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We have identified a completely integrable family of Monge-Aml~re equations through an examination of their Hamiltonian 
structure. Starling with a variational formulation of the Monge-Amp~re equations we have constructed the first Hamiltonian 
operator through an application of Dirac's theory of constraints. The completely integrable class of Monge-Amp~re equations are 
then obtained by solving the Jacobi identities for a sufficiently general form of the second Hamiltonian operator that is compatible 
with the first. 

Completely integrable nonlinear evolution equa- 
tions are "universal" and "widely applicable" [1 ]. 
It is not surprising, therefore, that there are also very 
few of  them! Still the question remains as to whether 
or not we are missing any important  integrable 
equations. 

One of  the major  families o f  nonlinear partial dif- 
ferential equations in l + 1 dimensions that has not 
been sufficiently investigated for its possible com- 
plete integrability is the Monge-Amp~re  family 

uttUxx-U2x=F , ( l a )  

where F is assumed to be analytic in its arguments 
which consist o f  u and its first derivatives. The non- 
existence o f  a linear dispersive part to eqs. ( 1 ) is re- 
sponsible for their exclusion as a candidate from var- 
ious extensive searches for completely integrable 
equations [ 2]. On the other hand the origins o f  the 
Monge-Amp6re  equation in differential geometry 
suggest that  for some particular choices of  F, eq. ( 1 ) 
may indeed turn out to be completely integrable. In 
this context we recall that 

~r In memory of a young mathematician: Koray Karahan, 
20 March 1970- 10 December 1991. 

F=K(1 2 2 2 +Ux+_Ut) , ( l b )  

= K ,  ( l c )  

= e  u , ( l d )  

= u  -4 , ( l e )  

=fl Utt "Jt-f2Utx "~-f3uxx "~-f4 ( i f )  

are familiar examples of  Monge-Amp~re equations 
that arise in well-known problems of  geometry. 
Equation ( l b )  is the original Monge-Amp~re equa- 
tion that describes surfaces o f  constant curvature 
K =  +_ 1, 0 which could therefore be gauge-equivalent 
[ 3 ] to either the sine-Gordon or the Liouville equa- 
tions. The deceptively simpler looking case o f  eq. 
( l c )  has been studied [4] in connection with heav- 
enly metrics in complex general relativity. Similarly 
eq. ( I d )  is a 1 + 1 version of  the equation governing 
the IG~hler potential for the K3 surface o f  Kummer  
[5 ] for which the metric has remained elusive for 
over a century in spite o f  its importance as an in- 
stanton in quantum gravity [ 6 ]. Finally Rogers [ 7 ] 
has pointed out that eq. ( 1 e) is related to the D o d d -  
Bullough equation through an integrable choice o f  
the equation of  state for Eulerian gas dynamics. 
Martin [8] has given examples of  Monge-Amp6re 
systems as reductions of  the equations o f  gas dynam- 
ics. Some of  these are integrable. Martin's systems 
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are of the type of  eqs. ( 1 f )  where the right hand side 
is linear in the second derivatives and fi depend on 
x, t as well as u and its first derivatives. 

One of the most direct ways of identifying a com- 
pletely integrable non-linear partial differential 
equation consists of  an examination of its Hamil- 
tonian structure. In particular, if we can find two in- 
dependent but compatible non-degenerate Hamil- 
tonian operators for a given equation, then by Magri's 
theorem [ 9 ] it follows that there exists an infinite 
family of conserved Hamiltonians which are in in- 
volution with respect to the generalized Poisson 
brackets defined in terms of  both of  these Hamil- 
tonian operators. In general this is a formidable task, 
but there is an algorithm [ 10 ] for constructing the 
first Hamiltonian operator: The first generalized 
Poisson bracket is the Dirac bracket [ 11 ]. 

The first step towards a Hamiltonian formulation 
of any system requires the existence o fa  Lagrangian. 
The Monge-Amp~re family of  equations ( l a )  are 
the Euler-Lagrange equations for the variational 
principle 

5 1 = 0 ,  I =  f ~dtdx, (2a) 

where the Lagrangian is given by 

La= ~.£as + • ,  (2b) 

L e a = ½ [ ( l + u 2 ) u t t - 2 u t u x u x t - ( 1 - u 2 t ) U x ~ , ]  (2c) 

and 12, • are in general functions of u and its first 
derivatives which must be specialized according to 
the desired choice of  F on the right hand side of eq. 
( 1 a). The crucial part of the Lagrangian that yields 
a Monge-Amp~re operator on the left hand side of 
eq. ( 1 a) is ~B. This is a second order degenerate La- 
grangian and the passage to the Hamiltonian for- 
mulation of  such degenerate systems requires the use 
of  Dirac's theory of constraints [ 11 ]. We note that 
~B happens to be precisely of the form of the Born- 
Infeld equation, i.e. the hyperbolic version of the 
equation governing minimal surfaces. It is interest- 
ing to recall that the Born-Infeld equation itself ad- 
mits the richest Hamiltonian structure [ 12 ] among 
all the two-component equations of  hydrodynamic 
type [ 13 ]. Finally, it can be readily verified that the 
particular choices 

