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Abstract

The paper considers impulsive systems with singularities. The main novelty of
the present research is that impulses (impulsive functions) are singular. This
is beside singularity of differential equations. The Lyapunov second method is
applied to proof the main theorems. Illustrative examples with simulations are
given to support the theoretical results.
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1. Introduction

The singularly perturbed differential equations arise in various fields of chem-
ical kinetics [1], mathematical biology [2, 3], fluid dynamics [4] and in a variety
models for control theory [5, 6]. These problems depend on a small positive pa-
rameter such that the solution varies rapidly in some regions and varies slowly
in other regions.

The contribution of our work relates to a new Tikhonov theorem for singu-
larly perturbed impulsive systems. This theorem express the limiting behavior
of solutions of the singularly perturbed system. It is a powerful instrument for
analysis of singular perturbation problems. It has been studied for many types
of differential equations; partial differential equations [7], singularly perturbed
differential inclusions [8], functional-differential inclusions [9], discontinuous dif-
ferential equations [10, 11, 12, 13, 14].

Impulse effects exist in a wide diversity of evolutionary processes that exhibit
abrupt changes in their states [15, 16, 17]. In many systems, in addition to
singular perturbation, there are also impulse effects [10, 11, 12, 13, 14]. Chen
et al. [12] derived a sufficient condition that guarantees robust exponential
stability for sufficiently small singular perturbation parameter by applying the
Lyapunov function method and using a two-time scale comparison principle. In
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[13, 14], authors proposed Lyapunov function method to set up the exponential
stability criteria for singularly perturbed impulsive systems. This method can be
efficiently used to overcome the impulsive perturbation such that the stability
of the original system can be ensured. In [10], Lyapunov function method
was further extended to study the exponential stability of singularly perturbed
stochastic time-delay systems with impulse effect. The results in [10, 13, 14]
only guarantee the systems under consideration to be exponentially stable for
sufficiently small positive parameter.

Various types of singular perturbation problems are discussed in many books
[18, 19, 20, 21, 22]. Consider the following model of singularly perturbed differ-
ential equation

µż = f(z, y, t),

ẏ = g(z, y, t),
(1)

where µ is a small positive real number. In the literature, the results based on
this system are known as Tikhonov Theorems [21, 22, 23]. Bainov and Covachev
[19] first extended the impulsive analogous of Tikhonov Theorem concerning
system (1) in the form of

µż = f(z, y, t), ∆z|t=ti = Ii(y(ti)),

ẏ = g(z, y, t), ∆y|t=ti = Ji(y(ti)),
(2)

where i = 1, 2, ..., p and 0 < t1 < t2 < ... < tp < T. However, only the differential
equation in their problem is singularly perturbed.

In this study, we consider differential equations where impulses are also
singularly perturbed which are different than in [19]. The following system is
our focus of discussion

µ
dz

dt
= F (z, y, t), µ∆z|t=θi = I(z, y, µ)

dy

dt
= f(z, y, t), ∆y|t=ηj

= J(z, y),

(3)

where z, F and I are m-dimensional vector valued functions, y, f and J are
n-dimensional vector valued functions, 0 < θ1 < θ2 < · · · < θp < T, θi, i =
1, 2, . . . , p, and ηj , j = 1, 2, . . . , k, are distinct discontinuity moments in (0, T ).

The main novelty of this paper is the extension of Tikhonov Theorem such
that system (3) has the small parameter in impulse function, the discontinuity
moments are different for each dependent variables. The singularity in the im-
pulsive part of the system can be treated through perturbation theory methods.

1.1. Preliminaries

Let us describe generally the definition of singularity. Consider

• Problem P (µ): the problem with small parameter µ,

• Problem P (0): the reduced (degenerated) problem.
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The problem P (0) is a simplified model of P (µ) taking µ = 0. Denote the
solution of P (0) by z(t, 0) and the solution of P (µ) by z(t, µ).

