c t

We present a novel stabilization procedure for accurate surface formulations of electro-
magnetic scattering problems involving three-dimensional dielectric objects with arbi-
trarily low contrasts. Conventional surface integral equations provide inaccurate results
for the scattered fields when the contrast of the object is low, i.e., when the electromag-
netic material parameters of the scatterer and the host medium are close to each other.
We propose a stabilization procedure involving the extraction of nonradiating currents
and rearrangement of the right-hand side of the equations using fictitious incident fields.
Then, only the radiating currents are solved to calculate the scattered fields accurately. This
technique can easily be applied to the existing implementations of conventional formula-
tions, it requires negligible extra computational cost, and it is also appropriate for the solu-
tion of large problems with the multilevel fast multipole algorithm. We show that the
stabilization leads to robust formulations that are valid even for the solutions of extremely
low-contrast objects.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In various physical applications, electromagnetic surface integral equations (SIEs) are commonly used to formulate prob-
lems involving dielectric objects with arbitrary shapes [1]. Using equivalent surface currents and applying the boundary con-
ditions on the surface of the scatterer, a set of integral equations can be derived. In the literature, various SIE formulations are
reported for the numerical solution of scattering problems involving three-dimensional dielectric objects [2–8]. However,
those formulations become inaccurate to calculate the scattered fields as the contrast of the object decreases, i.e., when
the electromagnetic material properties of the object and the host medium become close to each other. There are various
applications involving scattering from low-contrast objects. Examples are narrow-band dielectric photonic crystals [9], poly-
meric materials [10], plastic mines buried in soil [11], and biological tissues [12], such as red blood cells in blood plasma
[7,13,14]. On the other hand, it is usually difficult to investigate low-contrast structures with the SIEs, since these formula-
tions encounter stability problems when the contrast is low and the scattered fields are weak. This breakdown, which limits
the applicability of the surface formulations, does not arise in volume integral equations (VIEs). Therefore, VIEs can be used
to solve such problems accurately. However, it is also desirable to extend the applicability of SIEs to low-contrast problems
in order to use the advantages of the surface formulations, which may require lower numbers of unknowns compared to VIEs
for some problems.

The inaccuracy of SIEs for the solution of low-contrast problems is due to insufficient modelling of the radiating parts of the
equivalent currents defined on the objects [15]. By extracting the nonradiating parts of the currents and solving the modified
. All rights reserved.
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equations only for the radiating currents (similar to the volume formulations), scattered fields from low-contrast objects can
be calculated accurately. Recently, we have applied this procedure to various integral-equation formulations for the solution
of three-dimensional problems with arbitrary geometries [16–18]. For both the tangential (T) and normal (N) formulations,
our stabilization technique involves the expansion of the incident fields in a series of basis functions and the rearrangement of
the right-hand sides (RHSs) of the equations. By eliminating the terms related to the identity operators, accuracy of the for-
mulations can be improved further at the cost of increased processing time. This stabilization procedure is simple and easily
applied to the existing implementations of the conventional formulations. On the other hand, the resulting formulations are
stable only for moderately low-contrast problems and they break down as the contrast is further decreased to very low values.
In addition, these ‘‘quasi-stable” formulations are sensitive to how accurately the matrix elements are computed and the sta-
ble region is more limited when finite-precision methods, such as the fast multipole method (FMM) and the multilevel fast
multipole algorithm (MLFMA) [3], are used in order to accelerate the solutions.

As a remedy, in this paper, we introduce a novel stabilization procedure for accurate solutions of scattering problems
involving arbitrarily low-contrast dielectric objects. Similar to previous techniques, this stabilization procedure is also based
on extracting the nonradiating parts of the currents. However, the RHSs of the equations are rearranged in a different manner
using fictitious incident fields. Since the left-hand sides (LHSs) of the equations do not change and the modification of the
RHSs requires only a few matrix–vector multiplications (MVMs) involving the operators that are already available, this sta-
bilization procedure is also easy to implement and the extra computational cost is negligible. The technique is applied on a T
formulation although it can be generalized to other existing formulations, including the N formulations. We present the re-
sults of scattering problems involving dielectric spheres of various sizes since the analytical solutions are available for these
problems. We also demonstrate the improved accuracy provided by the stabilization technique on scattering problems
involving a cube geometry by performing convergence analysis and comparing the results obtained by using SIEs with the
results of a VIE implementation. For the solution of large problems, we use FMM and MLFMA to accelerate the MVMs required
by the iterative solvers. Our results show that the stabilized equation does not break down even for the solution of scattering
problems involving extremely low-contrast objects, such as a sphere of relative permittivity 1þ 10�9 in free space.

