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Abstract

In this paper, we find bounds on the distribution of the maximum loss of
fractional Brownian motion with H ≥ 1/2 and derive estimates on its tail
probability. Asymptotically, the tail of the distribution of maximum loss
over [0, t] behaves like the tail of the marginal distribution at time t.
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1. Introduction

The maximum loss can be defined as the maximum decrease from the
higher values to the lower values of a process X, also called the maximum
drawdown. It is expressed by sup0≤u≤v≤t(Xu − Xv) for each t ≥ 0. Pre-
viously, the exact distribution of the maximum loss has been studied for
Brownian motion with no drift as given in [5], and with drift in [4, 8, 12].
Asymptotic expressions are observed by [8] for the distribution and the
expected value as t → ∞. One motivation to study maximum loss as a
functional of X comes from mathematical finance; see e.g. [11, 12]. It is
useful to quantify the risk and to measure the performance of a stock.

In this paper, we prove novel bounds and asymptotical results on the
distribution of the maximum loss of fractional Brownian motion (fBm). We
consider fBm with drift. Our main result is that the tail of the distribution
of maximum loss over [0, t] behaves like the tail of the marginal distribution
at time t.
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Let (Ω,ℑ, IP) be a probability space. A (standard) fBm {Bt : t ≥ 0} with
Hurst parameter H ∈ (0, 1) is a continuous and centered Gaussian process
with covariance function

E[BtBs] =
1

2
(t2H + s2H − |t− s|2H) (1)

and B0 = 0. It follows that B has stationary increments and the two
increments of the form B(t+h)−B(t) and B(t+2h)−B(t+h) are positively
correlated for H > 1/2, and negatively correlated for H < 1/2. For the price
of a risky asset, fBm is used with H > 1/2 in order to capture long-range
dependence observed in real data [2]. Since the covariance function of fBm is
homogeneous of order 2H, it possesses the self-similarity property. That is,

for any constant c > 0, (Bct)t≥0
d
= (cHBt)t≥0. The fractional Black-Scholes

model for asset price P is given by

Pt = P0 exp ((r + µ)t+ σBt) , t ≥ 0

where P0 is the initial value, r is the constant interest rate, µ is the drift
and σ is the diffusion coefficient of fBm denoted by Bt, t ≥ 0. In view of
fractional Black-Scholes model, the maximum possible loss in the log-price
process corresponds to the maximum loss of fBm.

We consider B with Hurst parameter H ∈ (1/2, 1). Let µ ∈ R be the
drift parameter and σ > 0 be the diffusion coefficient for fBm with drift
defined by

Yt := µt+ σBt . (2)

Let Φ denote the cumulative distribution function of standard Gaussian
distribution and let Φ = 1 − Φ. The following notation will be used in the
sequel.

• Let IH,µ
t := inf0≤v≤t Yv denote the infimum of fBm up to time t.

• Let SH,µ
t := sup0≤v≤t Yv denote the supremum of fBm up to time t.

• Let RH,µ
t := SH,µ

t − IH,µ
t , called the range of fBm up to time t.

• The maximum loss of fBm before time t is defined as

MH,µ,−
t := sup

0≤u≤v≤t
(Yu − Yv) = sup

0≤v≤t
( sup
0≤u≤v

(Yu − Yv)) =: sup
0≤v≤t

LH,µ
v

and LH,µ is called the loss process.
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Our first result given in Section 2 is on the expectation of maximum loss
and its probability distribution. The following bounds are derived:

√
2σtH

2
√
π

+ (µ ∧ 0) t ≤ IE(MH,µ,−
t ) ≤ 2

√
2σtH√
π

+ |µ|t ,

Φ((x+ µt)/(σtH)) ≤ IP(MH,µ,−
t > x) ≤ 2

√
2σtH

x
√
π

+
|µ|t
x

.

