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Summary

The contribution presents a new finite element formulation for quasi-
inextensible and quasi-incompressible finite hyperelastic behavior of transev-
ersely isotropic materials and addresses its computational aspects. The material
formulation is presented in purely Eulerian setting and based on the addi-
tive decomposition of the free energy function into isotropic and anisotropic
parts, where the former is further decomposed into isochoric and volumetric
parts. For the quasi-incompressible response, the Q1P0 element formulation
is outlined briefly, where the pressure-type Lagrange multiplier and its conju-
gate enter the variational formulation as an extended set of variables. Using
the similar argumentation, an extended Hu-Washizu–type mixed variational
potential is introduced, where the volume averaged fiber stretch and fiber stress
are additional field variables. Within this context, the resulting Euler-Lagrange
equations and the element formulation resulting from the extended variational
principle are derived. The numerical implementation exploits the underlying
variational structure, leading to a canonical symmetric structure. The efficiency
of the proposed approached is demonstrated through representative boundary
value problems. The superiority of the proposed element formulation over the
standard Q1 and Q1P0 element formulation is studied through convergence anal-
yses. The proposed finite element formulation is modular and exhibits very
robust performance for fiber reinforced elastomers in the inextensibility limit.
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1 INTRODUCTION

Anisotropic materials either naturally exist, eg, biological tissues and wood, or manufactured, eg, composite materials and
fiber reinforced elastomers. The glass, aramid, or steel cord reinforcement embedded into rubberlike materials increases
the directional stiffness considerably. Both elastomers and biological tissues exhibit nearly incompressible mechanical
response. Therefore, development of efficient and robust finite element formulations in the quasi-incompressible and
quasi-inextensible limit is of great interest for the analysis of such materials.

Rubberlike materials and soft biological tissues exhibit very stiff volumetric response compared to bulk shear response.
This nearly incompressible mechanical response causes the well-known locking phenomena. Herein, the standard
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bilinear or trilinear shape functions can incorporate the incompressiblity constraint at the expense of artificial stiffening.1,2

The finite element method based on standard displacement formulations exhibits very poor performance in the
quasi-incompressible limit, where the bulk modulus is two to three orders of maginute higher than the shear modu-
lus. This effect is more pronounced in thin structural members under bending dominated loading. Since the stiffness of
fiber reinforced polymers along fiber directions is considerably higher compared to that in transverse direction, a similar
mathematical problem arises in the inextensibility limit for the fiber reinforced polymers and biological tissues.3,4

One solution to the problem is to use h- or p-refinement strategies. Locking response is known to vanish for high-order
triangles p > 4.5 Use of lower-order elements with h-refinement increases the computational cost. Nonetheless,
low-order elements remain popular due to their simplicity and robustness compared to higher-order elements espe-
cially in case of nonlinear Lagrangian hyperelastic formulations.6 Within this context, improving the performance of
standard lower-order elements has become an area of intense research in the last three decades. The locking problem
can be circumvented by various methodologies such as reduced integration, stabilization, and mixed or hybrid element
formulations.7

Mixed or hybrid element formulations are based on variational methods, where an additional stress or strain-type penalty
term is introduced as a Lagrange multiplier. In linear elasticity, the first hybrid formulation was proposed by Pian et al8-10

based on Hellinger-Reissner variational principle for linear elastic solids. These elements improve stress approximation
of the standard displacement formulations under extreme distortions. They require matrix inversion of the elasticity ten-
sor at element level that is not straightforward in case of nonlinear elasticity at finite strains.11 One strategy to improve
the behavior of linear finite elements for pure displacement formulations against locking phenomenon is to use reduced
integration schemes along with stabilization techniques.1,12 Use of less Gauss points than required for the assembly of the
tangent and residual terms for the polynomial shape functions can be traced back to the work of Zienkiewicz et al.13 The
reduced integration results in the hourglass modes or zero energy modes, which need to be stabilized.14,15 The nonphys-
ical eigenforms appear as hourglass forms, which brought up the term hourglass instability. Reduced integration along
with hourglass stabilization methods is computationally feasible as they reduce the number of computations at element
level. On the other hand, such stabilization schemes usually come with the expense of introduction of additional non-
physical parameters into the formulation, which might affect the results under bending dominated problems. In this
context, enhanced strain formulations (ESFs) were developed6,16-20 for finite strain elasticity and elastoplasticity problems.
These formulations are based on the introduction of auxiliary incompatible strain field, which satisfy the material frame
invariance and objectivity requirements. They are based on Hu-Washizu–type variational principles.21,22 Extension of such
formulations to the higher-order gradient plasticity has been treated in the works of Miehe et al.23-25 Incorporation of the
ESFs does not require the modification of the constitutive model. However, nonlinear ESFs exhibit nonphysical instabil-
ities on element level, which cannot be eliminated by increasing the order of quadrature or by exchanging the material
model. The element formulation can be elaborated to alleviate these hour-glass–type instabilities by introducing cancel-
ing terms at element level.26,27 These element formulations are successful in elimination of the hourglass modes under
compression but numerical stability cannot be ensured for irregular distorted meshes and nonhomogeneous stress states.
The separation of the element tangent matrix into constant and hourglass parts, and by introducing a control technique
based on a modal analysis, the hourglass instabilities can be overcome even for highly distorted meshes (see the works of
Reese and Wriggers28,29).

The mean dilatation approach or the so-called Q1P0, element formulation was introduced by Nagtegaal et al30 and con-
tained in the monogragh of Brezzi and Fortin31 for small-strain problems and was extended to large-strains by Simó et al.32

It has been applied to principal invariant-based hyperelastic materials in the quasi-incompressible limit by Simó and
Taylor.33 The element formulation is based on the introduction of an additional term into the potential functional, which
acts as a constraint imposing the incompressibility via a penalty parameter. The model is well documented in the works
of Wriggers7 and Miehe.34 The Q1P0 formulation is recovered in the assumed ESF, where the latter approach performs
relatively better in bending dominated problems. However, the former approach has gained a wide acceptance in the
mechanics of rubberlike materials, whereas the latter is adopted in the finite element implementation of elasto-plastic
material response.35 The use of Q1P0 element in the context of transversely anisotropic materials and soft tissues have
been demonstrated in the work of Weiss et al.36

The stability of the mixed finite element methods is validated through the LBB condition, also known as the inf-sup
condition.37-39 The stability of incompressible materials for linear elasticity was treated in the work of Bathe.40 However,
the investigation of the inf-sup condition is not trivial at finite strain setting. The Q1P0 fails to satisfy the LBB condi-
tion in the geometrically linear setting.7 However, it has been proven to be stable for a wide range of applications of
quasi-incompressible materials undergoing large deformations.34
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The free energy function of isotropic solids can be modeled through three irreducible invariants {I1, I2, I3}, which con-
stitute the integrity basis of the deformation tensor.41 For incompressible materials, the two irreducible invariants {I1, I2}
are enough to describe the incompressible isotropic deformation. For transversely anisotropic solids, one can introduce
additional set of irreducible invariants {I4, I5} with the help of the structural tensors that satisfy the objectivity require-
ment under superimposed rigid body rotations.42-44 In unidirectional fiber reinforced materials, the stored energy can be
obtained in terms of a free energy for the unreinforced base matrix with arguments augmented by the fourth invariant
I4 related to the fiber stretch as an additional penalty function for stretching in the fiber direction.45 A similar approach
can be adopted for the modeling of soft biological tissues.46 The latter function is also known as the standard reinforcing
model (see the work of Qiu and Pence45). Therein, loss of monotonicity under simple shear and uniaxial compression were
detected as the fiber stiffness increases. The material instabilities in terms of loss of ellipticity of the standard reinforc-
ing model were treated in other works.47-49 The behavior of transversely isotropic solid with inextensible unidirectional
reinforcement is studied in the work of Adkins and Rivlin.50

