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DEEPred: Automated Protein 
Function Prediction with  
Multi-task Feed-forward Deep 
Neural Networks
Ahmet Sureyya Rifaioglu   1,2, Tunca Doğan3,4, Maria Jesus Martin3, Rengul Cetin-Atalay   4 & 
Volkan Atalay1,4

Automated protein function prediction is critical for the annotation of uncharacterized protein 
sequences, where accurate prediction methods are still required. Recently, deep learning based 
methods have outperformed conventional algorithms in computer vision and natural language 
processing due to the prevention of overfitting and efficient training. Here, we propose DEEPred, a 
hierarchical stack of multi-task feed-forward deep neural networks, as a solution to Gene Ontology (GO) 
based protein function prediction. DEEPred was optimized through rigorous hyper-parameter tests, 
and benchmarked using three types of protein descriptors, training datasets with varying sizes and GO 
terms form different levels. Furthermore, in order to explore how training with larger but potentially 
noisy data would change the performance, electronically made GO annotations were also included in 
the training process. The overall predictive performance of DEEPred was assessed using CAFA2 and 
CAFA3 challenge datasets, in comparison with the state-of-the-art protein function prediction methods. 
Finally, we evaluated selected novel annotations produced by DEEPred with a literature-based case 
study considering the ‘biofilm formation process’ in Pseudomonas aeruginosa. This study reports that 
deep learning algorithms have significant potential in protein function prediction; particularly when the 
source data is large. The neural network architecture of DEEPred can also be applied to the prediction 
of the other types of ontological associations. The source code and all datasets used in this study are 
available at: https://github.com/cansyl/DEEPred.

Functional annotation of proteins is crucial for understanding the cellular mechanisms, identifying 
disease-causing functional changes in genes/proteins, and for discovering novel tools for disease prevention, diag-
nosis, and treatment. Traditionally, gene/protein functions are first identified by in vitro and in vivo experiments 
and recorded in biological databases via literature-based curation. However, wet-lab experiments and manual 
curation efforts are cumbersome and time consuming. Thus, they are unable to resolve the knowledge gap that 
is being produced due to the continuous growth of biological sequence data1. Therefore, accurate computational 
methods have been sought to automatically annotate functions of proteins.

The Gene Ontology (GO) provides a controlled vocabulary to classify the attributes of proteins based upon 
representative terms, referred to as “GO terms”2. The GO system divides protein attributes into three main catego-
ries: molecular function (MF), biological process (BP) and cellular component (CC). Each GO term represents a 
unique functional attribute and all terms are associated to each other in a directed acyclic graph (DAG) structure 
based on inheritance relationships. Several GO term-based protein function prediction methods have been pro-
posed in the last decade to automatically annotate protein sequences using machine learning and statistical anal-
ysis techniques3–8. Considering the prediction performances of the current methods, it can be stated that there is 
still room for significant improvement in this area. Critical Assessment of Protein Function Annotation (CAFA) 
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is an initiative, whose aim is the large-scale evaluation of protein function prediction methods, and the results of 
the first two CAFA challenges showed that protein function prediction is still a challenging area9,10.

Several machine learning techniques have been employed for protein function prediction, such as the artifi-
cial neural networks (ANNs)11. Deep Neural Network (DNN) algorithms, a sub-group of ANNs, have multiple 
hidden layers. DNNs take low level features as input and build more advanced features at each subsequent layer. 
DNN-based methods have already become industry standards in the fields of computer vision and natural lan-
guage processing12–16. Recent improvements in affordable computational power have allowed the scientific com-
munity to apply DNN-based methods on numerous research fields including biomedical data analysis; where, 
DNN algorithms have been shown to outperform the traditional predictive methods in bioinformatics and chem-
informatics17–21. DNNs are divided into two groups in terms of the task modelling approach. Multi-task DNNs 
are designed for classifying the input instances into multiple pre-defined classes/tasks22, as opposed to single-task 
DNNs, where the aim is to make a binary prediction. In terms of the model architecture and properties, DNNs are 
classified into multiple groups, the most popular architectures are feed-forward DNN (i.e., multi-layered percep-
tron), recurrent neural network (RNN), restricted Boltzmann machine (RBM) and deep belief network (DBN), 
auto encoder deep neural networks, convolutional neural network (CNN), and graph convolutional network 
(GCN)14,15,18,19,22,23.

Investigative studies showed that, applications of multi-task DNNs provided a significant performance 
increase in ligand-based drug discovery. Ligand-based drug discovery can be considered similar to the problem 
of protein function prediction21,24. In protein function prediction, the associations between the ontology-based 
function defining terms (e.g., GO terms) and proteins are identified, where a protein may have more than one 
functional association. Therefore, protein function prediction is a multi-label learning problem and thus can be 
solved using multi-task deep neural networks, similar to the applications in drug discovery25. Multi-task DNN 
algorithms inherently extract the relationships between multiple classes by building complex features from the 
raw input data at each layer in a hierarchical manner. Additionally, shared hidden units among different classes 
enhance the prediction results of the classes that have a low number of training samples, which often has a posi-
tive impact on the predictive performance.

To the best of our knowledge, deep learning algorithms have not been thoroughly investigated in terms of 
generating practical large-scale protein function prediction pipelines. However, there have been a some studies 
mostly confined to small sets of proteins and functional classes. In these studies, DNNs were applied to pre-
dict protein functions using different types of protein features such as amino acid sequences26–29, 3-D struc-
tural properties30, protein-protein interaction networks28,31 or other molecular and functional aspects29,32–34, and 
various types of DNN architectures such as single or multi-task feed-forward DNNs32, recurrent neural net-
works26,27, deep autoencoder neural networks31,33, deep restricted Boltzmann machines34 or convolutional neural 
networks28–30. We have discussed and compared each study mentioned above in the Supplementary Material 1 
Document, Section 1.

One of the most critical obstacles against developing a practical DNN-based predictive tool is the computa-
tionally intensive training processes that limits the size of input data and the number of functional categories that 
can be included in the system. Due to this reason, previous studies mostly focused on a small number of protein 
families or GO terms. Whilst, methods covering large sets of GO terms suffered from long training duration and 
reduced predictive performance issues. Therefore, there is a need for new predictive approaches not only with 
high performance, but also with real-world usability, to be able to support in vitro studies in protein function 
identification.

In this study, we propose a novel multi-task hierarchical deep learning method, DEEPred, for the predic-
tion of GO term associations to protein sequence records in biological data resources such as the UniProtKB, as 
well as for poorly and uncharacterized open reading frames. We also provide a comprehensive investigation on 
DNN-based predictive model characteristics when applied on protein sequence and ontology data. Our initial 
preprint work on this topic was one of the first applications of deep neural networks for sequence based protein 
function prediction35. This study contributes to the existing literature in terms of designing a large-scale deep 
learning based predictive system using a stack of 1,101 multi-task feed-forward DNNs, capable of predicting 
thousands of Gene Ontology based functional definitions. Additionally, the prediction of GO terms with very 
low number of training instances, which is a major problem in the field of automated protein function prediction, 
has been addressed by proposing a practical data augmentation solution by incorporating previously produced 
automated functional predictions into the system training.

Results
The technical details of DEEPred are given in the Methods section. The results of several performance and vali-
dation analyses are provided below.

