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Scheduling Policies for Minimizing Age of
Information in Broadcast Wireless Networks

Igor Kadota, Abhishek Sinha, Elif Uysal-Biyikoglu, Rahul Singh and Eytan Modiano

Abstract—We consider a wireless broadcast network with a
base station sending time-sensitive information to a number of
clients through unreliable channels. The Age of Information
(AoI), namely the amount of time that elapsed since the most
recently delivered packet was generated, captures the freshness of
the information. We formulate a discrete-time decision problem to
find a transmission scheduling policy that minimizes the expected
weighted sum AoI of the clients in the network.

We first show that in symmetric networks a Greedy policy,
which transmits the packet with highest current age, is optimal.
For general networks, we develop three low-complexity schedul-
ing policies: a randomized policy, a Max-Weight policy and a
Whittle’s Index policy, and derive performance guarantees as
a function of the network configuration. To the best of our
knowledge, this is the first work to derive performance guarantees
for scheduling policies that attempt to minimize AoI in wireless
networks with unreliable channels. Numerical results show that
both Max-Weight and Whittle’s Index policies outperform the
other scheduling policies in every configuration simulated, and
achieve near optimal performance.

Index Terms—Age of Information, Scheduling, Optimization,
Quality of Service, Wireless Networks.

I. INTRODUCTION

AGE of Information (AoI) has been receiving increas-
ing attention in the literature [2]–[25], particularly for

applications that generate time-sensitive information such as
position, command and control, or sensor data. An interesting
feature of this performance metric is that it captures the fresh-
ness of the information from the perspective of the destination,
in contrast to the long-established packet delay, that represents
the freshness of the information with respect to individual
packets. In particular, AoI measures the time that elapsed since
the generation of the packet that was most recently delivered to
the destination, while packet delay measures the time interval
between the generation of a packet and its delivery.

The two parameters that influence AoI are packet delay and
packet inter-delivery time. In general, controlling only one is
insufficient for achieving good AoI performance. For example,
consider an M/M/1 queue with a low arrival rate and a high
service rate. In this setting, the queue is often empty, resulting
in low packet delay. Nonetheless, the AoI can still be high,
since infrequent packet arrivals result in outdated information
at the destination. Table I provides a numerical example of
an M/M/1 queue with fixed service rate µ = 1 and a variable
arrival rate λ . The first and third rows represent a system with
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a high average AoI caused by high inter-delivery time and high
packet delay, respectively. The second row shows the queue
at the point of minimum average AoI [2].

A good AoI performance is achieved when packets with low
delay are delivered regularly. It is important to emphasize the
difference between delivering packets regularly and providing
a minimum throughput. Figure 1 illustrates the case of two se-
quences of packet deliveries that have the same throughput but
different delivery regularity. In general, a minimum throughput
requirement can be fulfilled even if long periods with no
delivery occur, as long as those are balanced by periods of
consecutive deliveries.

The problem of minimizing AoI was introduced in [2]
and has been explored using different approaches. Queueing
Theory is used in [2]–[9] for finding the optimal server
utilization with respect to AoI. The authors in [10]–[13]
consider the problem of optimizing the times in which packets
are generated at the source in networks with energy-harvesting
or maximum update frequency constraints. Link scheduling
optimization with respect to AoI has been recently considered
in [14]–[21]. Applications of AoI are studied in [22]–[25].

The problem of optimizing link scheduling decisions in
broadcast wireless networks with respect to throughput and
delivery times has been studied extensively in the literature.
Throughput maximization of traffic with strict packet delay
constraints has been addressed in [26]–[29]. Inter-delivery time
is considered in [30]–[36] as a measure of service regularity.
Age of Information has been considered in [14]–[21].

In this paper, we consider a network in which packets
are generated periodically and transmitted through unreliable
channels. Minimizing the AoI is particularly challenging in
wireless networks with unreliable channels due to transmission
errors that result in packet losses. Our main contribution is the
development and analysis of four low-complexity scheduling
policies: a Greedy policy, a randomized policy, a Max-Weight
policy and a Whittle’s Index policy. We first show that Greedy
achieves minimum AoI in symmetric networks. Then, for

TABLE I
EXPECTED DELAY, EXPECTED INTER-DELIVERY TIME AND AVERAGE AOI

OF A M/M/1 QUEUE WITH µ = 1 AND VARIABLE λ .

λ E[delay] E[inter-delivery] Average AoI
(pkt/sec) (sec) (sec) (sec)

0.01 1.01 100.00 101.00
0.53 2.13 1.89 3.48
0.99 100.00 1.01 100.02

ar
X

iv
:1

80
1.

01
80

3v
1 

 [
cs

.N
I]

  5
 J

an
 2

01
8



SUBMITTED TO IEEE/ACM TRANSACTIONS ON NETWORKING 2

general networks, we compare the performance of each policy
against the optimal AoI and derive the corresponding perfor-
mance guarantees. To the best of our knowledge, this is the
first work to derive performance guarantees for policies that
attempt to minimize AoI in wireless networks with unreliable
channels. A preliminary version of this work appeared in [1].

The remainder of this paper is outlined as follows. In Sec. II,
the network model is presented. In Sec. III, we find the optimal
scheduling policy for the case of symmetric networks. In
Sec. IV, we consider the general network case and derive
performance guarantees for the Greedy, Randomized and Max-
Weight policies. In Sec. V, we establish that the AoI mini-
mization problem is indexable and obtain the Whittle’s Index
in closed-form. Numerical results are presented in Sec. VI.
The paper is concluded in Sec. VII.

II. SYSTEM MODEL

Consider a single-hop wireless network with a base station
(BS) sending time-sensitive information to M clients. Let the
time be slotted, with T consecutive slots forming a frame. At
the beginning of every frame, the BS generates one packet
per client i ∈ {1,2, · · · ,M}. Those new packets replace any
undelivered packets from the previous frame. Denote the
frame index by the positive integer k. Packets are periodically
generated at every frame k for each client i, thus, each packet
can be unequivocally identified by the tuple (k, i).

Let n ∈ {1, · · · ,T} be the index of the slot within a frame.
A slot is identified by the tuple (k,n). In a slot, the BS
transmits a packet to a selected client i over the wireless
channel. The packet is successfully delivered to client i with
probability pi ∈ (0,1] and a transmission error occurs with
probability 1− pi. The probability of successful transmission
pi is fixed in time, but may differ across clients. The client
sends a feedback signal to the BS after every transmission. The
feedback (success / failure) reaches the BS instantaneously and
without errors.

The transmission scheduling policies considered in this
paper are non-anticipative, i.e. policies that do not use future
knowledge in selecting clients. Let Π be the class of non-
anticipative policies and π ∈ Π be an arbitrary admissible
policy. In a slot (k,n), policy π can either idle or select a
client with an undelivered packet. Clients that have already
received their packet by slot (k,n) can only be selected in
the next frame k+1. Scheduling policies attempt to minimize
the expected weighted sum AoI of the clients in the network.
Next, we discuss this performance metric.

Fig. 1. Two sample sequences of packet deliveries are represented by the
green arrows. Both sequences have the same throughput, namely 3 packets
over the interval, but different delivery regularity.

A. Age of Information Formulation

Prior to introducing the expected weighted sum AoI, we
characterize the Age of Information of a single client in the
context of our system model. Let AoIi be the positive real
number that represents the Age of Information of client i. The
AoIi increases linearly in time when there is no delivery of
packets to client i. At the end of the frame in which a delivery
occurs, the AoIi is updated to T . In Fig. 2, the evolution of
AoIi is illustrated for a given sample sequence of deliveries to
client i.

In Fig. 3, the AoIi is shown in detail. Let ŝk denote the set of
clients that successfully received packets during frame k and
let the positive integer hk,i represent the number of frames
since the last delivery to client i. At the beginning of frame
k+1, the value of hk,i is updated as follows

hk+1,i =

{
hk,i +1 , if i /∈ ŝk ;

1 , if i ∈ ŝk . (1)

As can be seen in Fig. 3, during frame k the area under
the AoIi curve can be divided into a triangle of area T 2/2
and a parallelogram of area hk,iT 2. This area, averaged over
time, captures the average Age of Information associated with
client i. A network-wide metric for measuring the freshness of
the information is the Expected Weighted Sum AoI, namely

EWSAoI =
1

KT M
E

[
K

∑
k=1

M

∑
i=1

αi

(
T 2

2
+T 2hk,i

)∣∣∣~h1

]

=
T

2M

M

∑
i=1

αi +
T

KM
E

[
K

∑
k=1

M

∑
i=1

αihk,i

∣∣∣~h1

]
, (2)

Fig. 2. On the top, a sample sequence of deliveries to client i during five
frames. The upward arrows represent the times of packet deliveries. On the
bottom, the associated evolution of the AoIi.

Fig. 3. Area under AoIi during any frame k in terms of hk,i and T .
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where αi is the positive real value that denotes the client’s
weight and the vector ~h1 = [h1,1, · · · ,h1,M]T represents the
initial values of hk,i in (1). For notation simplicity, we omit
~h1 hereafter. Manipulating the expression of EWSAoI gives
us the objective function

min
π∈Π

E [Jπ
K ] , where Jπ

K =
1

KM

K

∑
k=1

M

∑
i=1

αi hπ
k,i , (3)

where (3) is obtained by subtracting the constant terms from
(2) and dividing the result by T . As can be seen by the
relationship between (2) and (3), the scheduling policy that
minimizes E [Jπ

K ] is the same policy that minimizes EWSAoI.
Henceforth in this paper, we refer to this policy as AoI-optimal.
With the definitions of AoI1 and objective function presented,
in the next section we introduce the Greedy policy. Table II
summarizes key notation.

III. OPTIMALITY OF GREEDY

In this section, we introduce the Greedy policy and show
that it minimizes the AoI of the finite-horizon scheduling
problem described in Sec. II under some conditions on the
underlying network. The Greedy policy is defined next.

Greedy policy schedules in each slot (k,n) a transmission
to the client with highest value of hk,i that has an undelivered
packet, with ties being broken arbitrarily.

Denote the Greedy policy as G. Observe that Greedy is
non-anticipative and work-conserving, i.e. it only idles after all
packets have been delivered during frame k. Next, we discuss a
few properties of the Greedy policy that lead to the optimality
result in Theorem 5.

Remark 1. The Greedy policy switches scheduling decisions
only after a successful packet delivery.

TABLE II
DESCRIPTION OF KEY NOTATION.

M number of clients. Client index is i ∈ {1,2, · · · ,M}
K number of frames. Frame index is k ∈ {1,2, · · · ,K}
T number of slots in a frame. Slot index is n ∈ {1,2, · · · ,T}
pi probability of successful transmission to client i
π admissible non-anticipative scheduling policy

AoIi Age of Information associated with client i
hk,i number of frames since the last packet delivery to client i
ŝk set of clients that received a packet during frame k
αi weight of client i. Represents the relative importance of AoIi

E[Jπ
K ] objective function that represents the performance of policy π

LB Lower Bound on E[Jπ
K ] for any admissible policy π

Uπ
B Upper Bound on E[Jπ

K ] for a particular policy π

ρπ AoI guarantee associated with policy π

Di(K) number of packet deliveries to client i up to frame K
Ai(K) number of packet transmissions to client i up to frame K
Ii[m] number of frames between consecutive deliveries to client i
Ri number of frames remaining after the last delivery to client i
M̄[.] operator that calculates the sample mean of a set of values
V̄[.] operator that calculates the sample variance of a set of values

1For ease of exposition, in this paper, the value of AoIi is updated at the
beginning of the frame that follows a successful transmission to client i, rather
than immediately after the successful transmission. This update mechanism
simplifies the problem while maintaining the features of interest.

In slot (k,n), Greedy selects client i = argmax j{hk, j} from
the set of clients with an undelivered packet. Assume that this
packet transmission fails and the subsequent slot is in the same
frame k. Since ~hk remains unchanged and client i still has an
undelivered packet, the Greedy policy selects the same client
i. Alternatively, if the next slot is in frame k+ 1, then ~hk+1,i
evolves according to (1) and Greedy selects argmax j{hk+1, j}
from the set of all clients. It follows from (1) that client i
is selected again. Hence, the Greedy policy selects the same
client i, uninterruptedly, until its packet is delivered.

Lemma 2 (Round Robin). Without loss of generality, reorder
the client index i in descending order of ~h1, with client 1
having the highest h1,i and client M the lowest h1,i. The
Greedy policy delivers packets according to the index sequence
(1,2, · · · ,M,1,2, · · ·) until the end of the time-horizon K, i.e.
Greedy follows a Round Robin pattern.

The proof of Lemma 2 is in Appendix A. Together, Re-
mark 1 and Lemma 2, provide a complete description of the
behavior of Greedy. Consider a network with ~h1 reordered as
in Lemma 2, the Greedy policy schedules client 1, repeatedly,
until one packet is delivered, then it schedules client 2,
repeatedly, until one packet is delivered, and so on, following
the Round Robin pattern until the end of the time-horizon. The
Greedy policy only idles when all M packets are delivered in
the same frame. Figure 4 illustrates a sequence of scheduling
decisions of Greedy in a network with error-free channels.