Definition 1.1. [20] P (µ) is called regularly perturbed problem in a domain D
if

sup
D

‖z(t, µ)− z(t, 0)‖ → 0 when µ → 0.

Otherwise, it is called singularly perturbed problem.

It follows from the definition that for a regularly perturbed problem the solution
z(t, 0) of P (0) will be close to the solution z(t, µ) of P (µ) in the entire domain D
for all sufficiently small µ. However, if the problem P (µ) is singularly perturbed,
then z(t, µ) will not be close to z(t, 0) for all small µ at least in some part of
domain D.

2. A Particular Case of the Main Theorem

Before carrying out our main investigation, let us consider a particular case
of the main theorem. This case is useful by its geometric clarity. We introduce
the following problem

µ
dz

dt
= F (z),

µ∆z|t=θi = I(z, µ),
(4)

with z(0, µ) = z0, where z ∈ R
m, t ∈ [0, T ], F (z) is a continuously differentiable

function on D and I(z, µ) is a continuous function for (z, µ) ∈ D × [0, 1] , D is
the domain D = {0 ≤ t ≤ T, ‖z‖ < d}, θis are defined above.

The parameter in a the impulsive equation makes it possible that I(z,µ)
µ blow

up at impulse moments as µ → 0. This is why, a deep analysis and convenient
conditions for the limiting processes with µ → 0 have to be researched.

2.1. Singularity with a Single Layer

Let us take µ = 0 in (4). Then, one has 0 = F (z) = I(z, 0). It is degenerate
system since its order is less than the order of (4). Consider an isolated real
root z = ϕ of F (z) = 0 and I(z, 0) = 0.

Now, introduce a new variable τ = t
µ and x = z−ϕ for the first equation in

(9) to obtain
dx

dτ
= F (x+ ϕ). (5)

The following condition is required.

(C1) Suppose that there is a positive definite function V (x) such that V (0) =
0 and whose derivative with respect to τ along system (5) is negative
definite.

This condition implies that the zero solution of (5) is uniformly asymptotically
stable. Moreover, for the impulsive function we need the following condition.
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(C2)

lim
(z,µ)→(ϕ,0)

I(z, µ)

µ
= 0,

which prevents impulsive function to blow up as the parameter µ decays to
zero. This condition is the counterpart of (C1) considering impulsive function.
Condition (C2) plays similar role to condition (C1) in the proof of the next
theorem.

Theorem 2.1. Suppose that conditions (C1) and (C2) are true. If the initial
value z0 is located in the domain of attraction of the root ϕ, then solution z(t, µ)
of (4) with z(0, µ) = z0 exists on [0, T ] and it is satisfies the limit

lim
µ→0

z(t, µ) = ϕ for 0 < t ≤ T. (6)

Proof. In this proof, we will follow the idea of the proof of [18, Theorem
7.3]. Consider the first interval [0, θ1]. Let z0 ∈ D such that it is in the domain
of attraction of ϕ. Then, for fix µ > 0, the differential equation

dz

dt
=

F (z)

µ
(7)

with initial value z(0, µ) = z0 has a unique solution z(t, µ) since F (z) ∈ C1(D).
Then rescale the time as t = τµ and substitute x = z − ϕ in (7) to get

dx

dτ
= F (x+ ϕ). (8)

x = 0 is an equilibrium of this differential equation. By condition (C1), equation
(8) has a positive definite function V (x) whose derivative with respect to τ
is negative definite and V (0) = 0. Hence, by the Lyapunuv second method,
one can say that the zero solution of (8) is uniformly asymptotically stable as
τ → ∞. Therefore, ∀ ε > 0 and for sufficiently small µ on 0 < t ≤ θ1 one has
‖z(t, µ)− ϕ‖ < ε, i.e,

lim
µ→0

z(t, µ) = ϕ for 0 < t ≤ θ1.

