
Proof of the Basic Theorem
on Concept Lattices in Isabelle/HOL

Barış Sertkaya1,2 and Halit Oğuztüzün2

1 Institute of Theoretical Computer Science
Dresden University of Technology, Dresden, Germany

sertkaya@tcs.inf.tu-dresden.de
2 Department of Computer Engineering

Middle East Technical University, Ankara, Turkey
oguztuzun@ceng.metu.edu.tr

Abstract. This paper presents a machine-checked proof of the Basic
Theorem on Concept Lattices, which appears in the book “Formal Con-
cept Analysis” by Ganter and Wille, in the Isabelle/HOL Proof Assis-
tant. As a by-product, the underlying lattice theory by Kammueller has
been extended.

1 Introduction

Formal concept analysis (FCA) [4] is an emerging field of applied mathematics
based on a lattice-theoretic formalization of the notions of concept and concep-
tual hierarchy. It thereby facilitates mathematical reasoning for conceptual data
analysis and knowledge processing. In FCA, a concept is constituted by two
parts: its extent, which consists of all the objects belonging to the concept, and
its intent, which contains the attributes common to all objects of the concept.
This formalization allows the user to form all concepts of a context and introduce
a subsumption hierarchy between the concepts, resulting in a complete lattice
called the concept lattice of the context. Concept lattice is used to query the
knowledge and to derive implicit information from the knowledge.

Isabelle [7,10], on the other hand, is a generic interactive theory development
environment for implementing logical formalisms. It has been instantiated to
support reasoning in several object-logics. Specialization of Isabelle for Higher
Order Logic is called Isabelle/HOL.

The long term goal of this effort is to formalize the theory of FCA in Is-
abelle/HOL. This will provide a mechanized theory for researchers to prove their
own theorems with utmost precision and to verify the knowledge representation
systems based on FCA. Another potential utility of formalization is extracting
programs from constructive proofs. See, for example, [1,12].

The specific accomplishment of this work is a machine-checked version of the
proof of the Basic Theorem of Concept Lattices, which appears in the book “For-
mal Concept Analysis” by Ganter and Wille [4]. As a by-product, the underlying
lattice theory developed by Kammueller [5] has been extended.

C. Aykanat et al. (Eds.): ISCIS 2004, LNCS 3280, pp. 976–985, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Proof of the Basic Theorem on Concept Lattices in Isabelle/HOL 977

In an effort along the same direction, Schwarzweller presents a formalization
of concept lattices in Mizar Proof Assistant [13,14]. Some applications of FCA
to knowledge engineering and software engineering have been reported [6,9,18].

2 Isabelle Proof Assistant

Isabelle is a generic interactive theorem prover, designed for reasoning in a va-
riety of formal theories. It is generic in the sense that it provides proof pro-
cedures for Constructive Type Theory, various first-order logics, some systems
of Modal Logics, Zermelo-Fraenkel Set Theory, and Higher-Order Logic, which
are called object-logics. Object-logics are formalized within Isabelle’s meta-logic,
which is intuitionistic higher-order logic with implication, universal quantifiers,
and equality. The specialization of Isabelle for Higher Order Logic is called Is-
abelle/HOL [8]. It is a widely used object-logic for proof-checking tasks.

2.1 Isabelle Theories

Working with Isabelle/HOL means creating theories. Roughly speaking, a theory
is a named collection of types, functions, theorems and their proofs. The general
format of a theory T is

theory T = B1 + ... + Bn:
declarations, definitions, and proofs

end

where B1, ... , Bn are the names of existing (parent) theories that T is based
on and declarations, definitions and proofs represent the newly intro-
duced concepts (types, functions etc.) and proofs of theorems. Everything de-
fined in the parent theories (and their parents recursively) is visible.

2.2 Theorem Proving with Isabelle

Proof trees are derived rules, and are built by joining rules together. This com-
prises both forwards and backwards proof. A backwards proof works by matching
a goal with the conclusion of a rule; the premises become the subgoals. A for-
wards proof works by matching theorems to the premises of rules, making a new
theorem.

A typical proof starts with first stating the goal using the Goal command,
proceeds with applying tactics aiming to solve this goal using the by command,
and ends with the qed command which names and stores the proved theorem.
Tactics may lead to zero or more subgoals. The proof process continues until no
subgoals are left.