Corollary 3 (Steady-State of Greedy for error-free channels).
Consider a network with error-free channels, pi = 1,∀i. The
Greedy policy drives this network to a steady-state in which
the sum of the elements of ~hk is constant. Let m1 ∈ N and
m2 ∈ {0,1, · · · ,T − 1} be the quotient and remainder of the
division of M by T , namely M = m1T +m2. The steady-state
is achieved at the beginning of frame k = m1 +2 and the sum
of ~hk is given by

M

∑
i=1

hk,i =
T m1 (m1 +1)

2
+m2(m1 +1) . (4)

Corollary 3 follows directly from the proof of Lemma 2 in
Appendix A. The sum in (4) comes from the expression of~hk
in (61). Notice that (4) is independent of the initial~h1. Figure 4
represents a network with M = 5, T = 2, m1 = 2 and m2 = 1.
Thus, according to Corollary 3, the steady-state is achieved in

Fig. 4. Evolution of ~hk when the Greedy policy is employed in a network
with M = 5 clients, T = 2 slots per frame, error-free channels, pi = 1,∀i, and
~h1 = [7 5 4 2 2]T . In each frame, the Greedy policy transmits packets of
two clients. The elements of ~hk associated with the clients that received a
packet during frame k are depicted in bold green. All elements in ~hk change
according to (1): green elements are updated to 1 while black elements are
incremented by 1. In this figure, the Round Robin pattern is evident.
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frame k = 4 and the sum of the elements of ~hk is 9 for k≥ 4.
Those values can be easily verified in Fig. 4.

In Theorem 5, we establish that Greedy is AoI-optimal when
the underlying network is symmetric, namely all clients have
the same channel reliability pi = p ∈ (0,1] and weight αi =
α ≥ 0. Prior to the main result, we establish in Lemma 4 that
Greedy is AoI-optimal for a symmetric network with error-free
channels.

Lemma 4 (Optimality of Greedy for error-free channels).
Consider a symmetric network with error-free channels pi = 1
and weights αi = α > 0,∀i. Among the class of admissible
policies Π, the Greedy policy attains the minimum sum AoI
(2), namely

JG
K ≤ Jπ

K ,∀π ∈Π . (5)

The proof of Lemma 4 is in Appendix B. Intuitively, Greedy
minimizes ∑

M
i=1 hk,i by reducing the highest elements of ~hk to

unity at every frame. Together, Lemma 4 and Corollary 3 show
that, when channels are error-free, Greedy drives the network
to a steady-state (4) that is AoI-optimal. Next, we use the
result in Lemma 4 to show that the Greedy policy is optimal
for any symmetric network.

Theorem 5 (Optimality of Greedy). Consider a symmetric
network with channel reliabilities pi = p ∈ (0,1] and weights
αi = α > 0,∀i. Among the class of admissible policies Π,
the Greedy policy attains the minimum expected sum AoI (2),
namely G = argminπ∈ΠE [Jπ

K ].

To show that the Greedy policy minimizes the AoI of any
symmetric network, we generalize Lemma 4 using a stochastic
dominance argument [37] that compares the evolution of ~hk
when Greedy is employed to that when an arbitrary policy π

is employed. The proof of Theorem 5 is in Appendix C of the
supplementary material.

Selecting the client with an undelivered packet and highest
value of hk,i in every slot is AoI-optimal for every symmetric
network. For general networks, with clients possibly having
different channel reliabilities pi and weights αi, scheduling
decisions based exclusively on~hk may not be AoI-optimal. In
the next section, we develop three low-complexity scheduling
policies and derive performance guarantees for every policy
in the context of general networks.

IV. AGE OF INFORMATION GUARANTEES

One possible approach for finding a policy that minimizes
the EWSAoI is to optimize the objective function in (3)
using Dynamic Programming [38]. A negative aspect of this
approach is that evaluating the optimal scheduling decision for
each state of the network can be computationally demanding,
especially for networks with a large number of clients2. To
overcome this problem, known as the curse of dimensionality,
and gain insight into the minimization of the Age of Infor-
mation, we consider four low-complexity scheduling policies,

2Vector ~hk = [hk,1, · · · ,hk,M ]T is part of the state space of the network.
Since each element hk,i can take at least k different values, hk,i ∈ {1,2, · · · ,k},
the set of possible values of ~hk has cardinality at least kM , implying that the
state space grows exponentially with the number of clients M.

namely Greedy, Randomized, Max-Weight and Whittle’s Index
policies, and derive performance guarantees for each of them.

For a given network setup (M,K,T, pi,αi), the performance
of an arbitrary admissible policy π ∈Π is given by E [Jπ

K ] from
(3) and the optimal performance is E [J∗] = minη∈ΠE

[
Jη

K

]
.

Ideally, when expressions for E [Jπ
K ] and E [J∗] are available,

we define the optimality ratio ψπ :=E [Jπ
K ]/E [J∗] and say that

policy π is ψπ -optimal. Naturally, the closer ψπ is to one,
the better is the performance of policy π . Alternatively, when
expressions for E [Jπ

K ] and E [J∗] are not available, we define
the ratio

ρ
π :=

Uπ
B

LB
, (6)

where LB is a lower bound to the AoI-optimal performance
and Uπ

B is an upper bound to the performance of policy π .
It follows from the inequality LB ≤ E [J∗] ≤ E [Jπ

K ] ≤Uπ
B that

ψπ ≤ ρπ and thus we can say that policy π is ρπ -optimal.
Next, we obtain a lower bound LB that is used for deriv-

ing performance guarantees ρπ for the four low-complexity
scheduling policies of interest. Henceforth in this section, we
consider the infinite-horizon problem where K→∞. The focus
on the long-term behavior of the system allows us to derive
simpler and more insightful performance guarantees.

A. Universal Lower Bound

In this section, we find a lower bound to the solution of the
objective function in (3).

Theorem 6 (Lower Bound). For a given network setup, we
have LB ≤ limK→∞E [Jπ

K ] , ∀π ∈Π, where

LB =
1

2MT

(
M

∑
i=1

√
αi

pi

)2

+
1

2M

M

∑
i=1

αi . (7)

Proof. First, we use a sample path argument to characterize
the evolution of ~hk over time. Then, we derive an expression
for the objective function of the infinite-horizon problem,
namely limK→∞ Jπ

K , and manipulate this expression to obtain
LB in (7). Fatou’s lemma is employed to establish the result
in Theorem 6.

Consider a sample path ω ∈Ω associated with a scheduling
policy π ∈Π and a finite time-horizon K. For this sample path,
let Di(K) be the total number of packets delivered to client i
up to and including frame K, let Ii[m] be the number of frames
between the (m− 1)th and mth deliveries to client i, i.e. the
inter-delivery times of client i, and let Ri be the number of
frames remaining after the last packet delivery to the same
client. Then, the time-horizon can be written as follows

K =
Di(K)

∑
m=1

Ii[m]+Ri,∀i ∈ {1,2, · · · ,M} . (8)

The evolution of hk,i is well-defined in each of the time
intervals Ii[m] and Ri. During the frames associated with
the interval Ii[m], the parameter hk,i evolves as 1,2, · · · , Ii[m].
During the frames associated with the interval Ri, the value
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of hk,i evolves as 1,2, · · · ,Ri. Hence, the objective function in
(3) can be rewritten as

Jπ
K =

1
KM

K

∑
k=1

M

∑
i=1

αi hk,i =
1
M

M

∑
i=1

αi

K

[
K

∑
k=1

hk,i

]
(9)

=
1
M

M

∑
i=1

αi

K

[
Di(K)

∑
m=1

(Ii[m]+1)Ii[m]

2
+

(Ri +1)Ri

2

]
(a)
=

1
2M

M

∑
i=1

αi

K

[
Di(K)

∑
m=1

I2
i [m]+R2

i +K

]

=
1

2M

M

∑
i=1

αi

[
Di(K)

K

(
1

Di(K)

Di(K)

∑
m=1

I2
i [m]

)
+

R2
i

K
+1

]
,

where (a) uses (8) to substitute the sum of the linear terms
Ii[m] and Ri by K.

Now, define the operator M̄[.] that calculates the sample
mean of a set of values. Using this operator, let the sample
mean of Ii[m] and I2

i [m] be

M̄[Ii] =
1

Di(K)

Di(K)

∑
m=1

Ii[m] ; (10)

M̄[I2
i ] =

1
Di(K)

Di(K)

∑
m=1

I2
i [m] . (11)

Combining (8) and (10) yields

K
Di(K)

=
∑

Di(K)
j=1 Ii[ j]+Ri

Di(K)
= M̄[Ii]+

Ri

Di(K)
. (12)

Substituting (11) and (12) into the objective function gives

Jπ
K =

1
2M

M

∑
i=1

αi

[[
M̄[Ii]+

Ri

Di(K)

]−1

M̄[I2
i ]+

R2
i

K
+1

]
, (13)

with probability one.
To simplify (13), consider the infinite-horizon problem with

K → ∞ and assume that the admissible class Π does not
contain policies that starve clients.

Definition 7. A policy π starves client i if, with a positive
probability, it stops transmitting packets to that client after
frame K′ < ∞.

When π starves client i, the expected number of frames
after the last packet delivery is E [Ri]→ ∞ and the objective
function E [Jπ

K ]→∞. Therefore, policies that starve clients are
excluded from the class Π without loss of optimality.

Since policies in Π transmit packets to every client repeat-
edly and each packet transmission has a positive probability pi
of being delivered, it follows that Ii[m] and Ri are finite with
probability one. Thus, in the limit K→∞, we have R2

i /K→ 0,
Di(K)→ ∞ and Ri/Di(K)→ 0. Applying those limits to Jπ

K
in (13) gives the objective function of the infinite-horizon AoI
problem

lim
K→∞

Jπ
K =

1
2M

M

∑
i=1

αi

[
M̄[I2

i ]

M̄[Ii]
+1
]

w.p.1 . (14)

This insightful expression depicts the relationship between AoI
and the moments of the inter-delivery time Ii[m].

Prior to deriving the expression of LB in (7), we introduce
some useful quantities. Define the operator V̄[.] that calculates
the sample variance of a set of values. Let the sample variance
of Ii[m] be

V̄[Ii] =
1

Di(K)

Di(K)

∑
m=1

(
Ii[m]−M̄[Ii]

)2
. (15)

Notice that the sample variance is positive valued and V̄[Ii] =

M̄[I2
i ]−

(
M̄[Ii]

)2. Let Ai(K) be the total number of packets
transmitted to client i up to and including frame K. Any policy
π can schedule at most one client per slot, hence

M

∑
i=1

Ai(K)≤ KT w.p.1 . (16)

Moreover, since every transmission to client i is delivered
with the same probability pi, independently of the outcome
of previous transmissions, by the strong law of large numbers

lim
K→∞

Di(K)

Ai(K)
= pi w.p.1 . (17)

With the definitions of V̄[Ii] and Ai(K), we obtain LB by
manipulating the objective function of the infinite-horizon AoI
problem in (14) as follows

lim
K→∞

Jπ
K =

1
2M

M

∑
i=1

αi

[
V̄[Ii]

M̄[Ii]
+M̄[Ii]+1

]
(a)
≥ 1

2M

M

∑
i=1

αiM̄[Ii]+
1

2M

M

∑
i=1

αi

(b)
= lim

K→∞

1
2MT

KT
M

∑
i=1

αi

Di(K)
+

1
2M

M

∑
i=1

αi

(c)
≥ lim

K→∞

1
2MT

(
M

∑
j=1

A j(K)

)(
M

∑
i=1

αi

Di(K)

)
+

1
2M

M

∑
i=1

αi

(d)
≥ lim

K→∞

1
2MT

(
M

∑
i=1

√
αiAi(K)

Di(K)

)2

+
1

2M

M

∑
i=1

αi

(e)
=

1
2MT

(
M

∑
i=1

√
αi

pi

)2

+
1

2M

M

∑
i=1

αi w.p.1 , (18)

where (a) uses the fact that V̄[Ii]≥ 0, (b) uses (12) with K→
∞, (c) uses the inequality in (16), (d) uses Cauchy-Schwarz
inequality and (e) uses the equality in (17). Notice that (18)
gives the expression for LB found in (7).

Finally, since Jπ
K in (13) is positive for every π ∈ Π and

for every K, we employ Fatou’s lemma to (18) and obtain
limK→∞E [Jπ

K ]≥E [limK→∞ Jπ
K ]≥ LB, establishing the result of

the theorem. �

The sequence of inequalities in (18) that led to
limK→∞E [Jπ

K ]≥ LB could have rendered a loose lower bound.
However, in the next section, we use LB to derive a perfor-
mance guarantee ρG for the Greedy policy and show that
ρG = 1 for symmetric networks with large M, i.e. under these
conditions the value of LB is as tight as possible. Furthermore,
numerical results in Sec. VI show that the lower bound is
also tight in other network configurations. In the upcoming
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sections, we obtain performance guarantees for four low-
complexity scheduling policies: Greedy, Randomized, Max-
Weight and Whittle’s Index policies.

B. Greedy Policy
In this section, we analyze the Greedy policy introduced

in Sec. III and derive a closed-form expression for its per-
formance guarantee ρG. The expression for ρG depends on
the statistics of the set of values {1/pi}M

i=1, in particular of
its coefficient of variation. Let the sample mean and sample
variance of {1/pi}M

i=1 be

M̄
[

1
pi

]
=

1
M

M

∑
j=1

1
p j

; (19)

V̄
[

1
pi

]
=

1
M

M

∑
j=1

(
1
p j
−M̄

[
1
pi

])2

. (20)

Then, the coefficient of variation is given by

CV =

√
V̄
[

1
pi

]/
M̄
[

1
pi

]
. (21)

The coefficient of variation is a measure of how spread out are
the values of 1/pi. The value of CV is large when {1/pi}M

i=1
are disperse and CV = 0 if and only if pi = p for all clients.