Input feature type performance analysis.  In predictive modeling, input instances/samples are quan-
tized as feature vectors, and these feature vectors are required to reflect the intrinsic properties of the samples 
they represent, which should also be correlated with their known labels (i.e., GO term associations in our case). 
For this reason, finding the best representative feature type is important for any machine learning application. 
In this analysis, our aim was to investigate the best representative feature type for proteins, to be incorporated 
in DEEPred. For this purpose, we randomly selected three DEEPred DNN models that contain MF GO terms 
from different levels on the GO hierarchy, and trained each model using three different feature types (i.e., SPMap, 
pseudo amino acid composition - PAAC and the conjoint triad) as explained in the Methods section. The reason 
behind using MF GO term models was MF being the most clearly defined aspect of GO and also the easiest one 
to predict.
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We measured the performance of the models using cross-validation, with 80% to 20% separation of the source 
training data, to observe the best representative feature. Table 1 shows the selected models together with the 
incorporated GO terms, their levels on the GO DAG, the number of annotated proteins and the performances for 
each feature type. The average performances (F1-score) were calculated as 0.63, 0.36 and 0.43 for SPMap, PAAC 
and the conjoint triad features, respectively. Since the predictive performance with SPMap feature was the best, 
we incorporated SPMap into the DEEPred system for the rest of the study.

Effect of training dataset sizes on system performance.  DNN models usually require a high number 
of training instances in order to produce accurate predictions. A significant disadvantage in this regard is that, 
large-scale biological training datasets are not generally available. One solution to this problem would be to dis-
card GO terms with a low number of training instances from the system. In this case, the problem is that there 
are only a small number of GO terms available for prediction, most of which are shallow (i.e., generic and less 
informative terms). In order to investigate the effect of training dataset sizes on the predictive performance, we 
carried out a detailed analysis with multiple training and testing processes.

We constructed 6 different training datasets based on the annotated protein counts of different GO terms, 
as described in the Methods section. Table 2 summarizes the training dataset sizes and contents based upon the 
MF annotations. There are two vertical blocks in Table 2, the first one belongs to “Annotations with only man-
ual experimental evidence codes”; and the second block belongs to “Annotations with all evidence codes”. As 
observed from the first block, the number of available GO levels and GO terms decreases as the minimum com-
pulsory number of annotations increases, since specific GO terms usually have less number of annotations. We 
trained the DEEPred system with each of these training datasets (i.e., annotations with only manual experimental 
evidence codes) and measured the predictive performance individually. We then compared them with each other 
to observe if there is a correlation. The average performance of the models for each training dataset is given in 
Table 3 and in Fig. 1. Each column in Table 3 corresponds to an average F1-score value of the GO terms belonging 
to a particular training dataset. Box plots in Fig. 1 additionally display median and variance values. Here, it is evi-
dent that there is a strong correlation between the training sample size and performance. As expected, increasing 
the training dataset sizes elevated the classification performance for all GO categories. High variance values at 
low training dataset sizes indicates that these models are less stable. In this part of the study, we also carried out a 
GO level specific performance analysis. The details of this analysis can be found in the Supplementary Material 1 
Document, Section 7.

Performance evaluation of training with electronic annotations.  In DEEPred, the minimum 
required number of annotated proteins for each GO term (to be used in the training) is 30, which was considered 
as the minimum number required for statistical power. Due to this threshold, all GO terms with less than 30 
annotated proteins were eliminated from the system. The eliminated terms corresponded to 25,257 out of 31,352 
GO terms (31,352 is the total number of terms that have been annotated to at least one UniProtKB/Swiss-Prot 
protein entry with manual and experimental evidence codes), which can be considered as a significant loss. The 
same problem exists for most of the machine learning based methods in the automated protein function predic-
tion domain. Moreover, the DNN models with a low or moderate number of training instances (i.e., between 30 
to 100 for each incorporated GO term) displayed lower performance compared to the models with high number 
of training samples, as discussed above. In this section, we investigated a potential way to increase the statistical 
power of our models by enriching the training datasets.

Model & GO 
level GO term id GO description

# of annotated 
proteins

Predictive performance (F1-score)

SPMap
Pseudo-amino 
acid composition

Conjoint 
triad

Model 1
(GO level: 2)

GO:0036094 small molecule binding 1 847

0.49 0.29 0.23

GO:0003700 DNA binding transcription factor activity 1 652

GO:0004872 receptor activity 1 332

GO:0044877 protein-containing complex binding 1 296

GO:0097367 carbohydrate derivative binding 1 252

Model 2
(GO level: 4)

GO:0004529 exodeoxyribonuclease activity 50

0.68 0.53 0.38

GO:0045309 protein phosphorylated amino acid binding 50

GO:0008395 steroid hydroxylase activity 49

GO:0008649 rRNA methyltransferase activity 49

GO:0015645 fatty acid ligase activity 49

Model 3
(GO level: 7)

GO:0001012 RNA polymerase II regulatory region DNA binding 818

0.74 0.53 0.47

GO:0016887 ATPase activity 764

GO:0046873 metal ion transmembrane transporter activity 685

GO:0001159 core promoter proximal region DNA binding 504

GO:0015077 monovalent inorganic cation transmembrane 
transporter activity 480

Table 1.  Input feature type performance comparison results.
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In the UniProtKB/SwissProt database, only 1% of the total number of GO term annotations are tagged with 
manual and experimental evidence codes. The remaining of the GO term annotations are electronically made 
(evidence code: IEA), and these annotations are usually considered as less reliable due to potential errors (i.e., 
false positives). Normally, electronic annotations are not used for system training to avoid error propagation. In 
this test, we investigated the performance change when all annotations (including electronic ones) were included 
in the training procedure of DEEPred, and we discussed whether deep learning algorithms could handle noisy 
training data, as stated in the literature.

To perform this experiment, we first identified the MF GO terms whose annotation count was increased at 
least four times, when electronically made annotations were incorporated. We randomly selected 25 MF GO terms 
that satisfied this condition, and trained/evaluated the models with 80% to 20% training-validation separation, 
similar to our previous tests. The training dataset sizes and performance values for the “all-annotation-training” 
analysis are given in Table 4. In this table, we divided GO terms into two main categories as “previously high per-
formance models” and “previously low performance models” based on the performances when the system was 
trained only with annotations of manual experimental evidence codes. The results showed that adding electronic 
annotations to the training procedure increased the performances of selected “previously low performance mod-
els”. On the other hand, including electronic annotations in the training of “previously high performance models” 
decreased their performances in some of the cases. Overall, the performance change was positive.

Evaluation of the overall system performance.  For the final system training of DEEPred, we used the 
training dataset of GO terms with at least 30 annotated proteins (with manual and experimental evidence codes); 
this dataset was also used to measure the overall performance of DEEPred.

The overall system performance was evaluated by considering all 1,101 predictive models. For testing, the 
hold-out dataset (see Methods) was employed, which was not used at all during system training. The test proteins 
were fed to all of the models and the system performance was calculated using precision, recall and F1-score 

Training Dataset Statistics

Annotation 
Count

Annotations with only manual experimental 
evidence codes Annotations with all evidence codes

# of available 
levels

# of GO 
terms # of annotations

# of available 
levels

# of GO 
terms

# of 
annotations

Molecular Function

≥30 9 838 281 125 11 2 776 6 451 530

≥100 9 605 272 235 10 1 598 6 386 105

≥200 9 395 257 404 10 1 174 6 326 109

≥300 8 226 233 476 9 942 6 269 643

≥400 8 165 218 591 9 809 6 223 762

≥500 8 142 210 790 9 698 6 173 867

Biological Process

≥30 10 4 215 1 433 220 12 8 404 16 537 812

≥100 10 2 993 1 386 588 12 4 768 16 335 538

≥200 9 1 782 1 302 577 11 3 299 16 129 271

≥300 9 1 059 1 199 604 10 2 631 15 965 583

≥400 8 743 1 123 037 9 2 233 15 828 012

≥500 8 603 1 075 353 9 1 978 15 713 431

Cellular Comp.

