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Adaptive control of flexible multilink manipulators

MEHMET BODURTY and M. EROL SEZER?

An adaptive self-tuning control scheme is developed for end-point position
control of flexible manipulators. The proposed scheme has three characterist-
ics. First, it is based on a dynamic model of a fiexible manipulator described in
cartesian coordinates, which eliminates the burden and inaccuracy of translat-
ing a desired end-point trajectory to joint coordinates using inverse kinematic
relations. Second, the effect of flexibility is included in the dynamic model by
approximating flexible links with a number of rigid sublinks connected at
fictitious joints. The relatively high stiffness of the fictitious joints is shown to
result in a decomposition of the model into two subsystems operating at
different rates. This allows for stabilization of the oscillatory modes associated
with the flexible links by a fast feedback control in addition to a slower control
for trajectory tracking. Third, the control is constructed from measurements of
the end-point position and deformations of the flexible links, with the manipu-
lator parameters required to form the control obtained using a recursive
least-squares estimation algorithm, which is fast enough for on-line applica-
tions. Satisfactory results are obtained from digital simulation of a two-link
flexible manipulator.

1. Introduction

Conventional industrial manipulators are usually made stiff and bulky to
avoid vibrations and thus to achieve precision in motion control. Several
considerations such as lower arm cost, higher motion speeds, better energy
efficiency, safer operation, and improved mobility resulted in a new generation
of manipulators with lightweight, flexible links (Book 1985). Two major prob-
Iems in the motion control of flexible manipulators are to avoid oscillations due
to flexibility distributed along the links and to achieve accuracy in the position-
ing of the end-effector.

While several control schemes have been established for rigid manipulators
(see, for example, Luh er al. 1980, Freund 1982, Balestrino et al. 1983, Koivo
and Guo 1983, Lee and Lee 1984, Slotine 1985, Koivo 1985, Scuissi and Koive
1987, Craig 1988), a direct application of these schemes to flexible manipulators
gives unsatisfactory results owing to neglected elastic modes. Effective control of
flexible manipulators requires inclusion of elastic modes in the dynamic model
(Book 1984, Judd and Falkenburg 1985, Cetinkut er al. 1986), and additional
control to stabilize these vibrational modes. The singular perturbations approach
(Kokotovic 1984) based on a decomposition of the manipulator dynamics into
slow and fast modes associated with the joint variables and elastic deformations
has been reported to give satisfactory performance (Siciliano and Book 1988).

Another difficulty associated with the control of flexible manipulators is the
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solution of inverse kinematic relations in order to express a desired end-point
trajectory in terms of joint variables. Although it is possible to calculate the
static deflections of the links due to gravity at every point of a specific
trajectory, this is a tedious task as all calculations have to be redone for each
new trajectory. Besides, deflections of the links during fast motions do not
exactly match the precalculated static deflections. The pseudo-link concept
introduced by Nemir et al. (1988) allows for a simple description of the
end-point trajectory in terms of pseudo-link angles, considerably simplifying the
inverse kinematics problem. The pseudo-link angles needed for feedback purp-
oses are obtained from the measurements of the joint angles and of the
deflections of the links using strain gauges attached to them. The pseudo-link
concept has also been used by King er al. (1990) in a two-time-scale approach to
control of flexible manipulators, which promotes the application of model
reference adaptive control schemes (Craig 1988).

An obvious way of avoiding the inverse kinematics problem is to model the
manipulator dynamics and describe the desired trajectory in cartesian base-frame
coordinates. Although end-point position control in cartesian and other task-ori-
ented coordinates has been studied by many researchers (e.g. Luh er al. 1980,
Takegaki and Arimoto 1981, Koivo 1985), the resulting control schemes require
extensive computational effort, and are, therefore, impractical for real-time
applications.