Theorem 8 (Performance of Greedy). Consider a network
(M,T, pi,αi) with an infinite time-horizon. The Greedy policy
is ρG-optimal as M→ ∞, where

ρ
G =

(
M

∑
i=1

αi

)(
M

∑
i=1

1
pi

)[
1+

C2
V

M

]
+T

(
M

∑
i=1

αi

)
(

M

∑
i=1

√
αi

pi

)2

+T

(
M

∑
i=1

αi

) . (22)

The proof of Theorem 8 is in Appendix D of the supple-
mentary material. The expression of ρG for finite M can be
readily obtained by dividing (87) by (7). Next, we use the
performance guarantee in (22) to obtain sufficient conditions
for the optimality of the Greedy policy.

Corollary 9. The Greedy policy minimizes the expected sum
AoI (2) of any symmetric network with M→ ∞.

Proof. Consider two inequalities. (i) Cauchy-Schwarz(
M

∑
i=1

√
αi

pi

)2

≤

(
M

∑
i=1

αi

)(
M

∑
i=1

1
pi

)
, (23)

and (ii) Positive coefficient of variation: CV ≥ 0. It is evident
from (22) that ρG = 1 if and only if both inequalities (i) and
(ii) hold with equality and this is true if and only if αi = α

and pi = p for all clients. �

Theorem 8 provides a closed-form expression for the perfor-
mance guarantee ρG and Corollary 9 shows that, by leveraging
the knowledge of hk,i, the Greedy policy achieves optimal
performance in symmetric networks with M→∞. Notice that
the Greedy policy does not take into account differences in
terms of weight αi and channel reliability pi. In the next
section, we study the class of Stationary Randomized policies
which use the knowledge of αi and pi but neglect hk,i.

C. Stationary Randomized Policy

Consider the class of Stationary Randomized policies in
which scheduling decisions are made randomly, according to
fixed probabilities. In particular, define the Randomized policy
as follows.

Randomized policy selects in each slot (k,n) client i with
probability βi/∑

M
j=1 β j, for every client i and for positive fixed

values of {βi}M
i=1. The BS transmits the packet if the selected

client has an undelivered packet and idles otherwise.
Denote the Randomized policy as R. Observe that this policy

uses no information from current or past states of the network.
Moreover, it is not work-conserving, since the BS can idle
when the network still has clients with undelivered packets.
Next, we derive a closed-form expression for the performance
guarantee ρR and find a Randomized policy that is 2-optimal
for all network configurations with T = 1 slot per frame.

Theorem 10 (Performance of Randomized). Consider a net-
work (M,T, pi,αi) with an infinite time-horizon. The Random-
ized policy with positive values of {βi}M

i=1 is ρR-optimal, where

ρ
R = 2

(
M

∑
j=1

β j

M

∑
i=1

αi

piβi

)
+(T −1)

(
M

∑
i=1

αi

pi

)
(

M

∑
i=1

√
αi

pi

)2

+T

(
M

∑
i=1

αi

) . (24)

Proof. The performance guarantee is defined as ρR =UR
B /LB,

where the denominator is the universal lower bound in (7)
and the numerator is an upper bound to the objective function,
namely limK→∞E[JR

K ]≤UR
B , which is derived in Appendix E

of the supplementary material.
Let di(k) ∈ {0,1} be the number of packets delivered to

client i during frame k. Notice that

E [di(k)] = P(delivery to client i during frame k) . (25)

When the Randomized policy is employed, this probability is
constant over time, i.e. E [di(k)] =E [di]. Moreover, the PMF of
the random variable Ii[m] that represents the number of frames
between the (m−1)th and mth packet deliveries to client i is
given by

P(Ii[m] = n) = E [di] (1−E [di])
n−1 , (26)

for n ∈ {1,2, · · ·} and is independent of m.
Clearly, when the Randomized policy is employed, the se-

quence of packet deliveries is a renewal process with geometric
inter-delivery times Ii[m]. Thus, using the generalization of the
elementary renewal theorem for renewal-reward processes [39,
Sec. 5.7] yields

lim
K→∞

1
K

K

∑
k=1

E[hk,i] =
E[Ii[m]2]

2E[Ii[m]]
+

1
2
=

1
E[di]

, (27)

and substituting (27) into the objective function (3) gives

lim
K→∞

E
[
JR

K
]
=

1
M

M

∑
i=1

αi

E [di]
. (28)

For simplicity of exposition, we consider the case T = 1 slot
per frame. The derivation of the performance guarantee ρR for
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general T is in Appendix E. When T = 1, packets are always
available for transmission and the BS selects one client per
frame. Hence, the probability of delivering a packet to client
i during frame k is

E [di] =
βi

∑
M
j=1 β j

pi . (29)

Substituting (29) into (28) gives

lim
K→∞

E
[
JR

K
]
=

1
M

M

∑
j=1

β j

M

∑
i=1

αi

piβi
=UR

B . (30)

Finally, dividing (30) by the lower bound in (7) gives the
performance guarantee ρR in (24) for T = 1. �

Corollary 11. The Randomized policy with βi =
√

αi/pi,∀i,
has ρR < 2 for all networks with T = 1 slot per frame.

Proof. The assignment βi =
√

αi/pi,∀i ∈ {1, · · · ,M} is the
necessary (and sufficient) condition for the Cauchy-Schwarz
inequality (

M

∑
i=1

√
αi

pi

)2

≤

(
M

∑
j=1

β j

)(
M

∑
i=1

αi

βi pi

)
, (31)

to hold with equality. Applying this condition to the expression
in (24) for T = 1 results in ρR < 2. �

Theorem 10 gives an expression for ρR and Corollary 11
shows that, by using only the knowledge of αi and pi, a
Randomized policy can achieve 2-optimal performance in a
wide range of network setups, in particular all networks with
T = 1 slot per frame. Next, we develop a Max-Weight policy
that leverages the knowledge of αi, pi and hk,i in making
scheduling decisions.

D. Max-Weight Policy

In this section, we use concepts from Lyapunov Optimiza-
tion [40] to derive a Max-Weight policy. The Max-Weight
policy is obtained by minimizing the drift of a Lyapunov
Function of the system state at every frame k. Consider the
quadratic Lyapunov Function

L(~hk) =
1
M

M

∑
i=1

αih2
k,i , (32)

and the one-frame Lyapunov Drift

∆(~hk) = E
[

L(~hk+1)−L(~hk)
∣∣∣~hk

]
. (33)

The Lyapunov Function L(~hk) depicts how large the AoI of the
clients in the network during frame k is, while the Lyapunov
Drift ∆(~hk) represents the growth of L(~hk) from one frame to
the next. Intuitively, by minimizing the drift, the Max-Weight
policy reduces the value of L(~hk) and, consequently, keeps the
AoI of the clients low.

To find the policy that minimizes the one-frame drift ∆(~hk),
we first need to analyze the RHS of (33). Consider frame
k with a fixed vector ~hk and a policy π making scheduling
decisions throughout the T slots of this frame. Recall that
dπ

i (k) ∈ {0,1} represents the number of packets delivered

to client i during frame k when policy π is employed. An
alternative way to represent the evolution of hk,i defined in (1)
is

hk+1,i = dπ
i (k)+(hk,i +1)[1−dπ

i (k)] . (34)

Applying (34) into the conditional expectation of h2
k+1,i yields

E
[
h2

k+1,i−h2
k,i|~hk

]
=−E

[
dπ

i (k)|~hk

]
hk,i(hk,i +2)+2hk,i +1 .

(35)

Substituting (32) into (33) and then using (35) gives the
following expression for the Lyapunov Drift

∆(~hk) =−
1
M

M

∑
i=1

E
[
dπ

i (k)|~hk

]
αihk,i(hk,i +2)+

+
2
M

M

∑
i=1

αihk,i +
1
M

M

∑
i=1

αi . (36)

Observe that the scheduling policy π only affects the
first term on the RHS of (36). Define the weight function
Gi(hk,i) = αihk,i(hk,i + 2). During frame k, the scheduling
policy that maximizes the sum ∑

M
i=1E

[
dπ

i (k)|~hk

]
Gi(hk,i) also

minimizes ∆(~hk). Notice that E
[
dπ

i (k)|~hk

]
represents the ex-

pected throughput of client i during frame k. The class of
policies that maximize the expected weighted sum throughput
in a frame was studied in [27], [41]. According to [41, Eq.(2)],
to maximize ∑

M
i=1E

[
dπ

i (k)|~hk

]
Gi(hk,i), the scheduling policy

must myopically select the client with an undelivered packet
and highest value of piGi(hk,i) in every slot of frame k. Hence,
the Max-Weight policy is defined as follows.

Max-Weight policy schedules in each slot (k,n) a transmis-
sion to the client with highest value of piαihk,i(hk,i + 2) that
has an undelivered packet, with ties being broken arbitrarily.

Denote the Max-Weight policy as MW . Observe that when
αi = α and pi = p, prioritizing according to piαihk,i(hk,i +2)
is identical to prioritizing according to hk,i, i.e. Max-Weight
is identical to Greedy. Thus, from Theorem 5 (Optimality
of Greedy), we conclude that Max-Weight is AoI-optimal
for symmetric networks. For general networks, we derive the
performance guarantee ρMW for the Max-Weight policy.

Theorem 12 (Performance of Max-Weight). Consider a net-
work (M,T, pi,αi) with an infinite time-horizon. The Max-
Weight policy is ρMW -optimal, where

ρ
MW = 4

(
M

∑
i=1

√
αi

pi

)2

+(T −1)
M

∑
i=1

αi

pi(
M

∑
i=1

√
αi

pi

)2

+T

(
M

∑
i=1

αi

) . (37)

The proof of Theorem 12 is in Appendix F of the supple-
mentary material. In contrast to the Greedy and Randomized
policies, the Max-Weight policy uses all available information,
namely pi, αi and hk,i, in making scheduling decisions. As
expected, numerical results in Sec. VI demonstrate that Max-
Weight outperforms both Greedy and Randomized in every
network setup simulated. In fact, the performance of Max-
Weight is comparable to the optimal performance computed
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using Dynamic Programming. However, by comparing the
performance guarantee ρMW in (37) with ρG and ρR, it
might seem that Max-Weight does not provide better per-
formance. The reason for this is the challenge to obtain a
tight performance upper bound for Max-Weight. As opposed
to Greedy and Randomized, the Max-Weight policy cannot
be evaluated using Renewal Theory and it does not have
properties that simplify the analysis, such as packets being
delivered following a Round Robin pattern or clients being
selected according to fixed probabilities. Next, we consider
the AoI minimization problem from a different perspective and
propose an Index policy [42], also known as Whittle’s Index
policy. This policy is surprisingly similar to the Max-Weight
policy and also yields a strong performance.

V. WHITTLE’S INDEX POLICY

Whittle’s Index policy is the optimal solution to a relaxation
of the Restless Multi-Armed Bandit (RMAB) problem. This
low-complexity heuristic policy has been extensively used
in the literature [29], [32], [43] and is known to have a
strong performance in a range of applications [44], [45]. The
challenge associated with this approach is that the Index policy
is only defined for problems that are indexable, a condition
which is often difficult to establish.

To develop the Whittle’s Index policy, the AoI minimization
problem is transformed into a relaxed RMAB problem. The
first step is to note that each client in the AoI problem evolves
as a restless bandit. Thus, the AoI problem can be posed as
a RMAB problem. The second step is to consider the relaxed
version of the RMAB problem, called the Decoupled Model,
in which clients are examined separately. The Decoupled
Model associated with each client i adheres to the network
model with M = 1, except for the addition of a service
charge. The service charge is a fixed cost per transmission
C > 0 that is incurred by the network every time the BS
transmits a packet. The last step is to solve the Decoupled
Model. This solution lays the foundation for the design of the
Index policy. Next, we formulate and solve the Decoupled
Model, establish that the AoI problem is indexable and derive
the Whittle’s Index policy. A detailed introduction to the
Whittle’s Index policy can be found in [42], [46].

A. Decoupled Model

The Decoupled Model is formulated as a Dynamic Program
(DP). For presenting the cost-to-go function, which is central
to the DP, we first introduce the state, control, transition and
objective of the model. Then, using the expression of the
cost-to-go, we establish in Proposition 13 a key property of
the Decoupled Model which is used in the characterization
of its optimal scheduling policy. Since the Decoupled Model
considers only a single client, hereafter in this section, we omit
the client index i.

Consider the network model from Sec. II with M = 1
client. Recall that at the beginning of every frame, the BS
generates a new packet that replaces any undelivered packet
from previous frame. Let sk,n represent the delivery status of

this new packet at the beginning of slot (k,n). If the packet has
been successfully delivered to the client by the beginning of
slot (k,n), then sk,n = 1, and if the packet is still undelivered,
sk,n = 0. The tuple (sk,n,hk) depicts the system state, for it
provides a complete characterization of the network at slot
(k,n).

