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Abstract

The radial part of the Klein-Gordon equation for the generalized Woods-Saxon potential is

solved by using the Nikiforov-Uvarov method in the case of spatially dependent mass within the new

approximation scheme to the centrifugal potential term. The energy eigenvalues and corresponding

normalized eigenfunctions are computed. The solutions in the case of constant mass are also studied

to check out the consistency of our new approximation scheme.

Keywords: Woods-Saxon Potential, Position Dependent Mass, Klein-Gordon Equation, Nikiforov-

Uvarov Method

PACS numbers: 03.65.Fd, 03.65.Ge

∗E-mail: arda@hacettepe.edu.tr
†E-mail: sever@metu.edu.tr

1

http://arxiv.org/abs/0902.2088v1
mailto:arda@hacettepe.edu.tr
mailto:sever@metu.edu.tr


I. INTRODUCTION

The investigation of the quantum mechanical systems in the case of position dependent

mass (PDM) following of works by v. Roos, and Levy-Leblond [1, 2] have recently been

received great attentions. This is so because such solutions are aviable in wide range of

different areas, for example, in the study of impurities in crystals [3-5], or of electronic

properties of quantum wells, and quantum dots [6], and in semiconductor heterostructures

[7]. Yahiaowi, and Bentaiba [8] have studied the weak-pseudo-Hermiticity in the case of

PDM, Ganguly, and Nieto have extended the second-order supersymmetric approach to

the systems with coordinate dependence mass [9]. In Ref. [10], some new shape-invariant,

exactly solvable potentials are generated by using a specific ansatz in the point of PDM-case.

Ju et al. have been studied the dynamics of a quasi-free particle in an effective potential

arising from the dependence of the mass on coordinates, and analyzed the eigenfunctions

and probability densities for s-waves [11].

Another interesting area received a lot of attentions is that solving the Schrödinger (SE),

and Dirac equations in the case of PDM. To solve the above equations has been used different

methods, and approaches for different potentials, such as deformed algebras in Coulomb po-

tential [12], in the content of supersymmetric quantum mechanics [13, 14, 15, 16], quadratic

algebra approach [17], numerical analysis of a square potential by using appropriate match-

ing conditions [18], point canonical transformation applying on harmonic oscillator, Coulomb

and Morse class of potentials [19], finding the non-relativistic Green’s functions with PDM

for harmonic oscillator [20], Coulomb potential in Dirac equation [21], Morse potential in

PDM background [22], a series solution of the SE for Cornell potential [23], finding the bound

states of Rosen-Morse and Scarf potentials via general point canonical transformation [24].

In the present work, we give the approximate solutions, and corresponding wave functions

of the radial Klein-Gordon (KG) equation for the Woods-Saxon (WS) potential in the case

of PDM. We investigate the energy spectrum, and the corresponding eigenfunctions of the

generalized WS potential by using a new approximation to the centrifugal potential. In order

to find the spectrum we use the NU-method in the case of exponentially mass distribution

varying with coordinate. The NU-method is a powerful tool to solve of the second order

linear differential equations with special orthogonal functions. In this method, the differen-

tial equation is turned into a hypergeometric type equation by using a transformation on
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coordinate [25].

The organization of this work is as follows. In Section II, we solve the radial part of

the KG-equation for generalized WS potential by using the NU-method within the frame-

work of an approximation to the centrifugal term. We compute the energy eigenvalues and

corresponding eigenfunctions, and also give the results for the case of the constant mass to

control the consistency of our new approximation. We write our conclusions in Section III.

II. NIKIFOROV-UVAROV METHOD AND CALCULATIONS

In spherical coordinates, the radial part of the Klein-Gordon equation can be written as

[30]

{ h̄2

2m

d2

dr2
− h̄2ℓ(ℓ+ 1)

2mr2
− 1

2mc2
[m2c4 − (E − V (r))2]

}

φ(r) = 0 , (1)

where ℓ is the angular-momentum quantum number, E is the energy of the particle, m is

the rest mass, and c is the velocity of the light.