(I)  K2= (1 _+ u2 +U2x)-l, 

(II) f2= 1, 

O = K u ,  (3a) 

O =  3Ku  , (3b) 

= 3e u , (3c) 

= - u  - 3  , ( 3 d )  

yield eqs. ( l b ) - ( l e )  respectively. For £2= 1, eq. (2c) 
reduces to 

.,~B=l]UxUtt2 -- UtUxUxtdt. ½U2tUxx , (2d) 

which is familiar from surface theory [14]. The 
symmetries of eqs. (2c) and (2d) are well-known 
and they can be used to construct Noether currents 
for the Monge-Amp~re equations provided that the 
choice of $2, ~ is compatible with these symmetries. 

In order to pass to a Hamiltonian formulation of 
the various Lagrangian systems in eqs. (2a) we need 
to start with an equivalent first order form which de- 
pends only on the velocities. Thus we rewrite the 
Monge-Aml~re equations in the form 

u t = q  , (4a) 

1 ( q 2 + F )  (4b) 
qt = U'-~ 

appropriate to a pair of evolution equations. We shall 
henceforth use u ~ with i=  1, 2 ranging over the vari- 
ables u, q respectively. For O =  I the Lagrangian for 
the first order form of the Monge-Amp~re equations 
is given by 

. ~  = ½ U2xqt -- UxqxUt + ½ q2Ux x + ~1~, (2e) 

where F is a gradient with potential ~. This is man- 
ifestly a degenerate Lagrangian as its Hessian van- 
ishes identically. Thus we need to apply Dirac's the- 
ory of constraints in order to cast it into canonical 
form. The details of  this process will be discussed 
elsewhere [ 15 ]. Here we shall only record the result 
that for I2= 1 Dirac's theory yields 

Ht = ½q2u=+~ (5) 

as the Hamiltonian function and the Dirac bracket 
gives rise to the Hamiltonian operator 

0 1/Ux~ ~ (6) 
J ° = - l / u =  ( q x / u 2 ) D + D ( q x / u 2 ) ]  ' 

with D - O / d x .  It can be verified that Jo satisfies the 
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Jacobi identities and the equations of motion (4) 
are cast into canonical form u~ = J~o k 5H~ / 6u k. Fur- 
thermore Jo is a non-degenerate Hamiltonian oper- 
ator with the inverse 

Ko=(q~D+Dq~ - u  ) 
\ u ~  ~,~ ' ( 7a ) 

so that an alternative statement of  Hamiltonian 
structure [16] is provided by the symplectic two- 
form to = f du i Ka du i dx given by 

O9o = f (qx du ^ dUx - u~x du A dq) dx ,  (7b) 

which can be readily verified to be a closed two-form. 
The Hamiltonian operator (6), or its symplectic 

counterpart (7),  is applicable to a wide variety of  
Monge-Amp~re equations but it is not by any means 
sufficient to show the integrability of  any one of them. 
For this purpose we need to find at least a bi-Ham- 
iltonian structure. That is, a second Hamiltonian op- 
erator J~ such that the Lenard-Magri recursion 
relation 

Ut,+ t i  =Jiok ~ k  H,+~ =j~k ~ U  k Hn , n=0 ,  1, 2, ..., 

(8) 

is satisfied. The clue to the possible existence of J1 
and the infinitely many conserved Hamil tonians/7,  
comes from the observation that for all equations of  
the type of eq. ( 1 a) 

O o  ~ 1 2 -~u~q~ (9a) 

is conserved. This can be inferred from the flux of 
H1 in eq. (5) and the symmetry between x, t in eqs. 
( l a ) .  The knowledge of Ho provides crucial infor- 
mation on the structure of J~ by enabling us to con- 
centrate on the n = 0 case of  eqs. (8). Then the Ja- 
cobi identities determine which particular equation 
among eqs. ( l a )  will admit a bi-Hamiltonian 
structure. 