The rest of the paper is organized as follows. In the next section, we summarize the conventional surface formulations.
Section 3 presents the extraction of the nonradiating currents to obtain stable formulations. Then, Section 4 introduces the
novel stabilization technique based on fictitious fields. Finally, Section 5 provides numerical examples, followed by our con-
cluding remarks in Section 6.
2. Surface formulations

In the surface formulations of scattering problems involving homogenous dielectric objects, the operators are defined as
T lfXgðrÞ ¼ ikl

Z
S

dr0 Xðr0Þ þ 1

k2
l

r0 � Xðr0Þr
" #

glðr; r0Þ; ð1Þ

KlfXgðrÞ ¼
Z

PV;S
dr0Xðr0Þ � r0glðr; r0Þ; ð2Þ

IfXgðrÞ ¼ XðrÞ; ð3Þ
for the outside (l ¼ 1) and inside (l ¼ 2) the object. In (1) and (2), S is the surface of the object, PV indicates the principal value
of the integral, kl is the wavenumber associated with medium l, and
glðr; r0Þ ¼
expðiklRÞ

4pR
ðR ¼ jr � r0jÞ ð4Þ
is the homogenous-space Green’s function. Using the operators in (1)–(3), the general procedure of the surface formulations
can be summarized as follows:

(1) Apply the operators on the equivalent surface currents JðrÞ and MðrÞ to obtain the expressions for the scattered fields.
Electric and magnetic currents can be defined as
JðrÞ ¼ n̂� HðrÞ; ð5Þ

MðrÞ ¼ �n̂� EðrÞ; ð6Þ

where n̂ is the outward normal vector at a point r on the surface.

(2) Enforce the boundary conditions for the tangential electric and magnetic fields on the surface of the scatterer.
(3) Combine the outer (l ¼ 1) and the inner (l ¼ 2) formulations appropriately to derive a set of equations to solve for JðrÞ

and MðrÞ.
(4) Calculate the scattered electric and magnetic fields from JðrÞ and MðrÞ.
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Based on the items above, various formulations can be derived by using different combinations of the boundary condi-
tions, testing schemes, and scaling operations. Several of them are accurate, free of the internal resonance problem, and com-
monly used in the literature [2–8].

When the boundary conditions are tested directly by using the tangential unit vector t̂ at the observation point, the T for-
mulations are derived as [6]
t̂ �
aT 1 �ag�1

1 K
þ
1

cg1K
þ
1 cT 1

" #
�

J

M

" #
ðrÞ þ t̂ �

bT 2 �bg�1
2 K

�
2

dg2K
�
2 dT 2

" #
�

J

M

" #
ðrÞ ¼ �t̂ �

ag�1
1 EiðrÞ

cg1HiðrÞ

2
4

3
5; ð7Þ
where
K�l ¼ Kl � 0:5n̂� I ; ð8Þ
gl is the impedance of the medium l ¼ 1 and 2, while EiðrÞ and HiðrÞ are the incident electric and magnetic fields due to the
external sources. In (7), the inner and outer formulations are combined using the coupling coefficients a, b, c and d. For exam-
ple, the choices {a ¼ g1, b ¼ g2, c ¼ 1=g1, d ¼ 1=g2} and {a ¼ b ¼ c ¼ d ¼ 1} lead to Poggio–Miller–Chang–Harrington–Wu–
Tsai (PMCHWT) formulation [1] and the combined T formulation (CTF) [6], respectively. Both of these formulations are free
of the internal-resonance problem and provide accurate results for objects with moderate contrasts. In this paper, we apply
the stabilization procedures to another T formulation obtained by using {a ¼ d ¼ g1, b ¼ c ¼ g2}, which is slightly different
from CTF [16]. With these coefficients, (7) becomes
t̂ �
g1T 1 þ g2T 2 �ðK1 þK2Þ

g1g2ðK1 þK2Þ g2T 1 þ g1T 2

" #
�

J

M

" #
ðrÞ ¼ �t̂ �

EiðrÞ

g2g1HiðrÞ

2
4

3
5; ð9Þ
which is completely free of the identity operators (like the PMCHWT formulation) and involves well-balanced diagonal
blocks (like CTF) when the contrast is low.

