
approaches a constant maximum value for tapers longer than 15
mm.

CONCLUSION

Planar transmission-line impedance transformers with an uncon-
ventional multilayered structure obtained by deposition of high-
dielectric-constant thin films on bulk substrates have been de-
signed and their performance have been compared to those of
transformers printed on very high-dielectric-constant (�r � 80)
bulk substrates. The propagation characteristics of the tapered lines
were investigated using the finite-element method through a com-
mercially available software package. The dispersion effects and
impedance variation with respect to frequency were taken into
account in the analysis. The response of the proposed structure
does not deteriorate significantly with frequency, thus allowing
operation in an acceptable range up to 40 GHz. The investigation
of the propagation characteristics of short electrical pulses on the
unconventional multilayered structure and on very high-dielectric-
constant bulk-substrate tapers was carried out, confirming the
better performance of the proposed structure. The propagation of
very short pulses without substantial distortion was verified. Fi-
nally, the effects of the multilayered taper length on the perfor-
mance were assessed.

The newly proposed multilayered structure presented attractive
results. The achieved effective dielectric constant is very high,
whereas the structure has very low dispersion, thus allowing the
construction of compact high-frequency devices. The lines have
both simple cross sections and comfortable transversal dimensions
for a wide range of impedances, thus leading to less expensive
manufacture. The results obtained thus far indicate that this struc-
ture may be suitable for many other applications in microwave
components.
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ABSTRACT: An extension of the discrete Fourier transform (DFT)-
based forward-backward algorithm is developed using the virtual-ele-
ment approach to provide a fast and accurate analysis of electromag-
netic radiation/scattering from electrically large, planar, periodic, finite
(phased) arrays with arbitrary boundaries. Both the computational com-
plexity and storage requirements of this approach are O(Ntot) (Ntot is
the total number of unknowns). The numerical results for both printed
and freestanding dipole arrays with circular and/or elliptical boundaries
are presented to validate the efficiency and accuracy of this approach.
© 2005 Wiley Periodicals, Inc. Microwave Opt Technol Lett 47: 293–298,
2005; Published online in Wiley InterScience (www.interscience.wiley.
com). DOI 10.1002/mop.21150

Key words: phased arrays; method of moments; discrete Fourier trans-
form; iterative solvers

1. INTRODUCTION

Several design tools and numerical techniques, in particular, the
integral-equation-based method of moments (MoM) solutions [1],
have been implemented in computer-aided design (CAD) packages
to investigate the electromagnetic (EM) radiation/scattering from
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large and finite, planar freestanding phased arrays and printed
structures over grounded dielectric slabs accurately, since these
structures have many military and commercial applications. How-
ever, the majority of conventional design and analysis methods, as
well as the available CAD tools, suffer greatly from memory-
storage requirements and computing time when the number of
elements in the array increases rapidly.

In recent years, several MoM-based methods have been pro-
posed to improve the operational count and memory-storage re-
quirements of the conventional MoM [2–15]. Making use of sta-
tionary or nonstationary iterative schemes in the MoM solution
reduces the operational count from O(Ntot

3 ) (of order Ntot
3 ) to

O(Ntot
2 ), where Ntot is the total number of unknowns. The fast

multipole method (FMM) [4] with an operational count O(Ntot
1.5)

and its subsequent extensions such as multilevel FMM (MLFMM)
[5] (O(Ntotlog Ntot)), as well as conjugate gradient-fast Fourier
transform (CG-FFT) with O(Ntotlog Ntot) [6] are some successful
efforts. Besides, infinite array approximation [7], and hybrid ap-
proaches to reduce the total number of unknowns such as a hybrid
combination of MoM with either uniform geometrical theory of
diffraction (UTD) [8–10] or discrete Fourier transform (DFT) [11,
12] are useful techniques that are available in the literature.

Recently, a DFT-based acceleration algorithm [13] was used in
conjunction with stationary (for example, the forward-backward
method (FBM)) and nonstationary (for example, biconjugate gra-
dient stabilized method (BiCGSTABM)) iterative MoM (IMoM)
[14, 15] to reduce the computational complexity and memory
storage of the IMoM solution to O(Ntot) in the analysis of elec-
trically large, planar, periodic, rectangular, finite phased arrays of
both freestanding and printed dipoles. In this approach (DFT-
IMoM), contributions to every receiving element in the array are
coming from two different regions: namely, the strong region
formed by the nearby elements of the receiving element whose
contributions are calculated in an element-by-element fashion, and
the weak region formed by the rest of the array elements whose
contributions are obtained from the DFT representation of the
entire current distribution, in which only a few significant DFT
terms are sufficient to provide accurate results.