Isabelle/HOL has a huge number of predefined tactics. Some of the most
widely used groups of tactics are resolution, rewrite, induction, assumption,
tableau, automatic and simplification tactics. Apart from them, the user can
define her/his own tactics. A complete list of tactics can be found in [11].

978 Barış Sertkaya and Halit Oğuztüzün

2.3 Lattice Theory in Isabelle/HOL

Our formalization is based on the theory Tarski, which was developed by Florian
Kammueller to prove Tarski’s Fixpoint Theorem. At the time this work started,
the theory was available in old style proof script. It contains a minimal version
of lattice theory providing partial orders, complete lattices, least upper bound,
greatest lower bound and fixed points of complete lattices. The type of a partially
ordered set is defined by the record type ’a potype as:

record ’a potype =
pset :: "’a set"
order :: "(’a * ’a) set"

The field pset is the set of elements of the partial order and the field order is the
set of pairs of elements with the meaning that the first element of the pair is less
than or equal to the second one. Using syntactic translations, the field pset of a
partial order V is accessed as V.<A> and the field order is accessed as V.<r>. The
theory provides the least upper bound and the greatest lower bound operations
on a partially ordered set with the lub and glb functions respectively. Apart
from these, it provides the predicates islub to check if a given element is the
least upper bound of a partial order, and the predicate isglb to check if a given
element is the greatest lower bound of a partial order. Using these definitions and
some auxiliary definitions, the theory introduces complete lattices. In addition
to these definitions, it also provides the proofs of the uniqueness of the lub and
the glb, the proof that lub and glb are elements of the lattice, properties about
duality, and finally the Tarski’s lemma on fixpoints.

We extended the theory with the formal definitions of supremum and infimum
preserving maps on complete lattices, order preserving maps, order embeddings,
supremum/infimum-dense sets, supremum/infimum-irreducible elements, com-
plete lattice homomorphism and complete lattice isomorphism. (For the Isabelle
symbols appearing in the following definitions, please refer to [8,11] or Table 1
on page 984.) Since we are dealing with complete lattices, we defined supremum
preserving maps on complete lattices as:

supremum_preserving :: "[’a => ’b, ’a potype, ’b potype] => bool"
"supremum_preserving f V1 V2 == (V1 : CompleteLattice) &
(V2 : CompleteLattice) & (f ‘ (V1.<A>) <= V2.<A>) &
(! X <= V1.<A> . ! x : V1.<A> . (islub X V1 x) -->
(islub (f ‘ X) V2 (f x)))"

Infimum preserving map infimum preserving is defined in a similar way. Order
preserving maps and order embeddings are defined as:

order_preserving :: "[’a => ’b, ’a potype, ’b potype] => bool"
"order_preserving f V1 V2 == ! x : V1.<A> . ! y : V1.<A> .
((x,y) : V1.<r>) --> (((f x) , (f y)) : V2.<r>)"

order_embedding :: "[’a => ’b, ’a potype, ’b potype] => bool"
"order_embedding f V1 V2 == ! x : V1.<A> . ! y : V1.<A> .
((x,y) : V1.<r>) = (((f x) , (f y)) : V2.<r>)"

Proof of the Basic Theorem on Concept Lattices in Isabelle/HOL 979

Using the functions defined above, we defined a lattice homomorphism to be a
supremum, infimum and order preserving map:

lattice_homomorphism :: "[’a => ’b, ’a potype, ’b potype] => bool"
"lattice_homomorphism f V1 V2 == (supremum_preserving f V1 V2) &
(infimum_preserving f V1 V2) & (order_preserving f V1 V2)"

And a lattice isomorphism to be an injective and surjective lattice homomor-
phism:

lattice_isomorphism :: "[’a => ’b, ’a potype, ’b potype] => bool"
"lattice_isomorphism f V1 V2 == (lattice_homomorphism f V1 V2) &
(inj f) & (my_surj f (V1.<A>) (V2.<A>))"

Since the Isabelle primitive surj for surjective maps does not take types into
account, we defined our own typed surjective maps my surj as:

my_surj :: "[’a => ’b,’a set,’b set] => bool"
"my_surj f V1 V2 == ! y : V2 . ? x : V1 . y = (f x)"

And we defined supremum-dense sets as:

supremum_dense :: "[’a set,’a potype] => bool"
"supremum_dense X V == (X <= V.<A>) & (! v : V.<A> .
? A <= X . islub A V v)"

Infimum-dense set infimum dense is defined in a similar way.
In preparation for the proof of the Basic Theorem, we proved some theorems

from Lattice Theory. We proved that the supremum/infimum dense property is
preserved under an isomorphism. We also proved that the supremum of a subset
of a set is less than or equal to the supremum of its superset. The formal proofs
can be found in [15] as stand alone lemmata with names sup dense preserved,
inf dense preserved and sup lt ss respectively.