The objective of this paper is to develop a computationally attractive
adaptive scheme for end-point position control of flexible manipulators suitable
for on-line applications. For this purpose, flexible links are modelled by a simple
bulk approximation using a series of fictitious joints, which represent lightly
damped vibration modes. This bulk approximation allows for the derivation of
dynamic equations of a flexible manipulator using the systematic formulations
such as Lagrangian (Uicker et al. 1964), or generalized d’Alembert (Lee et al.
1983), developed for rigid manipulators. Using the jacobian of the bulk
approximated rigid manipulator, the dynamic equations are expressed in terms
of cartesian end-point variables and fictitious-joint angles. The resulting model is
discretized into an auto-regressive externally excited system, which is shown to
possess a two-time-scale property. This allows for a decomposition of the control
law into two parts, one to force the slow system describing the end-point
dynamics to track a desired trajectory, and the other to stabilize the fast
subsystem describing the vibrational dynamics. The slow control consists of a
feedforward computed-torque component and a feedback from cartesian track-
ing errors, as standard in motion control of rigid manipulators (Koivo 1989).
The fast control, which is a feedback from the fast components of the
fictitious-joint variables, is approximated by a feedback from the actual
(measured) fictitious-joint variables and their quasi-constant components, which
can be expressed in terms of the end-point variables.

Implementation of the derived control law requires that the manipulator
parameters be known at every point of the trajectory. They can either be
calculated from the measured end-point variables and link deformations using
the employed formulation, or be estimated using an on-line adaptive scheme.
The latter involves much less computational effort, and is, therefore, more
suitable for on-line applications.

The developed control scheme is tested by digital simulation of a two-link
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manipulator with a flexible first link. The simulations are carried out in two
groups. The first group consists of simulations of collocated control schemes
without and with compensation of the static torque due to gravity. The second
group includes simulations of the developed control scheme with the manipula-
tor parameters computed from the bulk model using the generalized d’Alembert
formulation, and with the parameters obtained by a recursive least-squares
estimation (RLSE) algorithm {Goodwin and Sin 1984) to obtain a self-tuning
regulatory control. Simulation results indicate that the self-tuning approach can
be successfully implemented in real-time position control of flexible manipula-
tors.

2. Dynamic modelling

The dynamics of a flexible link can be accurately modelled as a distributed
parameter system resulting in a set of partial differential equations and initial/
boundary conditions as given by Cannon and Schmitz (1984). Such a model
describes an infinite number of modes, and is extremely complicated for
practical use. Studies by Cannon and Schmitz on identification of finite-order
transfer functions of flexible links showed that the modal gains beyond the third
flexible mode are negligible. Thus, the dynamics of a flexible link can ade-
quately be approximated by a second-order bulk model, which consists of two
rigid sublinks joined by a fictitious joint as shown in Fig. 1. Note thai the
angular displacement of the fictitious joint is a measure of the deflection of the
link.

Consider a flexible manipulator consisting of n joints, and let the m flexible
links (m =< n) be modelled by second-order bulk approximations. Using the
Lagrange—-Euler or the generalized d’Alembert formulations, the dynamical
model of such a manipulator can be obtained (King er al. 1990) as

L an 80 ] oJL80] o) =[] e

where g e R” and & € R™ are generalized displacements of the actual and
fictitious joints, 7, and t; are the corresponding generalized torques, and

_| A Ags —| Bag 0 5 &) = | €q
A(q’a)_l:Aaq Aaa:|’ B [0 0| €¢@040)= s

Figure 1. Bulk model of a flexible link.
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are, respectively, the non-singular matrix of inertial coefficients, the matrix of
the damping coefficients of the actuators at the actual joints, and the vector of
coriolis, centrifugal and gravitational torques. The actuator torques, t,(t), in
(2.1) are external inputs to the manipulator and can be chosen freely within the
limitations of the actuators. The torques of the fictitious joints, however, are
determined by the internal dynamics of the flexible links as

(1) = —K6(1) — K4d(2) (2.2)

where K, =diag{K,,, ..., K} and Ky=diag{Ky, ..., K4} contain the
spring constants and the viscous dampings of the fictitious joints.

Equations (2.1) and (2.2} constitute a dynamic mode! of a flexible manipula-
tor in the joint coordinates. To obtain a model in cartesian coordinates, we
assume that the end-point displacement vector p(¢) has the same dimension as

g(!), and write
p| | fg 9
7]+

bl _[1, Js|[4

& 0o 1 ][|$é

Bl [ ds|[d] o[V Js][a

3 0 I 0 0 0 s
where .(q=8f/8q, jq = [2?:1(821":/361;8(]:)51: + zﬁl(azﬁ/aqiaél)él]n,m and
Js and J; are defined similarly. To avoid pathological cases, we assume that the
jacobian J.(q, 8) is non-singular and well-conditioned along the desired trajec-

tory so that the mapping in (2.3) is invertible. Applying the transformatien in
(2.3) to the model in (2.1) and (2.2), we get