In this paper, an extension of the DFT-IMoM approach has
been developed to provide an efficient and accurate analysis of EM
radiation/scattering from electrically large, planar, periodic, finite
(phased) arrays with arbitrary boundaries, such as arrays with
circular and/or elliptical boundaries, by introducing the virtual-
element concept. These arrays become important when the host
platform of the array has size and/or shape constraints. FBM is
used as the iterative algorithm, and the method (DFT-FBM) has
been applied to both freestanding and printed dipole arrays. Very
accurate results have been obtained with a computational com-
plexity and memory-storage requirement of O(Ntot). It should be
noted that recently such arrays have been analyzed using a Floquet
wave-based diffraction approach [16]. However, only the radia-
tion-pattern results have been given in [16], as opposed to the
results given in this paper where both the radiation-pattern and
array-current distributions are accurately presented.

In section 2, the formulation of the DFT-IMoM (DFT-FBM)
approach is briefly described and its implementation to the analysis
of large, planar, periodic, finite (phased) arrays with arbitrary
boundaries is given, considering both freestanding and printed
dipoles. The numerical results are presented in section 3 and
compared with conventional MoM-based reference solutions in
order to validate the method’s efficiency and accuracy. An ej�t

time dependence is assumed and suppressed throughout this paper.

2. FORMULATION

2.1. Geometry
Consider a uniformly excited, planar, periodic array of dipoles
with an arbitrary boundary. The array elements are either identical,
thin, perfectly conducting wire dipoles oriented along the x̂ direc-
tion in the z � 0 plane in air (freestanding dipoles), as illustrated
in Figure 1(a), or identical x̂ directed printed dipoles on a grounded
dielectric slab with a thickness d and relative dielectric constant
�r, as depicted in Figure 1(b). For both geometries, each dipole is
assumed to have a length L and a width W, and to be uniformly
spaced from its neighbors by distances dx and dy in the x̂ and ŷ
directions, respectively. The dipoles are assumed to be center-fed
with infinitesimal generators.

2.2. The Moment Method Solution
Since the array elements are thin (W � L), only x̂-directed
currents are required in the MoM modeling. Hence, the current
distribution on each dipole is given by

Jnm
s � x�, y�� � Anmfnm� x�, y��, (1)

where Anm is the unknown coefficient that determines the total
current at the feed point on the nmth (�N � n � N, �M � m �
M, (n, m) � array, but the contour is not rectangular) element,
and fnm( x�, y�) on the nmth dipole is sinusoidal for the freestand-
ing dipole arrays (see Fig. 1(a) and [11, 13, 15]), whereas it is
piecewise sinusoidal (PWS) for the printed dipole arrays (see Fig.
1(b) and [12, 14, 15]). It should be mentioned at this point that
using more than one basis function per dipole does not change the
formulation but improves the accuracy.

Using an electric-field integral equation (EFIE) (formed via the
boundary condition such that the total Ex vanishes on each dipole
surface), and using a Galerkin MoM solution for this EFIE, a
matrix equation of the form

Figure 1 Geometry of a planar, irregularly contoured, periodic array of
(a) freestanding and (b) printed dipoles. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]
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Z� � I � V (2)

is obtained. In (2), I � [Anm] is the unknown vector of expansion
coefficients and Z� � [Znm,pq] is the impedance matrix of the array
with elements Znm,pq, which denotes the mutual impedance be-
tween the nmth and pqth (�N � p � N, �M � q � M, ( p, q)
� array) dipoles, given by

Znm,pq � �
Spq

dSpq �
Snm

dS�nmfpq�rpq�Gxx�rpq�r�nm� fnm�r�nm�, (3)

where rpq and r�nm are the position vectors of the pqth and nmth

dipoles. Finally, Gxx(rpq�r�nm) is the corresponding component of
the (i) free-space dyadic Green’s function for the freestanding
dipole array, and the (ii) planar microstrip dyadic Green’s function
[17] for the printed dipole array. On the other hand, V at the right
hand side of (2) is the voltage vector related to the excitation of the
pqth element given by Vpqe�jkxpdxe�jkyqdy with

kx � k0sin �icos �i; ky � k0sin �isin �i, (4)

where (�i, �i) is the scan direction of the beam.