≥30 7 606 340 995 8 1 268 4 167 000

≥100 6 460 335 445 8 750 4 138 327

≥200 6 324 325 687 7 549 4 110 383

≥300 6 206 309 390 6 442 4 083 834

≥400 6 155 296 929 6 377 4 061 654

≥ 500 5 118 283 616 6 335 4 043 150

Table 2.  Statistics for the training datasets created by only using annotations with manual and experimental 
evidence codes and the training datasets created by using annotations with all evidence codes.

GO categories

Performance measures (F1-score) for different 
training dataset sizes

≥ 30 ≥ 100 ≥ 200 ≥ 300 ≥ 400 ≥ 500

Molecular Function 0.66 0.68 0.77 0.82 0.82 0.83

Biological Process 0.42 0.50 0.52 0.52 0.56 0.55

Cellular Component 0.50 0.59 0.64 0.63 0.64 0.65

Table 3.  The average prediction performance (F1-score) for GO term models belonging to different 
training dataset size bins. In this analysis, the training was done using only the annotations with manual 
and experimental evidence codes.
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(Table 5). The average prediction performance (F1-score) was calculated as 0.62, 0.46 and 0.55 for MF, BP and 
CC categories, respectively, without using the hierarchical post-processing method (see Methods). When we 
employed the hierarchical post-processing procedure, which represents the finalized version of DEEPred, the 
overall average system performance (F1-score) was increased to 0.67, 0.51 and 0.58 for MF, BP and CC categories 
respectively.

Performance comparison against the state-of-the-art.  Two separate analyses were carried out for 
the comparison against the state-of-the-art. In the first one, the CAFA2 challenge data was used. In CAFA2, 
GO term based function predictions of 126 methods from 56 research groups were evaluated. The performance 
results of best performing 10 methods are available in the CAFA2 report9. In order to yield a fair comparison 
with the CAFA2 participating methods, DEEPred models were re-trained using the GO annotation data from 
September 2013. Afterwards, DEEPred was run on the CAFA2 benchmark protein sequences and the perfor-
mance results (F-max) of 0.49, 0.26, and 0.43 were obtained for MF, BP, and CC categories respectively; consid-
ering the no-knowledge benchmark set in the full evaluation mode (the official CAFA2 performance calculation 
setting). For the CC category, DEEPred was among the 10 best performing methods.

Figure 2A–C displays the 10 top performing methods in CAFA2 in terms of F-max measure along with the 
results of DEEPred, for the selected taxonomies where DEEPred performed well. As observed from Fig. 2A,B, 
DEEPred is among the best performers in terms of predicting MF GO terms for all prokaryotic sequences 
(Fig. 2A), specifically for E. coli (Fig. 2B). Figure 2C shows that DEEPred came third in predicting BP terms for 
the mouse (Mus musculus) proteins. These results (Fig. 2A–C) also indicate that DEEPred has an added value 
over the conventional baseline predictors (i.e., BLAST and naive). In Fig. 2D, we also compared our results with 
the BLAST baseline classifier in terms of the GO term-centric mean area under the ROC curve (AUC) for pre-
dicting MF terms for CAFA2 benchmark sequences. As it can be seen in Fig. 2D, the performance of DEEPred is 
slightly higher than the BLAST classifier in the overall comparison considering all MF GO terms. Whereas, the 
performance is low for DEEPred when MF GO terms of comparably low number of training instances (<1,000) 
was used (i.e., low terms). Finally, when the MF GO terms with comparably high number of training instances 
(>1,000) was employed (i.e., high terms), DEEPred’s performance surpassed BLAST. The results indicate that 

Figure 1.  Box plots for training dataset size specific performance evaluation. Each box plot represents 
variance, mean and standard deviations of F1-score values (vertical axis) for models with differently sized 
training datasets (horizontal axis), for each GO category. In this analysis, the training was done using only the 
annotations with manual and experimental evidence codes.
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DEEPred is especially effective and have a significant added value over conventional methods, when the number 
of training instances are high.

The second performance analysis was done using CAFA3 challenge data, the submission period of which 
has ended in February 2017. The finalized benchmark dataset (protein sequences and their GO annotations) of 
CAFA3 was downloaded from the CAFA challenge repository on Synapse system (“benchmark20171115.tar” 
from https://www.synapse.org/#!Synapse:syn12278085). In total, this dataset contains 7,173 annotations (BP: 
3,608, CC: 1,800 and MF: 1,765) for 3,312 proteins. The DEEPred models were re-trained using UniProt-GOA 
manual experimental evidence coded GO annotation data from September 2016 (the date of the official train-
ing data provided by CAFA3 organizers), and the predictions were generated for benchmark dataset protein 
sequences. For this analysis, we could not directly use the officially announced performance data of the top chal-
lenge performers since the results are yet to be published as of April 2019. Instead, three other sequence-based 
function prediction methods, namely FFPred336, GoFDR37 and DeepGO28, were selected to be compared with 
DEEPred. These methods were developed and published in the last 2 years, and reported predictive perfor-
mances that are better than the state-of-the-art in their own publications. For DeepGO, we downloaded the stand 
alone tool, train the models with the provided training data (considering the CAFA3 submission deadline) and 
produced the benchmark dataset predictions. The stand-alone tool was not available for FFPred3 and GoFDR; 
however, CAFA3 target set function predictions were already available, as a result, we directly employed those 

GO Term GO Description
NoA* 
(ME*)

NoA 
(AE*)

F1-score 
perf. (ME)

F1-score 
perf. (AE)