Now, consider the next interval (θ1, θ2]. From condition (C2), we have

lim
µ→0

z(θ1+, µ) = lim
µ→0

{

z(θ1, µ) +
I(z(θ1, µ), µ)

µ

}

= ϕ.

It means that z(θ1+, µ) is in the domain of attraction of the root ϕ. Repeating
the same processes as for the previous interval, one obtains

lim
µ→0

z(t, µ) = ϕ for θ1 < t ≤ θ2.

Similarly, one can show that z(t, µ) → ϕ as µ → 0 for t ∈ (θi, θi+1], i = 2, . . . , p−
1 and t ∈ (θp, T ]. As a result, limit (6) is true and the theorem is proved.
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The convergence is not uniform at t = 0 since z(0, µ) = z0 and z0 6= ϕ for
all µ > 0. We can say that the region of nonuniform convergence is O(µ) thick,
since for t > 0, ‖z(t, µ)−ϕ‖ can be made arbitrarily close to zero by choosing µ
small enough. The interval of nonuniform convergence is called an initial layer.
This theorem implies that there is a single initial layer.

Example. Consider the system

µẋ1 = −x1 + x2, µ∆x1|t=θi = −2µx1,

µẋ2 = −x1 − x2, µ∆x2|t=θi = µ sin(x
1/3
2 + µ),

(9)

with initial value (x1(0, µ), x2(0, µ)), where θi = i/3, i = 1, 2, . . . , 10. Let us take
µ = 0 in this system. Then

0 = −x1 + x2, 0 = 0,

0 = −x1 − x2, 0 = 0.

and so (x1, x2) = (0, 0) is the root. Substitute τ = t
µ into the differential

equations part of (9) to obtain

dx1

dτ
= −x1 + x2,

dx2

dτ
= −x1 − x2, .

(10)

We take the positive definite function V (x1, x2) = x2
1 + x2

2. Then

dV

dτ
= 2x1(−x1 + x2) + 2x2(−x1 − x2) = −2(x2

1 + x2
2) = −2V.

Hence, V (x1, x2) has a negative definite derivative with respect to τ along (10).
Now, let us check the condition (C2). Denote x = (x1, x2). Then

lim
(x,µ)→(0,0)

I(x, µ)

µ
= 0

since lim(x1,µ)→(0,0) −2x1 = 0 and lim(x2,µ)→(0,0) sin(x
1/3
2 + µ) = 0. Therefore,

by Theorem 2.1, if the initial value (x1(0, µ), x2(0, µ)) of (9) is in the domain
of attraction of the root (0, 0), then solution (x1(t, µ), x2(t, µ)) of (9) tends to
(0, 0) as µ → 0 for 0 < t ≤ T. It is clearly seen in Figure 1 that the solution of
system (9) with initial (1.5,−1.5) tends to (0, 0) as µ → 0.
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Figure 1: Blue, red and black lines represents the solution of system (9) with initial value
(1.5,−1.5) for µ = 0.07, µ = 0.05 and µ = 0.03, respectively.

2.2. Singularity with Multi-Layers

In the previous subsection, it is shown that there is a single initial layer.
Using an impulse function, the convergence can be nonuniform near several
points, that is to say that multi-layers emerge. These layers will occur on the
neighborhoods of t = 0 and t = θi, i = 1, 2, . . . , p.

Again, we consider system (4) with the same properties. In addition, we
need the following condition

(C3)

lim
(z,µ)→(ϕ,0)

I(z, µ)

µ
= I0 6= 0

and assume that ϕ+ I0 is in the domain of attraction of the root ϕ.

By the virtue of this condition, after the each impulse moment, the difference
‖z(θi+, µ)−ϕ‖ does not go to zero as µ → 0. Hence, convergence is not uniform.