Denote by uk,n the scheduling decision in time slot (k,n).
This quantity is equal to 1 if the BS transmits the packet in slot
(k,n), and uk,n = 0 otherwise. Since the BS can only transmit
undelivered packets, if sk,n = 1, then the decision must be to
idle uk,n = 0.

State transitions are different at frame boundaries and within
frames. At the boundary between frames k−1 and k, namely,
in the transition from slot (k − 1,T ) to slot (k,1), each
component of the system state (sk,n,hk) evolves in a distinct
way. Since the BS generates a new packet at the beginning of
slot (k,1), we have sk,1 = 0 for every frame k. Whereas, the
evolution of hk is divided into two cases: i) case uk−1,T = 1,
when the BS transmits the packet during slot (k− 1,T ), the
value of hk depends on the feedback signal, as follows

P(hk = hk−1 +1|hk−1) = 1− p ; [failure] (38)
P(hk = 1|hk−1) = p ; [success] (39)

and ii) case uk−1,T = 0, when the BS idles, the transition is
deterministic

P(hk = hk−1 +1|hk−1) = 1 , if sk−1,T = 0 ; (40)
P(hk = 1|hk−1) = 1 , if sk−1,T = 1 . (41)

For state transitions that occur within the same frame, the
quantity hk remains fixed and sk,n evolves according to the
scheduling decisions and feedback signals. If the BS idles
during slot (k,n− 1), the delivery status of the packet does
not change, thus

P(sk,n = sk,n−1|sk,n−1) = 1 . (42)

If the BS transmits during slot (k,n− 1), the value of sk,n
depends upon the outcome of the transmission, as given by

P(sk,n = 0|sk,n−1) = 1− p ; [failure] (43)
P(sk,n = 1|sk,n−1) = p . [success] (44)

The last concept to be discussed prior to the cost-to-
go function is the objective. The objective function of the
Decoupled Model, J π

K , is analogous to Jπ
K in (3), except that

it represents a single client, introduces the service charge C
and evolves in slot increments (instead of frame increments).
The expression for the objective function is given by

min
π∈Π

E [J π
K ] , (45)

where J π
K =

1
KT

K

∑
k=1

T

∑
n=1

(
α hk +C uk,n

)
.

The cost-to-go function Jk,n(sk,n,hk) associated with the
optimization problem in (45) has two forms. For the last slot
of any frame k, namely slot (k,T ), the cost-to-go is expressed
as

Jk,T (sk,T ,hk) = αhk+

+ min
uk,T∈{0,1}

{
C uk,T +E[Jk+1,1(0,hk+1)]

}
, (46)
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and for slots other than the last, we have

Jk,n(sk,n,hk) = αhk+

+ min
uk,n∈{0,1}

{
C uk,n +E[Jk,n+1(sk,n+1,hk)]

}
. (47)

Given a network setup (K,T, p,α,h1,C), it is possible to use
backward induction on (46) and (47) to compute the optimal
scheduling policy π∗ for the Decoupled Model. However, for
the purpose of designing the Index policy, it is not sufficient
to provide an algorithm that computes the optimal policy. The
Index policy is based on a complete characterization of π∗.
Proposition 13 provides a key feature of the optimal scheduling
policy which is used in its characterization.

Proposition 13. Consider the Decoupled Model and its op-
timal scheduling policy π∗. During any frame k, the optimal
policy either: (i) idles in every slot; or (ii) transmits until the
packet is delivered or the frame ends.

Proof. The proof follows from the analysis of the backward
induction algorithm on (46) and (47). For this proof, we
assume that the algorithm has been running and that the
values of Jk+1,1(sk+1,1,hk+1) for all possible system states are
known. The proof is centered around the backward induction
during frame k and for a fixed value of hk.

First, we analyze the (trivial) case in which the packet has
already been delivered by the beginning of slot (k,n), i.e. sk,n =
1. In this case, the optimal scheduling policy always idles.

For the more interesting case of an undelivered packet,
we start by analyzing the last slot of the frame, namely slot
(k,T ). It follows from the cost-to-go in (46) that the optimal
scheduling decision u∗k,T depends only on the expression

C− p
[
Jk+1,1(0,hk +1)−Jk+1,1(0,1)

]
. (48)

The optimal policy idles in slot (k,T ) if (48) is non-negative
and transmits if (48) is negative. By analyzing the cost-to-
go function in (47), which is associated with the optimal
scheduling decisions in the remaining slots of frame k, it is
possible to use mathematical induction to establish that:

• if it is optimal to transmit in slot (k,n+1), then it is also
optimal to transmit in slot (k,n); and

• if it is optimal to idle in slot (k,n+ 1), then it is also
optimal to idle in slot (k,n).

We conclude that if (48) is non-negative, the optimal policy
idles in every slot of frame k, and if (48) is negative, the
optimal policy transmits until the packet is delivered or until
frame k ends. �

Let Γ ⊂ Π be the subclass of all scheduling policies that
satisfy Proposition 13. Since the optimal policy is such that
π∗ ∈ Γ, we can reduce the scope of the Decoupled Model
to policies in Γ without loss of optimality. In the following
section, we redefine the Decoupled Model so that scheduling
decisions are made only once per frame, rather than once
per slot. This new model is denoted Frame-Based Decoupled
Model.

B. Frame-Based Decoupled Model

Denote by uk the scheduling decision at the beginning of
frame k. We let uk = 0 if the BS idles in every slot of frame
k and uk = 1 if the BS transmits repeatedly until the packet is
delivered or the frame ends.

Since this discrete-time decision problem evolves in frames
and every frame begins with sk,1 = 0, we can fully represent
the system state by hk. State transitions follow the evolution of
hk in (1) and can be divided into two cases: i) case uk−1 = 0,
when the BS idles during frame k−1

P(hk = hk−1 +1|hk−1) = 1 , (49)

and ii) case uk−1 = 1, when the BS transmits, the state
transition depends on whether the packet was delivered or
discarded during frame k−1, as follows

P(hk = hk−1 +1|hk−1) = (1− p)T ; [discarded] (50)

P(hk = 1|hk−1) = 1− (1− p)T . [delivered] (51)

The objective function of the Frame-Based Decoupled
Model, Ĵ π

K , is given by

min
π∈Γ

E
[
Ĵ π

K
]
, where Ĵ π

K =
1

KT

K

∑
k=1

(
T α hk +Ĉ uk

)
, (52)

and Ĉ =C(1−(1− p)T )/p is the expected value of the service
charge incurred during a frame in which the BS transmits. By
construction, the Frame-Based Decoupled Model is equivalent
to the Decoupled Model when the optimization is carried over
the policies in Γ. Thus, both models have the same optimal
scheduling policy π∗ ∈ Γ ⊂ Π. Next, we characterize π∗ for
the infinite-horizon problem.

Consider the Frame-Based Decoupled Model over an
infinite-horizon with K → ∞. The state and control of the
system in steady-state are denoted h and u, respectively. Then,
Bellman equations are given by S(1) = 0 and

S(h)+λT = min{T αh+S(h+1) ; (53)

Ĉ+T αh+(1− p)T S(h+1)+(1− (1− p)T )S(1)} ,

for all h ∈ {1,2, · · ·}, where λ is the optimal average cost
and S(h) is the differential cost-to-go function. Notice that
the upper part of the minimization in (53) is associated with
choosing u = 0, i.e. idling in every slot of the frame, and
the lower part with u = 1, i.e. transmitting until the packet is
delivered or the frame ends, with ties being broken in favor to
idling. The stationary scheduling policy that solves Bellman
equations3 is given in Proposition 14.

Proposition 14 (Threshold Policy). Consider the Frame-
Based Decoupled Model over an infinite-horizon. The station-
ary scheduling policy π∗ that solves Bellman equations (53)
is a threshold policy in which the BS transmits during frames

3In general, Expected Average Cost problems over an infinite-horizon
and with countably infinite state space are challenging to address. For the
Frame-Based Decoupled Model, it can be shown that [38, Proposition 5.6.1] is
satisfied under some additional conditions on Γ. The results in [38, Proposition
5.6.1] and Proposition 14 are sufficient to establish the optimality of the
stationary scheduling policy π∗.
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that have h > H−1 and idles when 1≤ h≤H−1, where the
threshold H is given by

H =

⌊
1−Z +

√
Z2 +

2C
pT α

⌋
, (54)

and the value of Z is

Z =
1
2
+

(1− p)T

(1− (1− p)T )
. (55)

The proof of Proposition 14 is in Appendix G of the
supplementary material. Intuitively, we expect that the
optimal scheduling decision is to transmit during frames in
which h is high (attempting to reduce the value of h) and to
idle when h is low (avoiding the service charge Ĉ). Moreover,
if the optimal decision is to transmit when the state is h = H,
it is natural to expect that for all h≥ H the optimal decision
is also to transmit. This behavior characterizes a threshold
policy. In Appendix G, we demonstrate this behavior and find
the minimum integer H for which the optimal decision is to
transmit. With the complete characterization of π∗ provided
in Proposition 14, we have the necessary background to
establish indexability and to obtain the Whittle’s Index policy
for the AoI minimization problem.

C. Indexability and Index Policy
Consider the Decoupled Model and its optimal scheduling

policy π∗. Let P(C) be the set of states h for which it is
optimal to idle when the service charge is C, i.e. P(C) = {h∈
N|h < H}. Note from (54) that the threshold H is a function
of C. The definition of indexability is given next.

Definition 15 (Indexability). The Decoupled Model associated
with client i is indexable if P(C) increases monotonically from
/0 to the entire state space, N, as the service charge C increases
from 0 to +∞. The AoI minimization problem is indexable if
the Decoupled Model is indexable for all clients i.

The indexability of the Decoupled Model follows directly
from the expression of H in (54). Clearly, the threshold H
is monotonically increasing with C. Also, substituting C = 0
yields H = 1, which implies P(C) = /0, and the limit C→+∞

gives H → +∞ and, consequently, P(C) = N. Since this is
true for the Decoupled Model associated with every client i,
we conclude that the AoI minimization problem is indexable.
Prior to introducing the Index policy, we define the Whittle’s
Index.

Definition 16 (Index). Consider the Decoupled Model and
denote by C(h) the Whittle’s Index in state h. Given indexa-
bility, C(h) is the infimum service charge C that makes both
scheduling decisions (idle, transmit) equally desirable in state
h.

The closed-form expression for C(h) comes from the fact
that, for both scheduling decisions to be equally desirable in
state h, the threshold must be H = h+1. Substituting H = h+1
into (54) and isolating C, gives

C(h) = pαh
[

h+
1+(1− p)T

1− (1− p)T

]
. (56)

After establishing indexability and finding the closed-form
expression for the Whittle’s Index, we return to our original
problem, with the BS transmitting packets to M clients. Recall
that there is no service charge in the original problem. The
Whittle’s Index policy is described next.

Whittle’s Index policy schedules in each slot (k,n) a trans-
mission to the client with highest value of

Ci(hk,i) = piαihi

[
hi +

1+(1− pi)
T

1− (1− pi)T

]
, (57)

that has an undelivered packet, with ties being broken arbi-
trarily.

Denote the Whittle’s Index policy as WI. By construction,
the index Ci(hk,i) represents the service charge that the network
would be willing to pay in order to transmit a packet to
client i during frame k. Intuitively, by selecting the client with
highest Ci(hk,i), the Whittle’s Index policy is transmitting the
most valuable packet. Note that the Whittle’s Index policy is
similar to the Max-Weight policy despite the fact that they
were developed using different methods. Both the Whittle’s
Index and Max-Weight policies have strong performances and
both are equivalent to the Greedy policy when the network is
symmetric, implying that WI and MW are AoI-optimal when
αi = α and pi = p. Next, we derive the performance guarantee
ρWI for the Whittle’s Index policy.

Theorem 17 (Performance of Whittle). Consider a network
(M,T, pi,αi) with an infinite time-horizon. The Whittle’s Index
policy is ρWI-optimal, where

ρ
WI = 4

 M

∑
i=1

√
α̃i
pi

2

+(T −1)
M

∑
i=1

α̃i
pi(

M

∑
i=1

√
αi

pi

)2

+T

(
M

∑
i=1

αi

) , (58)

and

α̃i =
αi

2

(
2

1− (1− pi)T +1
)2

. (59)

To find the expression for the performance guarantee of the
Whittle’s Index policy ρWI in (58), we use similar arguments
to the ones for deriving ρMW . The proof of Theorem 17 is
in Appendix H of the supplementary material. Next, we eval-
uate the performance of the four low-complexity scheduling
policies discussed in this paper using MATLAB simulations.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the schedul-
ing policies in terms of the Expected Weighted Sum Age
of Information in (2). We compare five scheduling policies:
i) Greedy policy; ii) Randomized policy with βi =

√
αi/pi;

iii) Max-Weight policy; iv) Whittle’s Index policy and v) the
optimal Dynamic Program. The numerical results associated
with the first four policies are simulations, while the results
associated with the Dynamic Program are computations of
EWSAoI obtained by applying Value Iteration to the objective
function (3). By definition, the Dynamic Program yields the
optimal performance.