Perf. 
Change

Previously low 
performance models

GO:0070569 uridylyltransferase activity 35 970 0.58 0.88 0.30

GO:0019203 carbohydrate phosphatase activity 63 681 0.51 0.84 0.33

GO:0004197 cysteine-type endopeptidase activity 100 853 0.45 0.40 -0.05

GO:0005524 ATP binding 596 85 442 0.53 0.93 0.40

GO:0030554 adenyl nucleotide binding 689 86 319 0.51 0.90 0.39

GO:0035639 purine ribonucleoside triphosphate binding 834 98 924 0.43 0.80 0.37

GO:0032555 purine ribonucleotide binding 951 99 286 0.51 0.89 0.38

GO:0097367 carbohydrate derivative binding 1 395 10 413 0.41 0.73 0.32

GO:0000166 nucleotide binding 1 487 116 408 0,53 0.82 0.29

GO:0036094 small molecule binding 2 059 12 634 0.40 0.72 032

GO:0043169 cation binding 2 145 119 698 0.48 0.71 0.23

GO:0043167 ion binding 4 132 20 278 0.33 0.79 0.46

Previously high 
performance models

GO:0004784 superoxide dismutase activity 38 459 0.81 0.68 -0.13

GO:0004004 ATP-dependent RNA helicase activity 48 954 0.75 0.73 -0.02

GO:0005525 GTP binding 258 14 479 0.95 0.79 -0.16

GO:0032550 purine ribonucleoside binding 286 14 496 0.89 0.62 -0.27

GO:0001883 purine nucleoside binding 289 14 506 0.89 0.87 -0.02

GO:0032549 ribonucleoside binding 296 15 460 0.78 0.80 0.02

GO:0001882 nucleoside binding 304 15 508 0.92 0.79 -0.13

GO:0008270 zinc ion binding 520 11 385 0.83 0.71 -0.12

GO:0032559 adenyl ribonucleotide binding 673 85 691 0.80 0.80 0.00

GO:0017076 purine nucleotide binding 975 99 924 0.91 0.65 -0.26

GO:0032553 ribonucleotide binding 1 025 100 844 0.87 0.61 -0.26

GO:0046872 metal ion binding 1 985 118 577 0.81 0.80 -0.01

GO:0004784 superoxide dismutase activity 38 459 0.81 0.68 -0.13

Average 861 47 658 0.68 0.77 0.10

Table 4.  Performance (F1-score) changes for the selected GO terms after the enrichment of training datasets 
with electronic annotations. In this analysis, the training was done using all of the available annotations, without 
any selection based on the evidence code. *NoA: Number of Annotations, ME: Manual-Experimental Evidence, 
AE: All Evidence.

without Hierarchical Post-processing with Hierarchical Post-processing

F1-score Precision Recall F1-score Precision Recall

Molecular Function 0.62 0.52 0.77 0.67 0.61 0.74

Biological Process 0.46 0.36 0.65 0.51 0.44 0.62

Cellular Component 0.55 0.50 0.61 0.58 0.58 0.58

Table 5.  The average overall performance results of DEEPred, with and without the hierarchical 
post-processing procedure. In this analysis, the training was done using the annotations with manual 
and experimental evidence codes.

https://doi.org/10.1038/s41598-019-43708-3
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prediction files for our analysis. We also built baseline predictors (i.e., Naïve Bayes and Blast) with CAFA3 data, as 
described by the CAFA team. We employed performance evaluation scripts released by the CAFA team in order 
to calculate the performances of DEEPred, the state-of-the-art methods and the baseline classifiers. DEEPred is 
composed of multiple independent classifiers, each of which has its own best score threshold. For the calculation 
of F-max, CAFA evaluation script applies the same prediction score threshold to all predictions, which would 
result in the underestimation of DEEPred’s performance. To avoid this, we transformed DEEPred’s prediction 
scores and made them comparable to each other by applying min-max normalization.

Table 6 displays the performance results for Molecular function (MF), cellular component (CC) and biological 
process (BP) categories, in terms of F-max, precision, recall and Smin measures. Only the precision and recall 
values corresponding to the score threshold that produced the given F-max are shown. A better performance is 
indicated by higher F-max, precision and recall values and lower Smin values. “No-knowledge” and “All” indicates 
2 different evaluation modes, where the former indicates that the methods are evaluated only using the proteins 
that did not have any manually curated GO annotation in the training dataset (before the challenge submission 
deadline), and the latter indicates that the methods are evaluated using all benchmark proteins. DEEPred was 
analzyed in terms of two different versions: (i) raw predictions coming from all predictive models, without any 
post-processing (i.e., DEEPred_raw), and (ii) finalized predictions after the hierarchical post-processing proce-
dure (i.e., DEEPred_hrchy). The results are shown in Table 6, where the best results for each GO category and for 
each performance measure is highlighted with bold font. When the second best method’s performance was close 
to the best one, both of them are highlighted. As observed from Table 6, the finalized version of DEEPred (i.e., 
DEEPred_hrchy) consistently beat the performance of the raw DEEPred predictions, indicating the effectiveness 
of the proposed hierarchical post-processing approach. In MF term prediction, DEEPred_hrchy shared the top 
place with GoFDR in terms of F-max, precision and recall (GOFDR performed slightly better in terms of Smin). 
Considering CC term prediction, DeepGO shared the first place with the naïve classifier, in terms of both F-max 
and Smin. DEEPred_hrchy was the best (in terms of F-max) for predicting BP terms of the no-knowledge pro-
teins, and shared the first place with DeepGO and FFPred3 considering all benchmark proteins. DEEPred_hrchy 
was also the first in terms of Smin, for the BP category. In CAFA3 analysis, at the points of maximum perfor-
mance for DEEPred (i.e., Fmax) DEEPred’s precision was maximum (i.e., no FPs) and the recall was relatively low 

Figure 2.  The prediction performance of DEEPred on CAFA2 challenge benchmark set. Dark gray colored 
bars represent the performance of DEEPred, whereas the light gray colored bars represent the state-of-the-art 
methods. The evaluation was carried out in the standard mode (i.e., no-knowledge benchmark sequences, the 
full evaluation mode), more details about the CAFA analysis can be found in CAFA GitHub repository; (A) MF 
term prediction performance (F-max) of top 10 CAFA participants and DEEPred on all prokaryotic benchmark 
sequences; (B) MF term prediction performance (F-max) of top 10 CAFA participants and DEEPred on E. coli 
benchmark sequences; (C) BP term prediction performance (F-max) of top 10 CAFA participants and DEEPred 
on mouse benchmark sequences; and (D) MF GO term-centric mean area under the ROC curve measurement 
comparison between BLAST and DEEPred for all MF GO terms, bars represent terms with less than 1000 
training instances (i.e., low terms) and terms with more than 1000 training instances (i.e., high terms).
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(i.e., high number of FNs), for all categories of GO, according to Table 6. The most probable reason behind this 
observation can be explained as follows. Since the multi-task modeling approach is used, the negative training 
instances/samples of a GO term in a model constitutes the positive training instances of other GO terms in the 
same model. In an example model where there are 5 GO terms, each with 50 positive training instances, there 
are 50 positive and 200 negative instances for each GO term. The ratio of 1 to 4 may lead to a bias towards nega-
tive predictions, especially for the cases where the proper learning was not achieved during training (i.e., a fully 
negative set of predictions would lead to success with a ratio of 4 to 5, whereas, a fully positive set of predictions 
would lead to successes with a ratio of 1 to 5). As a result, the system generally prefers fewer positive predic-
tions, which usually means low number of FPs (high precision) and relatively higher number of FNs (low recall). 
Another probable reason behind this observation (for the finalized version of DEEPred) is that, the hierarchical 
post-processing of predictions reduces the number of false positives by eliminating predictions with low or mod-
erate reliability (i.e., by checking the prediction consistency using the prediction results of the GO terms, which 
are the parents of the corresponding GO term). Thus, precision is increased due to discarding of some of the 
predictions; however, along with discarding FPs, some of the TPs were eliminated as well (i.e., those TPs turned 
into FNs), so the recall was reduced.

P. aureginosa Case Study on biofilm formation process.  We analyzed the biological relevance of the 
results of DEEPred over selected example predictions. For this purpose, we employed the recent CAFA Pi bio-
logical process GO term assignment challenge. One of the goals in CAFA Pi was the prediction of the proteins 
responsible for the biofilm formation (GO:0042710) process using electronically translated open reading frames 
(ORFs) from a specific Pseudomonas aureginosa strain (UCBPP-PA14) genome. A short introduction about P. 
aureginosa and biofilm formation process can be found in the Supplementary Material 1 Document, Section 8.