Theorem 2.2. Suppose that conditions (C1) and (C3) hold. If the initial value
z0 is located in the domain of attraction of the root ϕ, then solution z(t, µ) of
(4) with z(0, µ) = z0 exists on [0, T ] and the limit

lim
µ→0

z(t, µ) = ϕ (11)

is true for t ∈
p−1
⋃

i=0

(θi, θi+1] ∪ (θp, T ], where θ0 = 0.

Proof. Proof is similar to the proof of Theorem 2.1 with the exception that
singularity with multi-layers appears near t = 0 and t = θi, i = 1, 2, . . . , p.
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By condition (C3), after the each discontinuity moment θi, the solution
z(t, µ) is not close to the root ϕ. In other words, the difference ‖z(θi+, µ)− ϕ‖
cannot be arbitrarily small as µ → 0. Hence, one can obtain multi-layers up to
the number p+ 1.

Let us illustrate the theorem with the following example.
Example. Consider the following impulsive differential equation with small

parameter:

µż = −z − z3,

µ∆z|t=θi = µz1/3 + sinµ+ 0.1µ,
(12)

where θi = i/3, i = 1, 2, ..., 10. Let us take µ = 0 in this system. Then we have
the algebraic equation 0 = −z−z3. It has solution z = 0. Now, introduce t = τµ
in the first equation of (12) to obtain

dz

dτ
= −z − z3 (13)

Using the Lyapunov function V (z) = z2, it can be shown that z = 0 is a uni-
formly asymptotic stable solution of (13). Moreover, condition (C3) is satisfied
since

lim
(z,µ)→(0,0)

µz1/3 + sinµ+ µ0.1

µ
= 1.1.

Choose the initial value z(0, µ) = 0.6. Then the solution z(t, µ) of system (12)
with this initial value has multi-layers at t = 0 and t = θi+, i = 1, 2, . . . , 10.
Clearly, in Figure 2, it can be seen that multi-layers occur.

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

z(
t)

Figure 2: Solution z(t, µ) of system (12) with initial value z(0, µ) = 0.6 for different values of
parameter µ. Blue and red line represent for µ = 0.1, µ = 0.05, respectively. It is seen that at
t = 0 and at each θi, i = 1, 2, ..., 10, the convergence is nonuniform, i.e., multi-layers exist.
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Let us generalize the Theorem 2.2. Consider the following impulsive system

µ
dz

dt
= F (z),

µ∆z|t=θi = I(z, µ),

µ∆z|t=τ i
j
= J(z, µ),

(14)

where the the impulse moments τ ij , j = 1, 2, . . . , pj are such that θi < τ i1 < τ i2 <

· · · < τ ipj
, i = 1, 2, . . . , p − 1 and θp < τp1 < τp2 < · · · < τppj

< T. Assume the
following condition holds for (14)

(C4)

lim
(z,µ)→(ϕ,0)

J(z, µ)

µ
= 0,

Now, we can assert the following theorem.

Theorem 2.3. Suppose that conditions (C1), (C3) and (C4) hold. If the initial
value z0 is located in the domain of attraction of the root ϕ, then solution z(t, µ)
of (14) with z(0, µ) = z0 exists on [0, T ] and the limit

lim
µ→0

z(t, µ) = ϕ (15)

is true for t ∈
p−1
⋃

i=0

(θi, θi+1] ∪ (θp, T ], where θ0 = 0.

3. Main Result

Now, we turn to main problem (3).

3.1. Singularity with a Single Layer

Define the initial conditions (for simplicity, we set t0 = 0.)

z(0, µ) = z0, y(0, µ) = 0, (16)

where z0 and y0 will be assumed to be independent of µ, and let us investigate
the solution z(t, µ), y(t, µ) of (3) and (16) on segment 0 ≤ t ≤ T .