It has been a common practice to split the free energy into purely volumetric part as a function of J = det F and an
isochoric part, which is a function of the unimodular part of the deformation gradient F̄ = J−1∕3F (see the work of
Flory51). This split has superior advantages in the incompressibility limit, giving rise to the easy implementation of the
mean dilatation approach into the finite element formulation. On the other side, it might lead to unphysical results in the
compressible region.52 A similar anomaly has been detected for the split of the free energy into isotropic and anisotropic
parts as well. It has been shown that the volumetric-isochoric split should be applied to the matrix part only.53 The non-
physical effect arising due to use of the fourth invariant Ī4 of the unimodular stretch tensors is demonstrated in the work
of Helfenstein et al54 under unixial tension test in the fiber direction. Therein, uniaxial stress configurations reveal vol-
ume growth at rather small stretches, rendering a negative instantaneous Poisson ratio 𝜈. This is due to the competition
between exponential anisotropic free energy in the quasi-inextensibility limit and the (penalty) volumetric free energy
throughout the minimization of the overall energy under unixaial tension. This competition can be remedied by taking
the anisotropic free energy function 𝜓ani = 𝜓ani(I4) in terms of the fourth invariant of the deformation tensor.

Recently, Hu-Washizu–type mixed variational principles for the treatment of the inextensibility limit in fiber-reinforced
materials and biological tissues have been studied in related works.3,4,55,56 The element formulation of Zdunek et al3,4

is based on the kinematic split of the deformation gradient into purely unimodular extensional part, a purely spherical
part, and an extension free unimodular tensor. The Lagrangian element formulation is similar to the mean dilata-
tional approach32 (MDA) as it uses scalar conjugate pairs ( p, 𝜃) and (𝜌, 𝜆) for pressure-dilatation and fiber stress-stretch,
respectively. This ansatz leads to a five-field variational formulation, where the consistent linearization and static con-
densation at element level lead to the purely displacement element matrix. In this formulation, the convergence and
stability of the iterative solution scheme as well as the exact element assembly have not been presented. The formula-
tion of Schröder et al55 and the follow-up work of Wriggers et al56 are however a hybrid model that combines the MDA
for quasi-incompressibility and the ESF for the inextensibility with the help of a fiber stretch-type additional deforma-
tion measure into the variational formulation. Therein, the simplified kinematic approach for the anisotropy is adopted
where the free energy is based on the additive decomposition into isotropic and anisotropic parts. The formulation is in
Lagrangian setting and additional stiffness matrix terms due to the extra terms are eliminated through static condensation
at element level.

The scope of this work is to introduce a theoretical and computational setting for nearly incompressible and inexten-
sible material behavior based on a saddle point principle derived from a mixed potential. Within this context, a five-field
Hu-Washizu–type extended variational formulation is proposed. It is shown that the variational derivatives of the mixed
potential lead to the field equations governing the boundary value problem at hand. The result of the variational princi-
ple is a mixed finite element formulation, extending classical Q1P0 element formulation or, in other words, the MDA,32 to
the inextensibility limit. To this end, the free energy function is additively decomposed into purely volumetric, purely iso-
choric parts for the isotropic response, and an additional part due the fiber reinforcement for the anisotropic part. On the
kinematics side, the deformation gradient is multiplicatively decomposed into unimodular and spherical parts and the
anistropy is modeled through the simplified kinematics approach with the help of the additional fourth invariant. Hence,
the simple kinematics enables a straightforward extension of standard hyperelastic models to the quasi-inextensible set-
ting due to unidirectional fiber reinforcement. Herein, the quasi-inextensiblity is enforced through and additional fiber
stretch-type scalar kinematic variable 𝜆 and a Lagrange multiplier s, which can be interpreted as the mean fiber stress.
The presented constitutive formulation is in the Eulerian setting based on the Kirchhoff stresses 𝝉 and the Eulerian metric
tensor g. However, the finite element method is Lagrangian. The term Eulerian here refers to the stress and deforma-
tion measures used throughout the variational formulation. The interested reader is referred to the work of Demarco and
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Dvorkin57 for the Eulerian finite element method and the work of Carbonell and Carbonell58 for the updated Lagrangian
finite element method (see also the references therein). The resulting finite element formulation is very attractive because
it is based on the direct homogenization of the additional field variables at element level through integration over the
element domain in a preprocessing step. It can be combined with linear and higher-order element formulations in a
straightforward manner because the implementation does not require any additional manipulation due to kinematics of
the existing isotropic hyperelastic models. As a special case, the assembly of the element matrix for eight-noded brick
element is demonstrated.

The paper is organized as follows. In Section 2, the multifield variational formulation, which leads to the
quasi-incompressible and quasi-inextensible element formulation, will be introduced. The weak and strong forms in
terms of Euler-Lagrange equations will be derived. Section 3 presents discrete counterpart of the weak forms obtained
from the variation of the mixed potential. An eight-noded brick element for the large strain finite element analysis of
quasi-incompressible and quasi-inextensible materials will be demonstrated as a special case in Section 4. In Section 5,
the performance of the proposed element formulation is evaluated in terms of representative boundary value problems.
The convergence and stability issues are investigated as well. The results are summarized in Section 6.

2 GOVERNING EQUATIONS OF MOTION

This section introduces the field equations and corresponding state variables of a transversely isotropic hyperelastic solid
body. The kinematics and integrity basis of the deformation and the constitutive equations based on Yeoh-type hyperelas-
tic model are briefly introduced. The extension of the model to transverse anisotropy through standard reinforcing model
is presented. Finally, the variational problem leading to the static equilibrium in the quasi-static limit is demonstrated.