In order to annotate ORF sequences from P. aureginosa UCBPP-PA14 strain with biofilm formation GO term 
using DEEPred, we generated a single task feed-forward DNN model. The reason behind not using a multi-task 
model here was to prevent the potential effect of the selection of the accompanying GO terms to the predictive 
performance. The positive training dataset for this model was generated from all UniProtKB/Swiss-Prot pro-
tein records that were annotated either with the corresponding GO term or with its descendants with manual 
and experimental evidence codes, yielding 254 proteins. The negative training dataset was selected from the 
protein entries that were neither annotated with the corresponding GO term nor any of its descendants (the 
same number of samples were selected randomly to match the positive training dataset). The model was trained, 
and the hyper-parameters were optimized and the performance was measured via 5-fold cross validation. The 

F-max  Precision Recall (at F-max) Smin

No-knowledge All No-knowledge All No-knowledge All No-knowledge All

MF

Naive 0.35 0.29 0.49 0.41 0.27 0.23 6.87 6.43

Blast 0.40 0.39 0.42 0.36 0.38 0.44 6.99 6.48

FFPred3 0.32 0.31 0.34 0.30 0.30 0.32 7.35 6.66

GoFDR* 0.55 0.45 0.67 0.55 0.46 0.38 5.06 4.41

DeepGO 0.40 0.34 0.58 0.48 0.30 0.27 6.36 6.01

DEEPred_raw 0.32 0.33 1.00 1.00 0.19 0.19 6.63 6.16

DEEPred_hrchy 0.49 0.50 1.00 1.00 0.32 0.33 5.41 5.03

CC

Naive 0.55 0.54 0.56 0.58 0.55 0.50 7.61 7.65

Blast 0.46 0.45 0.39 0.39 0.56 0.53 9.74 9.94

FFPred3 0.54 0.52 0.54 0.54 0.53 0.50 8.61 8.44

GoFDR* 0.48 0.45 0.46 0.42 0.51 0.48 10.98 10.86

DeepGO 0.54 0.53 0.61 0.58 0.48 0.49 7.68 7.55

DEEPred_raw 0.30 0.29 0.19 0.18 0.69 0.69 10.68 10.41

DEEPred_hrchy 0.34 0.35 1.00 1.00 0.20 0.22 9.85 9.53

BP

Naive 0.26 0.30 0.25 0.39 0.26 0.24 24.27 20.85

Blast 0.28 0.32 0.22 0.27 0.37 0.38 25.11 21.35

FFPred3 0.26 0.34 0.23 0.29 0.30 0.40 24.74 21.48

GoFDR* 0.19 0.18 0.25 0.26 0.15 0.14 24.75 28.83

DeepGO 0.28 0.34 0.40 0.52 0.21 0.26 23.41 20.19

DEEPred_raw 0.16 0.16 1.00 1.00 0.09 0.09 24.65 22.05

DEEPred_hrchy 0.32 0.33 1.00 1.00 0.19 0.19 22.04 19.69

Table 6.  The prediction performance of DEEPred and the state-of-the-art protein function prediction methods 
on CAFA3 challenge benchmark dataset. *The results of GoFDR is given based on the CAFA3 preliminary 
benchmark set since the results for the full benchmark dataset were not available for this method.
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performance results in terms of precision, recall and F1-score were 0.71, 0.84 and 0.77 respectively. The finalized 
models were then employed to predict functions for CAFA Pi P. aureginosa ORF targets.

From a literature review, we identified 8 genes (wspA, wspR, rocR, yfiN, tpbB, fleQ, fimX and PA2572) in the P. 
aureginosa reference genome that are associated with biofilm formation, but not annotated with the correspond-
ing GO term or its functionally related neighboring terms, in the source databases at the time of this analysis 
(as a result, they are not presented in our training dataset). Out of these 8 genes/proteins wspR, yfiN, tpbB and 
fimX contain the GGDEF domain, which is responsible for synthesizing cyclic di-GMP and thus take part in 
the biofilm formation process38. Two of these genes/proteins, yfiN and tpbB, additionally contain the CHASE8 
sensor domain, which controls the levels of extracellular DNA and regulates biofilm formation39. The mechanism 
by which these 8 genes/proteins contribute to the formation of biofilm are explained in two articles by Cheng40 
and Ryan et al.41. We obtained the protein sequences of these genes from the UniProt database, then aligned 
them to CAFA Pi P. aureginosa UCBPP-PA14 strain’s target ORF sequences to identify CAFA Pi target sequences 
corresponding to these genes with a cut-off of greater than 98% identity. The reason behind this application was 
that the CAFA Pi target dataset ORF sequences were unknown. Finally, we analyzed the equivalent P. aureginosa 
ORFs of these 8 genes in the target dataset using DEEPred’s biofilm formation process model and examined the 
prediction scores.

Table 7 displays the gene symbols, protein (UniProt) accessions and biofilm formation GO term prediction 
scores produced by DEEPred for the selected genes/proteins. As observed in Table 7, 4 out of 8 genes/proteins 
(i.e., gene symbols: wspA, wspR, rocR and PA2572) received high prediction scores for the biofilm produc-
tion term and thus successfully identified by DEEPred. Two genes/proteins (i.e., gene symbols: yfiN and tpbB) 
received moderate scores, which were still sufficient to produce a prediction. The remaining two genes/proteins 
(i.e., gene symbols: fleQ and fimX) could not be associated with the corresponding GO term at all. We also car-
ried out a BLAST search in order to observe if these predictions could be produced by a conventional sequence 
similarity search. For this, the amino acid sequence of each of the 8 genes/proteins was searched against the whole 
UniProtKB with an e-value threshold of 100. The BLAST search revealed that none of the best 1,000 BLAST hits 
(50% or greater identity) possessed the biofilm formation GO term or any of its ancestor or descendant terms as 
annotations, and thus BLAST failed to annotate these genes/proteins. Since none of these 8 genes/proteins (or 
their BLAST hits) have been annotated with a GO term related to the biofilm formation function on the GO DAG; 
there were no protein sequences in the training dataset of DEEPred that were similar to these genes. As a result, 
the accurate predictions cannot be the result of a simple annotation transfer between close homologs.

Discussion and Conclusion
Deep learning algorithms have shown to enhance the classification performances in various fields; however, it was 
not thoroughly investigated in terms of their applications to the protein function prediction area at large-scale. 
In this study, we described the DEEPred method for predicting GO term based protein functions using a stack 
of feed-forward multi-task deep neural networks. As input, DEEPred only requires the amino acid sequences of 
proteins. We carried out several tests to investigate the behavior of DNN-based models in protein function pre-
diction. The approach developed and applied in this study is novel in terms of:

	 i.	 timeliness of the work: the application of deep learning based methods on different bioinformatics related 
problems is currently a hot topic, the pre-print of DEEPred was one of the first in the protein function 
prediction literature35;

	 ii.	 technical contribution in terms of designing a novel DNN-based system: 1,101 multi-task feed-forward 
deep neural networks are constructed, individually optimized, and stacked according to the inheritance 
relationships of the Gene Ontology system, which enables a hierarchical prediction and post-processing 
process;

	iii.	 a thorough investigation of the behavior of deep neural networks when applied to GO-based protein func-
tion prediction, considering different input feature types, dataset sizes and GO term levels;

	 iv.	 data modelling approach: electronically made annotations (i.e., predictions of previous protein function 
prediction methods) are included in the training set of the predictor, with the aim of enriching training 
data (especially for the GO terms with insufficient number of training instances), and the results are 

Gene symbol
Protein accession 
(UniProt)

DEEPred prediction 
score

wspA A0A0H2ZEY3 0.99

rocR A0A0C7D525 0.98

PA2572 Q9I0R4 0.98

wspR A0A0H2ZEX4 0.95

yfiN A0A0C7ADU5 0.68

tpbB Q9I4L5 0.68

fleQ A0A0H2Z7X4 0.05

fimX A0A0H2ZHA6 0.02

Table 7.  DEEPred’s biofilm formation term (GO:0042710) prediction results for the selected P. aureginosa 
proteins.
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examined in detail; as far as we are aware, this investigation is the first in protein function prediction 
literature;

	 v.	 DEEPred contributes to the state of the art in the field of protein function prediction, in terms of designing 
a large-scale deep learning based system that is able to model thousands of GO terms, which is also practi-
cal to use.