L A |20 4[5 B ][ 20] 4[]
=|:—Ks£(tr)q(—t)l<ds(z)] 2-5)

[App A,,s] _ [Aqq Ags | [J;‘ —1;115]
Asp Ass Aéq A(Sé__ 0 I

B,] = qu[]t;l '_J;lJé]

Accordingly

where

(2.6)

[Bpp

where the terms involving J, and J; are included in ¢, and c.. Note that the
identity £=¢J is used only to change the notation so that A, in (2.5) is
distinguished from A5 in (2.1). Note also that while B,s =0, B, # 0.
Finaily, we discretize (2.5) to get
-2 2 -2 2 -1 -1 =
T 2AppA p + T2 AL A%, + T By Ap + T By Agy + ¢, = 74 } @

T2A,A%py + T 2A A%, + Kiex + TV KgAg, + ¢, =0
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where p, = p(kT), €, = €(kT), and 1, = 1,(kT) with T being the discretization
step, the difference operator A is defined as
Afe = fi = fxm (2.8)

and the subscript k is omitted from the time-varying coefficients A,,, ..., B
cp and ¢, for simplicity in notation.

pe?

3. A non-collocated two-time-scale control

It has already been shown by Siciliano and Book (1988) that, for sufficiently
large values of the spring constants of the fictitious joints, the joint-space model
in (2.1) possesses a two-time-scale property. Although the analysis of Siciliano
and Book (1988) can be imitated for the cartesian-space model in (2.5) to obtain
a composite control consisting of slow and fast parts, which is then suitably
discretized for use in (2.7), we prefer to derive the control law directly using the
discrete-time model in (2.7) for the purpose of discrete implementation of the
adaptive controller.

We assume that elements of K, are sufficiently large compared with other
parameters in (2.7), and write K= T 2K!. As shown in the Appendix, the
system has a two-time-scale property, which allows for a decomposition of the
variables into quasi-constant and fast components as

Pk = Dk, Ex =&+ &, Tp=Tp + Ty (3.1)

Accordingly, (2.7) is decomposed into two subsystems:,

T2 ApA By + TT'B AP, + ¢, = Ty (3.2)
describing the slow dynamics, and
AE, + E K8, = T*E,, %, (3.3)
describing the fast dynamics, where
-1
Epp EPE:| [A,,p Ap£:|
= 34
[EEP EEE A Ep ASE ( )
The quasi-constant component of €, is specified in terms of p, and 7, as
Ev = —K;'[AepApp(tr — TT'B,,AP — ¢,) + ¢ (3.5)

At this point it is appropriate to note that, as in all applications of singular
perturbations theory, whether a parameter could be considered to be ‘large’
relative to others depends on the eigenstructure of the system rather than its
absolute magnitude. Although our theoretical development above formally
shows that the assumption K= T 2K} leads to a separation of the time scales
of the system, the validity of this result should be verified either by a simulation
or by actual implementation.

The above decomposition of the manipulator dynamics into slow and fast
components is valid only if the fast subsystem in (3.3) is asymptotically stable.
To achieve stability of £,, we apply a fast feedback control of the form

= Ri8y + Ky8i (3.6)
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which results in
(I + EK)8 — QI + T*E K )8+ (I - TPE,R)E,, =0 (3.7)

From (3.7) we observe that if R . and R 2 are chosen to satisfy

E Ry = -T7(I + E,K)Z, +2I] } 38)
E Ry = ~T7[(I + EK)Z, - 1] '
then the closed-loop fast subsystem is described by
By + Z18poy + 22842 =0 (3.9)

Now 2 1 and 22 can be chosen arbitrarily to stabilize the fast subsystem by
placing its 2m poles at desired locations. Note that this also allows for
decoupling of the fast dynamics, which means the vibrational modes associated
with the fictitious joints can be controlled independently. We also note that
since the bulk approximations of the flexible links contain only a single fictitious
joint, we have m < n, so that equations in (3.8) are generically solvable for K,
and 1?2.