2.1 Geometric mappings and the field variables
A body ℬ is a three-dimensional manifold consisting of material points 𝒫 ∈ ℬ. The motion of the body is defined by a
one-parameter function of time via bijective mappings

𝝌(𝒫 , t) =

{
ℬ → ℬ(𝒫 , t) ∈ R3 ×R+

𝒫 → x = 𝝌 t(𝒫 ) = 𝝌(𝒫 , t).
(1)

The point x = 𝝌(𝒫 , t) denotes the configuration of the particle 𝒫 at time t ∈ R+. Let the configuration of the material
points at a reference time t0 be denoted by X = 𝝌(𝒫 , t0) ∈ R3 and 𝝌 t(𝒫 ) = 𝝌(𝒫 , t) denote the configuration for a frozen
time frame t. Then, the placement map 𝝋t = 𝝌 t ◦𝝌

−1
t0
(X) such that

𝝋t(X) =

{
ℬ0 → ℬ ∈ R3

X → x = 𝝋(X , t)
(2)

maps the reference configuration X ∈ ℬ0 of a material point onto the spatial counterpart x ∈ ℬ (see Figure 1). The
deformation gradient

F ∶ TXℬ0 → Txℬ; F ∶= ∇X𝜑t(X) (3)

FIGURE 1 Nonlinear deformation of a solid. The reference configuration ℬ ∈ R3 and the spatial configuration 𝒮 ∈ R3.
𝝋 ∶ ℬ ×R → R3 is the nonlinear placement field, which maps at time t ∈ R+ material point position X ∈ ℬ onto spatial position
x = 𝝋(X , t) ∈ 𝒮 . The deformation gradient F maps a Lagrangian line element d X onto its Eulerian counterpart d x = Fd X [Colour figure can
be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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(A) (B) (C)

FIGURE 2 Definition of metric and stress tensors. A, Current metric in Lagrangian configuration C = FTgF; B, Reference metric in
Eulerian configuration c = F−TGF−1; C, relationship between stresses 𝝉 = FSFT . The Kirchhoff stress in the Eulerian configuration is dual
to g and c. The second Piola stress in the Lagrangian configuration is dual to C and G

maps the unit tangent of the reference or the Lagrangian configuration onto its counterpart in the current or the Eulerian
configuration. The gradient operators ∇X[•] and ∇x[•] denote the spatial derivative with respect to the reference X and
current x coordinates, respectively. Let dX, dA, and dV denote the infinitesimal line, area, and volume elements in the
undeformed configuration. Then, the deformation gradient F, its cofactor cof[F] = det[F]F−T , and the Jacobian J ∶=
det[F] > 0 characterize the deformation of infinitesimal line, area, and volume elements

dx = FdX , da = cof[F]dA, dv = JdV . (4)

The condition J ∶= det[F] > 0 ensures the nonpenetrable deformations 𝝋. Furthermore, reference ℬ0 and the spatial ℬ
manifolds are locally furnished with the covariant reference G and current g metric tensors in the neighborhoods NX of
X and Nx of x, respectively. These metric tensors are required for the mapping between the co and contravariant objects
in the Lagrangian and Eulerian manifolds.59 To this end, the right Cauchy Green tensor and the inverse of the left Cauchy
Green tensors are defined

C = FTgF and c = F−TGF−1 (5)

as the pull back of the current metric g and push forward of the Lagrangian metric G, respectively. The left Cauchy Green
tensor or the Finger tensor is denoted by b = c−1. For a geometric interpretation, we refer to Figures 2A-B. In order to
impose the quasi-incompressible nature of the rubberlike materials and soft biological tissues, the deformation gradient
F is decomposed into volumetric Fvol ∶= J1/31 and unimodular F̄ ∶= J−1∕3F parts

F = FvolF̄. (6)

In order to extend the isotropic continuum, we introduce the Lagrangian unit vector f0 such that

| f 0|G = 1, where | f 0|G =
(

f 0 · Gf 0
)1∕2

. (7)

Under the action of 𝝋t, the Eulerian counterpart is obtained through the tangent map as

f = Ff 0. (8)

The boundary of the solid domain can be decomposed into Dirichlet and Neumann-type boundaries, such that 𝜕ℬ =
𝜕ℬ𝜑 ∪ 𝜕ℬt and 𝜕ℬ𝜑 ∩ 𝜕ℬt = ∅.

2.1.1 Stress tensors
Consider a part 𝒫0⊂ℬ0 cut out of the reference configuration ℬ0 and its spatial counterpart 𝒫t⊂ℬt, with boundaries
𝜕𝒫0 and 𝜕𝒫t, respectively. The total stress vector t acts on the surface element da ⊂ 𝜕𝒫t on the deformed configuration
and represents the force that the rest of the body ℬt∖𝒫t exerts on 𝒫t through 𝜕𝒫t. Cauchy's stress theorem establishes
a linear dependence between the traction and the outward surface normal

t(x, t;n) = 𝝈 · n (9)

through the total Cauchy stress tensor 𝝈. We define the Lagrangian and Eulerian unit area elements

dA = NdA and da = nda, (10)
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(A) (B)

FIGURE 3 Transverse anisotropy. A, stiff fibers embedded in soft matrix; B, composite laminate consisting of stiff and soft layers [Colour
figure can be viewed at wileyonlinelibrary.com]

where N and n are the surface normals of the undeformed and defored solid body. Now, consider the identity TdA = tda
by scaling the (true) spatial force tda by the reference area element dA. This induces the definition of the nominal or the
first Piola-Kirchhoff stress tensor P by setting

PdA = 𝝈da, where P ∶= J𝝈F−T . (11)

2.2 Constitutive model: transversely isotropic Yeoh model
2.2.1 The free energy function
Fiber reinforced elastomers, eg, carbon and aramid reinforced elastomers, exhibit nearly incompressible bulk response
and nearly inextensible response in the reinforcement direction (see Figure 3B). For elastomers with one fiber family, we
postulate the specific form of the Helmholtz free energy function

𝜓(g;F, f 0) ∶= 𝜓vol( J) + 𝜓iso(g; F̄) + 𝜓ani(g;F, f 0), (12)

which additively decomposed into volumetric, isochoric, and anisotropic parts, respectively. It is defined with respect to
unit reference volume. We construct Q1P0F0 mixed-element formulation for fiber-reinforced rubbery polymers in terms
of a quasi-incompressible Yeoh-type hyperelelastic formulation in the decoupled form (12). However, the formulation is
general and can be used in combination of any isotropic hyperelastic solid model. The free energy stored in an isotropic
hyperelastic material is governed by three invariants, ie,

I1 ∶= trC, I2 ∶= 1
2
[
I2

1 − tr(C2)
]
, and I3 ∶= det C = J2, (13)

of the right Cauchy Green tensor C = FTgF. Moreover, the anisotropic response of hyperelastic materials requires the
description of additional invariants. To this end, the two additional invariants are defined in terms of reference unit
vector f0

I4 ∶= f 0 · Cf 0 I5 = f 0 · C2f 0, (14)
which idealize the energy storage due to a single fiber reinforced microstructure for rubberlike materials. The volumetric
part of the free energy function (12), ie,

𝜓vol( J) = 𝜅

4
(

J2 − 2 ln J − 1
)
, (15)

enforces the quasi-incompressible material behavior.60 The isochoric part is represented by the Yeoh model61

𝜓iso(g; F̄) = c1(Ī1 − 3) + c2(Ī1 − 3)2 + c3(Ī1 − 3)3, (16)

where 2c1 = 𝜇0 is the initial shear modulus. The anisotropic part of the free energy function

𝜓ani(g;F, f 0) = 𝜇𝑓 ⟨I4 − 1⟩2 (17)

is taken as a quadratic function of the fourth invariant. This ansatz is also known as the standard reinforcing model.45

The Macaulay brackets ⟨•⟩ filter out the tensile deformations. The volumetric and anisotropic parts of the free energy
function will enter the formulation at element level as constraints enforcing quasi-incompressible and quasi-inextensible
behavior, whereas the isochoric part enters the formulation at Gauss quadrature points in a standard fashion.