In system (3), take µ = 0, then we obtain

0 = F (z̄, ȳ, t), 0 = I(z̄, ȳ, 0),

dȳ

dt
= f(z̄, ȳ, t), ∆ȳ|t=ηj

= J(z̄, ȳ)
(17)

which we call as degenerate system due to the fact that its order is less than
the order of (3). Therefore, for the system (17) the number of initial conditions
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must be set less than the number of initial conditions for (3). We naturally
insert the initial condition for y, i.e., put

ȳ(0) = y0, (18)

and drop the initial condition for z. Now, the question is that whether there
will be a solution z(t, µ) and y(t, µ) of problem (3), (16) for small µ which is
close to the solution z̄(t), ȳ(t) of the degenerate problem (17), (18).

To solve system (17), it is necessary to find z̄ from 0 = F (z̄, ȳ, t) and 0 =
I(z̄, ȳ, 0). Then choose one of the root z̄ = ϕ(ȳ, t) such that 0 = F (ϕ(ȳ, t), ȳ, t)
and 0 = I(ϕ(ȳ, θi), ȳ, 0), and substitute into (17) with initial value (18) to obtain

dȳ

dt
= f(ϕ(ȳ, t), ȳ, t), ∆ȳ|t=ηj

= J(ϕ(ȳ, t), ȳ),

ȳ(0) = y0.
(19)

We need the following conditions in this section:

A1. The functions F (z, y, t), f(y, z, t), and J(z, y) are continuous in some do-
main H = {(y, t) ∈ N̄ = {0 ≤ t ≤ T, ‖y‖ ≤ c}, ‖z‖ < d}, I(z, y, µ) is
continuous in H × [0, 1] and they are Lipschitz continuous with respect to
z and y.

A2. Algebraic equations 0 = F (z, y, t) and 0 = I(z, y, 0) have a root z =
ϕ(y, t) such that F (ϕ(y, t), y, t) = 0 and I(ϕ(y(θi), θi), y(θi), 0) = 0, i =
1, 2, . . . , p, in domain N̄ such that:

1. ϕ(y, t) is a continuous function in N̄ ,

2. (ϕ(y, t), y, t) ∈ H,

3. The root ϕ(y, t) is isolated in N̄ , i.e., ∃ ǫ > 0: F (z, y, t) 6= 0 and/or
I(z, y, µ) 6= 0 for 0 < ‖z − ϕ(y, t)‖ < ǫ, (y, t) ∈ N̄ .

A3. 1. System (19) has a unique solution ȳ(t) on 0 ≤ t ≤ T , and (ȳ(t), t) ∈ N̄
for 0 ≤ t ≤ T . Moreover, f(ϕ(y, t), y, t) and J(ϕ(y, t), y) are Lipschitz
with respect to y ∈ N̄ .

2. ϕ(ȳ(ηj+), ηj+) = ϕ(ȳ(ηj), ηj), j = 1, 2, . . . , k.

Now, setting x = z − ϕ and t = τµ, we introduce the system

dx

dτ
= F (x + ϕ(y, t), y, t), τ ≥ 0, (20)

where y and t are considered as parameters, x = 0 is an isolated stationary
point of (20) for (y, t) ∈ D̄.

A4. Suppose that there is a positive definite function V (x, y, τ) whose deriva-
tive with respect to τ along the system (20) is negative definite in the
region H.
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Consider adjoint system

dz̃

dτ
= F (z̃, y0, 0), τ ≥ 0, (21)

with initial condition
z̃(0) = z0. (22)

Since z0 maybe, in general, far from stationary point ϕ(y0, 0), then the
solution z̃(τ) of equations (21) and (22) need not tend to ϕ(y0, 0) as τ → ∞.
Assume also that

A5. the solution z̃(τ) of equations (21) and (22) satisfies the conditions

1. z̃(τ) → ϕ(y0, 0) as τ → ∞,

2. (z̃(τ), y0, 0) ∈ H for τ ≥ 0.

In this case, z0 is said to belong to the basin of attraction of the stationary
point z̃ = ϕ(y0, 0). By virtue of the asymptotic stability of this point all points
near it will belong to its basin of attraction.