In Section 3, we show that the lower bound for the distribution is attained
asymptotically for large x. The maximum loss over [0, t] behaves like the
negative of the log-price at time t, which has the maximum variance in this
time interval. Explicitly, we prove that

lim
x→∞

IP(MH,µ,−
t > x)

Φ((x+ µt)/(σtH))
= 1 .

2. Bounds on the distribution of maximum loss

In this section, we find bounds on the expected value of maximum loss
of fBm and its distribution. As a stand alone result,we first show that the
loss process has the same marginal distribution as supremum when there
is no drift. In this case, let the loss process be denoted by LH,0, namely,
LH,0
v := sup0≤u≤v(Bu−Bv), and let supremum process be denoted by SH,0.

Proposition 1. The loss process LH,0 is self-similar and LH,0
v has the same

distribution as SH,0
v for each v ≥ 0.

Proof: The self-similarity of fBm corresponds to {Bau : u ≥ 0} d
={aHBu :

u ≥ 0} for every a > 0. It follows that

{Bau −Bav : 0 ≤ u ≤ v, v ≥ 0} d
= {aH(Bu −Bv) : 0 ≤ u ≤ v, v ≥ 0} .

Therefore, we get

{LH,0
av : v ≥ 0} d

= {aHLH,0
v : v ≥ 0}

by the definition of LH,0
v .

Because fractional Brownian motion has stationary increments, the col-
lections {Bu − Bv : 0 ≤ u ≤ v} and {−Bv−u : 0 ≤ u ≤ v} have the
same probability law for fixed v. Both are 0 mean Gaussian processes with
covariance function

r(u, u′) = 1/2 [ |v − u|2H + |v − u′|2H − |u− u′|2H ] .
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Since supremum of the two collections will also have the same distribution

and {−Bv−u : 0 ≤ u ≤ v} d
={Bu : 0 ≤ u ≤ v}, we get LH,0

v
d
=SH,0

v . �
Note that the result given above does not hold for fBm with drift. In

Theorem 1 below, we find bounds on the maximum loss of fBm with drift
as well as no drift, that is, µ = 0. Towards that end, bounds on supremum
of fBm are given in the following lemma. These bounds and the idea of
the proof have been stated in [9, pg.162]. The upper bound is obtained in
[16, pg.261] by considering fBm up to a random time which is exponentially
distributed.

Lemma 1. For fBm B with Hurst parameter H ≥ 1
2 , the expected value of

the supremum is bounded as
√
2tH

2
√
π

≤ IE( sup
0≤s≤t

Bs) ≤
√
2tH√
π

.

Proof: We show for t = 1, first. Since IE(Bu −Bv)
2 = (u− v)2H , we have

IE(B1
u −B1

v)
2 ≤ IE(BH

u −BH
v )2 ≤ IE(B1/2

u −B1/2
v )2

for u, v ∈ [0, 1], where we introduce notation BH to denote fBm with pa-
rameter H ∈ [1/2, 1]. By Sudakov-Fernique inequality [1, Theorem II.2.9],
we get

IE sup
0≤s≤1

B1
s ≤ IE sup

0≤s≤1
BH

s ≤ IE sup
0≤s≤1

B1/2
s . (3)

For Wiener process B1/2, it is well known that IE sup0≤s≤1B
1/2
s =

√
2/π [3,

pg.399]. On the other hand, B1 is a degenerate process satisfying B1
t = tZ

for all t ≥ 0, where Z is a standard normal random variable [13, Ex.7.2.5].
For x ≥ 0, we find that

P ( sup
0≤s≤1

B1
s > x) = P ( sup

0≤s≤1
sZ > x) = P (Z > x) = Φ(x)

as sZ ≤ Z, for 0 ≤ s ≤ 1. It follows that IE sup0≤s≤1B
1
s =

∫∞
0 Φ(x)dx =

1/
√
2π. Therefore, we get 1/

√
2π ≤ IE sup0≤s≤1B

H
s ≤

√
2/π from (3).