2.2.2 Stresses and moduli expressions
In line with (12), the Kirchoff stress expression is additively decomposed into

𝝉 ∶= 2𝜕g𝜓 = 𝝉vol + 𝝉 iso + 𝝉ani, (18)

http://wileyonlinelibrary.com
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isotropic (which is also decomposed into volumetric and isochoric parts) and anisotropic parts. The spatial elasticity
moduli establishes the relation between Lie derivative or Oldroyd rate £v𝝉 = �̇� − l𝝉 − 𝝉lT of the Kirchhoff stresses and
the Lie derivative of the spatial metric g via £v𝝉 = C∶ £vg∕2, where £vg = (gl + lTg) is equivalent to the symmetric rate
of deformation tensor. l = ḞF−1 is the spatial velocity gradient. Within this context, the Eulerian moduli expression

C ∶= 4𝜕2
gg𝜓(g;F, f 0) = C

vol + C
iso +C

ani (19)

can be additively decomposed into isotropic (volumetric and isochoric) and anisotropic parts, respectively. The volumetric
Kirchoff stresses read

𝝉vol ∶= 2𝜕g𝜓vol( J) = pg−1 with p ∶= J𝜓 ′
vol( J) = 𝜅

2
(J2 − 1) . (20)

The Eulerian moduli expression for the volumetric part is derived as

C
vol ∶= 4𝜕2

ggU( J) = (p + �̂�)g−1 ⊗ g−1 − 2pI, with �̂� = J2𝜓 ′′
vol( J) = 𝜅

2
(J2 + 1) . (21)

The isochoric response of the matrix can be expressed as

𝝉 iso ∶= 2𝜕g𝜓iso(g;F) = �̄� ∶ P with �̄� = 2𝜕g𝜓iso(g; F̄) . (22)

Incorporation of (22) into (16) results in

𝝉 iso = �̂� dev b̄ with �̂� ∶= 2𝜓iso

Ī1
= 2

(
c1 + 2c2(Ī1 − 3) + 3c3(Ī1 − 3)2) . (23)

Therein, b̄ = J−2∕3b is the unimodular part of the Finger tensor. The Eulerian moduli for the isochoric response of the
matrix can be written as

C
iso ∶= 4𝜕2

gg𝜓iso(g;F) = P ∶
[
C̄ + 2

3
(�̄� ∶g)I − 2

3
(�̄� ⊗ g−1 + g−1 ⊗ �̄�)

]
∶ P

T, (24)

where Pab
cd = [𝛿a

c 𝛿
b
d + 𝛿

a
d𝛿

b
c ]∕2 − 𝛿ab𝛿cd∕3 is the fourth-order deviatoric projection tensor. Therein,

�̄� = 2𝜕g𝜓iso(g; F̄) and C̄ ∶= 4𝜕2
gg𝜓iso(g; F̄) (25)

are the Kirchoff stresses and the Eulerian moduli associated with the unimodular part of the deformation gradient.
Insertion of (25)1 and (25)2 into (16) leads to

�̄� = �̂�b̄ and C̄ = �̂�′b̄ ⊗ b̄ with �̂�′ = 8
(

c2 + 3c3(Ī1 − 3)
)
. (26)

Kirchhoff stresses generated due to the fiber reinforcement are

𝝉ani = 2𝜕g𝜓ani(g;F, f 0) = 2𝜇𝑓 ⟨I4 − 1⟩ f ⊗ f . (27)

Moreover, the associated Eulerian moduli reads

C
ani = 4𝜕2

gg𝜓ani(g;F, f 0) = 4𝜇𝑓 f ⊗ f ⊗ f ⊗ f . (28)

2.2.3 Polyconvexity of the constitutive model
The polyconvexity of hyperelastic materials and transeversely anisotropic hyperelastic materials are treated in the works
of Schröder and Neff44 and Hartmann and Neff.62 Accordingly, the volumetric free energy function (15) is polyconvex for
the physically admissible parameter domain 𝜅 > 0. The isochoric part of the free energy function (16) is polyconvex for

This is equivalent to the statement �̂�′ ≥ 0 in Equation (26). Condition (29) is trivially satisfied for c2 > 0 and c3 > 0.
However, the well-known s-shape stress-strain curve cannot be obtained for rubberlike materials in case ci > 0, i =
{1, 2, 3}. Parameter identification process of most technical rubbers gives c3 < 0. In this case, the stability range of
the model should be carefully checked. The anisotropic part of the free energy function is polyconvex for the physically
admissible parameter domain 𝜇f > 0.
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3 VARIATIONAL FORMULATION FOR ANISOTROPIC AND
INCOMPRESSIBLE CONTINUUM

3.1 Variational formulation for finite elasticity
The finite elasticity is governed by a potential functional in the form

Π̂(𝝋, t) ∶= Π̂int(𝝋, t) − Π̂ext(𝝋, t), (30)

where

Π̂int(𝝋, t) ∶= ∫ℬ
𝜓(g,F)dV and Π̂ext(𝝋) ∶= ∫ℬ

𝝋 · 𝜌0�̄�dV + ∫𝜕ℬt

𝝋 · T̄ dA . (31)

For an elastic process, the energy stored in the body is defined by Π̂int(𝝋), whereas Π̂ext(𝝋) is the part of the work associated
with the external forces. Therein, 𝜌0, �̄�, and T̄ are the density, prescribed body force, and the surface traction, respectively.
𝜓(g,F) is the volume specific free energy. The boundary value problem governing finite elasticity is obtained from the
elastic potential by principle of minimum potential energy in the variational form

𝝋t = Arg
{

inf
𝝋t∈𝒲

Π̂(𝝋, t)
}
, (32)

subject to Dirichlet-type boundary condition

𝒲 =
{
𝝋t |𝝋t ∈ ℬ ∧ 𝝋t = �̄� on 𝜕ℬu

}
. (33)

Invoking the stationarity of the potential Π̂(𝝋, t), the variation of (32) along with localization theorem yields the
Euler-Lagrange equation

1. J div[J−1𝝉] + 𝜌0�̄� = 0, (34)

leading to the balance of linear momentum for quasi-static problems in domain ℬ along with Neumann-type boundary
condition

P · N = 𝝉 · n = T̄ on 𝜕ℬt, (35)

where we have made use of the identity JF −TN dA = n da, which is also known as Nanson's formula. T̄ = Jt is the scaled
traction vector. The element formulation (Q1 element) is derived by the consistent linearization of the weak form obtained
as the first variation of (32). The weak form can be alternatively obtained from the momentum balance equation (34) by
Galerkin's procedure.