With the fast subsystem stabilized, it now remains to choose the slow
component of the contro! input 1, to achieve a satisfactory performance of the
slow subsystem in (3.2). This, however, is the standard tracking problem for
rigid manipulators, for which a solution is available (Koivo 1989): We simply
choose

Ty = T72A,Ap8 + TTIB,,Apl + ¢, + Kieb_y + Kb,  (3.10)

where p'i'. describes the desired trajectory of the end-point, and ef = pY— Piis
the deviation of the actual trajectory from the desired one. Note that the first
three terms in (3.10) constitute a feedforward contro! (computed torque) which
decouples the manipulator’s slow dynamics, and the last two terms form a
feedback control to achieve a desired performance of the decoupled dynamics.
Applying the control in (3.10) to the slow subsystem in (3.2), and rearranging
the terms, we obtain

(Ap, + TB,)e} + (=2A4,, ~ TB,, + T*K)eR_, + (A,, + T?K3)eh, =0

(3.11)
Letting
Ky =TAp, + (Ap + TBLNZ, + I)] } 6.12)
Ky=T7'B,, + T"XA,, + TB,(Z;, = )
(3.11) is reduced to
eY + Zieh_ 1+ Z,e8 5 =0 (3.13)

Clearly, the error dynamics described by (3.13) can be controlled as desired by
choosing Z, and Z, properly to place the 2n poles arbitrarily.

The composite control is the sum of the fast and slow controls in (3.6) and
(3.10). Since &, is not directly measurable, we approximate 7, in (3.6}, by using
By =&y — £y and letting ;| = Ex_y = &, as

?k = I?lgk‘-l + szk_z - (kl + I?Z)Ek (314)
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Now the expression for &, in (3.5) can be used in {3.14) to get
te= Kiepy + Koty
+ (R + R)KTNA,A (T — TT'BLAD — ¢,) + ¢] (3.15)

which, like the slow control 7, involves only measurable variables.

4. Adaptive self-tuning non-collocated control

Implementation of the control law derived in the previous section requires
that the manipulator parameters Ap,, ..., By, ¢, and c, be known. Ii the
desired trajectory is known beforehand, then these parameters can be calculated
and stored off-line at several points along the trajectory: under the assumptlon
of perfect tracking without any oscillations, we set py, = p, = p4 and 8, =0, so
that e} = 0 and

Ex = Ex = _K;I(T_erpA2pk +ce)

which is obtained by substituting (3.10) with e§ =0 into (3.5). Using inverse
kinematic relations, actual and fictitious joint displacements g, and &, are
calculated from p, and g,, which, in turn, are used to calculate the parameters
Ay, ...y By in (2.1), and finally A,,, ..., By, in (2.7) via (2.6). Obviously,
this method involves extensive computations which are not suitable for on-line
applications.

An alternative to calculating the manipulator parameters is to estimate them
from input/output data using the RLSE algorithm (Goodwin and Sin 1984). To
reduce the computational effort, we make a simplifying assumption that B,, =0
and B,, = 0. Then, defining

v = T Ape, wy = T 1Ag, (4.1)

which represent the approximate cartesian velocity of the end-point, and the
angular velocities of the fictitious joints, respectively, (2.7) becomes

A AD/( TCP
|:Al:; [Awk] [ TK Ek dAEk] I: ] (“4-2)
Letting
Tty _1¢
|:Aw ] [ TK e, — KdAsk:l’ € = Lj (4.3)

Equations (4.2) can be written in the standard form
Yi = Oy (4.4)

where y; is the observation vector
¢ = [ui 1)
is the input, and
O = [Ex = TEcy]

is the parameter matrix, with E; denoting the matrix in (3.4).
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Assuming slow variations of the parameters, a least-squares estimate of O
which minimizes the weighted sum

k
Ji = IE—:on—I(y’ - 0,97y — B19) (4.5)
is obtained (Goodwin and Sin 1984) as
O = B4_1 + au(yk — Ouo1 L) Pk P }

Py =y U(Proy — @ Pro1¢rbiPror)

where ay = (1 + @1 Piy¢x) "', and 0 < y < 1 is the forget factor.

In (4.6), the input vector ¢k is constructed from the calculated value of the
input torques, T, and the measurement of the deflections, &,, of the fictitious
joints. Once O, is calculated, estimates of the parameters A,,, ..., A, ¢, and
¢, are obtained by inverting the (n + m) X (n + m) matrix Ej.

In implementing the RLSE algorithm, the initial value of @, can either be
calculated using inverse kinematic relations at the start of the trajectory
assuming static deflections, or obtained by a (n + m + 1)-step non-recursive
least-squares estimation scheme. It may also be necessary to add suitable
continuous persistent oscillations to the input 7; in order to excite all the modes
of the manipulator (Goodwin and Sin 1984).