Since sup0≤s≤1 t
HBH

s
d
= sup0≤s≤tB

H
s due to self-similarity of fBm, the result

follows. �

Theorem 1. For fBm with Hurst parameter H ≥ 11
2 , drift µ ∈ R and

σ > 0, we have
√
2σtH

2
√
π

+ (µ ∧ 0) t ≤ IE(MH,µ,−
t ) ≤ IE(RH,µ

t ) ≤ 2
√
2σtH√
π

+ |µ|t
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and

Φ((x+ µt)/(σtH)) ≤ IP(MH,µ,−
t > x) ≤ IP(RH,µ

t ≥ x) ≤ 2
√
2σtH

x
√
π

+
|µ|t
x

for x > 0 and t > 0.

Proof: From Lemma 1, the expectation of supremum of standard fBm is

bounded from above by
√
2√
π
tH , and by symmetry, the expectation of its

infimum is bounded from below by −
√
2√
π
tH . It follows that IE(SH,µ

t ) ≤
√
2√
π
σtH + µt and IE(IH,µ

t ) ≥ −
√
2√
π
σtH when µ > 0; and IE(SH,µ

t ) ≤
√
2√
π
σtH

and IE(IH,µ
t ) ≥ µt −

√
2√
π
σtH when µ < 0. Combining the results given

above, we find an upper bound for the expected value of range RH,µ
t , that

is, IE(RH,µ
t ) ≤ 2

√
2√
π
σtH + |µ|t. Clearly, we have MH,µ,−

t ≤ RH,µ
t and the

upper bound for IE(MH,µ,−
t ) follows. By Markov’s inequality, we get

IP(MH,µ,−
t > x) ≤ IP(RH,µ

t ≥ x) ≤ 2
√
2σtH

x
√
π

+
|µ|t
x

.

The lower bound is obtained simply by definition of the maximum loss:

IP(MH,µ,−
t > x) = IP( sup

0≤u≤v≤t
(Yu − Yv) > x)

≥ IP(−σBt − µt > x) = Φ((x+ µt)/(σtH)) .

Now, we have the inequality

−IH,µ
t =− inf

0≤v≤t
Yv = sup

0≤v≤t
(−Yv) ≤ sup

0≤v≤t
( sup
0≤u≤v

(Yu − Yv)) = MH,µ,−
t

for every t > 0. Hence,

− IE(IH,µ
t ) ≤ IE(MH,µ,−

t ) (4)

is obtained. It follows from Lemma 1 that

IE(SH,µ
t ) ≥ IE( sup

0≤s≤t
σBs) + (µ ∧ 0) t ≥

√
2σtH

2
√
π

+ (µ ∧ 0) t .

Because −IE(IH,µ
t ) = IE(SH,µ

t ), we obtain the lower bound for IE(MH,µ,−
t )

using (4). �
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3. Asymptotic distribution of maximum loss

In this section, we show that the asymptotic form of the tail probability
of maximum loss is the same as the tail probability of the difference with
maximum variance over [0, t]. The proof is based on the result of [14] which
provides two technical conditions equivalent to the result that the asymp-
totic distribution of supremum of a centered Gaussian process with continu-
ous covariance, indexed by a compact metric space, is asymptotically equal
to the marginal distribution with the maximal variance. Another proof of
this characterization is given in [15, Prop.2.9] where the method is described
as concentration of measure phenomenon on the marginal distribution with
the maximal variance in the form of Gaussian isoperimetric inequality.

The theorem in [14] for centered Gaussian processes extends to Gaussian
processes with drift by the following modifications in the characterization
conditions. In comparison with the original result, the first condition re-
mains the same and requires that there is a unique point in T for which the
variance is maximized. The second condition, which is on the expectation of
supremum of a subcollection of the process, needs to be modified to include
the drift. These are given in Lemma 2. Its proof follows along the same
lines of [14] for the centered case.