3.2 A mixed variational formulation for quasi-incompressible and
quasi-inextensible continuum
The quasi-inextentensible and quasi-incompressible behavior can be enforced by enriching the minimization
problem (32) by two additional penalty terms along with the decomposed representation (12)

Π̂(𝝋, p, 𝜃, s, 𝜆) ∶= ∫ℬ
𝜋∗(𝝋, p, 𝜃, s, 𝜆)dV − Π̂ext(𝝋, t). (36)

The mixed potential density introduced in (36) reads

𝜋∗
int(𝝋, p, 𝜃, s, 𝜆) = 𝜓iso(g, F̄) + p( J − 𝜃) + 𝜓vol(𝜃)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
volumetric constraint

+ s(I4 − 𝜆) + 𝜓ani(𝜆)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
inextensibility constraint

. (37)

Here, p, s are penalty parameters dual to the kinematic quantities 𝜃, 𝜆.
The motion of the body subjected to incompressible and inextensible constraints is then governed by the mixed saddle

point principle

{𝝋t, 𝜃, p, 𝜆, s} = Arg
{

inf
𝝋t∈𝒲

inf
𝜃
inf
𝜆
sup

p
sup

s
Π̂(𝝋, t)

}
, (38)
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subject to the boundary conditions𝒲 = {𝝋t |𝝋t ∈ ℬ ∧ 𝝋t = �̄� on 𝜕ℬu}. Taking the variation of (36) with respect
to 𝝋, p, 𝜃, s, and 𝜆 yields the weak form

𝛿𝝋Π̂(𝝋, p, 𝜃, s, 𝜆) = ∫ℬ

{(
𝝉 iso + pJg−1 + 2s f ⊗ f

)
∶ 1

2
£𝛿𝝋g

}
dV − 𝛿Π̂ext(𝝋) = 0 ,

𝛿pΠ̂(𝝋, p, 𝜃, s, 𝜆) = ∫ℬ
𝛿p( J − 𝜃)dV = 0 ,

𝛿𝜃Π̂(𝝋, p, 𝜃, s, 𝜆) = ∫ℬ
𝛿𝜃

(
𝜓 ′

vol(𝜃) − p
)

dV = 0 ,

𝛿sΠ̂(𝝋, p, 𝜃, s, 𝜆) = ∫ℬ
𝛿s(I4 − 𝜆)dV = 0 ,

𝛿𝜆Π̂(𝝋, p, 𝜃, s, 𝜆) = ∫ℬ
𝛿𝜆

(
𝜓 ′

ani(𝜆) − s
)

dV = 0 ,

(39)

from which the mixed finite element method can be constructed. Therein, £𝛿𝝋g is the Lie derivative of the current metric
along the variation 𝛿𝝋. Taking the variation of the potential density (37), Euler-Lagrange equations of the mixed variational
principle read

1. Jdiv[J−1𝝉] + 𝜌0�̄� = 0
2. J − 𝜃 = 0
3. 𝜓 ′

vol(𝜃) − p = 0 (40)
4. I4 − 𝜆 = 0
5. 𝜓 ′

ani(𝜆) − s = 0,

along with the Neumann-type boundary conditions 𝒲t = {𝝈 · n = t on 𝜕ℬt}.

3.3 Consistent linearization of the mixed potential
It can be shown that 1

2
£𝛿𝝋g = sym(g∇x𝛿𝝋). Equation (39.1) is nonlinear in terms of 𝝋 and Equations (39.2-5) act as

additional constraints on (39.1). Consistent linearization of (39.1) around 𝝋 yields

D𝛿𝝋Π̂ · Δ𝝋 =∫ℬ
g∇x𝛿𝝋 ∶

{
∇xΔ𝝋

(
𝝉 iso + pJg−1 + 2s f ⊗ f

)}
dV

+ ∫ℬ
g∇x𝛿𝝋 ∶

{
pJV +C

iso} ∶ g∇xΔ𝝋 dV

+ ∫ℬ
g∇x𝛿𝝋 ∶ JΔpg−1 dV . + ∫ℬ

g∇x𝛿𝝋 ∶ 2Δs f ⊗ f dV ,

(41)

with the following definition:

V = g−1 ⊗ g−1 − 2Ig−1 , (42)

where Ig−1
abcd = (𝛿ac𝛿bd+𝛿ad𝛿bc)∕2 is the fourth-order symmetric identity map. Therein, we have made use of the identity

1
2
£Δ𝝋g = sym(g∇xΔ𝝋), where £Δ𝝋g is the Lie derivative of the current metric along the increment Δ𝝋. The first equation

in (39) is equivalent to the balance of linear momentum for quasi-static problems and (39.2-5) are the constraints enforcing
the incompressibility and inextensibility, respectively. The constraint equations will be enforced weakly in an integral
sense within subdomains ℬe such that ℬ0 ≈

⋃ne
e=1 ℬe, with ne denoting the number of the subdomains ℬe in the body.

The penalty parameter p and the kinematical variable 𝜃 can be discretized consistent with (39.2) and (39.3) within the
subdomain ℬe in the following sense:

�̄� = 1
V e ∫ℬe

J dV , p̄ = 1
V e ∫ℬe

𝜓 ′
vol(𝜃) dV = 𝜓 ′

vol(�̄�). (43)

This proposal yields a constant value for �̄� and p̄. With the definitions (43.1) and (43.2), �̄� and p̄ can be physically inter-
preted as the mean dilatation and the mean negative pressure over the element domain, respectively. The incremental
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form of the mean negative pressure p̄ takes the form

Δp̄ = 𝜓 ′′
vol(�̄�)Δ�̄�, where Δ�̄� = 1

V e ∫ℬe

Jg−1 ∶ g∇xΔ𝝋 dV . (44)

In a similar way, the penalty parameter s and the kinematical variable 𝜆 can be discretized consistent with (39.4) and
(39.5) within the subdomain ℬe in the following sense:

�̄� = 1
V e ∫ℬe

I4 dV and s̄ = 1
V e ∫ℬe

𝜓 ′
ani(𝜆) dV ≈ 𝜓 ′

ani(�̄�). (45)

This proposal yields a constant value for �̄� and s̄. With the definitions (45.1) and (45.2), �̄� and s̄ can be physically interpreted
as the mean fiber stretch and the mean fiber stress over the element domain, respectively. The incremental form of the
mean fiber stress s̄ takes the form

Δs̄ = 𝜓 ′′
ani(�̄�)Δ�̄�, where Δ�̄� = 1

V e ∫ℬe

2 f ⊗ f ∶ g∇xΔ𝝋 dV . (46)

The stresses and the moduli expressions can be redefined as

�̂� = 𝝉 iso + p̄Jg−1 + 2s̄ f ⊗ f Ĉ = p̄JV + C
iso. (47)

Now, substituting (44), (46)), and (47) into (41) and exploiting the symmetry of �̂� and Ĉ, we reach the final expression for
the linearized term

D𝛿𝝋Π̂ · Δ𝝋 =
n

A
e=1

{
∫ℬe

g∇x𝛿𝝋 ∶ ∇xΔ𝝋�̂� dV + ∫ℬe

g∇x𝛿𝝋 ∶ Ĉ ∶ g∇xΔ𝝋 dV

+ ∫ℬe

Jg∇x𝛿𝝋 ∶ g−1 dV 𝜓 ′′
vol(�̄�)

1
V e ∫ℬe

Jg∇xΔ𝝋 ∶ g−1 dV

+∫ℬe

g∇x𝛿𝝋 ∶ 2 f ⊗ f dV 𝜓 ′′
ani(�̄�)

1
V e ∫ℬe

g∇xΔ𝝋 ∶ 2 f ⊗ f dV
}
.