In order to simplify the discussion of the second 
Hamiltonian operator we shall first restrict our at- 
tention to 

uttUx~--U~x=O , (10) 

which will be referred to as the "homogeneous" 
Monge-Amp6re equation. In this case it can be read- 
ily verified that 

,.1,1 =(_q/Ou~u~ ~ q /uxu~  
( qqx/u~U2x)D+ D( qqx/UxU2 ) ] 

(11) 

is the second Hamiltonian operator. It satisfies the 
Jacobi identities and eq. (10) can be expressed as a 
Hamiltonian system in two different ways through 
eqs. (8). Furthermore J0, J~ are compatible Ham- 
iltonian operators since Jo+/tJ~ with/~ an arbitrary 
constant also satisfies the Jacobi identities. Then, by 
Magri's theorem, we 
Hamiltonians, 

Ho i 2 = ~ Uxqx, 

H1 = qqxu~ , 

HE = ½q2qx In Ux , 

1 
H3 = ~ux q3qx ' ""' 

have infinitely many 

(9b) 

(9c) 

(9d) 

(9e) 

which are in involution with respect to Poisson 
brackets defined by both Jo and J1. Equations (9) 
suggest that for an arbitrary differentiable function 
f, the quantity 

H=q2qxf(q/Ux) (9 ' )  

is conserved by virtue of  the homogeneous Monge- 
Amphre equation and this is readily verified. 

The symplectic two-form that corresponds to the 
second Hamiltonian operator for the homogeneous 
Monge-Amp6re equation is obtained by inverting J~ 
which yields 

( ( uxqx /q )D+D(uxqx /q )  -UXoxX/q ) 
Kx = \ UxUxJq 

(12a) 

and we have the closed two-form 

) tot = du A dUx - - -  du A dq dx.  
q 

(12b) 

Thus in eqs. (7b) and (12b) we have a symplectic 
pair. The existence of the inverses of the Hamilto- 
nian operators (6) and ( 11 ) is sufficient to establish 
their non-degeneracy so that the conditions of 
Magri's theorem are fulfilled. Since we have a non- 
degenerate pair of  compatible Hamiltonian opera- 
tors for the homogeneous Monge-Amp~re equation 
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we can assert its complete integrability [ 17 ]. 
Knowledge of the Hamiltonian and symplectic op- 

erators for the homogeneous Monge-Amp~re equa- 
tion (10) enables us to obtain the recursion operator 
[ 18 ] through ~ = J~ J 6  1. We find that it is a local 
operator given by 

~1-( q/Ux 0 
-\q2/uxuxx-qqx/u2 q/Ux) (13a) 

and satisfies 

~ t =  [~¢, ~ 1 ,  (13b) 

where 

d = ( _  0 1 
(q2x/uE)D2 2(qJUxx)D)" (13c) 

All the higher flows obtained by an application of the 
recursion operator to the Monge-Amp~re flow (4) 
yield the homogeneous Monge-Amp~re equation 
(10) itself up to a weight factor which is uf  for the 
tn+x flow. 

We have shown that eq. (10) admits a bi-Ham- 
iltonian structure. Guided by this example we can 
find a class of  Monge-Amp~re equations which ad- 
mits a second Hamiltonian operator compatible with 
the first. Such a Hamiltonian operator will be given 
in terms of two functions L, M entering into the 
ansatz 

J=(gL MD +L D M )  (14a) 

and the Jacobi identities enable us to determine the 
explicit dependence of L, M on u~, qx. The result 

1 
L =  - -  (14b) au=+b ' 

M= aqx + c (au=+b)2 (14c) 

contains three functions a, b, c of  three variables, 
namely u and its first derivatives Ux, q, which apart 
from the single requirement 

auUx =bux +cq (14d) 
can be chosen arbitrarily. The appearance of these 
arbitrary functions in the Hamiltonian operator (14) 
provides us with many opportunities for construct- 
ing Monge-Amp~re equations with multi-Hamilto- 

nian structure. For example, it can be verified that 
the special case 

a =  (1 + ~ q / U x )  - 1  , b = c = 0  

yields our earlier results for the bi-Hamiltonian 
structure of  the homogeneous Monge-Amp~re equa- 
tion (10). 

We must emphasize that the ansatz in eq. (14a) 
does not yield the most general form of the second 
Hamiltonian operator compatible with the first. 
Equations (14) describe a manageable but rather re- 
stricted class of  Hamiltonian operators appropriate 
to a family of  integrable Monge-Amp~re equations. 
With the important exception of the Martin systems 
in eqs. ( I f ) ,  most of  the interesting equations we 
have discussed in eqs. ( l a )  are not in this class and 
further work is required in order to draw conclusions 
about their integrability. Perhaps one of the simplest 
equations in the integrable category we have ob- 
tained above is given by 

u . u ~ -  u~  = u ;  ~ [u2h(u,  u~) ]x,  (15) 

where h is an arbitrary function of its arguments. Ev- 
idently the family of  integrable Monge-Amp~re 
equations is much larger than its formidable looking 
nonlinearity would suggest. 

This work was in part supported by the scientific 
research council of  Turkey, TLrBiTAK, under 
TBAG/CG-1.  
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