The generalized WS potential can be written of the form [31]

V (r) = − V0
1 + qeβ(r−r0)

, (0 ≤ r ≤ ∞) . (2)

where V0 is the potential depth, β is a short notation, i.e. β ≡ 1/a, a is diffuseness of the

nuclear surface, r is the center-of-mass distance between the projectile and target nucleus,

and r0 is the width of the potential, which is proportional with target mass number A. q is

the deformation parameter, and arbitrarily taken to be a real constant. The WS potential is

widely used in the coupled-channels calculations in heavy-ion physics. This model explains

the single-particle motion during a heavy-ion collisions [26-29].

Let us write the potential as

V (x) = − V0
1 + qeβx

, (3)

where x = (r − r0). Eq. (1) can not be solved exactly because of the centrifugal potential

term for ℓ 6= 0 . The nuclear distance r can not fluctuate very far from the equilibrium for
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rather high vibrational levels [32], which gives small x-values. So the centrifugal potential

term can be expand about x = 0 as the following

V1(r) =
ℓ(ℓ+ 1)

r2
=

D

(1 + x
r0
)2

= D(1− 2 (
x

r0
) + 3 (

x

r0
)2 + . . .) , (4)

where the parameter D in the above equation is given as D = h̄2ℓ(ℓ+1)
2mr2

0

.

Instead, we suggest to replace V1(r) by the following potential form [33]

V ′
1(x) = (1 + qeβx)−2

[

DD0(1 + qeβx)2 +DD1(1 + qeβx) +DD2

]

, (5)

where the parameters D0, D1 , and D2 are arbitrary constants.

Expanding the potential V ′
1(x) around x = 0 under the same condition, and than com-

bining equal powers with Eq. (4), one can find the arbitrary constants Di(i = 0, 1, 2) in the

new form of the potential as

D0 = 1− (1 + q)2

βr0q2

[

− 3

βr0
+ 1

]

, (6)

D1 =
(1 + q)2

βr0q2

[

− 6(1 + q)

βr0
+ 3q − 1

]

, (7)

D2 =
(1 + q)3

βr0q2

[

3(1 + q)

βr0
+

1− q

2

]

. (8)

where it can be seen that the new parameters D0, D1 , and D2 are real, dimensionless param-

eters, and dependent to the numerical values of the quantum system under consideration.

On the other hand, we prefer to use the following position dependent mass function

m(x) = m0

[

1− m1

m0

(

1 + qeβx
)−1]

(m0 > m1) , (9)

where m0 and m1 are two arbitrary positive parameters. The mass function is finite at

infinity, and enables us to solve analytically the KG-equation given by Eq. (1), and to check

out the limit of the case of the constant mass.

Substituting Eq. (5), and (9) into Eq. (1), we get
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{ d2

dx2
−
[ 1

h̄2c2
(m2

0c
4 − E2) +

h̄2ℓ(ℓ+ 1)

r20
D0

]

+
[ 2

h̄2c2
(EV0 +m0m1c

4)− h̄2ℓ(ℓ+ 1)

r20
D1

] 1

1 + qeβx

+
[ 1

h̄2c2
(V 2

0 −m2
1c

4)− h̄2ℓ(ℓ+ 1)

r20
D2

] 1

(1 + qeβx)2

}

φ(x) = 0 (10)

By using the transformation z = 2(1 + qeβx)−1, we have

d2φ(z)

dz2
+

2(1− z)

z(2 − z)

dφ(z)

dz
+

1

[z(2 − z)]2

[

−a21z2 − a22z − a23
]

φ(z) = 0 . (11)

where

a21 = ω2
1ℓ(ℓ+ 1)D2 + ω2

2(m
2
1c

4 − V 2
0 ) ,

a22 = 2[ω2
1ℓ(ℓ+ 1)D1 − 2ω2

2(m0m1c
4 + EV0)] ,

a23 = 4[ω2
1ℓ(ℓ+ 1)D0 + ω2

2(m
2
0c

4 −E2)] . (12)

and ω2
1 = 1/β2r20 , and ω

2
2 = 1/h̄2c2β2 .