(48)

4 FINITE ELEMENT FORMULATION

4.1 Element discretization
In the final step, we perform the spatial discretization of the field variables to obtain algebraic counterparts of the residual
expression (39.1) and construct the element matrices from the linearized term (48). The trilinear interpolation is adopted
for the placement 𝝋, whereas the mean values of the negative pressure p̄, dilatation, �̄� fiber stress s̄, and fiber stretch �̄� are
taken as constant through the element (see Figure 4). Then, the field variables and the associated weight functions are
interpolated through each element domain by introducing the discrete nodal values and 𝒞0-continuous shape functions

𝝋h =
nen∑
I=1

NI x̂I , 𝛿𝝋h =
nen∑
I=1

NI 𝛿x̂I , Δ𝝋h =
nen∑
I=1

NI Δx̂I , (49)

FIGURE 4 Extended Q1P0F0 mixed finite element design for quasi-incompressible and quasi-inextensible hyperelasticity. For the sake of
convenience, the sketch is two dimensional
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where nen refers to the number of nodes per element. Based on the discretization (49), the spatial gradient of the weight
functions and of the incremental fields read

∇x(𝛿𝝋h) =
nen∑
I=1
𝛿x̂I ⊗ ∇xN

I , ∇xΔ𝜑h =
nen∑
I=1

Δx̂I ⊗ ∇xN
I . (50)

Incorporating the discretized representations (49), (50) in (39), we obtain the discrete residual vector

R
𝜑 =

nel

A
e=1

nen∑
I=1∫ℬh

e

[
∇xN

I · �̂� −NI𝜌0�̄�
]

dV −
ns

el

A
e=1

ns
en∑

I=1∫𝜕𝒮 e
t

NI T̄ dA = 𝟎, (51)

where the operator A denotes the standard assembly of element contributions at the local element nodes I = 1, … ,nen
over nel subdomains.

Following analogous steps, the discrete form of the residual term (39.1) can readily be obtained by substituting the dis-
cretized representations (49)-(50). The linearization of the discrete residual expressions (51.1-3) can be shown as follows:

Lin R
𝜑 = R

𝜑 + 𝜕R𝜑

𝜕U
ΔU, U =

nel

A
e=1

x̂h. (52)

The element matrix is derived via incorporation of (49), (50) into (48)

K = 𝜕R𝜑

𝜕U
=

nel

A
e=1

Kel, (53)

where the element stiffness matrix can be expressed in terms of

Kel = K
mat
el +K

geo
el +K

vol
el +K

ani
el (54)

material, geometric, volumetric, and anisotropic contributions, respectively. With the help of the element-average
quantities

∇xN̄
I = ∫ℬh

el

J ∇xN
I dV , ∇xF̄

I = ∫ℬh
el

∇xN
I ∶ f ⊗ f dV , (55)

we define the contributions to the element stiffness matrix as follows:

K
mat IJ
el = ∫ℬh

el

∇T
x N

I · Ĉ · ∇xN
JdV , K

vol IJ
el = ∇T

x N̄
I 𝜓

′′
vol(�̄�)
Ve

∇xN̄
J
,

K
geo IJ
el = ∫ℬh

el

∇xN
I · �̂� · ∇xN

JdV , K
ani IJ
el = ∇T

x F̄
I 𝜓

′′
ani(�̄�)
Ve

∇xF̄
J
. (56)

The algorithmic box for the Q1P0F0 element is summarized in Table 1. In the sequel, the finite element implementation
specific to eight-noded brick element will be presented. To this end, the shape functions can be defined for an eight-noded
brick element

NI(𝝃) = 1
8
(
1 + 𝜉1𝜉

I
1
) (

1 + 𝜉2𝜉
I
2
) (

1 + 𝜉3𝜉
I
3
)
, (57)

with the nodal values of
𝜉I

1 = [−1 + 1 + 1 − 1 − 1 + 1 + 1 − 1]
𝜉I

2 = [−1 − 1 + 1 + 1 − 1 − 1 + 1 + 1]
𝜉I

3 = [−1 − 1 − 1 − 1 + 1 + 1 + 1 + 1]
(58)

for a cube in the parametric space, as shown in Figure 5. For the computation of spatial gradients with respect to
Lagrangian and Eulerian coordinates, the following maps will be defined.

5 REPRESENTATIVE NUMERICAL EXAMPLES

In this section, the performance of the proposed mixed-element formulation will be demonstrated through three boundary
value problems. In the first two examples, the performance of the proposed Q1P0F0 element will be demonstrated for
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TABLE 1 Flowchart for the computation of Q1P0F0 element stiffness matrix

a) Volumetric part of the stiffness matrix:
Mean dilatation �̄�, negative pressure p̄, mean fiber stretch �̄�, and mean fiber stress s̄ will be computed.

{ LOOP [𝛼 = 1, 8] Given: current position x̂h = ûh + X̂h, shape functions N(𝝃) ∶= NI(𝝃)
Set: Ve = ve = 0�̄� = 0

1. Compute shape functions, derivative of the shape function in parametric space and transformation map at 𝝃(𝛼)

N(𝝃), ∇xiN(𝝃), and J = ∇𝜉NX̂h at 𝝃 = 𝝃(𝛼)

2. Compute the material and spatial derivative of shape functions, and deformation gradient
∇XN = ∇𝜉NJ−1, F = ∇XNx̂, and ∇xN = ∇XNF−1

3. Compute the initial and current element volume and the integrate the fiber stretch f = Ff0

V e ← V e + det Jw𝛼 ve ← ve + det J det Fw𝛼

𝜆 = f · g f �̄�← �̄� + 𝜆 det Jw𝛼

4. Compute ∇xN̄ ∶= ∇xN̄
I

and ∇xF̄ ∶= ∇xF̄
I

∇xN̄ ← ∇xN̄ + det J det Fw𝛼∇xN ∇xF̄ ← ∇xF̄ + det Jw𝛼∇xN ∶ f ⊗ f }
5. Compute �̄�, p̄, �̄�, and s̄

�̄� = ve

V e p̄ = 𝜓 ′
vol(�̄�) �̄�← �̄�

V e s̄ = 𝜓 ′
ani(�̄�)

6. Compute Kvol and Kiso

K 3(I−1)+i,3( J−1)+𝑗
vol = (N̄,x)I

i
𝜓 ′′

vol(�̄�)
V e (N̄,x)J

𝑗

K 3(I−1)+i,3( J−1)+𝑗
ani = (F̄,x)I

i
𝜓 ′′

ani(�̄�)
V e (F̄,x)J

𝑗

b) Material and geometric part of the stiffness matrix:
{LOOP [𝛼 = 1, 8]

7. Compute Kmat and Kgeo

K 3(I−1)+a,3( J−1)+a
geo = Kgeo + (N,x)I

i (N,x)J
𝑗
𝜏 i𝑗 det Jw𝛼

K 3(I−1)+i,3( J−1)+k
mat = Kmat + (N,x)I

𝑗
Ĉ

i𝑗kl
(N,x)J

l det Jw𝛼 }

FIGURE 5 Unit cube in the parameter space. Local coordinates are defined by 𝝃 ∈ , where  ∶= {𝝃 ∈ R3 | −1 ≤ 𝜉i ≤ +1 ; i = 1, 3}

inflation and torsion conditions, whereas the third example will be used for comparison with standard displacement Q1
and mixed displacement-pressure formulation Q1P0, respectively. The mixed element formulation outlined in Section 3
is implemented into general purpose open source finite element program FEAP.