SUBMITTED TO IEEE/ACM TRANSACTIONS ON NETWORKING 11

Figs. 5 and 6 evaluate the scheduling policies in a variety of
network settings. In Fig. 5, we consider a two-user symmetric
network with T = 5 slots in a frame, a total of K = 150 frames
and both clients having the same weight α1 = α2 = 1 and
channel reliability p1 = p2 ∈ {1/15, · · · ,14/15}. In Fig. 6,
we consider a two-user non-symmetric network with K = 200,
p1 = 2/3, p2 = 1/10, T ∈ {1, · · · ,10} and both clients having
α1 = α2 = 1. The initial vector is ~h1 = [1,1, · · · ,1]T in all
simulations.

Figs. 7 and 8 display the performance of the scheduling
policies for larger networks. Due to the high computation
complexity associated with the Dynamic Program, we show
the Lower Bound LB from (7) instead. In Fig. 7, we con-
sider a network with an increasing number of clients M ∈
{5,10, · · · ,45,50}, T = 2 slots in a frame, a total of K =
50,000 frames, channel reliability pi = i/M, ∀i∈{1,2, · · · ,M}
and all clients having the same weight αi = 1.

In Fig. 8, we consider a network with M = 4 clients, T = 2
slots in a frame, a total of K = 50,000 frames, identical
client weights αi = 1,∀i ∈ {1,2,3,4} and channel reliabilities
{pi}M

i=1 chosen uniformly at random in the interval (0.1). A
total of 2,000 different choices of {pi}M

i=1 are considered.

Fig. 5. Two-user symmetric network with T = 5,K = 150,αi = 1, pi = p, ∀i.
The simulation result for each policy and for each value of p is an average
over 1,000 runs.

Fig. 6. Two-user general network with K = 200,αi = 1, p1 = 2/3, p2 =
1/10, ∀i. The simulation result for each policy and for each value of T is an
average over 1,000 runs.

Network setups are displayed in ascending order of LB.
Our results in Figs. 5 and 6 show that the performances

of the Max-Weight and Whittle Index policies are compa-
rable to the optimal performance (DP) in every network
setting considered. Moreover, the results in Fig. 5 support
the optimality of the Greedy, Max-Weight and Whittle Index
policies for any symmetric network. Figs. 6, 7 and 8 suggest
that, in general, the Max-Weight and Whittle Index Policies
outperform Greedy and Randomized. An important feature
of all policies examined in this paper is that they require
low computational resources even for networks with a large
number of clients.

VII. CONCLUDING REMARKS

This paper considered a wireless broadcast network with a
BS sending time-sensitive information to multiple clients over
unreliable channels. We studied the problem of optimizing
scheduling decisions with respect to the expected weighted
sum AoI of the clients in the network. Our main contributions
include developing the Greedy, Randomized, Max-Weight
and Whittle’s Index policies; showing that for the case of
symmetric networks, Greedy, Max-Weight and Whittle’s Index

Fig. 7. Network with T = 2,K = 50,000,αi = 1, pi = i/M, ∀i. The simulation
result for each policy and for each value of M is an average over 10 runs.

Fig. 8. Networks with M = 4,T = 2,K = 50,000,αi = 1, ∀i and different
channel reliabilities pi. For each network setup, the values of pi are sampled
uniformly at random from the range (0,1). For a given network setup, the
performance of the policies is an average over 10 runs. For the sake of clarity,
we display 250 out of the 2,000 network setups by keeping only every 8th
data point.
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are AoI-optimal; and deriving performance guarantees for all
four low-complexity policies. Numerical results demonstrate
the strong performances of the Max-Weight and Whittle’s
Index policies in a variety of network conditions.

The mathematical model in Sec. II describes a network that
periodically generates packets at the BS and then transmits
those packets to the clients. It is easy to see that the same
model can represent other types of networks. A simple ex-
ample is a polling network in which the BS requests packets
from the clients and each client, once polled, generates fresh
data and transmits that data back to the BS. This network
with uplink traffic and on-demand generation of data can
be represented by our model for the case T = 1. Interesting
extensions of this work include considering stochastic arrivals,
time-varying channels and multi-hop networks.

APPENDIX A
PROOF OF LEMMA 2

Lemma 2 (Round Robin). Without loss of generality, reorder
the client index i in descending order of ~h1, with client 1
having the highest h1,i and client M the lowest h1,i. The
Greedy policy delivers packets according to the index se-
quence (1,2, · · · ,M,1,2, · · ·) until the end of the time-horizon
K, i.e. Greedy follows a Round Robin pattern.

Proof. Suppose that pi = 1 for all clients, meaning that every
transmission is a successful packet delivery. Consider the first
frame k = 1 and assume that there are less clients in the
network than slots in a frame, i.e. M < T . In this case, the
Greedy Policy delivers a packet to client 1 in the first slot,
client 2 in the second slot, and so on, until the Mth packet is
delivered. At this point, there are no undelivered packets left,
and Greedy idles until the end of the frame. In the next frame
k = 2, new packets are generated at the BS and the value
of hk,i is updated to 1 for all clients. Since Greedy breaks
ties arbitrarily, we choose to select clients in the same order
(1,2, · · · ,M) during frame k = 2 and during all subsequent
frames. This client ordering characterizes a circular order.
Thus, for the case M < T and pi = 1, the Greedy Policy
delivers packets to clients following a Round Robin pattern.

Now, consider the case M ≥ T and pi = 1. Let m1 ∈N and
m2 ∈ {0,1, · · · ,T − 1} be the quotient and remainder of the
division of M by T , namely M = m1T +m2. For simplicity of
exposition, let the client index i be reordered in descending
order of hk,i at the beginning of every frame k. Then, within
every frame k, the Greedy Policy schedules clients in the
following order (1, · · · ,T ). The evolution of the Greedy Policy
is described in detail next:
• In the first frame, the Greedy policy delivers packets to

clients 1 through T in order.
• At the beginning of the second frame, new packets are

generated at the BS and the value of hk,i is updated to
1 for clients {1, · · · ,T} and incremented by 1 for the
remaining clients. Then, the client index i is reordered
such that vector ~h2 is in descending order. Reordering
can be accomplished with a cyclic shift of T elements, in
particular, clients {1, · · · ,T} become {M−T +1, · · · ,M}
and clients that did not receive packets in the first frame

have their index subtracted by T . With these reordered
indexes, during the second frame, the Greedy policy
delivers packets to clients 1 through T in order.

• Similarly, at the beginning of the third frame, new packets
are generated at the BS and the value of hk,i is updated
to 1 for clients {1, · · · ,T} and incremented by 1 for the
remaining clients. The vector~h3 is reordered by applying
the same cyclic shift of T elements. Notice that the value
of h3,i is h3,i = 1 for the clients that received packets in
the second frame and h3,i = 2 for the clients that received
packets in the first frame. During the third frame, Greedy
delivers packets to clients 1 through T in order.

• This process is repeated until frame k = m1. Then, at the
beginning of frame k = m1 + 1, the reordered vector of
hk,i is

~hm1+1 =



h1,i +m1
m1

m1−1
...
2
1



m2 elements
T elements
T elements

...
T elements
T elements

(60)

Clients {1, · · · ,m2} are the only ones that did not receive
a packet so far. During frame k = m1 + 1, the Greedy
Policy delivers packets to clients 1 through T in order,
where, by definition, T > m2.

• Therefore, at the beginning of frame k =m1+2, all clients
have received at least one packet and the reordered vector
of hk,i is

~hm1+2 =



m1 +1
m1

m1−1
...
2
1



m2 elements
T elements
T elements

...
T elements
T elements

(61)

During frame k = m1 + 2, the Greedy policy delivers
packets to clients 1 through T in order.

• At the beginning of frame k=m1+3, the reordered vector
of hk,i is

~hm1+3 =



m1 +1
m1

m1−1
...
2
1



m2 elements
T elements
T elements

...
T elements
T elements

(62)

Observe that (62) and (61) are identical. Clearly, in all
frames that follow, the same sequence of events occur:
i) vector ~hk is updated according to (1); ii) vector ~hk is
reordered using a circular shift of T elements, resulting
in~hk identical to (61); and iii) the Greedy Policy delivers
clients 1 through T in order.

The description above for both cases M < T and M ≥ T
shows that when channels are error-free, namely pi = 1, and
we iteratively apply cyclic shifts of T elements to the client
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indexes, the Greedy Policy delivers packets to clients 1 through
T in order at every frame k. Equivalently, when no cyclic shift
is applied, the Greedy Policy delivers packets to clients in
circular order.

When channels are unreliable, the only difference in the
analysis is that each packet transmission to client i fails with
probability pi ∈ (0,1],∀i. According to Remark 1, in the event
of a transmission failure, Greedy continues to transmit to the
same client. Thus, transmission failures do not affect the order
in which packets are delivered. Hence, irrespective of the
network setup, the Greedy Policy delivers packets following a
Round Robin pattern until the end of the time-horizon. �

APPENDIX B
PROOF OF LEMMA 4

Lemma 4 (Optimality of Greedy for error-free channels).
Consider a symmetric network with error-free channels pi = 1
and weights αi = α > 0,∀i. Among the class of admissible
policies Π, the Greedy policy attains the minimum sum AoI
(2), namely

JG
K ≤ Jπ

K ,∀π ∈Π . (63)

Proof. Prior to delving into the proof, we introduce some
notation. Let Ii(.) be an indicator function that takes the
value Ii(s) = 1 if {i /∈ s} and Ii(s) = 0, otherwise. Recall
from Sec. II-A that ŝk represents the set of clients that
successfully received packets during frame k. Then, we can
indicate that client i did not receive a packet during frame
k using Ii(ŝk) = 1 and the evolution of hk,i in (1) can be
rewritten as hk+1,i = hk,iIi(ŝk)+ 1. Using vector notation, let
~I(ŝk) = [I1(ŝk) I2(ŝk) · · · IM(ŝk)]

T and denote by~hk�~I(ŝk) the
entrywise product of vectors~hk and~I(ŝk). A simple expression
for the evolution of ~hk at the beginning of frame k+1 is

~hk+1 =~hk�~I(ŝk)+~1 , (64)

where ~1 is the unity column vector of length M.
Next, we use mathematical induction to show that~hk+1 can

be expressed as a function of the initial AoI, ~h1, and of the
clients that received packets during frames 1 through k, namely
{ŝ j}k

j=1, as follows

~hk+1 =~h1�~I

(
k⋃

j=1

ŝ j

)
+

k

∑
a=2

~I

(
k⋃

j=a

ŝ j

)
+~1 . (65)

Base case: substitute k = 1 in (65). The expression is identical
to (64).
Inductive step: Assume that (65) holds for~hk. The expression
of~hk+1 can be obtained by substituting (65) in (64) as follows

~hk+1 =~hk�~I(ŝk)+~1

=

[
~h1�~I

(
k−1⋃
j=1

ŝ j

)
+

k−1

∑
a=2

~I

(
k−1⋃
j=a

ŝ j

)
+~1

]
�~I(ŝk)+~1

=~h1�~I

(
k⋃

j=1

ŝ j

)
+

k−1

∑
a=2

~I

(
k⋃

j=a

ŝ j

)
+~I(ŝk)+~1

=~h1�~I

(
k⋃

j=1

ŝ j

)
+

k

∑
a=2

~I

(
k⋃

j=a

ŝ j

)
+~1 , (66)

which is identical to the expression in (65). The induction is
complete.

Expression (65) is central for this proof. To show that for a
symmetric network with error-free channels, the Greedy policy
minimizes Jπ

K , i.e.

JG
K ≤ Jπ

K ,∀π ∈Π where Jπ
K =

α

KM

K

∑
k=1

M

∑
i=1

hk,i , (67)

it suffices to show that employing Greedy yields the lowest
sum ∑

M
i=1 hk,i in every frame k ∈ {1,2, · · · ,K}. According to

(65), the sum of the elements of ~hk can be expressed as

M

∑
i=1

hk,i =
M

∑
i=1

[
h1,iIi

(
k−1⋃
j=1

ŝ j

)
+

k−1

∑
a=2

Ii

(
k−1⋃
j=a

ŝ j

)
+1

]

=
M

∑
i=1

h1,iIi

(
k−1⋃
j=1

ŝ j

)
+

k−1

∑
a=2

M

∑
i=1

Ii

(
k−1⋃
j=a

ŝ j

)
+M . (68)

In the remaining part of this proof, we use Lemma 2
(Circular Order) to show that the Greedy policy minimizes
(68) for every frame k. Without loss of generality, we reorder
the client index i in descending order of ~h1. Then, Lemma 2
states that Greedy delivers packets to clients in circular order,
following the index sequence (1,2, · · · ,M,1,2, · · ·). Clearly,
when Greedy is employed in a network with pi = 1,∀i, the
following properties hold:

(i) the number of packets delivered in any frame k is |ŝ G
k |=

min(M,T ),∀k ∈ {1,2, · · · ,K};
(ii) the set of clients that receive at least one packet during

the first k frames is
k⋃

j=1

ŝ G
j = {1,2, · · · ,min(M,kT )} ; (69)

(iii) by minimizing the number of common elements in
neighboring sets, the circular order of Greedy maximizes
the number of clients that receive at least one packet
during the first k frames. Thus, for every π ∈Π we have∣∣∣∣∣ k⋃

j=1

ŝ π
j

∣∣∣∣∣≤
∣∣∣∣∣ k⋃

j=1

ŝ G
j

∣∣∣∣∣= min(M,kT ) ; (70)

(iv) for the same reason, for every π ∈Π and a∈ {1,2, · · · ,k}
we also have∣∣∣∣∣ k⋃

j=a

ŝ π
j

∣∣∣∣∣≤
∣∣∣∣∣ k⋃

j=a

ŝ G
j

∣∣∣∣∣= min{M,(k−a+1)T} . (71)

Properties (ii) and (iv) are used to show that Greedy minimizes
the RHS of (68).