With the manipulator parameters estimated, the slow control is given by

Ty = T2ASIA P + (2 + 2D)eby + (Z, — Do) + ¢ (4.7)

which is obtained from (3.10) and (3.12) with B,, =0, and superscript e
denoting the estimated value of the indicated parameter. Substituting (4.7) into
(3.15), the fast control becomes

?k =I?]8k_1 + ]?28"“2 + (]?1 + 1?2)K;IC:
+ TR, + I?Z)KS-IA:‘;J[AZP?( +(Z) + 2Dely + (Z; — Dek_;] (4.8)

The expressions for T, and %, above show a further advantage of assuming
B,, = 0; that is, the inverse of A,,, required in (3.15), is avoided.

(4.6)

5. Simulation results

The proposed two-time-scale control is tested by digital simulation of a
planar two-link manipulator shown in Fig. 2. Performances of non-collocated
control based on calculated and estimated parameters are compared with each
other and with a simple collocated control based on the rigidity assumption.

5.1. Manipulator and trajectory descriptions

The manipulator shown in Fig. 2 consists of two links, the first one being
flexible. The links have lengths 0-3m and masses 10kg each. The effective
inertias and damping coefficients of the actuators are 6-35 kgm? and 2-12 Nms
for the first joint, and 1-30 kgm? and 0-43 Nms for the second joint.

The flexible link is modelled by a second-order bulk approximation consist-
ing of two sublinks having length 0-25 m each. Assuming that an actuator is
placed at the second joint, the mass of the flexible link is distributed between
the sublinks as 2 kg and 8 kg respectively. The spring constant and the damping
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Figure 2. Simulated flexible manipulator and the desired trajectory.

coefficient of the fictitious joint are assumed to be K;=400Nm and
K4 =0 Nms respectively. Note that the numerical value of K is large enough
to justify a singularly perturbed model.

The trajectory to be followed by the end-point is a circular path in the plane
of the manipulator with radius 0-2 m and centred at (0-5 m, 0) as also shown in
Fig. 2. It is to be traced in 4 s starting from the point (0-7 m, 0), with an angular
velocity and acceleration as specified in Fig. 3(a). Corresponding displacements
of the end-point in cartesian coordinates are shown in Fig. 3(b). This trajectory
is chosen particularly to demonstrate the effectiveness of the proposed control
scheme under large inertial variations along the path.

The simulations are performed for a discrete model of the manipulator
corresponding to a sampling period of T =0-005s. That is, the manipulator
parameters are updated (either by calculation or by estimation) once every
0-005 s, as well as the value of the control input. The Runge~Kutta method with
a step size of h =0-001 s is used for numerical integration of the manipulator
equations during each sampling period.

5.2. Collocated control
The collocated control is designed for a rigid model given as
Aggd(t) + Bgq(t) + ¢ = 1,(1) (5.1)

which is obtained from (2.1) by neglecting the flexible modes. Discretization of
(5.1) yields

T 24, A%y + T By Aqy + ¢ = 14 (5.2)
which is of the form of {3.2). The control required to track a desired trajectory
g% specified in joint coordinates has the same structure as % in (3.10), and is
given by

T = T2 A,A% S + T"ququ‘,j‘ + g+ Kpelq + Kpel,  (5.3)
where e} = q‘}, — gy. Hence, the choice

Kp = Thz[Aqq + (Agg + TBy)(Zg1 + D] } (5.4)

Kp=T "By + T Ay + TByNZp — 1)
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Figure 3. Description of the desired trajectory: (a) angular speed and acceleration along the
desired trajectory specified in Fig. 2; (b) desired end-point displacements (pd: sohd,
p§: dotted).

results in an error equation
q q 9 _ ’
e+ quek_l + Zqzek_z =0 (55)

whose poles can be assigned arbitrarily.

Note that the control law in (5.3) involves only the measurement of the
angular displacements of the actual joints, and is, therefore, much simpler to
implement than the non-collocated control based on a two-time-scale model.