In contrast to the T formulations, N formulations involve a projection operation using the unit normal vector n̂. Combin-
ing the inner and outer formulations, we obtain
n̂�
aKþ1 ag�1

1 T 1

�cg1T 1 cKþ1

" #
�

J

M

" #
ðrÞ � n̂�

bK�2 bg�1
2 T 2

�dg2T 2 dK�2

" #
�

J

M

" #
ðrÞ ¼ �n̂�

aHiðrÞ

�cEiðrÞ

2
4

3
5; ð10Þ
where different choices for the coupling coefficients are again available. Among these, the choices {a ¼ l1, b ¼ l2, c ¼ �1,
d ¼ �2} and {a ¼ b ¼ c ¼ d ¼ 1} lead to N-Müller formulation [5] and the combined N formulation (CNF) [6], respectively,
which are both free of the internal-resonance problem. In this paper, we consider the conventional and stable forms of
CNF. Inserting the coefficients in (10), CNF can be written as
�
I 0

0 I

" #
�

J

M

" #
ðrÞ þ n̂�

K1 �K2 g�1
1 T 1 � g�1

2 T 2

�g1T 1 þ g2T 2 K1 �K2

" #
�

J

M

" #
ðrÞ ¼ �n̂�

HiðrÞ

�EiðrÞ

2
4

3
5: ð11Þ
2.1. Comments on T and N formulations

Using a Galerkin scheme and choosing the same set of basis and testing functions for the discretization, N formulations in
(10) contain well-tested identity operators. These strong interactions are located on the diagonal blocks of the matrix equa-
tions. On the other hand, T formulations in (7) contain weakly-tested identity operators on the non-diagonal blocks, which
may vanish as in (9). Because the T and N formulations have different forms of identity operators, the two formulations show
different behaviors in terms of conditioning and accuracy:

(1) Due to their well-tested identity operators, N formulations are usually better-conditioned than the T formulations
[6,7,19]. Therefore, iterative solutions of the N formulations are easier; this is essential, especially when the problem
size is large. To obtain rapid convergence with the T formulations, iterative solvers can be accelerated by employing
preconditioners.

(2) Although they are better conditioned, N formulations can be considerably less accurate compared to the T formula-
tions for the same discretization [6]. This inaccuracy is also observed in the solution of perfectly conducting objects
with the magnetic-field integral equation, which is also an N formulation [20,21]. The source of the error is the identity
operators. In this paper, we use Rao–Wilton–Glisson (RWG) [22] basis functions to expand the unknown current den-
sities. Choosing a more appropriate set of basis functions [23–26] and applying a regularization to smooth the identity
operators [27] are among the possible ways to improve the accuracy of the N formulations.
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2.2. Low-contrast breakdown of conventional formulations

As the contrast goes to zero, i.e., �2 ! �1 and l2 ! l1, the T formulation in (9) becomes
Fig. 1.
a relati
t̂ �
2g1T 1 �2K1

2g2
1K1 2g1T 1

� �
�

J
M

� �
ðrÞ ¼ �t̂ � EiðrÞ

g2
1HiðrÞ

" #
: ð12Þ
In addition, the incident fields due to the external sources satisfy the set of identities [18]
t̂�
n̂�

( )
g1T 1 �K1

K1 g�1
1 T 1

� �
� n̂� Hi

�n̂� Ei

" #
ðrÞ ¼ �0:5

t̂�
n̂�

( )
EiðrÞ
HiðrÞ

" #
: ð13Þ
Consequently, the solution of (12) can be obtained as JðrÞ ¼ n̂�HiðrÞ and MðrÞ ¼ �n̂� EiðrÞ. When the contrast is zero, CNF
in (11) reduces to a simpler form, i.e.,
�
I 0
0 I

� �
�

J
M

� �
ðrÞ ¼ �n̂� HiðrÞ

�EiðrÞ

" #
; ð14Þ
where the same solution can be obtained trivially. We note that the ‘‘incident currents” {n̂�HiðrÞ;�n̂� EiðrÞ} do not radiate
and the conventional forms of the surface formulations satisfy the limit case mathematically. On the other hand, when they
are discretized, these formulations fail to provide accurate results for the scattered fields from the low-contrast objects.