The first term in the RHS of (68) is the sum of the elements
of ~h1 that are associated with clients that did not receive
packets during frames 1 through k− 1. Property (ii) shows
that the Greedy policy minimizes this term by delivering
packets to the clients with highest value of h1,i, namely
{1,2, · · · ,min(M,(k−1)T )}.

The second term in the RHS of (68) is a double sum. By
the definition of Ii(.), it follows that

k−1

∑
a=2

M

∑
i=1

Ii

(
k−1⋃
j=a

ŝ j

)
=

k−1

∑
a=2

[
M−

∣∣∣∣∣k−1⋃
j=a

ŝ j

∣∣∣∣∣
]
. (72)
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Property (iv) shows that the Greedy policy minimizes this
double sum for every value of a. Since the last term in the
RHS of (68) is a constant, we conclude that the Greedy policy
minimizes the sum (68) in every frame k and, consequently,
the value of the objective function, Jπ

K . �
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APPENDIX C
PROOF OF THEOREM 5

Theorem 5 (Optimality of Greedy). Consider a symmetric
network with channel reliabilities pi = p ∈ (0,1] and weights
αi = α > 0,∀i. Among the class of admissible policies Π, the
Greedy Policy attains the minimum expected sum AoI (2),
namely G = argminπ∈ΠE [Jπ

K ].

Proof. To show that the Greedy Policy minimizes the
EWSAoI in (2) for symmetric networks, we utilize a stochastic
dominance argument to compare the evolution of ~hk when
Greedy is employed to that when an arbitrary policy π is
employed. For the sake of simplicity and without loss of
optimality, in this proof we assume that π is work-conserving.
There is no loss of optimality since for every non work-
conserving policy, there is at least one work-conserving policy
that is strictly dominant.

Let SHπ
k be the random variable that represents the sum of

the elements of ~hk when π is employed. Using this notation
and the symmetry assumptions of Theorem 5, the objective
function in (3) becomes

min
π∈Π

E [Jπ
K ] =

1
KM

min
π∈Π

E

[
K

∑
k=1

M

∑
i=1

α hk,i

]

=
α

KM
min
π∈Π

E

[
K

∑
k=1

SHπ
k

]
. (73)

For introducing the concept of stochastic dominance, denote
the stochastic process associated with the sequence {SHπ

k }K
k=1

as SHπ and its sample path as shπ . Let D be the space of all
sample paths shπ . Define by F the set of measurable functions
f : D→R+ such that f (shG)≤ f (shπ) for every shG,shπ ∈D
which satisfy shG

k ≤ shπ
k ,∀k.

Definition 18. (Stochastic Dominance) We say that SHG is
stochastically smaller than SHπ and write SHG ≤st SHπ if
P{ f (SHG)> z} ≤ P{ f (SHπ)> z},∀z ∈ R,∀ f ∈F .

Since f (SHπ) is positive valued, SHG ≤st SHπ implies4

E[ f (SHG)]≤ E[ f (SHπ)],∀ f ∈F . Knowing that one function
that satisfies the conditions in F is f (SHπ) = ∑

K
k=1 SHπ

k , it
follows that if SHG ≤st SHπ ,∀π ∈ Π, then E[∑K

k=1 SHG
k ] ≤

E[∑K
k=1 SHπ

k ],∀π ∈ Π, which is our target expression in (73).
Therefore, it follows that for establishing the optimality of G,
it is sufficient to confirm that SHG is stochastically smaller
than SHπ ,∀π ∈Π.

Stochastic dominance can be demonstrated using its defini-
tion directly. However, this is often complex for it involves
comparing the probability distributions of SHG and SHπ .
Instead, we use the following result from [37], which is also

4Recall that for any positive valued X , it follows that E[X ] =
∫

∞

x=0(1−
P{X ≤ x})dx =

∫
∞

x=0 P{X > x}dx.

used in works such as [26], [29], [47]: for verifying that
SHG ≤st SHπ , it is sufficient to show that there exists two
stochastic processes S̃H

G
and S̃H

π

such that
(i) SHπ and S̃H

π

have the same probability distribution;
(ii) S̃H

G
and S̃H

π

are on a common probability space;
(iii) SHG and S̃H

G
have the same probability distribution;

(iv) S̃H
G
k ≤ S̃H

π

k , with probability 1, ∀k.
This result allows us to establish stochastic dominance be-
tween SHG and SHπ by properly designing the auxiliary
processes S̃H

G
and S̃H

π

. This design is achieved by utilizing
Stochastic Coupling.

Prior to discussing stochastic coupling, we introduce the
channel state. Let Ei(k,n) ∼ Ber(p) be the random variable
that represents the channel state of client i during slot (k,n)

Ei(k,n) =
{

1, w.p. p [Channel ON] ;
0, w.p. 1− p [Channel OFF] . (74)

The channel state of each client is independent of the channel
state of other clients and of scheduling decisions. Note that
the BS has no knowledge of the channel state of the clients
before transmissions.

Stochastic coupling is a method utilized for comparing
stochastic processes by imposing a common underlying prob-
ability space. We use stochastic coupling to construct S̃H

π

and
S̃H

G
based on SHπ and SHG, respectively.

Let the process S̃H
π

be identical to SHπ . Their (common)
probability space is associated with the channel state of the
client selected in each slot by policy π . Now, let us construct
S̃H

G
on the same probability space as S̃H

π

. For that, we
couple S̃H

G
to S̃H

π

by dynamically connecting the channel
state of Greedy to the channel state of policy π as follows.
Suppose that in slot (k,n), policy π schedules client j while
Greedy schedules client i, then, for the duration of that slot,
we assign Ei(k,n)← E j(k,n). For example, if the outcome
associated with policy π is E j(k,n) = 1, then we impose that
Greedy has Ei(k,n) = 1, regardless of the client i selected by
Greedy. This dynamic assignment imposes that, at every slot,
the channel state of Greedy is identical to the channel state of
π . Notice that this is only possible because the channel state
Ei(k,n) is i.i.d. with respect to the clients and slots, which is
the same reason for S̃H

G
and SHG having the same probability

distribution.
Returning to our four conditions, it follows from the cou-

pling method described above that (i), (ii) and (iii) are satisfied.
Thus, the only condition that remains to be shown is

(iv) S̃H
G
k ≤ S̃H

π

k ,with probability 1, ∀k. (75)

Coupling between S̃H
π

and S̃H
G

is the key property to
establish (iv). Assume that policy π is employed and consider
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a sample path s̃h
π

spanning the entire time-horizon. Use the
sequence of channel states from s̃h

π

to create the coupled
sample path s̃h

G
. Figure 9 illustrates both sample paths. Notice

that the scheduling decisions taken during slots in which the
channel state is OFF cannot change the relationship (≤ or
≥) between s̃h

π

k and s̃h
G
k . Since these slots are irrelevant for

comparing s̃h
π

k and s̃h
G
k , they can be removed from the analysis

and we can focus on slots with error-free channels.
Lemma 4 established that, in a network with error-free

channels, we have s̃h
G
k ≤ s̃h

π

k , for every frame k and for every
policy π ∈Π. The difference between the setup in Appendix B
and the setup here is that, by removing the slots in which the
channel state is OFF, we create frames with different number
of slots. However, it is easy to see that the proof in Appendix
B does not rely on the fact that all frames have the same
length. Hence, it follows that s̃h

G
k ≤ s̃h

π

k , for every k and for
every sample path. Thus establishing condition (iv) and the
stochastic dominance argument. �

APPENDIX D
PROOF OF THEOREM 8

Theorem 8 (Performance of Greedy). Consider a network
(M,T, pi,αi) with an infinite time-horizon. The Greedy policy
is ρG-optimal as M→ ∞, where

ρ
G =

(
M

∑
i=1

αi

)(
M

∑
i=1

1
pi

)[
1+

C2
V

M

]
+T

(
M

∑
i=1

αi

)
(

M

∑
i=1

√
αi

pi

)2

+T

(
M

∑
i=1

αi

) . (76)

Proof. The performance guarantee is defined as ρG =UG
B /LB,

where the denominator is the universal lower bound in (7)
and the numerator is an upper bound to the objective function,
namely limK→∞E[JG

K ]≤UG
B , which is derived in this appendix.

Fig. 9. Evolution of s̃h
π

and s̃h
G

for a network with M = 3 clients, T = 1 slots
in a frame, K = 5 frames, initial AoI ~h1 = [4,3,1]T and unreliable channels.
Recall that channels are ON when Ei(k,n) = 1 and OFF when Ei(k,n) = 0.
Successful deliveries are represented in green and failed transmissions in red.
On the top, channel states associated with the scheduling decisions of the
arbitrary policy π . Notice that, due to coupling, the Greedy policy has the same
channel states. On the middle, the evolution of~hk when policy π is employed.
On the bottom, the evolution of~hk when Greedy is employed. Comparing the
sum of ~hk over time for both policies, we have s̃h

π
= {8;11;10;13;12} and

s̃h
G
= {8;11;9;12;9}, and we see that s̃h

G
k ≤ s̃h

π

k ,∀k.

To analyze the evolution of hk,i when the Greedy policy
is employed, we utilize the properties introduced in Sec. III.
Without loss of generality, assume in this appendix that the
client index i is in descending order of ~h1, as in Lemma 2.
Then, the properties introduced in Sec. III can be summarized
as follows: i) Greedy transmits packets to the same client
i, uninterruptedly, until a packet is delivered; ii) Greedy
delivers packets to clients following a Round Robin pattern
(1,2, · · · ,M,1,2, · · ·) until the end of the time-horizon; iii)
Greedy idles only when all M clients receive their packets
in the same frame.

Based on property (i), define Xi[m] as the number of
successive transmission attempts to client i that precede the
mth packet delivery to the same client, with Xi[0] = 0,∀i. For
a given i, the random variables Xi[m] are i.i.d. with geometric
distribution. Moreover, transmissions to different clients are
independent. Hence, we have

E[Xi[m]] = 1/pi ; (77)
E[Xi[m]X j[m−1]] = 1/pi p j ; (78)

E
[
X2

i [m]
]
= (2− pi)/p2

i . (79)

According to property (ii), packets are delivered to clients
following a Round Robin pattern. Thus, the total number of
packet transmissions (to any client) in the interval between the
(m−1)th and mth deliveries to client i is given by

Bi[m] =
M

∑
j=i+1

X j[m−1]+
i

∑
j=1

X j[m] , (80)

with first moment

E[Bi[m]] =
M

∑
i=1

1
pi

, (81)

and second moment

E
[
B2

i [m]
]
=

M

∑
j=1

2− p j

p2
j

+2
M

∑
j=1

M

∑
k= j+1

1
p j pk

. (82)

In addition to packet transmissions, the interval between
the (m−1)th and mth deliveries to client i may also have idle
slots. Let Wi[m] be the number of idle slots in this interval. It
follows from property (iii) that, if there are idle slots between
two consecutive deliveries to client i, they occur one after the
other and at the end of a frame in which all M packets were
delivered, implying that 0≤Wi[m]< T .

The total number of slots in the interval between the (m−
1)th and mth packet deliveries to client i is given by Bi[m]+
Wi[m]. Recall that Ii[m] is defined as the number of frames in
that interval, hence

Ii[m] =

⌊
Bi[m]+Wi[m]

T

⌋
. (83)

It is evident from the analysis above that, when Greedy is
employed, the sequence of packet deliveries to client i is a
renewal process with i.i.d. inter-delivery times Ii[m]. Therefore,
using the generalization of the elementary renewal theorem for
renewal-reward processes [39, Sec. 5.7], we have

lim
K→∞

1
K

K

∑
k=1

E[hk,i] =
E[Ii[m]2]

2E[Ii[m]]
+

1
2
. (84)
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Next, we find an upper bound to (84) that is used for
deriving the expression of UG

B . In particular, we combine (83),
(81) and the fact that Wi[m] ≥ 0 to obtain a lower bound to
the first moment of Ii[m], as follows

E[Ii[m]]≥ E
[

Bi[m]+Wi[m]

T
−1
]
≥ 1

T

M

∑
i=1

1
pi
−1 . (85)

Moreover, an upper bound to the second moment of I2
i [m] is

obtained by using (83), (82) and the fact that Wi[m] < T , as
follows

E
[
I2
i [m]

]
≤ E

[(
Bi[m]+Wi[m]

T

)2
]

(86)

≤ E
[

B2
i [m]

T 2 +
2Bi[m]

T
+1
]

=
1

T 2

[
M

∑
j=1

2− p j

p2
j

+2
M

∑
j=1

M

∑
k= j+1

1
p j pk

]
+

2
T

[
M

∑
i=1

1
pi

]
+1 .