3 Formalization

In this section, we present the basic notions of Formal Concept Analysis and
their formalizations in Isabelle/HOL in an interleaved manner. First we give the
mathematical notions as in [4], then we give the corresponding Isabelle/HOL
proof script and related commentary. Due to space limitations, we can not give
the proofs in full details, the interested reader may see [4] for the mathematical
notions and proofs, and [15] for the corresponding Isabelle/HOL proof script and
a detailed commentary of it.

We start with basic definitions, and datatypes defined for them in
Isabelle/HOL.

980 Barış Sertkaya and Halit Oğuztüzün

3.1 Definitions and Datatypes

Definition 1. A Formal Context K := (G, M, I) consists of two sets G and
M and a relation I between G and M . The elements of G are called the objects
and the elements of M are called the attributes of the context. The I relation
between an object g and an attribute m is written as gIm or (g, m) ∈ I and read
as “the object g has the attribute m”. The relation I is also called the incidence
relation of the context.

Using the definition, formal context type is formalized as a record type with
fields object set, attribute set and incidence rel as:

record (’a,’b) formal_context_type =
object_set :: "’a set"
attribute_set :: "’b set"
incidence_rel :: "(’a * ’b) set"

Through syntactic translations, the object set of a formal context K is accessed
as K.<OS>, attribute set as K.<AS> and the incidence relation as K.<IR>.

Definition 2. For a set A ⊆ G of objects, the set of attributes common to
the objects in A is defined as: A′ = {m ∈ M | (g, m) ∈ I for all g ∈ A}.
Correspondingly, for a set B ⊆ M , the set of objects which have all attributes
in B is defined as: B′ = {g ∈ G | (g, m) ∈ I for all m ∈ B}

The polymorphic prime operator is formalized as two separate functions
namely common attributes and common objects, in the following manner:

common_attributes :: "’a set => (’a,’b) formal_context_type =>
’b set"

"common_attributes os fc == {
m . m : fc.<AS> & (! g : os . (g,m) : fc.<IR>) & os <= fc.<OS>

}"

common attributes is the formal definition of a function taking a set of objects
os of type ’a set and a formal context fc of type (’a,’b) formal context type
and returns the set of attributes (of type ’b set) common to all objects in os.

common_objects :: "’b set => (’a,’b) formal_context_type =>
’a set"

"common_objects as fc == {
g . g : fc.<OS> & (! m : as . (g,m) : fc.<IR>) & as <= fc.<AS>

}"

Correspondingly, common objects is the formal definition of a function which
takes a set of attributes as of type ’b set and a formal context fc of type
(’a,’b) formal context type and returns the set of objects (of type ’a set)
which have all attributes in as.

Proof of the Basic Theorem on Concept Lattices in Isabelle/HOL 981

Definition 3. A Formal Concept of the context K := (G, M, I) is a pair
(A, B) with A ⊆ G, B ⊆ M , A′ = B and B′ = A. A is called the extent and
B is called the intent of the formal concept (A, B).

From the definition, formal concept type is formalized as a record type with
fields extent and intent as:

record (’a,’b) formal_concept_type =
extent :: "’a set"
intent :: "’b set"

Similarly, through syntactic translations, the extent of a formal concept C is ac-
cessed as C.<E>, and the intent as C.<I>. The relation between the extent and the
intent of a formal concept is checked with the boolean function FormalConcept.
Given a tuple C of type formal concept type and a triple K which is of type
formal context type, it checks if C is a formal concept of K. It is formalized as:

FormalConcept :: "(’a,’b) formal_concept_type =>
(’a,’b) formal_context_type => bool"

"FormalConcept C K == C.<E> <= K.<OS> & C.<I> <= K.<AS> &
C.<E> = common_objects (C.<I>) K &
common_attributes (C.<E>) K = C.<I>"

Proposition 1. If T is an index set and, for every t ∈ T , At ⊆ G is a set of
objects, then (⋃

t∈T

At

)′
=

⋂
t∈T

A′
t

The same holds for the sets of attributes.