5.1 Isochoric uniaxial tension test
In order to validate the element formulations used throughout the investigations, an isochoric uniaxial tension test is car-
ried out with Q1, Q1P0, and Q1P0F0 elements with a unit cube discretized with single element. The material parameters
for the baseline neo-Hookean solid are taken as 𝜇 = 2c1 = 1 MPa, c2 = c3 = 0, and 𝜇f = 100 MPa. In the exact incom-
pressible limit, the volumetric part does not play a role and the pressure expression can be derived from the equilibrium
conditions −p = 𝜎22 = 𝜎22. Consequently, the analytical solution for the isochoric uniaxial tension deformation in the
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(A) (B)

FIGURE 6 Isochoric uniaxial tension test. A, comparison of the results for Q1, Q1P0, and Q1P0F0 element formulation; B, comparison of
the results for the analytical solution and the Q1P0F0 element formulation [Colour figure can be viewed at wileyonlinelibrary.com]

fiber orientation direction can be derived as

𝜎11 = 𝜇

[
𝜆 − 1√

𝜆

]
+ 2𝜇𝑓 (𝜆2 − 1)𝜆2 . (59)

The results obtained from Q1, Q1P0, and Q1P0F0 elements and the analytical results are depicted in Figure 6. All three
formulations give identical results with the analytical solution.

5.2 Inflation of a hollow circular
A hollow cylinder is inflated monotonically with a pressure p̂(t) = 0.1t [MPa], where t is the time in seconds. The geometry
and the mesh of the problem are depicted in Figure 7. The fibers are aligned in the vertical z-direction and the tube is fixed
against motion in all directions at the bottom and top surfaces. Due to symmetry, only half of the geometry is modeled
along with the boundary conditions depicted in Figure 7. The material parameters for the unidirectionally reinforced
Yeoh model are given in Table 2.

The deformed shape at various stages of loading are depicted in Figure 8 along with contour plots for the true radial
stresses 𝜎r. The incremental time step is taken as Δt = 0.5 s throughout the simulation. The simulations show quadratic
convergence, where the norm of the residual vector normalized with respect to the first residual norm is shown in Table 3.
The stability of the material model is checked according to Equation (29). Throughout the simulation, the deformation
state is well below the critical limit c2 ≥ −3c3(Ī1 − 3.d0) and the constitutive model remains polyconvex.

FIGURE 7 Geometry and mesh. A hollow cylinder with dimensions H × R × t = 200 × 100 × 20 mm is fixed at both ends and subjected
to a monotonically increasing internal pressure p. Due to symmetry, only half of the hollow cylinder is discretized with 16 × 48 × 4
eight-noded brick elements [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Material parameters used during the inflation of hollow cylinder

Parameter Value Unit Parameter Value Unit

𝜅 0.5 × 103 [MPa] 𝜇 = 2c1 0.5 [MPa]
c2 0.2 [MPa] c3 −0.541 × 10−2 [MPa]
𝜇f 0.5 × 103 [MPa] f0 [0, 0, 1] [ – ]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 8 The radial stress 𝜎r depicted on deformed mesh for pressure levels p̂ = 0.15, p̂ = 0.50, and p̂ = 0.75 MPa, respectively

TABLE 3 Convergence of the mixed-element formulation for inflation of a hollow cylinder example

Time [s] 2.5 5 7.5 10 15 30

Step 1 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
Step 2 3.9995E+01 1.1712E+00 6.1647E−01 3.9924E−01 2.2121E−01 8.4379E−02
Step 3 4.7022E−02 3.5609E−03 9.0674E−04 3.6388E−04 1.0859E−04 1.6588E−05
Step 4 3.7037E−05 1.2247E−07 5.8225E−09 7.4148E−10 4.6832E−11 1.1527E−11
Step 5 8.9617E−12 6.2114E−12 – – – –
nsteps 5 5 4 4 4 4

FIGURE 9 Geometry and mesh. A solid cylinder block with dimensions H × R × t = 200 × 100 × 20 mm is fixed at top z = H and
bottom z = 0 surfaces and the top surface is subjected to a rotation about z-axis. The cylinder block is discretized with 12 × 384 eight-noded
brick elements

5.3 Torsion of a circular cylinder
In the second example, a fiber reinforced rubber cylinder is subjected to a twist around z-axis. The geometry of the
specimen is depicted in Figure 9. The bottom z = 0 and top z = H surfaces are fixed and the top surface is rotated
around the center monotonically. The material parameters are due to Table 2. The material parameters are chosen in
such a way that the inextensibility and incompressibility constraints are of the same order of magnitude. The solid cylin-
der block is discretized with 12 × 384 eight-noded brick elements. In Figure 10, the deformed shape and the tangential
stress 𝜎t are depicted for top rotations, corresponding to 𝜃z = 𝜋∕6, 𝜃z = 𝜋∕3, and 𝜃z = 𝜋∕2 radians, respectively.
In the absence of the fibers, the macroscopic loading will lead to isochoric deformations everywhere. In the current
example, however, a competition occurs between inextensibility and incompressibility constraints. Under pure isochoric
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FIGURE 10 The tangential stress 𝜎t depicted on deformed mesh top surface rotation corresponding to 𝜃z = 𝜋∕6, 𝜃z = 𝜋∕3, and 𝜃z = 𝜋∕2
radians, respectively

TABLE 4 Convergence of the mixed-element formulation for torsion of a solid cylinder example

Time [s] 5 15 30 45 60 90

Step 1 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
Step 2 3.8286E+00 1.0879E−02 4.2015E−03 2.6205E−03 1.9078E−03 1.3414E−03
Step 3 1.5038E+00 2.5032E−03 2.2519E−04 5.8615E−05 2.4878E−05 9.8452E−06
Step 4 1.3486E−01 1.6467E−06 1.8309E−07 6.7850E−08 7.5299E−08 2.5396E−08
Step 5 1.1811E−03 2.1253E−10 7.8760E−12 1.1783E−12 3.7898E−13 4.7672E−13
nsteps 7 5 5 5 5 5

deformations, very high stresses are generated due to the stiff fibers, enforcing the neck-type thinning in the midsec-
tion as an energetically more favorable state, see Figure 10. On the numerical side, excellent convergence behavior of the
quasi-incompressible/-inextensible element formulation documented in Table 4, where the norm of the residual vector
normalized with respect to the first residual norm is given in tabular form. The incremental time step is taken as Δt = 5 s
throughout the simulation and the rotation rate is taken as �̇�z = 5◦∕s.