To apply the NU-method, we rewrite Eq. (11) in the following form

φ′′(z) +
τ̃ (z)

σ(z)
φ′(z) +

σ̃(z)

σ2(z)
φ(z) = 0, (13)

where σ(z) and σ̃(z) are polynomials with second-degree, at most, and τ̃(z) is a polynomial

with first-degree. By using the following transformation for the total wave function

φ(z) = ξ(z)ψ(z) (14)

we get a hypergeometric type equation

σ(z)ψ′′(z) + τ(z)ψ′(z) + λψ(z) = 0, (15)

where ξ(z) satisfies the equation
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ξ′(z)/ξ(z) = π(z)/σ(z). (16)

and the other part, ψ(z), is the hypergeometric type function whose polynomial solutions

are given by

ψn(z) =
bn
ρ(z)

dn

dzn
[σn(z)ρ(z)], (17)

where bn is a normalization constant, and the weight function ρ(z) must satisfy the condition

d

dz
[σ(z)ρ(z)] = τ(z)ρ(z). (18)

The function π(z) and the parameter λ required for this method are defined as follows

π(z) =
σ′(z)− τ̃(z)

2
±
√

(
σ′(z)− τ̃(z)

2
)2 − σ̃(z) + kσ(z) , (19)

λ = k + π′(z) (20)

The constant k is determined by imposing a condition such that the discriminant under the

square root should be zero. Thus one gets a new eigenvalue equation

λ = λn = −nτ ′ − n(n− 1)

2
σ′′ , (n = 0, 1, 2, . . .) (21)

where

τ(z) = τ̃(z) + 2π(z) . (22)

and the derivative of τ(z) must be negative.

Comparing Eq. (11) with Eq. (13), we have

τ̃ (z) = 2(1− z) , σ(z) = z(2− z) , σ̃(z) = −a21z2 − a22z − a23 (23)

Substituting this into Eq. (19), we get
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π(z) = ±
√

(a21 − k)z2 + (a22 + 2k)z + a23. (24)

The constant k can be determined by the condition that the discriminant of the expression

under the square root has to be zero

(a22 + 2k)2 − 4a23(a
2
1 − k) = 0 . (25)

The roots of k are k1,2 = − 1
2
a22 − 1

2
a23∓ 1

2
a3A, where A =

√

a23 + 2a22 + 4a21. Substituting

these values into Eq.(19), we get for π(z) for k1

π(z) = ∓
[( A

2
− a3

2

)

z + a3
]

, (26)

and for k2

π(z) = ∓
[( A

2
+
a3
2

)

z − a3
]

, (27)

Now we find the polynomial τ(z) from π(z) for the second choice as

τ(z) = 2 + 2a3 − 2
( A

2
+
a3
2

+ 1
)

z. (28)

so its derivative −2
(

A
2
+ a3

2
+ 1

)

is negative. We have from Eq. (20)

λ = − 1

2

(

a22 + a23 + Aa3 + A+ a3
)

, (29)

and Eq. (21) gives us

λn = 2n
( A

2
+
a3
2

+ 1
)

+ n2 − n . (30)

Substituting the values of the parameters given by Eq. (12), and setting λ = λn, one can

find the energy eigenvalues for any ℓ-states
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En,ℓ = −V0[4ω
2
2V

2
0 +N2 − 4ω2

2ℓ(ℓ+ 1)(D1 +D2) + 4m1c
4ω2

2(2m0 −m1)]

2(N2 + 4ω2
2V

2
0 )

± N

ω2

√

√

√

√

ω2
1(2D0 +D1 +D2)ℓ(ℓ+ 1) + 2m2

0c
4ω2

2

2(N2 + 4ω2
2V

2
0 )

−
[

ω2
1(D1 +D2)ℓ(ℓ+ 1)