To understand the breakdown of the surface formulations, we note that any arbitrary solution can be decomposed as
JðrÞ ¼ n̂� HðrÞ ¼ n̂� HiðrÞ þ n̂� HrðrÞ; ð15Þ

MðrÞ ¼ �n̂� EðrÞ ¼ �n̂� EiðrÞ � n̂� ErðrÞ; ð16Þ
where {n̂�HiðrÞ; n̂� EiðrÞ} do not radiate. As the contrast goes to zero, these nonradiating currents dominate the total cur-
rents, while the radiating currents, i.e., {n̂� HrðrÞ; n̂� ErðrÞ}, tend to vanish. As an example, Fig. 1 presents the equivalent
Equivalent (a) electric and (b) magnetic currents on a sphere of radius 0.3 m illuminated by a plane wave at 6 GHz. The sphere is in free space and has
ve permittivity of �r ¼ 1þ 10�4.
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electric and magnetic currents on the surface of a dielectric sphere of radius 0.3 m illuminated by a plane wave at 6 GHz. The
sphere is in free space and has a relative dielectric constant of �r ¼ 1þ 10�4. The radiating parts of the currents are also de-
picted in Fig. 2. Comparing Figs. 1, and 2, we observe that the radiating currents form very small portions of the total cur-
rents. Therefore, when the total currents are solved by employing the conventional surface formulations, it becomes difficult
to perform the calculations accurately enough to capture the small radiating currents properly. In other words, even though
the surface currents JðrÞ and MðrÞ are computed with relatively small error, scattered fields may not be obtained accurately
from them, since the radiating currents are numerically insignificant compared to the nonradiating currents [15].

3. Stabilization of surface formulations by extracting nonradiating currents

In order to calculate the scattered fields accurately, we extract the nonradiating parts of the currents and solve only the
radiating currents as the unknowns of the problem. Stabilization of the T formulation in (9) leads to
t̂ �
g1T 1 þ g2T 2 �ðK1 þK2Þ
g1g2ðK1 þK2Þ g2T 1 þ g1T 2

� �
� n̂� Hr

�n̂� Er

� �
ðrÞ ¼ t̂ �

g1T 1 � g2T 2 �ðK1 �K2Þ
g1g2ðK1 �K2Þ g2T 1 � g1T 2

� �
� n̂� Hi

�n̂� Ei

" #
ðrÞ; ð17Þ
which we call stable CTF (S-CTF). Similarly, stable CNF (S-CNF) is obtained from the N formulation in (11) as
�
I 0
0 I

� �
� n̂� Hr

�n̂� Er

� �
ðrÞ þ n̂� K1 �K2 g�1

1 T 1 � g�1
2 T 2

�g1T 1 þ g2T 2 K1 �K2

" #
� n̂� Hr

�n̂� Er

� �
ðrÞ

¼ �n̂� K1 �K2 g�1
1 T 1 � g�1

2 T 2

�g1T 1 þ g2T 2 K1 �K2

" #
� n̂� Hi

�n̂� Ei

" #
ðrÞ: ð18Þ
We note that the LHSs of the stable formulations are the same as those of their conventional forms. In other words, the sta-
bilization procedure only requires a modification on the RHSs of the formulations. On the RHSs, both S-CTF and S-CNF in-
volve operators applied on the incident fields. Since these operators are already available, the stabilization does not
require a significant cost in terms of the processing time and memory usage. The extra cost is only due to the calculation
of the ‘‘modified” RHSs before the iterative solutions, which can be performed in negligible time compared to other parts
of the implementations.
Fig. 2. Radiating parts of the (a) electric and (b) magnetic currents depicted in Fig. 1.
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In their discrete forms, a direct approach to apply the operators on the incident fields is to expand the fields in a series of
basis functions and perform MVMs. The expansion can be achieved by using the identity operators and solving the equation
I 0
0 I

� �
� n̂� Hi

�n̂� Ei

" #
ðrÞ ¼ n̂� HiðrÞ

�n̂� EiðrÞ

" #
ð19Þ
with the method of moments. Using the RWG functions, the identity operators lead to sparse matrices and the discrete form
of (19) can be written as
I 0
0 I