Notice that (85) and (86) do not depend on indexes i or m.
Finally, substituting (85) and (86) into (84) and then com-

bining the result with the objective function in (3) gives the
upper bound UG

B ≥ limK→∞E[JG
K ], where

UG
B =

1
2M

(
M

∑
i=1

αi

)(
1
T

M

∑
i=1

1
pi
−1

)
YG +

1
2M

(
M

∑
i=1

αi

)
,

(87)
and

YG = 1+
1
M

+
4− 1

T
+

2
M

1
T

M

∑
i=1

1
pi
−1

+

4− 1
T
+

1
M

+
M
T 2 V̄

[
1
pi

]
[

1
T

M

∑
i=1

1
pi
−1

]2 .

(88)
A more insightful expression for UG

B can be obtained by
assuming that M→ ∞, as follows

UG
B =

1
2MT

(
M

∑
i=1

αi

)(
M

∑
i=1

1
pi

)[
1+

C2
V

M

]
+

1
2M

(
M

∑
i=1

αi

)
.

(89)
Dividing (89) by the lower bound in (7) yields the performance
guarantee ρG in (22). �
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Theorem 10 (Performance of Randomized). Consider a net-
work (M,T, pi,αi) with an infinite time-horizon. The Random-
ized policy with positive values of βi is ρR-optimal, where

ρ
R = 2

(
M

∑
j=1

β j

M

∑
i=1

αi

piβi

)
+(T −1)

(
M

∑
i=1

αi

pi

)
(

M

∑
i=1

√
αi

pi

)2

+T

(
M

∑
i=1

αi

) . (90)

Proof. Consider the objective function for the Randomized
policy in (28) and assume a general frame length T . To find
an upper bound UR

B , we derive a lower bound on E[di]. Recall
that during frame k, the Randomized policy can select the same

client multiple times. Hence, the probability of delivering a
packet to client i during frame k is given by

E [di] = P(delivery to client i during frame k)

=
T

∑
s=0

P(delivery |s selections)P(s selections)

=
T

∑
s=0

[1− (1− pi)
s]

(
T
s

)(
βi

∑
M
j=1 β j

)s(
1− βi

∑
M
j=1 β j

)T−s

(a)
≥ pi

T

∑
s=1

(
T
s

)(
βi

∑
M
j=1 β j

)s(
1− βi

∑
M
j=1 β j

)T−s

= pi

1−

(
1− βi

∑
M
j=1 β j

)T


(b)
≥ piT βi

∑
M
j=1 β j +(T −1)βi

, (91)

where (a) uses pi ≤ 1− (1− pi)
s for s ∈ {1,2, · · · ,T} and (b)

uses [48, inequality r5] which is given below for convenience

(1− x)T ≤ 1(
1+

T x
1− x

) , for x ∈ (0,1) and T ≥ 1 . (92)

Substituting the lower bound (91) into the objective function
for the Randomized policy in (28) gives

lim
K→∞

E
[
JR

K
]
=

1
M

M

∑
i=1

αi

E [di]
≤UR

B , (93)

where the upper bound is given by

UR
B =

1
T M

M

∑
j=1

β j

M

∑
i=1

αi

piβi
+

T −1
T M

M

∑
i=1

αi

pi
. (94)

Finally, dividing (94) by the lower bound in (7) yields the
performance guarantee ρR in (24). �
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Theorem 12 (Performance of Max-Weight). Consider a net-
work (M,T, pi,αi) with an infinite time-horizon. The Max-
Weight policy is ρMW -optimal, where

ρ
MW = 4

(
M

∑
i=1

√
αi

pi

)2

+(T −1)
M

∑
i=1

αi

pi(
M

∑
i=1

√
αi

pi

)2

+T

(
M

∑
i=1

αi

) . (95)

Proof. To obtain the upper bound, limK→∞E
[
JMW

K
]
≤UMW

B ,
we manipulate the expression of the one-frame Lyapunov drift.
Since ∆(~hk) is central to this proof, we rewrite (36) below for
convenience

∆(~hk) =−
1
M

M

∑
i=1

E
[
di(k)|~hk

]
αihk,i(hk,i +2)+

+
2
M

M

∑
i=1

αihk,i +
1
M

M

∑
i=1

αi .
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Recall that the Max-Weight Policy minimizes ∆(~hk) by choos-
ing E

[
di(k)|~hk

]
such that the sum

M

∑
i=1

E
[
di(k)|~hk

]
αihk,i(hk,i +2)

is maximized. Employing any other policy π ∈ Π yields
a lower (or equal) sum. Consider a Randomized Policy as
defined in Sec. IV-C. Its expected throughput is constant
in every frame k, independently of the value of ~hk, thus
E
[
di(k)|~hk

]
= E [di]. Substituting E [di] into the equation of

the one-frame Lyapunov Drift gives

∆(~hk)≤−
1
M

M

∑
i=1

E [di]αihk,i(hk,i +2)+
2
M

M

∑
i=1

αihk,i +
1
M

M

∑
i=1

αi

=− 1
M

{
M

∑
i=1

αiE [di]

(
hk,i−

1
E [di]

+1
)2
}
+

+
1
M

M

∑
i=1

αi

[
E [di]

(
1

E [di]
−1
)2

+1

]
. (96)

Consider the Cauchy-Schwarz inequality{
M

∑
i=1

αiE [di]

(
hk,i−

1
E [di]

+1
)2
}{

M

∑
i=1

αi

E [di]

}
≥

≥

{
M

∑
i=1

αi

∣∣∣∣hk,i−
1

E [di]
+1
∣∣∣∣
}2

.

Applying this inequality to (96) gives

∆(~hk)≤−
1
M

{
M

∑
i=1

αi

E [di]

}−1{ M

∑
i=1

αi

∣∣∣∣hk,i−
1

E [di]
+1
∣∣∣∣
}2

+

+
1
M

M

∑
i=1

αi

[
E [di]

(
1

E [di]
−1
)2

+1

]
,

and rearranging the terms

1
M

{
M

∑
i=1

αi

∣∣∣∣hk,i−
1

E [di]
+1
∣∣∣∣
}2

≤−

{
M

∑
i=1

αi

E [di]

}
∆(~hk)+

+

{
M

∑
i=1

αi

E [di]

}
1
M

M

∑
i=1

αi

[
E [di]

(
1

E [di]
−1
)2

+1

]
.

Now, taking the expectation with respect to ~hk yields

1
M
E

{ M

∑
i=1

αi

∣∣∣∣hk,i−
1

E [di]
+1
∣∣∣∣
}2
≤

≤−

{
M

∑
i=1

αi

E [di]

}
E
[
∆(~hk)

]
+

+

{
M

∑
i=1

αi

E [di]

}
1
M

M

∑
i=1

αi

[
E [di]

(
1

E [di]
−1
)2

+1

]
,

summing over k ∈ {1,2, · · · ,K} and dividing by K results in

1
KM

K

∑
k=1

E

{ M

∑
i=1

αi

∣∣∣∣hk,i−
1

E [di]
+1
∣∣∣∣
}2
≤ (97)

≤−

{
M

∑
i=1

αi

E [di]

}
1
K

K

∑
k=1

E
[
∆(~hk)

]
+

+

{
M

∑
i=1

αi

E [di]

}
1
M

M

∑
i=1

αi

[
E [di]

(
1

E [di]
−1
)2

+1

]
.

For simplicity of exposition, we divide inequality (97)
in two terms LHS ≤ RHS, analyzing each part separately.
Applying Jensen’s inequality to the LHS twice, gives

1
KM

K

∑
k=1

E

{ M

∑
i=1

αi

∣∣∣∣hk,i−
1

E [di]
+1
∣∣∣∣
}2
≤ RHS ;

1
KM

K

∑
k=1

E

[
M

∑
i=1

αi

∣∣∣∣hk,i−
1

E [di]
+1
∣∣∣∣
]2

≤ RHS ;

1
M

{
1
K

K

∑
k=1

E

[
M

∑
i=1

αi

∣∣∣∣hk,i−
1

E [di]
+1
∣∣∣∣
]}2

≤ RHS .

Then, by further manipulating this expression, we have

1
M

∣∣∣∣∣ 1
K

K

∑
k=1

E

[
M

∑
i=1

αi

∣∣∣∣hk,i−
1

E [di]
+1
∣∣∣∣
]∣∣∣∣∣≤

√
RHS

M
;

1
KM

K

∑
k=1

M

∑
i=1

E
[

αi

(
hk,i−

1
E [di]

+1
)]
≤
√

RHS
M

;

1
KM

K

∑
k=1

M

∑
i=1

αiE
[
hk,i
]
≤ 1

M

M

∑
i=1

αi

(
1

E [di]
−1
)
+

√
RHS

M
;

E
[
JMW

K
]
≤ 1

M

M

∑
i=1

αi

E [di]
+

√
RHS

M
. (98)

Going back to (97) and analyzing the first term on the RHS
gives

− 1
K

K

∑
k=1

E
[
∆(~hk)

]
=

1
K

{
E
[
L(~h1)

]
−E

[
L(~hK+1)

]}
;

− 1
K

K

∑
k=1

E
[
∆(~hk)

]
≤ E[L(~h1)]

K
,

and the second term on the RHS is such that

1
M

M

∑
i=1

αi

[
E [di]

(
1

E [di]
−1
)2

+1

]
≤ 1

M

M

∑
i=1

[
αi

E [di]

]
.

Using both results, the RHS of (97) can be upper bounded by

RHS≤

{
M

∑
i=1

αi

E [di]

}{
E[L(~h1)]

K
+

1
M

M

∑
i=1

αi

E [di]

}
,

and, in the limit K→ ∞

RHS≤

{
M

∑
i=1

αi

E [di]

}{
1
M

M

∑
i=1

αi

E [di]

}
=

1
M

{
M

∑
i=1

αi

E [di]

}2

.
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Substituting the upper bound for the RHS into the inequality
(98) and applying the limit K→ ∞, gives

lim
K→∞

E
[
JMW

K
]
≤ 1

M

M

∑
i=1

αi

E [di]
+

√
RHS

M

≤ 1
M

M

∑
i=1

αi

E [di]
+

1
M

M

∑
i=1

αi

E [di]

=
2
M

M

∑
i=1

αi

E [di]
. (99)

The expression in (99) gives an upper bound to the perfor-
mance of the Max-Weight Policy as a function of E [di]. Using
inequality (91) from Appendix E, namely

E [di]≥
piT βi

∑
M
j=1 β j +(T −1)βi

,

results in the following upper bound

lim
K→∞

E
[
JMW

K
]
≤ 2

MT

M

∑
j=1

β j

M

∑
i=1

αi

piβi
+

2(T −1)
MT

M

∑
i=1

αi

pi
,

where βi/∑
M
j=1 β j is the probability of the Randomized Policy

selecting client i for transmission in any given slot. To obtain
an upper bound that is a function of only the network setup,
consider the Randomized Policy described in Corollary 11,
which assigns β 2

i = αi/pi. Using this assignment, we obtain
the upper bound limK→∞E

[
JMW

K
]
≤UMW

B , where

UMW
B =

2
MT


(

M

∑
i=1

√
αi

pi

)2

+(T −1)
M

∑
i=1

αi

pi

 . (100)

Finally, dividing (100) by the lower bound in (7) yields the
performance guarantee ρMW in (37). �

APPENDIX G
PROOF OF PROPOSITION 14

Proposition 14 (Threshold Policy). Consider the Frame-Based
Decoupled Model over an infinite-horizon. The stationary
scheduling policy π∗ that solves Bellman equations (53) is a
threshold policy in which the BS transmits during frames that
have h≥H and idles when 1≤ h < H, where the threshold H
is given by

H =

⌊
1−Z +

√
Z2 +

2C
pT α

⌋
, (101)

and the value of Z is

Z =
1
2
+

(1− p)T

(1− (1− p)T )
. (102)

Proof. During frame k, the scheduling policy must decide
between transmitting and idling. If π transmits, the value of h
may be reduced to h = 1 and the network incurs an expected
service charge of Ĉ =C(1− (1− p)T )/p. On the other hand,
if π idles, the value of h is incremented by 1 and there
is no service charge. Intuitively, we expect that the optimal
scheduling decision is to transmit during frames in which h
is high and idle when h is low. In particular, if the optimal

scheduling decision is to transmit when h = H, we expect that
it is also optimal to transmit for all h ≥ H. This behavior is
characteristic of threshold policies.

In this appendix, we assume that π∗ is a threshold policy
that idles when 1 ≤ h < H and transmits when h ≥ H, for a
given value of H ≥ 1. Using this assumption, we solve Bellman
equations (53) and then show that the solution is consistent
with the assumption. For convenience, we rewrite Bellman
equations below as S(1) = 0 and

S(h) =S(h+1)−λT +T αh+

+min
{

0;Ĉ−
[
1− (1− p)T ]S(h+1)

}
. (103)

First, we analyze the case h≥H. According to (103), the
condition for the threshold policy π∗ to transmit in a frame
with state h is

S(h+1)>
Ĉ

1− (1− p)T , for h≥ H . (104)

Assuming that condition (104) holds, it follows from (103)
that

S(h) =−λT +T αh+Ĉ+(1− p)T S(h+1) .

Since this expression is valid for all h≥H, we can substitute
S(h+1) above and get

S(h) =−λT +T αh+Ĉ+

+(1− p)T [−λT +T α(h+1)+Ĉ
]
+

+(1− p)2T S(h+2) .