The input feature type selection analysis revealed that our in-house protein descriptor SPMap had a better per-
formance compared to the conventional conjoint triad and pseudo-amino acid composition features. However, 
this performance increase comes with a cost in terms of a higher vector dimensionality (i.e., SPMap has between 
1000 to 2000 dimensions as opposed to 373 for conjoint triad and 50 for pseudo-amino acid composition), which 
elevates the computational complexity. It would also be interesting to analyze additional protein feature types, 
especially the descriptors frequently used in protein-ligand binding prediction studies42.

The reasons behind choosing DEEPred’s specific DNN architecture was first, this is a basic form and thus, it 
is straightforward to train and optimize. In other words, it requires minimal amount manual design work com-
pared to specialized complex networks such as the Inception Network43. This is especially important considering 
the fact that more than one thousand independent networks should have been trained. Second, computational 
resources required to train this architecture is lower compared to, again, complex networks.

In DEEPred, we considered multi-task DNNs (as opposed to single-task DNNs) due to various advantages 
attributed to multi-task networks such as: (i) the ability to share knowledge between tasks; which supports the 
system in the case where there are a low number of training instances and (ii) training a lower number of mod-
els in total, which improves training run times. On the other hand, multi-task DNNs also have disadvantages 
especially when the high number of tasks compels the generation of multiple models. The problem here is the 
efficient grouping of the tasks (i.e., GO terms in our case) so that the tasks under an individual model would 
become alternatives (i.e. orthogonal) to each other. We tried to achieve this by first, grouping GO terms from the 
same level and second, placing the sibling terms together under the same model, where possible. In most cases, 
it was not possible to find a sufficient number of sibling terms, and thus, semantically unrelated terms from the 
same level ended up in the same model. Nevertheless, this was not a crucial problem since it is possible for a 
multi-functional query protein to receive high prediction scores for multiple GO terms under the same model. 
Another important point during the term grouping was placing GO terms with similar number of annotated 
proteins under the same group. According to our observations, models containing tasks with highly unbalanced 
number of training instances perform poorly (this is also one of the reasons why generating only one model to 
predict all GO terms would be a poor design choice). Due to these reasons, generation of the models required 
a considerable amount of manual work, none of which would be required if we employed single-task networks. 
It would also be possible to achieve higher performance values with single-task DNNs, especially where there is 
sufficient number of training instances. We did not consider single-task networks mainly because it is not feasible 
to train tens of thousands of networks (when the hyper-parameter optimization step is considered the number 
would increase to billions of training jobs) to cover the whole functional space. In the future, it would be interest-
ing to see algorithmic solutions to the feasibility problems related to single-task networks. With such solutions we 
could construct and test a single-task DNN-based system for protein function prediction.

In this study, we trained several DNN models using 6 different groups of training datasets containing GO 
terms with differing number of training samples, to investigate the performance differences due to changes in the 
training sample size. Our training dataset size performance evaluation results (Fig. 1 and Table 3) showed that 
there is a general trend of performance increase with the increasing number of training samples, which means 
that including GO terms with low number of protein associations into models decreases the overall performance. 
Therefore, our findings are in accordance with the literature regarding training data sizes being one of the key fac-
tors that affect the predictive performance of deep learning algorithms; though, the research community started 
to focus on developing novel deep learning based approaches to address training dataset size related problems44.

In this work, we also investigated if there is a relationship between levels of GO terms on the GO DAG and 
the classification performances. Figure S.1 indicates that there is no such correlation. In addition, we observed 
that the variance in performance between different GO levels decreases as the training dataset size increases for 
molecular function and cellular component categories. For the biological process category, the overall perfor-
mance increases with increasing GO training dataset sizes, however the variance is relatively higher. The main 
reason behind this may be attributed to the biological process GO terms representing complex processes (e.g., 
GO:0006099 - tricarboxylic acid cycle) that involves several molecular events, which is hard to associate with a 
sequence signature. Figure S.1 also showed that performance variance of cellular component GO terms is lower 
compared to the molecular function and biological process categories. The reason for such observation could be 
that the hierarchy between cellular compartment GO terms is inherently available within cells, which results in 
well defined hierarchical relationships between cellular component GO terms.

In most of the protein function prediction methods, training was performed using only the annotations with 
experimental and/or manual evidence codes. The disadvantage of this approach is that most GO terms are left 
with a small number of annotated proteins, which is usually not sufficient for a machine learning model train-
ing. Therefore, the functions defined by these terms cannot be predicted efficiently. One solution would be to 
include the annotations with no-curation evidence codes such as the electronic annotations (i.e., the annotations 
produced by other automated approaches). For example, the number of MF GO terms that have more than 30 
protein associations is calculated as 911 when we only considered the annotations with manual and experimental 
evidence codes. However, when we considered the annotations with all evidence codes, this number increases 
to 2,776, meaning that, if the annotations with all evidences are included, it is possible to provide predictions for 
significantly more GO terms. The main downside of adding annotations with non-manual/experimental evidence 
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codes to the training dataset is the potentially false positive samples, which would result in error propagation. 
Another potential limitation of this application would be that the predictive performance of the models with 
training datasets dominated by the electronic annotations would still be low (even though the number of training 
instances are increased), due to the fact that the sequences of most of the electronically annotated genes/proteins 
under a distinct GO term would be extremely similar to each other (due to annotation by sequence similarity); 
and thus, would not provide the required sample diversity.

At the end of the training dataset enrichment analysis, the evaluation results showed that the performance of 
the previously low performing GO term models were increased significantly (Table 4), which indicates that deep 
learning algorithms are tolerant to noise in the learning data. Therefore, annotations with less reliable evidence 
codes can be included in the training of low performing models, where there is still room for significant per-
formance improvement. However, including less reliable annotations in the training dataset of previously high 
performaning models decreased the performance for more than half of them.

In DEEPred, we employed a hierarchical post-processing method (in order to avoid false positive hits) by tak-
ing the prediction scores of the parents of the target GO term into account, along with the actual prediction score 
for the target term. The evaluation results indicated that the recall values were slightly decreased and the precision 
scores were noticeably increased when we employed the hierarchical post-processing procedure, producing an 
increased overall performance in terms of F1-score (Table 5). In this setting, the resulting predictions can be con-
sidered more reliable. This is also indicated by the improved F-max values at the CAFA3 benchmark test (Table 6).