" #
�

xi

yi

� �
¼

vi

wi

� �
; ð20Þ
where
I½m;n� ¼ htmðrÞ; bnðrÞi; ð21Þ

vi½m� ¼ htmðrÞ; n̂� HiðrÞi; ð22Þ

wi½m� ¼ htmðrÞ;�n̂� EiðrÞi ð23Þ
and the vectors xi and yi represent the expansion coefficients, i.e.,
n̂� HiðrÞ �
XN

n¼1

xi½n�bnðrÞ; ð24Þ

�n̂� EiðrÞ �
XN

n¼1

yi½n�bnðrÞ: ð25Þ
In (21)–(25), bnðrÞ and tmðrÞ are the basis and testing functions, respectively, for m;n ¼ 1;2; . . . ;N. The solution of (19) usu-
ally requires negligible time; however, the use of the discretized identity operators may deteriorate the accuracy of the re-
sults. Although this is not critical for S-CNF, which already involves identity operators on the LHS, the accuracy of S-CTF can
be affected significantly. Therefore, to further improve the accuracy of the T formulation, we can obtain the coefficients xi

and yi by solving the discrete form of (13) [18]. This formulation, which is called the double-stabilized CTF (DS-CTF), is com-
pletely free of the identity operators at the cost of increased processing time due to the extra solution of the dense equation
in (13).

The three stable formulations described above, namely, S-CNF, S-CTF, and DS-CTF, provide accurate results for moderately
low-contrast problems that cannot be solved accurately with conventional formulations [18]. On the other hand, these stable
formulations also have limitations; they break down when the contrast is decreased to very low values. In the next section,
we introduce a novel stabilization procedure based on using fictitious incident fields to rearrange the RHSs of the formula-
tions. This stabilization technique leads to more robust formulations that are valid for arbitrarily low contrasts.
4. A stabilization procedure based on fictitious incident fields

In both (17) and (18), the RHSs of the equations are obtained by applying the inner and outer operators on the incident
fields. In addition, the operators are subtracted from each other so that the RHSs go to zero as the contrast decreases. Hence,
we call these formulations operator-based stabilization formulations (OBSFs). Using OBSFs, the radiating parts of the cur-
rents can be computed accurately for low-contrast objects, i.e., when the radiating currents are numerically insignificant
compared to the nonradiating currents. This is because the relatively large nonradiating currents are extracted, and only
the radiating currents are solved for. Despite this corrective approach, even OBSFs break down and fail to provide accurate
results for very low contrasts. The reason is the numerical errors arising during the computation of the RHSs of OBSFs, which
become significant when the contrast decreases to very low values and renders the RHS vanishingly small.

To explain the numerical problems in OBSFs, we consider S-CTF in (17). The RHS of S-CTF is obtained by applying the inte-
gro-differential operators on the nonradiating currents, i.e., we compute
RHSS-CTF ¼ t̂ �
g1T 1 �K1

g1g2K1 g2T 1

� �
� n̂� Hi

�n̂� Ei

" #
ðrÞ � t̂ �

g2T 2 �K2

g1g2K2 g1T 2

� �
� n̂� Hi

�n̂� Ei

" #
ðrÞ: ð26Þ
Operators related to outer and inner media are applied on the tangential incident fields (nonradiating currents) in the first
and the second terms of (26), respectively. Then, the second term is subtracted from the first term to compute the RHS. When
the contrast is low, the RHS is small, but it is obtained by the subtraction of two terms that are relatively large. As detailed in
Section 3, the discretized operators are applied on the incident fields by expanding the fields in a series of basis functions and
performing MVMs. Therefore, the two terms of the RHS of S-CTF in (26) involve numerical errors. Depending on the discret-
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Fig. 3. Normalized bistatic RCS (RCS/k2
1 on the / ¼ 0� plane) of a sphere of radius 0:125k1, where k1 is the wavelength outside the sphere (free space), when

the relative permittivity of the sphere is (a) 1þ 10�1, (b) 1þ 10�5, and (c) 1þ 10�9. The sphere is illuminated by a plane wave propagating in the z-direction
with the electric field polarized in the x-direction.
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ization and the accuracy of the MVMs, those errors can be significant and the RHS of S-CTF may not be calculated accurately
when the contrast is very low, i.e., when the result of the subtraction is extremely small.

In general, OBSFs fail to provide accurate results when the contrast is decreased to very low values. Therefore, it is desir-
able to obtain a robust formulation that is valid for arbitrarily low contrasts. We achieve this by introducing fictitious fields
and forming RHSs based on the difference of fields. This method leads to accurate calculation of the RHSs, even when the
contrast is very low. We will present the stabilization procedure on the T formulation in (9), although it is also applicable
to other T and N formulations.