Repeating this procedure n times, yields

S(h) =[−λT +T αh+Ĉ][1+(1− p)T + · · ·+(1− p)nT ]+

+T α[(1− p)T +2(1− p)2T + · · ·+n(1− p)nT ]+

+(1− p)(n+1)T S(h+n+1) ,

and in the limit n→ ∞ we have

S(h) =
T αh+Ĉ−λT
1− (1− p)T +

T α(1− p)T

(1− (1− p)T )2 .

Notice that (1− p)(n+1)T S(h+ n+ 1)→ 0 when n→ ∞. To
emphasize that this expression is valid only for h ≥ H, we
substitute h = H + j+ with j+ ∈ {0,1,2, · · ·} and get

S(H + j+) =
T α(H + j+)+Ĉ−λT

1− (1− p)T +
T α(1− p)T

(1− (1− p)T )2 .

(105)
Next, we analyze the case 1≤ h < H. According to (103),

the condition for the threshold policy π∗ to idle in a frame
with state h is

S(h+1)≤ Ĉ
1− (1− p)T , for 1≤ h < H . (106)

Assuming that condition (106) holds, it follows from (103)
that

S(h) = S(h+1)−λT +T αh .

Since this expression is valid for h ∈ {1,2, · · · ,H − 1} and
S(H) is known from (105), we have

S(H−1) = S(H)−λT +T α(H−1) .
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Moreover,

S(H−2) = S(H−1)−λT +T α(H−2)
= S(H)−2λT +2T αH−T α(1+2) .

Repeating this procedure n times, yields

S(H−n) = S(H)−nλT +nT αH−T α(1+2+ · · ·+n) .

= S(H)−nλT +nT αH− T α(1+n)n
2

.

To emphasize that this expression is valid only for 1≤ h < H,
we substitute h = H + j−, where j− ∈ {−H +1, · · · ,−2,−1}
and get

S(H + j−) = S(H)+ j−
[

λT −T αH− T α( j−−1)
2

]
. (107)

Expressions (105) and (107) give the differential cost-to-go
S(h) as a function of the threshold H and the optimal average
cost λ . To find both variables, H and λ , we first analyze the
optimal policy π∗ in the vicinity of the threshold. Policy π∗

idles when h = H − 1 and transmits when h = H. Merging
conditions (104) and (106) give:

S(H)≤ Ĉ
1− (1− p)T < S(H +1) .

Since the expression for S(H + j+) in (105) is monotonically
increasing in j+ ∈ {0,1,2, · · ·}, it follows that there exists H+
γ with H ∈ {1,2,3, · · ·} and γ ∈ [0,1) such that

S(H + γ) =
Ĉ

1− (1− p)T . (108)

Substituting (105) into (108) yields

T α(H + γ)−λT
1− (1− p)T +

T α(1− p)T

(1− (1− p)T )2 = 0

λT −T αH = T αγ +
T α(1− p)T

1− (1− p)T . (109)

Next, we analyze the Bellman equation S(1) = 0 using the
expression for S(H + j−) in (107) with j− = −H + 1, as
follows

S(H)+(−H +1)
[

λT −T αH +
T αH

2

]
= 0 .

Substituting S(H) from (105) gives

Ĉ+T αH−λT
1− (1− p)T +

T α(1− p)T

(1− (1− p)T )2 =

= (H−1)
[

λT −T αH +
T αH

2

]
. (110)

Combining (110) and (109) yields

Ĉ−T αγ

1− (1− p)T = (H−1)
[

T αγ +
T α(1− p)T

1− (1− p)T +
T αH

2

]
.

Manipulating this quadratic equation on H gives the unique
positive solution:

H = (1− γ)−Z +

√
2C

T α p
− γ (1− γ)+Z2 , (111)

where

Ĉ =
C(1− (1− p)T )

p
and Z =

1
2
+

(1− p)T

(1− (1− p)T )
.

It is easy to see from (111) that the derivative dH/dγ < 0
when γ ∈ [0,1), implying that H is monotonically decreasing.
Hence, in the range γ ∈ [0,1), the value of H decreases from

H(0) = 1−Z +

√
2C

T α p
+Z2 to H(1) =−Z +

√
2C

T α p
+Z2

Since H(0)−H(1) = 1, there exists a unique γ∗ ∈ [0,1) such
that H(γ∗) is integer-valued and the expression for H can be
obtained as H = H(γ∗) = bH(0)c, or more explicitly by

H =

⌊
1−Z +

√
Z2 +

2C
T α p

⌋
. (112)

With the expression for H, we can obtain the optimal
average cost per frame by isolating λ in (110) as follows

λ =
α

1− (1− p)T +

C
T p

+
αH(H−1)

2

H +
(1− p)T

1− (1− p)T

. (113)

Finally, with the closed-form expressions for the differential
cost-to-go S(h), threshold H and optimal average cost per
frame λ , it is possible to evaluate the consistency between
the solution and the assumption of a threshold policy. For the
solution of the Bellman equation (103) to be a threshold policy,
the following condition must hold:

S(H + j−+1)≤ Ĉ
1− (1− p)T < S(H + j++1) ,

for all j− ∈ {−H + 1, · · · ,−1} and j+ ∈ {0,1, · · ·}. Since
S(H + j−) and S(H + j+) are monotonically increasing with
j− and j+, respectively, it is sufficient to show that

S(H)≤ Ĉ
1− (1− p)T < S(H +1) . (114)

Recall from (108) that there exists γ ∈ [0,1) such that

S(H + γ) =
Ĉ

1− (1− p)T .

From the monotonicity of S(H+ j+), it follows that condition
(114) is satisfied. Thus, the solution to Bellman equations is
consistent. �

APPENDIX H
PROOF OF THEOREM 17

Theorem 17 (Performance of Whittle). Consider a network
(M,T, pi,αi) with an infinite time-horizon. The Whittle’s In-
dex policy is ρWI-optimal, where

ρ
WI = 4

 M

∑
i=1

√
α̃i
pi

2

+(T −1)
M

∑
i=1

α̃i
pi(

M

∑
i=1

√
αi

pi

)2

+T

(
M

∑
i=1

αi

) , (115)
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and

α̃i =
αi

2

(
2

1− (1− pi)T +1
)2

. (116)

Proof. From the definition of the Whittle Index Policy, it can
be seen that the choice of E

[
di(k)|~hk

]
is such that the sum

M

∑
i=1

E
[
di(k)|~hk

]
αihk,i

(
hk,i +

1+(1− pi)
T

1− (1− pi)T

)
is maximized. Notice that the difference between Whittle and
Max-Weight is only the last term in the sum. Denote this term
by

Yi =
1+(1− pi)

T

1− (1− pi)T .

The first step is to find an upper bound to the one-frame
Lyapunov drift ∆(~hk) that has the Whittle Index Policy as its
minimizer. If this can be done, the subsequent arguments of
the proof are analogous to the ones for the derivation of the
performance guarantee of the Max-Weight Policy, ρMW , in
Appendix F. Consider the expression of ∆(~hk) in (36) stated
below

∆(~hk) =−
1
M

M

∑
i=1

E
[
di(k)|~hk

]
αihk,i(hk,i +2)+

+
2
M

M

∑
i=1

αihk,i +
1
M

M

∑
i=1

αi .

Manipulating the first term on the RHS of ∆(~hk), yields

−
M

∑
i=1

E
[
di(k)|~hk

]
αihk,i(hk,i +2) =

=−
M

∑
i=1

E
[
di(k)|~hk

]
αihk,i(hk,i +Yi)+

+
M

∑
i=1

E
[
di(k)|~hk

]
αihk,iYi−

M

∑
i=1

E
[
di(k)|~hk

]
αihk,i2

≤−
M

∑
i=1

E
[
di(k)|~hk

]
αihk,i(hk,i +Yi)+

M

∑
i=1

αihk,iYi . (117)

Substituting (117) into the expression of ∆(~hk) in (36) gives

∆(~hk)≤−
1
M

M

∑
i=1

E
[
di(k)|~hk

]
αihk,i(hk,i +Yi)+

+
1
M

M

∑
i=1

αihk,i(2+Yi)+
1
M

M

∑
i=1

αi . (118)

Observe that the Whittle Index Policy minimizes this upper
bound. Hence, employing any other policy π ∈ Π yields a
higher (or equal) bound. Consider a Randomized Policy as
defined in Sec. IV-C. Its expected throughput is constant
in every frame k, independently of the value of ~hk, thus

E
[
di(k)|~hk

]
= E [di]. Substituting E [di] into the upper bound

gives

∆(~hk)≤−
1
M

M

∑
i=1

E [di]αihk,i(hk,i +Yi)+

+
1
M

M

∑
i=1

αihk,i(2+Yi)+
1
M

M

∑
i=1

αi ;

∆(~hk)≤−
1
M

{
M

∑
i=1

αiE [di]

(
hk,i−

2+Yi

2E [di]
+

Yi

2

)2
}
+

+
1
M

M

∑
i=1

αi

[
E [di]

(
2+Yi

2E [di]
− Yi

2

)2

+1

]
. (119)

Consider the Cauchy-Schwarz inequality{
M

∑
i=1

αiE [di]

(
hk,i−

2+Yi

2E [di]
+

Yi

2

)2
}{

M

∑
i=1

αi

E [di]

}
≥

≥

{
M

∑
i=1

αi

∣∣∣∣hk,i−
2+Yi

2E [di]
+

Yi

2

∣∣∣∣
}2

.

Applying this inequality to (119) gives

∆(~hk)≤−
1
M

{
M

∑
i=1

αi

E [di]

}−1{ M

∑
i=1

αi

∣∣∣∣hk,i−
2+Yi

2E [di]
+

Yi

2

∣∣∣∣
}2

+
1
M

M

∑
i=1

αi

[
E [di]

(
2+Yi

2E [di]
− Yi

2

)2

+1

]
.

Now, rearranging the terms, taking expectation with respect
to~hk, summing over k ∈ {1,2, · · · ,K} and then dividing by K
results in

1
KM

K

∑
k=1

E

{ M

∑
i=1

αi

∣∣∣∣hk,i−
2+Yi

2E [di]
+

Yi

2

∣∣∣∣
}2
≤ (120)

≤−

{
M

∑
i=1

αi

E [di]

}
1
K

K

∑
k=1

E
[
∆(~hk)

]
+

+

{
M

∑
i=1

αi

E [di]

}
1
M

M

∑
i=1

αi

[
E [di]

(
2+Yi

2E [di]
− Yi

2

)2

+1

]
.

For simplicity of exposition, we divide inequality (120) in
two terms LHS ≤ RHS and analyze each part separately.
Applying Jensen’s inequality to the LHS twice and then
manipulating the resulting expression gives

1
M

{
1
K

K

∑
k=1

E

[
M

∑
i=1

αi

∣∣∣∣hk,i−
2+Yi

2E [di]
+

Yi

2

∣∣∣∣
]}2

≤ RHS ;

1
KM

K

∑
k=1

M

∑
i=1

E
[

αi

(
hk,i−

2+Yi

2E [di]
+

Yi

2

)]
≤
√

RHS
M

;

1
KM

K

∑
k=1

M

∑
i=1

αiE
[
hk,i
]
≤ 1

M

M

∑
i=1

αi

(
2+Yi

2E [di]
− Yi

2

)
+

√
RHS

M
;

E
[
JWI

K
]
≤ 1

M

M

∑
i=1

αi

[
(2+Yi)

2

2E [di]

]
+

√
RHS

M
. (121)
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Going back to (120) and analyzing the first term on the
RHS gives

− 1
K

K

∑
k=1

E
[
∆(~hk)

]
≤ E[L(~h1)]

K
,

and the second term on the RHS is such that
M

∑
i=1

αi

[
E [di]

(
2+Yi

2E [di]
− Yi

2

)2

+1

]
≤

M

∑
i=1

αi

[
(2+Yi)

2

2E [di]

]
.

Using both results, the RHS of (120) can be upper bounded
by

RHS≤

{
M

∑
i=1

αi

E [di]

}{
E[L(~h1)]

K
+

1
M

M

∑
i=1

αi

[
(2+Yi)

2

2E [di]

]}
,

and, in the limit K→ ∞

RHS≤ 1
M

{
M

∑
i=1

αi

E [di]

}{
M

∑
i=1

αi

[
(2+Yi)

2

2E [di]

]}

≤ 1
M

{
M

∑
i=1

αi

[
(2+Yi)

2

2E [di]

]}2

.

Substituting the upper bound for the RHS into the inequality
(121) and applying the limit K→ ∞, gives

lim
K→∞

E
[
JWI

K
]
≤ 2

M

M

∑
i=1

αi

[
(2+Yi)

2

2E [di]

]
. (122)

The expression in (122) gives an upper bound to the
performance of the Whittle Index Policy as a function of E [di].
Define the auxiliary variable α̃i as

α̃i =
αi

2
(2+Yi)

2 .

Substituting α̃i into (122) gives

lim
K→∞

E
[
JWI

K
]
≤ 2

M

M

∑
i=1

[
α̃i

E [di]

]
,

which is identical to the upper bound for the Max-Weight
Policy in (99). Thus, using the same arguments, we obtain the
upper bound limK→∞E

[
JWI

K
]
≤UWI

B , where

UWI
B =

2
MT


 M

∑
i=1

√
α̃i
pi

2

+(T −1)
M

∑
i=1

α̃i
pi

 . (123)

Finally, dividing (123) by the lower bound in (7) yields the
performance guarantee ρWI in (58). �
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