In our performance tests, DEEPred performed slightly better than the state-of-the-art methods in some cases, 
and produced roughly similar results in others. However, we did not observe an unprecedented performance 
increase; probably because we did not focus on specific functional families to optimize the system performance. 
Instead, we investigated the applicability of DNNs for constructing large-scale automated protein function pre-
diction pipelines. We believe that this investigation will be valuable for computational scientists in terms of devel-
oping DNN-based biological data prediction methods. According to our observations, it is feasible to use DNNs 
in large-scale biological data analysis pipelines, where it may be possible to achieve performances higher than 
the state-of-the-art, with further optimization. However, feed-forward DNN based modeling is probably not 
a good choice for the functional terms with low or moderate number of annotated proteins (at least without a 
pre-processing step such as the training dataset enrichment), for which, conventional machine learning solutions 
or DNN methods specialized in low-data training may be considered.

Generally, function prediction methods that incorporate multiple types of protein features at once (e.g., 
sequence, protein-protein interactions - PPIs, 3-D structures and annotations and etc.) perform better compared 
to methods that incorporate sequences, solely9,10. However, there are two main disadvantages of this approach. 
First of all, query proteins are required to have a substantial amount of characterization (especially in terms of 
PPIs and 3-D structures) in order for these methods to accept them as queries. Structurally well characterized 
proteins usually have high quality functional annotations, thus, function prediction methods are not required in 
the first place. Second, running times of these methods are generally multiple orders of magnitude higher com-
pared to the sequence-based predictors, which significantly hinders their large-scale use, such as the analysis of 
newly sequenced genomes.

Finally in this study, we carried out a case study to discuss the biological relevance of the results produced 
by DEEPred, by predicting the Pseudomonas aureginosa ORF sequences that take part in the biofilm formation 
biological process. DEEPred managed to identify 6 out of 8 proteins that are reported to play roles in the biofilm 
formation function, which are not annotated with the corresponding GO term (or any of its descendent terms) 
in the source biological databases as of April 2018. As a result, it can be said that without any prior knowledge 
DEEPred produced biologically relevant predictions considering the selected function. It is also evident that 
DEEPred performed significantly better in this test, compared to the baseline classifier (i.e., BLAST). It is difficult 
to identify how deep neural networks managed to annotate these proteins where BLAST failed significantly; 
however, it can be attributed to DNN’s ability to extract signatures (relevant to the task at hand) hidden in the 
sequences, by consequent levels of data abstraction.

The methodological approach proposed in this study can easily be translated into the prediction of var-
ious types of biomolecular ontologies/attributes (e.g., protein families, interactions, pathways, subcellular 
locations, catalytic activities, EC numbers and structural features) and biomedical entity associations (e.g., 
gene-phenotype-disease relations and drug-target interactions).

Materials and Methods
Training dataset construction.  The training dataset of DEEPred was created using the UniProtKB/Swiss-
Prot database (version 2017_08) protein entries. UniProt supports each functional annotation with one of the 21 
different evidence codes, which indicate the source of the particular annotation. In this study, we used annotations 
with manual curation or experimental evidences, which are considered to be highly reliable. In order to generate 
the training dataset, the corresponding annotations were extracted from the UniProt-GOA database, propagated 
to their parent terms according to the “true path rule”, which defines the inheritance relationship between GO 
terms2. Using this dataset, a positive training dataset was constructed for each GO term. In short, proteins that are 
annotated either with the corresponding GO term or with one of its children terms, were included in the positive 
training dataset of the corresponding GO term. Since our multi-task DNN models are composed of multiple GO 
terms, the positive training instances for one GO term, in a model, constitute the negative training instances of 
the other GO terms in the same model, except the proteins that are annotated with both GO terms.

In order to analyze the effect of the extent of training datasets on the predictive performance, we constructed 
multiple “training-set-size-based” datasets, taking into account the number of protein associations of GO terms. 
For example, one of our training-set-size-based datasets includes all GO terms that have more than or equal to 30 
protein associations. Hence, we created six different datasets, where GO terms in each dataset have greater than 
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30, 100, 200, 300, 400 and finally 500 protein associations, respectively. These datasets comprise each other (e.g., 
GO-terms-with-greater-than-30-proteins dataset covers the GO-terms-with-greater-than-100-proteins dataset). 
The statistics (i.e., number of annotations, GO terms and proteins) of these datasets are given in the Results 
section.

DEEPred architecture.  DEEPred was built as a stack of multi-task feed-forward deep neural networks (i.e., 
a stack of multi-task multi-layered perceptrons), connected to each other. In DEEPred, each DNN was inde-
pendently modelled to predict 4 or 5 GO terms, thus multiple DNNs were required to cover thousands of terms. 
Figure 3 displays a representative DNN model in DEEPred.

The selection of GO terms for each DNN model was based on the levels of the terms on the GO DAG. The 
main objective of this approach was to create a multi-task deep neural network model for each level. For this, the 
levels of all GO terms were extracted and the terms were separated into groups based on the level information (via 
topological sorting). We started the level numbering from generic terms; thus, they received low numbers (e.g., 
level 1, 2, 3, …) and the levels of specific terms received high numbers (e.g., level 10, 11, 12, …). In most cases, the 
number of protein associations of GO terms within a level were highly variable; therefore, we created subgroups 
to further avoid bias (i.e., tendency of a classifier to give predictions to classes with significantly higher number of 
training instances). Here, each subgroup included GO terms with similar number of annotations. Another reason 
behind generating multiple models under a specific GO level was the high number of GO terms. According to 
our tests, when the number of tasks under a model exceed 5 or 6, the models usually perform poorly. Due to this 
reason, we limited the number of tasks under a model to 5 in most cases. This procedure generated 1,101 different 
models concerning all GO categories. Figure 4 represents the GO-level-based arrangement of the individual DNN 
models in DEEPred. Supplementary Material 2 lists the GO terms at each GO level, and at each sub-level model 
(when a GO level is further divided to multiple models).

In a feed-forward DNN, forward propagation (z) for the layer l is calculated by the following equation:

⁎z b W a (1)l l l l 1= + −

where bl is the bias vector, Wl is the weight matrix for the lth layer and al−1 is the activation value vector of the 
neurons at the previous layer. Subsequently, an activation function, gl(*), is applied to the calculated zl vector and 
the result of the activation function is used to compute the outputs of the lth layer:

=a g z( ) (2)l l l

g max z(0, ) (3)l l=

Figure 3.  The representation of an individual multi-task feed-forward DNN model of DEEPred (i.e., model N). 
Here, each task at the output layer (i.e., red squares) corresponds to a different GO term. In the example above, a 
query input vector is fed to the trained model N and a score greater than the pre-defined threshold is produced 
for GON,3, which is marked as a prediction.
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There are alternative activation functions such as sigmoid, tanh and rectified linear unit (ReLU). Here, we 
employed ReLU activation function for the hidden layers. The prediction scores are calculated by applying soft-
max function to the neurons at the output layer. The score for the jth task is calculated by the following equation:

S e
e (4)

j

j

k
k=

∑

where k is the number of tasks to be trained within a model. At the end of the forward propagation step, pre-
diction scores are used to calculate a cost function, C, based on the labels of the input samples. In this study, we 
used cross entropy to calculate the cost function. Once the cost function is calculated, it is used to determine how 
much the weights (w) will be changed after the last iteration by taking the partial derivatives of the cost function 
with respect to the weights:

η= −
∂
∂

w w C
w (5)i i

i

where η is the learning rate in the equation. The forward and back propagation steps were performed until the 
stopping criteria was met (e.g., after certain number iterations or after the objective performance is reached). For 
the training of the models of DEEPred, 100 iterations were selected.