2.3. Review of Forward-Backward Method (FBM) for Phased
Arrays
Similar to [14], the FBM is employed to solve (2) by first splitting
the total current into forward and backward components, namely,
I � If � Ib, where If is the forward component denoting the
current distribution due to the wave propagation in the forward
direction and Ib is its backward correction. Hence, the matrix
equation given by (2) is transformed to

Z� s � If � V � Z� f � �If 	 Ib�; Z� s � Ib � �Z� b � �If 	 Ib� (5)

where Z� s, Z� f, and Z� b are the diagonal, lower, and upper triangular
parts of the impedance matrix Z� , respectively. Initializing Ib to
zero at the first iteration, (5) is solved for If and Ib by forward and
backward substitutions, respectively. Iterations are continued until
convergence is provided; this requires, in general, three or four
iterations.

2.4. DFT-Based Acceleration Algorithm
The computational complexity and memory storage of FBM is
O(Ntot

2 ) due to the repeated and time-consuming computations of
Z� f � I and Z� b � I, which prohibits its application to very large
arrays. Therefore, the DFT-based acceleration algorithm is used in
conjunction with FBM, which is based on using the DFT spectrum
of currents to reduce computational complexity. As shown in
Figure 2(a), a typical current distribution on array elements is quite
different from the feed distribution, especially near the array
boundary. Hence, to find the current distribution on the array and
the input impedances of the elements accurately, one has to ana-
lyze the complete array using rigorous numerical methods. How-
ever, the DFT spectrum of practical array currents are very com-
pact, as seen in Figure 2(b). Consequently, the selection of a few
significant DFT terms from the DFT spectrum is sufficient to
provide accurate results. These significant DFT terms are selected
based on the criteria given in [11].

The DFT-based acceleration algorithm is actually well-suited
for the fast and accurate analysis of rectangular arrays (freestand-
ing and printed) [13–15]. Therefore, to implement this algorithm
efficiently, the arrays shown in Figure 1 are mathematically ex-
tended into a rectangular array with virtual elements as shown in
Figure 3. All the virtual elements are located external to the array

Figure 2 (a) Current amplitudes �Anm�, and (b) DFT spectrum of the
currents �Bkl� for a uniformly excited 749-element elliptical printed dipole
array. The array parameters are (L, W) � (0.3
0, 0.01
0), dx � dy �
0.5
0, �r � 2.55, d � 0.06
0 and (�, �) � (0°, 0°). [Color figure can
be viewed in the online issue, which is available at www.interscience.
wiley.com.]

Figure 3 In the extended array, decomposition of interaction elements in
terms of strong and weak groups with respect to the pqth receiving element.
The virtual elements are the dipoles (marked with red) located external to
the array boundary. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]
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boundary. Then, similar to [13–15], this DFT-based acceleration
algorithm is implemented. Briefly, the contributing elements in
front of the receiving element are divided into “strong” and
“weak” interaction groups (Fig. 3), such that

�Z� � I�pq � �
nm�strong

AnmZnm,pq 	 �
nm�weak

AnmZnm,pq. (6)

The number of elements which remain in the strong group is fixed
and very small compared to the number of elements in the entire
array, but contributions coming from this group assure the funda-
mental accuracy of the method and, hence, are obtained in an exact
element-by-element fashion. On the other hand, although contri-
butions coming from the weak group provide only minor correc-
tions, their evaluation without the acceleration algorithm would
constitute the most time-consuming aspect of the MoM calcula-
tions. Therefore, the weak region contribution to the pqth receiving
element, given by

Eweak�rpq� � �
nm�weak

AnmZnm,pq, (7)

is rewritten as

Eweak�rpq� �

�
k��N

N �
l��M

M

Bkl �
nm�weak

Znm,pqe
�jkxndxe�jkymdye�j2��kn/ 2N�1�e�j2��lm/ 2M�1�

(8)

by using the DFT expansion of the unknown coefficients Anm,
which is expressed as