When the incident fields are extracted from the LHS, the T formulation in (9) can be rewritten as
Fig. 5.
contras
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At this stage, we consider the incident fields as functions of medium parameters, i.e.,
EiðrÞ ¼ eðr; �1;l1Þ; ð28Þ

HiðrÞ ¼ hðr; �1;l1Þ: ð29Þ
Then, we define fictitious incident fields as
Ei
2ðrÞ ¼ eðr; �2;l2Þ; ð30Þ
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ts, where k1 is the wavelength outside the sphere (free space).
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Hi
2ðrÞ ¼ hðr; �2;l2Þ; ð31Þ
by using the parameters of the inner medium for the outside. This way, similar to the identities in (13), we have
t̂�
n̂�

( )
g2T 2 �K2

K2 g�1
2 T 2

� �
�
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2

" #
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( )
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2ðrÞ

" #
: ð32Þ
Finally, by adding and subtracting the terms of (32) in (27), we obtain
t̂ �
g1T 1þg2T 2 �ðK1þK2Þ
g1g2ðK1þK2Þ g2T 1þg1T 2

� �
� n̂�Hr

�n̂�Er

� �
ðrÞ¼�0:5t̂ �

EiðrÞ�Ei
2ðrÞ

g2g1ðH
iðrÞ�Hi

2ðrÞÞ

" #
� t̂ �

g2T 2 �K2

g1g2K2 g1T 2

� �
�

n̂�ðHi�Hi
2Þ

�n̂�ðEi�Ei
2Þ

" #
ðrÞ;

ð33Þ
which we call field-based-stabilized CTF (FBS-CTF). In contrast to OBSFs, FBS-CTF has a RHS obtained by subtracting the real
and fictitious incident fields from each other. These subtractions can be performed analytically in the continuous space be-
fore the discretization. Then, the operators related to the inner medium are applied to compute the second term of the RHS in
(33). We note that the RHS of FBS-CTF is obtained as the sum of two terms, i.e.,
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RHSð1ÞFBS-CTF ¼ �0:5t̂ �
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which are both small when the contrast is low. Consequently, the RHS can be calculated accurately for arbitrarily low con-
trasts, and it is sensitive to neither the discretization errors nor the numerical errors arising during MVMs. FBS-CTF can easily
be obtained from the conventional CTF implementation and, similar to S-CTF and S-CNF, its extra cost is also negligible.

5. Results

To compare the accuracy of the formulations, we first present the results of the scattering problems involving a sphere of
radius 0.125k1 (‘‘small sphere”) and a sphere of radius 0:5k1 (‘‘medium sphere”), where k1 is the wavelength outside the
spheres. The objects are in free space, they have various relative permittivities from �r ¼ 1þ 10�1 to �r ¼ 1þ 10�9, and they
are illuminated by a plane wave propagating in the z direction with the electric field polarized in the x-direction. The same
discretization (triangulation) is used for both spheres and the mesh size is about k1=40 for the small sphere and k1=10 for the
medium sphere. For the small sphere, the dense k1=40 triangulation is required in order to model the sphere geometry accu-
rately. We employ RWG basis functions and iteratively solve the matrix equations obtained by the discretization of various
formulations. Both problems have the same matrix size of 1860 � 1860 and the matrix elements are computed directly with
10�2 relative error.

Fig. 3 depicts the bistatic radar cross section (RCS) of the small sphere for three different contrasts (1� �r). Normalized
RCS (RCS/k2

1) is plotted in decibels (dB) as a function of the observation angle on the / ¼ 0� plane, where 0� corresponds to
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the forward-scattering direction. For reference, the RCS values are also computed analytically by a Mie-series solution. When
the contrast is 0.1, all of the formulations provide accurate results that are close to the analytical curve. As the contrast de-
creases to 10�5, however, we observe that the conventional formulations, i.e., CTF and CNF, break down and cannot provide
accurate results. When the contrast is further reduced to 10�9, OBSFs also fail to agree with the analytical curve. For this ex-
tremely low contrast, the only formulation that provides accurate results is FBS-CTF.