N2 + 4ω2
2V

2
0

]2

− 1

16
+ m̃2

1 ,

(31)

where the energy eigenvalues with (+) sign correspond to particle, and the one with (-) sign

correspond to antiparticle. Two parameters in the above expression are

m̃1 =

√

8m1c4ω2
2(2m0 −m1)[4ω2

1(D1 +D)ℓ(ℓ+ 1)− 2ω2
2m1c4(2m0 −m1)− (N2 + 4ω2

2V
2
0 )]

N2 + 4ω2
2V

2
0

,

(32)

and

N = −(2n+ 1) +
√

1 + 4a21 . (33)

We see that the energy levels for particles and antiparticles are symmetric, and the ground

state energy is different from zero. We summarize some numerical results in Table I to see

the effect of the spatially dependent mass parameter m1 on the energy eigenvalue of bound

states. It is observed that the energy levels are strongly dependent on the parameter, and

the increase of the energy eigenvalues in the existence of m1 is very significant. It has to

be stress that the higher numerical values of the parameter m1 give positive values for the

bound states.

The energy spectra in the case of constant mass is obtained by setting m1 = 0 in Eq.

(32) which gives us m̃1 = 0 , and we get

Em1=0
n,ℓ = −V0[4ω

2
2V

2
0 +N2 − 4ω2

2ℓ(ℓ+ 1)(D1 +D2)]

2(N2 + 4ω2
2V

2
0 )

± N

ω2

√

√

√

√

ω2
1(2D0 +D1 +D2)ℓ(ℓ+ 1) + 2m2

0c
4ω2

2

2(N2 + 4ω2
2V

2
0 )

−
[

ω2
1(D1 +D2)ℓ(ℓ+ 1)

N2 + 4ω2
2V

2
0

]2

− 1

16
,

(34)

where

N ′ = −(2n+ 1) +
√

1 + 4a′21 , a
′2
1 = a21(m1 → 0). (35)
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It is seen that the result for the case of constant mass is the same with those obtained in

Ref. (29).

In order to find the eigenfunctions, we first compute the weight function from Eq. (18)

ρ(z) = za3(2− z)A , (36)

and the wave function becomes

ψnℓ (z) =
bn

za3(2− z)A
dn

dzn

[

zn+a3 (2− z)n+A
]

. (37)

where bn is a normalization constant. The polynomial solutions can be written in terms of

the Jacobi polynomials [34, 35]

ψnℓ (z) = bn P
(a3, A)
n (1− z) , A > −1 , a3 > −1 . (38)

On the other hand, the other part of the wave function is obtained from Eq. (16) as

ξ(z) = za3/2 (2− z)A/2 . (39)

Thus, the total eigenfunctions take

φnℓ (z) = b′n (2− z)A/2za3/2 P (a3, A)
n (1− z) . (40)

where b′n is the new normalization constant. It is obtained from

β

4

∫ 1

0
|φnℓ(z)|2

( z − 2

z

)

dz = 1 . (41)

To evaluate the integral, we use the following representation of the Jacobi polynomials [35]

P (σ, ς)
n (z) =

Γ(n + σ + 1)

n!Γ(n + σ + ς + 1)

×
n
∑

m=0

(

n

r

)

Γ(n+ σ + ς +m+ 1)

Γ(m+ σ + 1)

Γ(n+ σ + ς +m+ 1)

Γ(m+ σ + 1)
(
z − 1

2
)m , (42)
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where

(

n

r

)

= n!
r!(n−r)!

= Γ(n+1)
Γ(r+1)Γ(n−r+1)

. Hence, from Eq. (41), and with the help of Eq.