Anm � e�jkxndxe�jkymdy �
k��N

N �
l��M

M

Bkle
�j2��kn/ 2N�1�e�j2��lm/ 2M�1�, (9)

with Bkl being the coefficient of the klth DFT term. Using only the
important DFT terms [due to the compactness of the DFT spec-
trum, as shown in Fig. 2(b)], which are a few but significant so that
the accuracy is maintained, results in

Eweak�rpq� � �
kl�Q

BklCkl,pq, (10)

where Q denotes the selected DFT terms, and

Figure 4 Comparison of the magnitude of induced current �Anm� for the
(a) 2nd row and (b) 11th rows and (c) the radiation pattern obtained via
DFT-FBM and conventional MoM of a 901-element (35 	 35) elliptical,
uniformly excited freestanding dipole array. The array parameters are (L,
W(radius)) � (0.4
0, 0.001
0), dx � 0.7
0, dy � 0.4
0 and (�, �) � (0°,
0°). Size of the strong region � 5 	 5. Number of DFT terms � 3. [Color
figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]

Figure 5 (a) Magnitude and (b) phase of the current amplitudes on the
5th row of a 709-element (31 	 31) circular, uniformly excited printed
dipole array. The array parameters are (L, W) � (0.39
0, 0.01
0), dx �
dy � 0.5
0, �r � 2.55, d � 0.06
0 and (�, �) � (30°, 0°). Size of the
strong region � 3 	 3. The number of DFT terms � 5, and three basis
functions per dipole are used. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

296 MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 47, No. 3, November 5 2005



Ckl,pq � �
nm�weak

Znm,pqe
�jkxndxe�jkymdye�j2��kn/ 2N�1�e�j2��lm/ 2M�1�. (11)

Ckl,pq in (11) denotes the contribution of the klth DFT term to the
pqth receiving element and can be calculated very efficiently in an
iterative fashion for the rectangularly contoured arrays, as demon-
strated in [13–15].

On the other hand, the arrays we consider in this paper are
irregularly contoured arrays and are extended to rectangularly
contoured ones by introducing the virtual elements so that Eqs.
(6)–(11) can be used. However, when using these equations, it
should be assumed that currents on these elements are exactly zero
(that is, Anm � 0 for virtual elements). Therefore, in the evaluation
of the strong region contributions, both the voltages on these
elements and the mutual coupling between and with these elements
are set to zero. In other words,

Vpq � 0 if pq � virtual element, (12)

and

Znm,pq � 0 if nm and/or pq � virtual element. (13)

Implementation of (12) and (13) will assure that Anm � 0 for
virtual elements.

On the other hand, in the evaluation of the weak-region con-
tributions, such as the computation of (11), each Znm,pq between a
virtual element and a real element, as well as each Znm,pq between
two virtual elements, are identical to those between real elements
(that is, they are now nonzero as opposed to (13)). Since the Anm

values of virtual elements are now taken as zero in the computation
of the Bkl values, utilization of nonzero Znm,pq values will not
cause any problem if all DFT terms are employed. In reality,
insignificant errors might occur due to the use of few DFT terms.
However, that amount of error in the computation of contributions
coming from the weak region will not affect the overall accuracy.

3. NUMERICAL RESULTS

To assess the accuracy and efficiency of this proposed approach
for the analysis of irregularly contoured arrays, numerical results
pertaining to both freestanding and printed dipole arrays are ob-
tained and compared with the results obtained via conventional
MoM. In all examples, the arrays are excited uniformly in ampli-
tude so that Vpq � 1 in (2) for each pqth dipole.

In Figures 4(a) and 4(b), current amplitudes �Anm� versus the
element position on the 2nd and 11th rows are evaluated using
DFT-FBM and compared with the conventional MoM solution
pertaining to a 901-element elliptical (the size of the corresponding
rectangular array after introducing the virtual elements is 35 	 35),
uniformly excited freestanding dipole array with dx � 0.7
0 and
dy � 0.4
0 (with 
0 being the free-space wavelength). The length
and radius of each dipole are 0.4
0 and 0.001
0, respectively. The
elements are phased to radiate a beam in broadside direction, as
shown in Figure 4(c). As seen from the figure, very good agree-
ment is obtained using just three DFT coefficients and 5 	 5 strong
regions (12 elements in forward and 12 elements in backward
runs). Less than 2% error is achieved with just three iterations, and
the elapsed CPU time for DFT-FBM is 0.17 sec, whereas it is 10.4
sec for the conventional MoM approach.