Fig. 4 presents the bistatic RCS results for the medium sphere. Similar to the small sphere, conventional formulations and
OBSFs encounter stability problems as the contrast is reduced down to 10�9, while FBS-CTF is accurate for all contrasts. To
further compare the formulations, Fig. 5 presents the relative root-mean-square (RMS) error as a function of the contrast. To
calculate the error, we first compute the far-zone electric field on the / ¼ 0� plane at p ¼ 360 points from 0� to 180�. Then,
the relative RMS error is defined as
Fig. 8.
permitt
RCS val
mesh s
eRMS ¼
kf C � f Ak2

kf Ak2
; ð36Þ
where f C and f A are the computational and analytical values (complex arrays of p elements containing co-polar electric
fields), respectively, and k � k2 represents the 2-norm of the arrays. Fig. 5(a) shows that the RMS errors of CTF and CNF in-
crease sharply when the contrast decreases below 10�1–10�2, while OBSFs break down when the contrast is about 10�5–
10�6. On the other hand, the error of FBS-CTF is almost constant with respect to the contrast. Similar observations can be
made for the results of the medium sphere in Fig. 5(b).

Since the small sphere is discretized with very small triangles (k1=40) with respect to wavelength, the advantage of using
DS-CTF or S-CTF compared to S-CNF is not obvious in Fig. 5(a). On the other hand, Fig. 5(b) shows that the three OBSFs show
different characteristics for contrasts larger than the breakdown point. This is because the medium sphere is discretized with
k1=10 mesh size and the effect of using the identity operators on the accuracy becomes visible. Using the identity operators
on both RHS and LHS, S-CNF has larger error compared to S-CTF and DS-CTF. S-CTF has identity operators on the RHS and its
accuracy is slightly worse than DS-CTF, which is completely free of the identity operators and the most accurate formulation
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up to breakdown point. We note that DS-CTF requires twice the processing time of S-CTF. In addition, S-CNF leads to better-
conditioned matrix equations that are easier and more efficient to solve iteratively. Therefore, there exists a tradeoff between
the accuracy and efficiency of the solutions. Finally, in Fig. 5(b), we note that DS-CTF is even better than FBS-CTF for contrasts
10�1–10�6, since FBS-CTF also uses identity operators on the LHS to apply the operators on the difference of real and fictitious
incident fields.

For larger problems, we implement MLFMA to accelerate the iterative solutions of the dielectric formulations. Efficient
and accurate diagonalization of the operators can be found in various references [3,28]. As an example, we present the re-
sults of a sphere of radius 6k1 discretized with 264,006 RWG functions. Scattering problems are solved by 5-level MLFMA,
where the near-field interactions are calculated with 1% error and the far-field interactions are computed with three digits of
accuracy. Fig. 6(a) depicts the bistatic RCS values on the / ¼ 0� plane when the sphere is illuminated by a plane wave prop-
agating in the z-direction with the electric field polarized in the x-direction and the contrast of the sphere is 10�9. We ob-
serve that all formulations except for the FBS-CTF fail to provide accurate results compared to Mie-series solution. As
presented in Fig. 6(b), the accuracy of FBS-CTF is stable for all values of the contrast from 10�1 to 10�9. OBSFs are also stable
in the 10�1–10�5 range, while they offer different levels of accuracy depending on the use of the identity operators. However,
they break down when the contrast decreases below 10�5. Finally, as in the previous examples, the conventional CTF and CNF
break down immediately below 10�1 contrast, testifying to the need for stabilized formulations.

FBS-CTF provides accurate solutions of low-contrast problems with negligible extra computational cost. As an example,
we consider the solution of a scattering problem involving a sphere of radius 6k1 and contrast 10�3. The problem is discret-
ized with 264,006 unknowns and solved by 5-level MLFMA on a 2.0 GHz AMD Opteron 870 processor. To obtain the RHS of
FBS-CTF, the difference of incident and fictitious fields in (35) is expanded in a series of basis functions by solving a sparse
matrix equation involving identity terms similar to (20). Using the conjugate-gradient-squared (CGS) method, the number of
iterations to reduce the residual error to less than 10�6 is 8, and the solution of the sparse matrix equation is achieved in only
1 s. Then, the inner operators are applied on the result of the subtraction via a MVM in 137 s. As a result, the processing time
to compute the RHS of FBS-CTF, which is the extra cost of the stabilization procedure, is only 138 s. Solution of FBS-CTF is also
performed by using the CGS method, where each iteration involves two MVMs, and each MVM requires 2� 137 ¼ 274
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Fig. 9. Normalized bistatic RCS (RCS/k2
1 on the / ¼ 0� plane) of a cube with edges of k1, where k1 is the wavelength outside the cube (free space). The relative