The proposition is formalized as:

Goal "[| ! t : T . (F t) <= K.<OS> |] ==> (common_attributes (
UN t : T . (F t)) K) = (INT t : T . (common_attributes (F t) K))";

We are not going to give the proof here, the interested reader may see [4] and
[15]. But we would like to draw attention to the following point: In the proof in
[4], the case where the index set T can be empty is not worked out explicitly.
But in the formalization we need to do a case analysis for T being empty or
not, since the set theory does not have the convention about empty index sets.
This case is handled with an axiom which states that common attributes of an
empty object set is equal to the attribute set of the context. Similarly, an axiom
is added which states that common objects of an empty attribute set is equal to
the object set of the context.

Definition 4. If (A1, B1) and (A2, B2) are concepts of a context, (A1, B1) is
called a subconcept of (A2, B2), provided that A1 ⊆ A2 (which is equivalent to

982 Barış Sertkaya and Halit Oğuztüzün

B2 ⊆ B1). In this case, (A2, B2) is a superconcept of (A1, B1) and the order-
ing is written as (A1, B1) ≤ (A2, B2). The relation ≤ is called the hierarchical
order (or simply order) of the concepts. The set of all concepts of (G, M, I)
ordered in this way is denoted by B(G, M, I) and is called the Concept Lattice
of the context (G, M, I).

The concept lattice of a context K is formalized with the function Concept-
Lattice which takes a context K and returns the concept lattice of it as a partial
order type:

ConceptLattice :: "(’a,’b) formal_context_type =>
(((’a,’b) formal_concept_type) potype)"

"ConceptLattice K == (|
pset = {C . (FormalConcept C K)},
order = { (C1,C2) . FormalConcept C1 K & FormalConcept C2 K &

C1.<E> <= C2.<E> & C2.<I> <= C1.<I> } |)"

3.2 The Basic Theorem on Concept Lattices

Theorem 1 (The Basic Theorem on Concept Lattices). The concept lat-
tice B(G, M, I) is a complete lattice in which infimum and supremum are given
by: ∧

t∈T

(At, Bt) =

(⋂
t∈T

At,

(⋃
t∈T

Bt

)′′)

∨
t∈T

(At, Bt) =

((⋃
t∈T

At,

)′′
,

⋂
t∈T

Bt

)

A complete lattice V is isomorphic to B(G, M, I) if and only if there are map-
pings γ̃ : G → V and µ̃ : M → V such that γ̃(G) is supremum-dense in V,
µ̃(M) is infimum-dense in V and gIm is equivalent to γ̃g ≤ µ̃m for all g ∈ G
and all m ∈ M . In particular, V ∼= B(V, V,≤)

We prove the theorem in four major parts, as four lemmas. First we prove
the claims about the infimum and supremum of a concept lattice, and then both
directions of the double implication about the isomorphism.

The argument about the infimum is formalized as:

Goal "[| S <= (ConceptLattice K).<A> |] ==>
isglb S (ConceptLattice K) (| extent = (INT C : S . C.<E>) ,
intent = (common_attributes (common_objects
(UN C : S . C.<I>) K) K) |)";

The isglb is a predicate from the underlying lattice theory. It checks if the
third argument is the infimum of the set given as first argument in the partially
ordered set given as the second argument. We start with simplifying the goal with
the definition of isglb, and get three subgoals. First we prove that the concept

Proof of the Basic Theorem on Concept Lattices in Isabelle/HOL 983

argued as the infimum is in (ConceptLattice K), which means to prove that
it is a formal concept of the context K. Then we prove that it is a lower bound
by showing that it is less than or equal to all other formal concepts in S. As the
last subgoal we prove that it is the greatest lower bound. The proof is totally 29
steps not including the number of steps of the auxiliary lemma used. It is stored
as inf cl for further use.

Correspondingly, the argument about the supremum is formalized as:

Goal "[| S <= (ConceptLattice K).<A> |] ==>
islub S (ConceptLattice K) (| extent = (common_objects
(common_attributes (UN C : S . C.<E>) K) K) ,
intent = (INT C : S . C.<I>) |)";

Similar remarks as for the preceding argument apply here. The proof is totally
32 steps without counting the number of steps of the auxiliary lemmata used. It
is named and stored as sup cl for further use.