In the simulations, K, and K, ; in (5.4) are selected to place the poles of the
error equation in (5.5) at z = (1+207)"! =0-8333, which corresponds to
continuous-time poles at s = —20. In the first simulation, parameters Ag,, B,
and c, are calculated at every discretization step using the generalized d’Alem-
bert formulation along the actual trajectory g, assuming rigid links. The desired
trajectory qi is obtained from the specified cartesian trajectory pj using inverse
kinematic relations with , = Ad, = 0. The simulation results shown in Fig. 4
indicate approximately 15% maximum error in the x-direction and 29% max-
imum error in the y-direction relative to the radius of the circular path. The
static error in the y-direction is attributed to the deflection of the flexible link
due to gravity. A compensation of this static torque is expected to improve the
performance of the collocated control. To verify this, a second simulation is
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Figure 4. Response to collocated control: () tracking error (ef: solid, ef: dotted); (b)
fictitious joint displacement.

carried out, in which the desired trajectory g% is generated from pi assuming
quasi-constant deflections &, = Ks_lc(s. The parameters A ., B,,, ¢, and c; are
calculated from the measured values of g, and &; assuming Ad, = 0. The
simulation results shown in Fig. 5 indicate that the static error is eliminated, and
the maximum tracking errors in the x- and y-directions are reduced to
approximately 1% and 4% respectively.

5.3. Non-collocated two-time-scale control

A second group of simulations are performed to test the performance of the
composite control law derived in § 3. The feedback gains K, and K, of the slow
control are chosen to place the eigenvalues of the slow subsystem at
z=(1+207T)"" = 0-8333, the same value used in simulation of the collocated
control. The feedback gains K, and K, of the fast control are chosen to place
the fast poles at z =(1+ 607)"! = 0-6250, corresponding to continuous-time
poles at s = —60, three times faster than the siow poles, to provide rapid decay
of oscillations. .

Simulation results with the manipulator parameters calculated along the
desired trajectory are shown in Fig. 6. The results indicate that while the
tracking errors are comparable with those in the case of collocated control with
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Figure 5. Response to collocated control with static compensation: (a) tracking error (e%:
solid, e}: dotted); (b) fictitious joint displacement.

static compensation (approximately 2% maximum error in both directions), a
major advantage of the composite control is observed to be the elimination of
the long-lasting oscillations at the completion of the trajectory.

Finally, the simulations are repeated with the parameters estimated as
described in § 4. In the estimation algorithm, zero-mean triangular signals with
amplitudes 7, = 50 Nm and periods 3T and 5T are added to the input torques
to excite all modes of the manipulator. The forget factor is taken to be y = (-8,
and the initial value of the matrix P, in (4.6) to be Py;=20/. During
estimation, Py is reset to P, whenever the diagonal elements exceeded 50. The
results shown in Fig. 7 indicate that the seif-tuning control is as good as the one
based on calculated parameters, with the added advantage of being implement-
able on-line.

We conclude our discussion with a few comments on the computational
complexity of the proposed control scheme. Table 1 provides expressions for the
total number of additions and multiplications involved at each discrete time step
in terms of the number of actual and fictitious joints. Table 2 shows the
corresponding numerical values as well as the CPU times (including data
transfer between memory and registers) for two different processors. As can be
observed from Table 2, the proposed adaptive non-collocated control scheme
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Figure 6. Response to non-collocated control based on calculated parameters: (a) tracking
error (e}: solid, e%: dotted); (b) fictitious joint displacement.

based on a two-time-scale model is suitable for on-line control of even relatively
sophisticated manipulators with up to six flexible links.

6. Conclusions

A two-time-scale adaptive control scheme is proposed for motion control of
flexible manipulators. The self-tuning controller is based on a cartesian-space
dynamic model of the manipulator obtained by approximating the flexible links
with rigid sublinks connected at fictitious joints, and an estimation algorithm
used to obtain the parameters of this model.

Bulk approximation of flexible links yields a model which is not much more
complicated to control than a rigid one, but which includes a reasonable
representation of the vibrational modes. Although modelling accuracy can be
improved by a finer division of the flexible link into sublinks, this increases the
order of the dynamic equations, and hence, the amount of computations
involved in generating the control. Besides, not all the vibrational modes may be
controlled by a limited number of actuators. This corresponds to a case where
m > n, so that (3.8) may not be solvable for arbitrary 21 and 2 2

Working with a dynamic model in cartesian coordinates has the advantage
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Figure 7. Response to adaptive non-collocated control: (a) tracking error (ef: solid,
ef: dotted); (b) fictitious joint displacement.