Lemma 2. Suppose that (Xt)t∈T is a real-valued separable Gaussian process
with continuous drift function ut : T → R and continuous covariance, where
T is a compact metric space, and that (Xt)t∈T has almost surely bounded
sample paths. Let α2 = supt∈T Var(Xt). Then, the statement

lim
x→∞

IP(supt∈T Xt > x)

Φ((x− uτ )/α)
= 1

is equivalent to the following two conditions

(i) There exists a unique τ ∈ T such that α2 = Var(Xτ ).

(ii) For h > 0, if we define Th = {t ∈ T : Cov (Xt, Xτ ) ≥ α2 − h2}, then
we have

lim
h→0

h−1 IE sup
t∈Th

(Xt −Xτ + ut − uτ ) = 0 .

Note that we have left the form of the drift function u unspecified in
Lemma 2. We consider a linear drift in the next theorem, which is our main
result.
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Theorem 2. For fBm with Hurst parameter H ≥ 1
2 , drift µ ∈ R and σ > 0,

we have

lim
x→∞

IP(MH,µ,−
t > x)

Φ((x+ µt)/(σtH))
= 1 .

Proof: The maximum loss MH,µ,−
t is defined as the supremum of (Yu −

Yv)(u,v)∈T where T = {(u, v) : 0 ≤ u ≤ v ≤ t}. As T is compact and fBm
has continuous sample paths, we will show that the two conditions in Lemma
2 hold for the Gaussian process {Yu − Yv : 0 ≤ u ≤ v ≤ t} to complete the
proof.

Letting α2 = sup(u,v)∈T Var(Yu − Yv), we get α2 = σ2t2H . Since we

have Var(Yu0 − Yv0) = α2, only for (u0, v0) = (0, t) in T , Condition (i)
of Lemma 2 holds. Note that the Gaussian random variable Y0 − Yt has
drift −µt and diffusion parameter σ. Therefore, the limiting distribution is
Φ((x+ µt)/(σtH)).

For showing Condition (ii) of Lemma 2, let Th = {(u, v) ∈ T : Cov (Yu −
Yv, Yt) ≥ α2 − h2} for h > 0. In view of definition (2) and the value of α2,
this is simplified as

Th = {(u, v) ∈ T : σ2IE(Bt(Bu −Bv)) ≥ σ2t2H − h2} .

Then, Condition (ii) is explicitly

lim
h→0

h−1 IE sup
(u,v)∈Th

σ(Bu −Bv +Bt) + µ[(t− (v − u)] = 0 . (5)

Note that the expectation in (5) is bounded above by

IE sup
(u,v)∈Th

σ(Bu −Bv +Bt) + sup
(u,v)∈Th

µ[t− (v − u)] . (6)

In order to identify Th, we find that

IE(Bt(Bu −Bv)) =
1

2
(v2H − u2H + (t− u)2H − (t− v)2H) .

Therefore, (u, v) ∈ Th satisfy

v2H − u2H + (t− u)2H − (t− v)2H ≥ 2t2H − 2σ−2h2 . (7)

Clearly, (7) is satisfied by (ū, v) ∈ Th, for fixed ū ∈ [0, t] as well. Let us
now consider

T ū
h := {ū ≤ v ≤ t : IE(Bt(Bū −Bv)) ≥ t2H − σ−2h2} . (8)