Next we prove the argument about the isomorphism. First, we prove the only
if direction of the double implication. We formalized the statement as:

Goal "[| V : CompleteLattice |] ==>
(isomorphic (ConceptLattice K) V) -->
(? gamma mu . (supremum_dense (gamma ‘ (K.<OS>)) V) &
(infimum_dense (mu ‘ (K.<AS>)) V) &
(! g : K.<OS> . ! m : K.<AS> . ((g,m) :
K.<IR>) = (((gamma g),(mu m)) : V.<r>)))";

For the special case V = B(G, M, I), we first prove that γ̃(G) is supremum-
dense and µ̃(M) is infimum-dense in B(G, M, I), and gIm is equivalent to
γ̃g ≤ µ̃m for all g ∈ G and all m ∈ M . The first two proofs are stored as
the lemmata gamma sup dense and mu inf dense respectively. Later we prove
these three properties for the general case V is isomorphic to B(G, M, I) us-
ing the lemmata above together with the lemmata sup dense preserved and
inf dense preserved. This completes the proof of the only if direction of the
theorem. Without counting the steps of the auxiliary lemmata used, the proof
is 70 steps long. It is stored as the lemma basic thm fwd.

Next we proceed with the proof of the if direction of the theorem. We for-
malized the statement as:

Goal "[| V : CompleteLattice |] ==>
? phi psi . ? gamma mu . (supremum_dense (gamma ‘ (K.<OS>)) V) &
(infimum_dense (mu ‘ (K.<AS>)) V) & (! g : K.<OS> .
! m : K.<AS> . ((g,m) : K.<IR>)=(((gamma g),(mu m)) : V.<r>)) -->
(order_preserving phi (ConceptLattice K) V) &
(order_preserving psi V (ConceptLattice K)) &
(my_inv phi psi ((ConceptLattice K).<A>) (V.<A>))";

(For this direction, the fact that isomorphism implies the order-embedding prop-
erty is implicitly used in the book. But we proved this formally and stored as

984 Barış Sertkaya and Halit Oğuztüzün

Table 1. Notation index

Math. Notation Isabelle Notation Definition

′ (polymorphic) common attributes Common Attributes of an object set

′ (polymorphic) common objects Common Objects of an attribute set

(G, M, I) K Context K
B(G, M, I) (ConceptLattice K) Concept Lattice of the context K

V

t∈ T (At, Bt) (glb S K) Infimum of S in K
W

t∈ T (At, Bt) (lub S K) Supremum of S in K

∈ : In

∧ & Conjunction
∨ | Disjunction

−→ --> Implication

∀ t ∈ T. P (t) ! t : T . (P t) Universal Quantifier
∃ t ∈ T. P (t) ? t : T . (P t) Existential Quantifier

⊆ <= Subset or equal
S

t ∈ T At UN t : T . (F t) Indexed set union
T

t ∈ T At INT t : T . (F t) Indexed set intersection

the lemma iso imp embd.) We start with proving that the maps ϕ and ψ are
order-preserving. Then we prove that ϕ and ψ are inverse functions. We prove
this in two parts; first we show that ψ is the left-inverse of ϕ, then we show that
it is also the right-inverse of ϕ. Having proved that ϕ and ψ are order-preserving
inverse maps, we proved that ϕ is a lattice isomorphism. This completes the if
direction of the proof. It is stored as the lemma basic theorem bwd. It is 286
steps without counting the steps of the auxiliary lemmata used.

4 Conclusion and Discussions

Although mathematics texts typically do not give the proofs in whole detail,
they are understandable by human reader. In an informal proof, some details
of the proof can be skipped relying on human intuition. But for a proof to be
machine-checkable, every single step of it has to be stated formally. There should
not be any gaps between proof steps, however minor they might be.

During our formalization, we noticed some of these kinds of gaps in the proofs.
We have already mentioned the implicit treatment of empty index sets, empty
object sets and empty attribute sets in the book. Furthermore, for connecting
the proofs of the only if and if parts of the basic theorem, a lemma from lattice
theory is used but it is not mentioned clearly, since it is supposedly well-known
to mathematicians.