(42), we get

[g(n,m)× g(r, s)]
( β

4

)

|b′n|
2
∫ 1

0
zm+s+a3−1 (2− z)A+1 dz = 1 , (43)

where g(n,m), and g(r, s) are two arbitrary functions of the parameters A, and a3, and given

by

g(n,m) =
2−m Γ(A+ n+ 1)

n!Γ(A + a3 + n+ 1)

×
n
∑

m=0

(

n

r

)

Γ(n + σ + ς +m+ 1)

Γ(m+ σ + 1)

Γ(A+ a3 + n+m+ 1)

Γ(a3 +m+ 1)
(−1)m ,

(44)

and

g(r, s) = g(n,m) (n→ r;m→ s) . (45)

The integral in Eq. (43) can be evaluated by using the following integral representation

of hypergeometric type function 2F1(a, b; c; z) [36]

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1 (1− t)c−b−1 (1− tz)−a dt , (46)

by setting the variable z → z
2
, and taking c = 1 + b , z = 1, one gets

∫ 1

0
tb−1 (2− t)−a dt =

Γ(b)Γ(1)

2a Γ(1 + b)
2F1 (a, b; 1 + b;

1

2
) , (47)

From last equation

∫ 1

0
zm+s+a3−1 (2− z)A+1 dz =

Γ(m+ s+ a3)Γ(1)

2a Γ(m+ s+ a3 + 1)

× 2F1(−A− 1, m+ s+ a3;m+ s+ a3 + 1;
1

2
) , (48)
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where we set b = m+ s+ a3 , and a = −A− 1.

By using the following identities of hypergeometric type functions [36]

2F1 (a, b; c;−1) =
Γ
(

1
2
b+ 1

)

Γ(b− a + 1)

Γ(b+ 1)Γ(
(

1
2
b− a+ 1

) , (a− b+ c = 1 , b > 0) (49)

2F1 (a, b; c;
1

2
) = 2a 2F1 (a, c− b; c;−1) , (50)

the function of 2F1 (a, b; c; z) in Eq. (48) can be evaluated as

2F1 (−A− 1, b; 1 + b;
1

2
) = 2−A−2

√
π

Γ(A+ 3)

Γ
(

5
2
+ A

) , (m+ s + a3 − A = 2) , (51)

Finally, we get the normalization constant as

|b′n|
2
=

8

β
√
π

Γ(m+ s+ a3 + 1)Γ
(

5
2
+ A

)

Γ(m+ s+ a3)Γ(3 + A)[g′(n,m)× g(r, s)]
. (52)

where

g′(n,m) =
2−m Γ(A+ n+ 1)

n!Γ(A + a3 + n+ 1)

×
n
∑

m=0

(

n

r

)

Γ(n+ σ + ς +m+ 1)

Γ(m+ σ + 1)

Γ(A+ a3 + n+m+ 1)

Γ(a3 +m+ 1)
(−1)m+1 . (53)

III. CONCLUSION

We have solved the radial part of the KG-equation for the modified Woods-Saxon po-

tential in the case of position dependent mass by using a new approximation scheme to the

centrifugal potential term for any ℓ values. It is observed that the results obtained by using

the new scheme for the case of the constant mass are consistent with the ones obtained in

Ref. [29]. It is seen that there is a linear relation between the energy eigenvalues and the

contributions coming from the dependence of the mass on spherical coordinate. The energy

spectra and the corresponding wave functions are obtained by applying the NU-method.

The eigenfunctions can be expressed in terms of Jacobi polynomials in the scheme of the

new approximation to the centrifugal barrier in the case of position dependent mass.
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TABLE I: The dependence of the bound states for a system ’proton+nucleon with average mass

number A = 56’ on the parameter m1 in MeV for q = 1 by using the numerical values mp =

1.007825 amu, V0 = 47.78 MeV, r0 = 4.91623 fm [37].

m1(amu) n ℓ Enℓ < 0

0 0 0 171.920

1 0 922.962

1 924.286

2 0 891.947

1 895.473

2 902.084

0.01 0 0 270.028

1 0 842.200

1 846.735

2 0 808.765

1 813.490

2 822.663

0.001 0 0 187.762

1 0 915.806

1 917.461

2 0 844.123

1 887.762

2 894.605
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