Computation Additions Multiplications

Kinematics n? + 30n + 31m + nm n? 4+ 391 + 39m + nm

RLSE 350t +35m2 +7-5n+85m+Tnm+2 472 +4m? 4+ 11ln+ 12m+8nm + 6

Inversion m3+nl+mP+mi+3a2m+3min+2nm P4 an+mP+m+3nim+3min

Control law n* 4+ 13n + 2m + nm nt +6n+4m+ nm

Total { n 4+ 6502 + 5050+ m3 4+ 45mi+ nPH6nt4+5Tn+ md3+4m? + 56m +
41-5m + 3ntm + 3Imin + 1lnm + 2 In¥m + 3min 4+ 10nm + 6

Table 1. Operations count for adaptive nen-collocated control.

that a desired trajectory can be specified directly in the task space. This
eliminates the need for calculating the desired joint displacements using inverse
kinematic relations, which is not only computationally tedious but also inaccu-
rate during fast motions of the manipulator.

Implementing the control using an on-line estimation scheme makes the
control structure independent of the coordinate system in which the manipulator
is modelled. However, it requires that the end-point position and the deflections
of the flexible links be measurable for feedback purposes and that the computa-
tions involved be done in reasonable time. A simplified model like the one in



Kinematics RLSE Inversion Control TOTAL Time (ms)
n m Add Mul Add Mul Add Mul Add Mul Add Mul 3861 386-87%
2 1 97 123 57 76 36 30 34 22 224 251 0-63 1-17
3 3 20 252 176 219 252 222 63 48 692 741 1-88 3-52
5 3 283 352 289 353 576 520 m 82 1259 1307 3-35 6-30
6 6 438 540 602 720 1872 1740 162 132 3074 3132 8-:09 152

180386 (30 MHz) processor with 32 bit signed integer arithmetic.

18038687 (30 MHz) processor with 64 bit floating point arithmetic.
Table 2. Number of operations and CPU times.

siomdiupwe yuipmw 3)qixayf fo 104103 aandovpy

1339



534 M. Bodur and M. E. Sezer

§4 helps reduce the computational effort without causing any significant
degradation of the controller performance.

Appendix
Derivation of the two-time-scale maodel
Defining the state variables

Xie = Py X =T 'Aps, zpe =T 264, 2 = T Ay (A1)

Equations (2.7) can be written in state space form

I 0 0 0 Axlk 0 T 0 0 X1k
0 Ap 0 TA, ||Axy | _|0 -TB, 0 ~T?Bp. || xa
0 0 I 0 Az 0 ] 0 1 21k
0 A, 0 TA. [|Azn 0 0 -TK, -T?Kqg_|| 2
0
+ T(rko_ CP) (A 2)
-Tc,
where K! = T*K. Using (3.4), (A 2) can be manipulated into
Ax g 0 T 0 0 Xik
Axy | _|0 —TE,B,, ~—TE,K; -TXEpB, + E,Kg) ||xu
Az 0 0 0 I 21k
Az 0 _Eepop —E.K; _T(Eepocs + EeeKd) 22k

0

+ TE, (7x — gp) - TE,.c,

(A3)
Eep(rk - Cp) — Egece

Equations (A 3) reveal that incremental changes Axy; and Axy; are of the
order of T, indicating a slow (quasi-constant) behaviour of xy; and x,;, while
z1x and zy; consist of both slow and fast components. Decomposing the state
variables into slow and fast components as

X =Xk, =T+ Zi» =12, T =T + Ty

and attributing the incremental changes Az to their fast components, the slow
components of z;; can be solved from the last two equations in (A 3) with T =0

as
EE R S|P

+ [(Ks) 1E;€1Eep(rla_ Cp) - (Ks)-lcﬂ (A 4)
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Replacing z,; and z; in the first two equations in (A 3) with Z;; and Z
above and using the relations in (3.4), we get

[22::' [ ;,}Bp,,_ |:x2k:| [ (rk cp):| (AS)

which, together with (A 4), describes the slow subsystem. The fast dynamics are
readily obtained from the last two equations in (A 3), by setting T =0, as

ste] e oJ[E] +Lege]

~ - ) ~ A6

|:A12k —E.K; 0| Zx E.pTi (A6)
Finally, rewriting (A 4)—(A 6) in terms of the slow and fast components of

the original variables p; and £;, we get (3.2), (3.3) and (3.5).
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