Separately, we examined the proof of basic theorem in the formal concept
analysis chapter of a well-known book [2]. There, in the proof of only if direction
of the basic theorem on page 71, we have uncovered a mistake apparently arising
from misuse of overloaded symbols. It is written that the statement ’gIm if and
only if γ̃(g) ≤ µ̃(m) is in B(G, M, I), for all g in G and for all m in M ’ is
proved in 3.7. But the proof in 3.7 corresponds to the proof of the third subgoal
of the only if direction of the Basic Theorem in the special case L is equal to

Proof of the Basic Theorem on Concept Lattices in Isabelle/HOL 985

B(G, M, I). So it does not constitute a proof in the general case B(G, M, I) is
isomorphic to L. We think this part of the proof should be generalized to the
isomorphism case. This is a testimony to the utility of formalization in revealing
hidden gaps in published proofs.

Acknowledgments

The authors appreciate the help they received from the members of the isabelle-
users mailing list, particularly Larry Paulson and Tobias Nipkow.

References

1. Berghofer, S.: Program extraction in simply-typed higher order logic. LNCS,
Vol. 2646, Springer-Verlag (2002)

2. Davey, B.A., Priestley, H.A.: Introduction to lattices and order. 2nd edition. Cam-
bridge University Press (2002)

3. Ganter, B., Wille, R.: Applied lattice theory: formal concept analysis. (1997)
http://www.math.tu-dresden.de/~ganter/concept.ps

4. Ganter, B., Wille, R.: Formal concept analysis—Mathematical foundations.
Springer-Verlag, Heidelberg (1999)

5. Kammueller, F.: Theory Tarski.
http://isabelle.in.tum.de/library/HOL/ex/Tarski.html (1999)

6. Krohn, U., Davies, N.J., Weeks, R.: Concept lattices for knowledge management.
BT Technology Journal 17 (1999)

7. Nipkow, T., Paulson, L.C., Wenzel, M.: A proof assistant for higher-order logic.
LNCS, Vol. 2283, Springer-Verlag (2002)

8. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle’s logics: HOL.
http://isabelle.in.tum.de/doc/logics-HOL.pdf

9. Park, Y.: Software retrieval by samples using concept analysis. Journal of Systems
and Software 1 (2000)

10. Paulson, L.C.: Isabelle: A generic theorem prover. In: Odifreddi, P. (ed.): Logic
and Computer Science, Academic Press (1990) 361–386

11. Paulson, L.C.: The Isabelle reference manual.
http://isabelle.in.tum.de/doc/ref.pdf

12. Puitg F., Dufourd, J.F.: Formalizing mathematics in higher-order logic: A case
study in geometric modelling. Theoretical Computer Science 234 (2000)

13. Rudnicki, P.: An overview of the Mizar project.
http://mizar.org/project/bibliography.html

14. Schwarzweller, C.: Mizar formalization of concept lattices. Mechanized Mathemat-
ics and its Applications 1 (2000)

15. Sertkaya, B.: Proof of the basic theorem on concept lattices in Isabelle/HOL. M.Sc.
thesis, Department of Computer Engineering, Middle East Technical University,
Ankara, Turkey (2003)

16. Wenzel, M.: Isabelle/Isar reference manual.
http://isabelle.in.tum.de/doc/isar-ref.pdf

17. Wenzel, M.: Isabelle/Isar—A versatile environment for human-readable formal
proof documents. PhD thesis, Institut für Informatik, Technische Universität
München, (2002)
http://tumb1.biblio.tu-munchen.de/publ/dis/in/2002/wenzel.html

18. Wille, T.: Concept lattices and conceptual knowledge systems. Computers & Math-
ematics with Applications (1992)

http://www.math.tu-dresden.de/~ganter/concept.ps
http://isabelle.in.tum.de/library/HOL/ex/Tarski.html
http://isabelle.in.tum.de/doc/logics-HOL.pdf
http://isabelle.in.tum.de/doc/ref.pdf
http://mizar.org/project/bibliography.html
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://tumb1.biblio.tu-munchen.de/publ/dis/in/2002/wenzel.html

	Introduction
	Isabelle Proof Assistant
	Isabelle Theories
	Theorem Proving with Isabelle
	Lattice Theory in Isabelle/HOL

	Formalization
	Definitions and Datatypes
	The Basic Theorem on Concept Lattices

	Conclusion and Discussions