A6. Assume also

lim
(z,y,µ)→(ϕ,y0,0)

I(z, y, µ)

µ
= 0.

Now, we state and prove the modified Tikhonov Theorem.

Theorem 3.1. Suppose that conditions A1 − A6 hold. Then, for sufficiently
small µ, solutions z(t, µ) and y(t, µ) of problem (3) with initial conditions (16)
exist on 0 ≤ t ≤ T , are unique, and satisfy

lim
µ→0

y(t, µ) = ȳ(t) for 0 ≤ t ≤ T (23)

and
lim
µ→0

z(t, µ) = z̄(t) = ϕ(ȳ(t), t) for 0 < t ≤ T. (24)

Before proving this theorem, we will consider the following auxiliary system:

µ
dz

dt
= F (z, y, t),

dy

dt
= f(z, y, t), ∆y|t=ηj

= J(z, y),

(25)

where this system has same properties as (3).
In system (25), take µ = 0, then we obtain

0 = F (z̄, ȳ, t),

dȳ

dt
= f(z̄, ȳ, t), ∆ȳ|t=ηj

= J(z̄, ȳ)
(26)

which is degenerate system of (25).

10



To solve system (26), it is necessary to find z̄ from 0 = F (z̄, ȳ, t). Then
choose one of the root z̄ = ϕ(ȳ, t) and substitute into (26) with initial value
(18) to obtain

dȳ

dt
= f(ϕ(ȳ, t), ȳ, t), ∆ȳ|t=ηj

= J(ϕ(ȳ, t), ȳ),

ȳ(0) = y0.
(27)

Now, introduce the adjoint system

dz̃

dτ
= F (z̃, y, t) τ ≥ 0, (28)

where y and t are considered as parameters, z̃ = ϕ(y, t) is an isolated stationary
point of (28) for (y, t) ∈ N̄ .

Suppose that

B. the stationary point z̃ = ϕ(y, t) of (20) is uniformly asymptotically stable
with respect to (y, t) ∈ N̄ , i.e. ∀ε > 0 ∃ δ(ε) > 0 such that if ‖z̃(0) −
ϕ(y, t)‖ < δ(ε) then ‖z̃(τ) − ϕ(y, t)‖ < ε and z̃(τ) → ϕ(y, t) as τ → ∞.

If this condition is true, then the root z̃ = ϕ(y, t) is said to be stable in N̄ .

Lemma 3.1. Suppose that for system (25) conditions A1-A3,A5 and B are
true, then, for sufficiently small µ, solutions z(t, µ) and y(t, µ) of problem (25)
with initial conditions (16) exist on 0 ≤ t ≤ T , are unique, and satisfy

lim
µ→0

y(t, µ) = ȳ(t) for 0 ≤ t ≤ T (29)

and
lim
µ→0

z(t, µ) = z̄(t) = ϕ(ȳ(t), t) for 0 < t ≤ T. (30)

Proof. First, consider the interval [0, η1]. On this interval, Lemma 3.1 is
type of Tikhonov Theorem [20, Theorem 2.1] and all conditions are satisfied.
Therefore, by [20, Theorem 2.1], for sufficiently small µ, solutions z(t, µ), y(t, µ)
of (3) and (16) exist on [0, η1] and satisfies

lim
µ→0

y(t, µ) = ȳ(t) for 0 ≤ t ≤ η1,

lim
µ→0

z(t, µ) = z̄(t) = ϕ(ȳ(t), t) for 0 < t ≤ η1.
(31)