permittivity of the cube is 1þ 10�6, and it is illuminated by a plane wave propagating in the z direction with the electric field polarized in the x-direction.
RCS values are obtained by using surface formulations when the mesh size is (a) k1=10, (b) k1=20, and (c) k1=30. (d) RCS values obtained with FBS-CTF (k1=30
mesh size) and the electric-field VIE agree with each other.
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seconds, since both inner and outer operators are applied. Then, each CGS iteration is performed in 548 s. Besides, the num-
ber of iterations to reduce the residual error to less than 10�3 is 270, and the solution time of FBS-CTF is about 41 h. The
solution time can be reduced by accelerating the iterative convergence via preconditioners or by parallelizing the MLFMA
implementation on a cluster of processors. Nevertheless, the stabilization procedure, which requires only 138 s, is always
negligible compared to the solution part. Finally, the stabilization procedure does not change the number of iterations sig-
nificantly since only the RHS is modified. For the solution of the same problem, the conventional CTF requires 285 CGS
iterations.

In addition to the spheres with smooth surfaces, we present the results of the scattering problems involving a cube with
edges of k1, where k1 is the wavelength outside the object. The cube is in free space and it is illuminated by a plane wave
propagating in the z-direction with the electric field polarized in the x-direction. We consider three different relative permit-
tivities for the cube, i.e., �r ¼ 1þ 10�1, �r ¼ 1þ 10�3, and �r ¼ 1þ 10�6, corresponding to 10�1, 10�3, and 10�6 contrasts,
respectively. In addition, each problem is discretized with three different triangulations with mesh sizes k1=10, k1=20, and
k1=30. Scattering problems are solved by FMM, where the near-field interactions are calculated with 1% error and the far-
field interactions are computed with three digits of accuracy.

Fig. 7 presents the normalized RCS (RCS/k2
1) in dB as a function of the observation angle on the / ¼ 0� plane, where 0�

corresponds to the forward-scattering direction. The contrast of the cube is 10�1. As depicted in Fig. 7(a), there are relatively
small discrepancies among the results obtained by using different formulations with k1=10 mesh size. On the other hand,
when the discretization quality is improved by decreasing the mesh size to k1=20 and k1=30, all solutions converge to each
other as depicted in Fig. 7(b) and Fig. 7(c), respectively. Finally, in Fig. 7(d), we compare the RCS values obtained by using
FBS-CTF and k1=30 mesh size with those obtained by using the electric-field VIE [29], which is immune to low-contrast prob-
lems. Fig. 7(d) confirms that FBS-CTF and the other surface formulations are accurate when the contrast of the cube is 10�1.

Fig. 8 compares the bistatic RCS values obtained by various formulations as the contrast of the cube is decreased to 10�3. In
this case, RCS values obtained by using the conventional formulations, namely, CTF and CNF, are inconsistent with the values
obtained by using the stable formulations, i.e., S-CNF, S-CTF, DS-CTF and FBS-CTF. In addition, RCS results obtained with the
conventional and stable formulations do not converge to each other, even when the mesh size is decreased to k1=30. As dem-
onstrated in Fig. 8(d), FBS-CTF (and other stable formulations) are consistent with VIE. Hence, we conclude that the stable for-
mulations are accurate, while CTF and CNF break down when the contrast of the cube is 10�3. Finally, Fig. 9 presents the
bistatic RCS results, when the contrast of the cube is very low, i.e., 10�6. As opposed to the previous examples, RCS values ob-
tained with OBSFs (S-CNF, S-CTF, and DS-CTF) and FBS-CTF do not converge to each other, even when the mesh size is k1=30. In
Fig. 9(d), we again compare FBS-CTF with VIE, where the two formulations agree well with each other. This proves that only
FBS-CTF provides accurate results, while the other surface formulations break down when the contrast is 10�6.
6. Conclusion

In this paper, a novel stabilization technique is introduced for the accurate surface formulations of dielectric bodies with
arbitrarily low contrasts. Similar to previous stabilization procedures, the technique is based on extracting the nonradiating
currents and solving the modified equations to obtain the radiating currents. In addition, this technique involves the use of
fictitious incident fields to rearrange the RHSs of the equations appropriately. We apply the stabilization to a combined T
formulation although it is also applicable to other T the N formulations. The stabilization is easy to implement by modifying
the existing codes for conventional formulations. In addition, the extra cost due to the stabilization is negligible. Our results
show that the stabilized equation, namely, FBS-CTF, provides accurate results even for extremely low-contrast objects, such
as a sphere with a contrast of 10�9.
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