5.4 Dual clamped patch test
This numerical example has been recently proposed by Schröder et al.55 A square block of unit dimensions 1 × 1 is
clamped at top and bottom surfaces and it is subjected to a distributed loading q0 = 30 (see Figure 11). The fiber direc-
tion f 0 = [0.5,

√
3∕2, 0] is kept constant and the fiber stiffness 𝜇f is varied 𝜇f = {102, 104, 106, 108} to study the stability

of the proposed formulation toward inextensibility limit. The proposed formulation is compared to the standard linear

FIGURE 11 Dual clamped patch test. A solid square block with unit dimensions 1 × 1 is fixed at top y = 1 and bottom y = 0 surfaces and
the side surface x = 0 is subjected to normal traction q0 = 30. The fibers are aligned 𝛼 = 60◦ from the horizontal plane. The cylinder block
is discretized with n × n brick elements, where n = {2, 4, 8, 16, 32, 64}
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displacement element Q1 formulation and the mean dilatation approach denoted as Q1P0 formulation. The specimen
is monotonically loaded via q(t) = qot. Initially, the time increment is taken as Δt = 1. If the global Newton-Raphson
algorithm does not converge within 15 time steps, the time increment is halved and the simulation is restarted from
t = 0. The process is continued until Δt → 1∕512 is reached. Unlike the original problem suggested in the afore-
mentioned work,55 the free energy function for the isotropic part is taken as the neo-Hookean model based on the
isochoric-volumetric split

𝜓iso(g; F̄) = 𝜇

2
(Ī1 − 3) and 𝜓vol( J) = 𝜅

4
(

J2 − 2 ln J − 1
)
, (60)

FIGURE 12 Dual clamped patch test with 𝜈 = 0.3. Comparison of the Q1, Q1P0, and Q1P0FO element formulations for fiber stifness
values 𝜇f = {102, 104, 106, 108} [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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inline with the Q1P0 formulation. In the first set of analysis, the initial Poisson ratio is set to 𝜈 = 0.3, which led to the
material parameters 𝜇 = 76.9231 and 𝜅 = 166.667 for initial elasticity modulus E = 200. In the second set of anal-
ysis, the material parameters are taken as 𝜇 = 67.11409 and 𝜅 = 3333.333, corresponding to the initial Poisson ratio
𝜈 = 0.49, which mimics the quasi-incompressible limit. Moreover, as an extreme case, a third simulation is carried out
with the material parameters are taken as 𝜇 = 66.6711 and 𝜅 = 333333.3333, corresponding to the initial Poisson ratio
𝜈 = 0.4999. For the analysis, six sets of mesh densities are used, where the number of elements per edge are varied as
n = {2, 4, 8, 16, 32, 64}. The original problem is two dimensional. The current formulation is reduced to two-dimensional

FIGURE 13 Dual clamped patch test with 𝜈 = 0.49. Comparison of the Q1, Q1P0, and Q1P0F0 element formulations for fiber stifness
values 𝜇f = {102, 104, 106, 108} [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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setting by clamping the nodes against the motion in z-direction by setting uz = 0 for all nodes recovering the plane-strain
problem proposed in the work of Schröder.55 The results of the first set of analysis for 𝜈 = 0.3 are depicted in Figure 12.
The left column depicts the horizontal displacement for the center of the left surface (see Figure 11). This example demon-
strates a compressible material response for a variety of fiber stiffness values. As demonstrated in the third and fourth
rows for 𝜇f = 106 and 𝜇f = 108, Q1 and Q1P0 formulations are divergent for increased mesh resolution. This is in line
with the remarks of Ehlers and Eipper52 for the volumetric and isochoric split of the free energy function in compressible
range. The proposed Q1P0F0 formulation is the most robust among all, showing no divergence throughout the whole set
of simulations. The convergence of the middisplacement for increasing mesh density is also remarkable for the proposed

FIGURE 14 Dual clamped patch test with 𝜈 = 0.4999. Comparison of the Q1, Q1P0, and Q1P0F0 element formulations for fiber stifness
values 𝜇f = {102, 104, 106, 108} [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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formulation. The simulations are repeated for 𝜈 = 0.49 and 𝜈 = 0.4999, and the results are depicted in Figure 13 and
Figure 14, respectively. In both compressible and quasi-incompressible cases, for increasing 𝜇f, the predictions for the
middisplacement ux for Q1 and Q1P0 element formulations tend to be identical. However, for the case 𝜈 = 0.49, both for-
mulations are considerably stiff due to locking for coarse meshes. For number of elements/edge values of {8, 16, 32, 64},
the variation in the predictions from Q1P0FO are very small, where the predictions of Q1 and Q1P0 formulations con-
verge to the predictions obtained from the Q1P0FO formulation. The proposed formulation is very robust and is the only
formulation to converge through all set of parameters. The number of total iterations to the final solution is very low com-
pared to the solutions proposed in the literature, especially in the quasi-incompressible and quasi-inextensible limit.55

Finite element formulations based on lower order interpolations can yield a poor stress field and lead to stress oscilla-
tions. Fiber stress and hydrostatic stress plots obtained by three different formulations are compared for 32 × 32, 64 × 64,
and 128 × 128 mesh densities in Figure 15 and Figure 16, respectively. For the postprocessing process, the standard
L2-projection described in the theory manual of the academic purpose finite element program FEAP is used. The results
do not show any stress oscillations, which were reported in the work of Schröder et al,55 are very close to each other. The

FIGURE 15 Dual clamped patch test with 𝜈 = 0.3 and 𝜇f = 104. Cauchy-type fiber stresses 𝝈f in the fiber orientation direction f . The
first, second, and third columns denote Q1, Q1P0, and Q1P0F0 element formulations, for 32 elements/edge (first row), 64 elements/edge
(second row), and 128 elements/edge (third row), respectively
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FIGURE 16 Dual clamped patch test with 𝜈 = 0.3 and 𝜇f = 104. Cauchy-type hydrostatic stresses p. The first, second, and third columns
denote Q1, Q1P0, and Q1P0F0 element formulations, for 32 elements/edge (first row), 64 elements/edge (second row), and 128
elements/edge (third row), respectively

minor deviation is due to the different choice of volumetric free energy function and use of invariants of the unimodular
part of the right Cauchy-Green tensor in the current manuscript. However, it should be mentioned that the design of a
new boundary value problem, which can act as a standard benchmark test for the inextensibility constraint, is an open
issue to be exploited.

6 REMARKS AND CONCLUSION

In this work, a five field Hu-Washizu–type variational principle for the quasi-incompressible and quasi-inextensible limit
of transversely anisotropic materials at large strains is proposed. The material formulation is in the Eulerian setting.
The advantage of the proposed formulation is the ease of implementation at element level where the additional degrees
of freedoms are condensed out with numerical homogenization at element level. The formulation requires no matrix
inversion operations, enabling fast and direct computation of element stiffness matrix. The proposed Q1P0FO formulation
requires no additional kinematical assumptions, making it very suitable for the implementation of the so-called standard
reinforcing models of transverse anisotropic solids. The extension of the Q1P0 element formulation to Q1P0FO element



138 DAL

formulation requires very few additional algebraic operations and the implementation is straightforward. Besides, the
compact structure, the proposed element, is very robust and exhibits good coarse mesh accuracy for the displacement
field both at compressible and incompressible limit for transversely anisotropic solids. Future work will be devoted to the
investigation of the performance of the proposed formulation for biological tissues.
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