Now, consider the second interval (η1, η2]. For this interval the initial val-
ues are z1 = z(η1+, µ), y1 = y(η1+, µ). Since limµ→0 y(η1, µ) = ȳ(η1) and
limµ→0 z(η1, µ) = ϕ(ȳ(η1), η1), z1 is in the the basin of attraction of ϕ(ȳ(t), t)
and y1 ∈ N. Again, all conditions of Tikhonov Theorem are satisfied and by
[20, Theorem 2.1]

lim
µ→0

y(t, µ) = ȳ(t) for η1 < t ≤ η2,

lim
µ→0

z(t, µ) = z̄(t) = ϕ(ȳ(t), t) for η1 < t ≤ η2.
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Similarly, for the next intervals (ηi, ηi+1], i = 2, 3, . . . , k− 1, and (ηk, T ] one can
show that as µ → 0, limµ→0 y(t, µ) = ȳ(t) and limµ→0 z(t, µ) = z̄(t) = ϕ(ȳ(t), t).
Lemma is proved.

Remark. At discontinuity moments ηj , j = 1, 2, . . . , k, layers do not
emerge. This is because, ϕ(ȳ(t), t) is a continuous function and limµ→0 z(ηj+, µ) =
ϕ(ȳ(ηj), ηj) = z̄(ηj), j = 1, 2, . . . , k.

Proof of Theorem 3.1. Consider the interval [0, θ1]. Hence, on this
interval, Theorem 3.1 is type of Lemma 3.1. Condition A4. is corresponding
to the assumption that uniform asymptomatic stability of the root ϕ(y, τµ) as
τ → ∞, i.e. condition B is satisfied. Obviously, all conditions of the lemma are
true. Consequently, for sufficiently small µ, solutions z(t, µ), y(t, µ) of (25) and
(16) exist and satisfies

lim
µ→0

y(t, µ) = ȳ(t) for 0 ≤ t ≤ θ1,

lim
µ→0

z(t, µ) = z̄(t) = ϕ(ȳ(t), t) for 0 < t ≤ θ1.
(32)

Now, consider the next interval (θ1, θ2]. Condition A6 implies that

lim
µ→0

z(θ1+, µ) = lim
µ→0

{

z(θ1, µ) +
I(z(θ1, µ), y(θ1, µ), µ)

µ

}

= ϕ.

Hence, condition A5 is true. Repeating the same processes as for the previous
interval, one can demonstrates that z(t, µ) → ϕ(ȳ(t), t) and y(t, µ) → ȳ(t) as
µ → 0 for (θ1, θ2]. Thus, recurrently it can be proven that for t ∈ (θi, θi+1], i =
1, 2, . . . , p−1 and t ∈ (θp, T ] it is true that z(t, µ) → ϕ(ȳ(t), t) and y(t, µ) → ȳ(t)
as µ → 0. Therefore limits (23) and (24) are true. Theorem is proved.

Example for Lemma 3.1. Consider the system

µ
dz

dt
= z(1− z − 2y),

dy

dt
= y(1− 2z − y), ∆y|t=ηj

= y2 − y + z,

(33)

with initial conditions z(0, µ) = 1 and y(0, µ) = 2, where ηj = j/3, j =
1, 2, . . . , 5. Let us take µ = 0 in this problem. Then, the first equation be-
comes 0 = z(1 − z − 2y). It has the solutions z = 0 and z = 1 − 2y. Consider
the zero solution z = 0. Now, we check the conditions of Lemma 3.1.

∂

∂z
z(1− z − 2y)|z=0 = 1− 2y < 0

if y > 1/2. Therefore, if y > 1/2, z = 0 is uniformly asymptotically stable.
Substitute z = 0 into the second line of (33) to obtain

dȳ

dt
= ȳ(1 − ȳ), ∆ȳ|t=ηj

= ȳ2 − ȳ, (34)

with initial value ȳ(0) = 2. This system has a unique solution ȳ(t). Thus, by
Lemma 3.1, solutions z(t, µ), y(t, µ) of (33) with z(0, µ) = 1 and y(0, µ) = 2
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tends to 0, ȳ(t), respectively, as µ → 0 for 0 < t ≤ T. Obviously, in Figure 3, it
can be seen that when µ decreases to zero, solutions z(t, µ), y(t, µ) approaches
to 0, ȳ(t), respectively.