In DEEPred, each model was independently trained using the feature vectors of the proteins annotated with 
the corresponding GO terms of that model. Considering the technical work to accomplish the multi-task training, 
we created a binary “true label vector” for each protein sequence using one-hot encoding, where each dimension 
represented a GO term to be trained in the corresponding model. The index of the GO term that was associated 
with the corresponding protein sequence was set to 1 and the remaining dimensions were set to 0. These true label 

Figure 4.  Illustration of the GO-level-based architecture of DEEPred on a simplified hypothetical GO DAG. 
We omitted highly generic GO terms (shown with red colored boxes) at the top of the GO hierarchy (e.g., 
GO:0005488 - Binding) from our models, since they are less informative and their training datasets are highly 
heterogeneous. In the illustration, DNN model 1.1 incorporates GO terms: GO1,1 to GO1,5 from GO-level 1. In 
the real application, most of the GO levels were too crowded to be modeled in one DNN; in these cases, multiple 
DNN models were created for the same GO level (red dashed lines represent how GO terms are grouped 
to be modeled together). In this example, DNN models N.1, N.2 and N.3 incorporates GO terms: GON,1 to 
GON,5, GON,6 to GON,10, GON,11 to GON,15; respectively, due to the high number of GO terms on level N. At the 
prediction step, when a list of query sequences is run on DEEPred, all sequences are transformed into feature 
vectors and fed to the multi-task DNN models. Afterwards, GO term predictions from each model are evaluated 
together in the hierarchical post-processing procedure to present the finalized prediction list.
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vectors were employed to calculate the prediction errors at the output layer, which was then used by the optimizer 
to update weights with the aim of minimizing prediction error at each iteration. The hyper-parameters of the 
predictive models in DEEPred are explained in the Supplementary Material 1 Document, Section 2. The results of 
the hyper-parameter optimization test are explained in Supplementary Material 1, Section 6; whereas, the actual 
comprehensive test results are given in Supplementary Material 3.

At the prediction stage, a query protein sequence feature vector is first fed to the level 1 predictor model to 
receive its probabilistic scores for the corresponding GO terms and then fed to the level 2 predictor model to 
receive probabilistic scores for a different set of GO terms. At the end of the process, GO terms that obtained 
scores above the pre-determined thresholds were fed to the hierarchical post-processing (explained below under 
the section entitled: “Hierarchical Post-processing of Predictions”) and the finalized predictions were produced 
(Fig. 4).

Protein feature types and vector generation.  In order to select the best protein feature representation 
for DEEPred, we implemented three alternative protein descriptor generation methods: (i) Conjoint triad45, (ii) 
Pseudo amino acid composition46 and (iii) Subsequence profile map (SPMap)47. Each of these feature types were 
used individually to train and to test the system. These protein feature types are explained in the Supplementary 
Material 1 Document, Section 4. The details about this analysis is given in the Results section.

Determining the probabilistic score thresholds.  When a query protein is fed to a prediction model of 
DEEPred, an individual probabilistic score is calculated for each GO term (i.e., task) within that model, represent-
ing the probability of the query protein possessing the function defined by the corresponding GO term (Fig. 3). 
In some cases, this can be confusing because scores are on a continuous scale (i.e., it is not clear at which point 
one can conclude that the query protein contains the corresponding function). Usually, the requirement from a 
model is to make a binary prediction instead of producing a score. Setting a probabilistic score threshold for each 
GO term at each model solves this problem. At the prediction step, if the received score is equal to or greater than 
the pre-defined threshold, the model outputs a positive prediction for the corresponding GO term. To determine 
these thresholds in a validation setting (using the hold-out validation datasets), we calculated F1-score perfor-
mance values for arbitrary threshold selections using the success of the binary predictions obtained when we fed 
the system with protein sequences with already known labels (i.e., GO term associations). We considered each 
GO term separately within a model and determined an individual threshold for each term by choosing the value 
providing the highest F1-score. These threshold values are stored in ready-to-use predictive models of DEEPred.

Hierarchical post-processing of predictions.  We implemented a methodology to eliminate the unrelia-
ble predictions by considering the prediction scores received for the parents of the target GO term. This way, we 
aimed to reduce the amount of false positive hits. The reason behind the requirement for such a post-processing 
step was that, multi-task DNNs tended to classify query instances to at least one of the tasks at the output layer. 
Such a classification scheme would not be a problem if we could generate one model that contain all of the GO 
terms at its output layer. However, having thousands of nodes in the output layer would be highly impractical and 
thus we divided GO terms into different models. This time, the problem occurs when a query protein is fed to a 
model, where the protein does not contain any of the functions defined by the GO terms in the corresponding 

Figure 5.  Post-processing of a prediction (GO:10) for a query protein sequence on a hypothetical GO DAG. 
Each box corresponds to a different GO term, with identification numbers written inside. The blue colored 
boxes represent GO terms whose prediction scores are over the pre-calculated threshold values (i.e., predicted 
terms), whereas the red colored boxes represent GO terms, whose prediction scores are below the pre-calculated 
threshold values (i.e., non-predicted terms). The arrows indicate the term relationships. There are four different 
paths from the target term (i.e., GO:10) to the root (i.e., GO:01) in this hypothetical DAG. Since there is at least 
one path, where the majority of the terms received higher-than-threshold scores (shown by the shaded green 
line), the target term GO:10 is given as a finalized positive prediction for the query sequence.
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model. The model often predicts one of the unrelated GO terms for the query protein, producing a false positive. 
We observed that separating a false positive hit (produced this way) from a reliable prediction would be possible 
by checking the prediction results for the parents of the predicted GO term. If the query protein consistently 
received high prediction scores for most of the parent terms as well, we can conclude that this case is probably a 
reliable prediction; otherwise, it may be a false positive hit.

To construct this methodology, we first topologically sorted the DAG for each GO category and determined all 
possible paths from each GO term to the root of the corresponding category, and stored this information. When 
a query protein is run on DEEPred, its feature vector is fed to all trained models to obtain the prediction scores 
for all GO terms. Starting from the most specific level of GO, the method checks whether the prediction score of 
the query protein is greater than the previously calculated score thresholds. If the prediction score of a target GO 
term is greater than its threshold, the method checks the scores it received for the parent terms on all paths to the 
root, using the previously stored possible-paths-to-root. If the prediction scores given to the majority of parent 
terms are greater than their individual thresholds (in at least one of the paths), the method presents the case as a 
positive prediction. This procedure is represented in Fig. 5 with a toy example.

Predictive performance evaluation tests.  According to the current deep learning practice, it is not fea-
sible to carry out a fold-based cross validation analysis, especially when the number of model training operations 
are high, since it usually requires extremely high computational power. This issue was also valid for DEEPred 
due to the presence of elevated number of models. For this reason, the assessment of DEEPred system was per-
formed using three datasets: (i) a hold-out validation dataset, (ii) CAFA2, and (iii) CAFA3 challenge benchmark 
datasets. The preparation of these datasets are explained in the Supplementary Material 1 Document, Section 5. 
Performance evaluation metrics used in this study are explained in the Supplementary Material 1 Document, 
Section 3.

Data Availability
The source code and all datasets used in this study are available at: https://github.com/cansyl/DEEPred.
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