7



Now, for ū > t/2, we have (t − ū)2H − ū2H < 0, and (t − v)2H > 0 for all
v ∈ [0, t]. Then, we get

v2H ≥ 2t2H − 2σ−2h2 ≥ t2H − 2σ−2h2

from (7). On the other hand, for ū ≤ t/2, we have (t − ū)2H ≤ t2H .
Therefore, we get

v2H + t2H ≥ v2H − u2H + (t− u)2H − (t− v)2H ≥ 2t2H − 2σ−2h2

from (7), which again implies

v2H ≥ t2H − 2σ−2h2 (9)

for v ∈ T ū
h . Considering the same arguments in [14, pg.309] and [1, pg.122],

we deduce that
v ≥ t−Kh2

for some constant K and v ∈ T ū
h . To show this, we use the assumption

H ≥ 1/2, which implies that f(v) := v2H is convex. It follows that v
satisfying (9) also satisfy v ≥ t−2σ−2h2/Kū whereKū = (t2H−ū2H)/(t−ū),
uniformly for h > 0. Taking K := 2/(σ2Kū), we have

IE sup
v∈T ū

h

Bū −Bv +Bt ≤ IE sup
v≥ū, t−v≤Kh2

Bū −Bv +Bt . (10)

Since fBm has stationary increments and IEBū = 0, we observe that

lim
h→0

h−1 IE sup
v≥ū, t−v≤Kh2

Bū −Bv +Bt = lim
h→0

h−1 IE sup
t−v≤Kh2

Bt−v (11)

for fixed ū ∈ [0, t]. Under the assumption H ≥ 1/2, we have

IE sup
t−v≤Kh2

Bt−v ≤
√
2KHh2H√

π

by Lemma 1. Hence, we get the limit in (11) to be 0, which implies that
left hand side of (10) is O(h). Since T is separable, a monotone convergence
argument extends the result for fixed ū to all Th proving that the expectation
in (6) is also O(h) [1, pg.47].

Now, (u, v) ∈ TH satisfy

σ2[v2H − u2H + (t− u)2H − (t− v)2H ] ≥ 2σ2t2H − 2h2 . (12)

8



By reverse triangle inequality, the left hand side of (12) is bounded above
by 2σ2(v − u)2H . Therefore, (u, v) ∈ TH also satisfy

(v − u)2H ≥ t2H − σ−2h2 .

By fixing ū and replacing the role of v by v − ū in (9), we now get

v − ū ≥ t−Kh2

for v in T ū
h of (8), and K = 2/(σ2Kū) with Kū = (t − ū)2H/(t − ū) as

0 ≤ v − ū ≤ t− ū. Therefore, we have

lim
h→0

h−1 sup
v∈T ū

h

µ[t− (v − ū)] = 0

which concludes the proof of (5) by monotone convergence. �
Note that Theorem 2 implies that the tail probability decays exponen-

tially as

lim
x→∞

1

x2
log IP(MH,µ,−

t > x) = − 1

2σ2t2H

since this holds for Φ [1, pg.42]. The special case with no drift follows by
substitution of µ = 0 and σ = 1.

As related work, the method used in [6, Thm.1] for approximating the tail
distribution of the supremum of fractional Brownian motion with a negative
drift function is comparable to our approach for proving Theorem 2. The
process which is defined over the index set R+ in [6] is first transformed
to a related process by self-similarity. The supremum of the latter process
is found to occur in the neighborhood of a unique index τ > 0 for the
marginal distribution with maximal variance. Then, the method of proof is
based on [10, Thm.D.3] which specifies the asymptotic distribution of the
process confined to an interval containing τ . The main idea is to obtain a
neighborhood of τ with the largest contribution to the asymptotic behavior,
and to compare the process with a related stationary Gaussian process by
Slepian’s inequality. The result is generalized to multidimensional index set
in [10, Sec.8] . In Theorem 2, we have used the relatively more structured
approach of [14, 15] which is interpreted as the concentration of measure
and has been of further interest in various fields [7]. Our approach is based
on a subcollection of the process which has sufficiently high covariance with
the random variable of maximal variance, whereas the method of [6] focuses
on a neighborhood of τ . In spite of this contrast, we have identified the
index set of this subcollection as a neighborhood of τ in the present work
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as well. This can be attributed to the closeness of the marginal distribution
with maximal variance and the distribution of the supremum in the tail.
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