0 1 2 3 4 5
1

2

3

4

5

t

y(
t)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t

z(
t)

Figure 3: Black,magenta, blue and red lines are the coordinates of system (33) with initial
values z(0, µ) = 1 and y(0, µ) = 2 for different values of µ : 0, 0.05, 0.1, 0.2, respectively.

3.2. Singularity with Multi-Layers

In the previous subsection, we have shown that the convergence is not uni-
form at t = 0. That is, an initial layer is obtained by Tikhonov Theorem. To
get multi-layers by Tikhonov Theorem we need another condition for the im-
pulse function. These layers will occur on the neighborhoods of t = 0 and
t = θi, i = 1, 2, . . . , p.

Again, we consider system (3) with the same properties. In addition, we
need the following condition

A7.

lim
(z,y,µ)→(ϕ,ȳ,0)

I(z, y, µ)

µ
= I0 6= 0

and assume that ϕ(ȳ(θi), θi)+I0, i = 1, 2, . . . , p, is in the basin of attraction
of ϕ(ȳ(t), t).

This condition implies that after each impulse moment, the difference ‖z(θi+, µ)−
ϕ‖ does not go to zero as µ → 0. Hence, convergence is not uniform.
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Theorem 3.2. Suppose that conditions A1-A5 and A7 hold. Then, for suffi-
ciently small µ, solutions z(t, µ) and y(t, µ) of problem (3) with initial conditions
(16) exist on 0 ≤ t ≤ T , are unique, and satisfy

lim
µ→0

y(t, µ) = ȳ(t) for 0 ≤ t ≤ T

and
lim
µ→0

z(t, µ) = z̄(t) = ϕ(ȳ(t), t)

is true for t ∈
p−1
⋃

i=0

(θi, θi+1] ∪ (θp, T ], where θ0 = 0.

Proof. Proof is similar to the proof of Theorem 3.1 with the exception that
singularity with multi-layers appears near t = 0 and t = θi, i = 1, 2, . . . , p.

Now, let us generalize this theorem. Consider the following impulsive system

µ
dz

dt
= F (z, y, t), µ∆z|t=θi = I(z, y, µ) µ∆z|t=τ i

j
= J̃(z, y, µ)

dy

dt
= f(z, y, t), ∆y|t=ηj

= J(z, y),

(35)

where τ ij is defined in Subsection 2.2. Additionally, we need the condition

A8.

lim
(z,y,µ)→(ϕ,ȳ,0)

J(z, y, µ)

µ
= 0.

Now we can assert our theorem.

Theorem 3.3. Suppose that conditions A1-A5 and A7-A8 hold. Then, for suf-
ficiently small µ, solutions z(t, µ) and y(t, µ) of problem (35) with initial condi-
tions (16) exist on 0 ≤ t ≤ T , are unique, and satisfy

lim
µ→0

y(t, µ) = ȳ(t) for 0 ≤ t ≤ T

and
lim
µ→0

z(t, µ) = z̄(t) = ϕ(ȳ(t), t)

is true for t ∈
p−1
⋃

i=0

(θi, θi+1] ∪ (θp, T ], where θ0 = 0.

4. Conclusion

In this manuscript, we have introduced a new type of singular impulsive
differential equation model. In this model, Lyapunov second method is used to
show the stability in the rescaled time. Then some illustrative examples with
simulations are given to support the theoretical results.
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The main novelty of this research is that singularity in the impulsive part of
the systems can be treated through perturbation methods.

In the book of Baionov and Covachev [19], and several papers cited in the
book, they considered singular impulsive systems with small parameter involved
only in the differential equations of the systems, but not in the impulsive equa-
tions of them. This is why, we insert a small parameter into the the impulse
equation such that the singularity concept has been significantly extended for
discontinuous dynamics.
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