Figures 5(a) and 5(b) depict the magnitude and phase of current
amplitudes versus element position on the 5th row of a 709-
element circular (the size of the corresponding rectangular array
after introducing the virtual elements is 31 	 31), uniformly
excited printed dipole array on a 0.06
0 thick substrate with �r �
2.55. Each dipole has a dimensions of (L, W) � (0.39
0,

Figure 6 Comparison of the magnitude of induced current �Anm� for the
(a) 4th and (b) 11th rows obtained via DFT-FBM and conventional MoM
for a 749-element (41 	 25) elliptical, uniformly excited printed dipole
array. The array parameters are (L, W) � (0.39
0, 0.01
0), dx � dy �
0.5
0, �r � 2.55, d � 0.06
0 and (�, �) � (0°, 0°). The size of the
strong region � 3 	 3, the number of DFT terms � 5, and three basis
functions per dipole are used. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

Figure 7 Comparison of CPU times for DFT-FBM and MoM with LU
decomposition for printed dipole arrays. The array and the substrate pa-
rameters are the same as the ones used in Figs. 5 and 6. [Color figure can
be viewed in the online issue, which is available at www.interscience.
wiley.com.]
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0.01
0) and they are spaced from each other by distances dx �
dy � 0.5
0 in the x̂ and ŷ directions, respectively. The elements
are phased to radiate a beam in the (�, �) � (30°, 0°). For this
example, the size of the strong region is 3 	 3 (four elements in
forward and four elements in backward runs), and five DFT terms
are used. Again a residual error less than 1.5% error is achieved
with three iterations. The elapsed CPU time for DFT-FBM is 0.625
sec for this example. Using a conventional MoM approach requires
a CPU time of 595.9 sec. Note that three basis functions per dipole
is used for this example.

As a third example, a 749-element printed dipole with an
elliptical boundary is considered (the size of the corresponding
rectangular array after introducing the virtual elements is 41 	 25).
The array and the substrate parameters are the same as the previous
example. Figures 6(a) and 6(b) show a comparison of the magni-
tude of induced current �Anm� for the 4th and 11th rows, respec-
tively, obtained via DFT-FBM and conventional MoM. The size of
the strong region, the number of DFT terms, and the residual error
are also the same as the previous example.

As seen in all examples, very good agreement between the
DFT-FBM and conventional MoM results has been achieved,
thereby establishing confidence in the present DFT-FBM ap-
proach. Finally, the CPU times of the DFT-FBM approach and
MoM with LU decomposition is compared in Figure 7 for a printed
dipole array whose parameters are the same as the ones used in the
aforementioned numerical results. As illustrated in the figure, the
required CPU time for the DFT-FBM approach is very small
compared to that required in the conventional MoM, especially
when Ntot is very large.

4. DISCUSSIONS AND CONCLUSIONS

Efficient and accurate analysis of electrically large, planar, peri-
odic, finite (phased), arbitrarily contoured arrays of both freestand-
ing and printed dipoles has been presented by introducing the
virtual-element concept. Both the computational complexity and
the memory-storage requirements are O(Ntot). The efficiency and
accuracy of the method have been demonstrated by numerical
results in the form of current distributions on and far-field radiation
patterns of various arrays with irregular contours.
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ABSTRACT: This paper presents the design and results of a novel
broadband dual-polarized circular patch antenna. The antenna is fed by
microstrip lines through proximity coupling, and H-shaped slots are cut
in the ground plane below the feed lines for enhancing the coupling be-
tween the patch and the feed lines. By using only a single circular mi-
crostrip patch, the prototype antenna yields bandwidth of 21.5% and
25.9% at the input ports 1 and 2, respectively. The isolation between
two input ports is below �30 dB across the bandwidth. Good broadside
radiation patterns are observed, and the cross-polar levels are below
�20 dB at both E- and H-planes. Due to its simple structure, it is easy
to form arrays by using this antenna as an element. © 2005 Wiley Peri-
odicals, Inc. Microwave Opt Technol Lett 47: 298–302, 2005;
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