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1. Introduction. Let Fq be a finite field with q elements and Fq de-
note its algebraic closure. Let X be a Deligne–Lusztig curve of Ree type
defined over Fq, q = 32s+1, s ≥ 1, and F be its function field. Then F/Fq is
Fq(x, y1, y2) defined by the system of equations

yq
1 − y1 = xq0(xq − x), yq

2 − y2 = x2q0(xq − x),(1.1)

where q0 = 3s. For the function field F , we have the following properties
([H-P], [P]):

(P1) F/Fq has genus g = 3
2 q0(q − 1)(q + q0 + 1).

(P2) The automorphisms in G = Aut(FFq/Fq) are Fq-rational and G is
a Ree group of order

q3(q − 1)(q3 + 1) = 8q3
q − 1

2

q + 1

4
(q + 3q0 + 1)(q − 3q0 + 1).

(P3) F/Fq has q3 + 1 rational places on which G acts as a permutation
group.

(P4) The L-polynomial ([S, V.1.14]) of F is

L(t) = (1 + 3q0t+ qt2)q0(q2−1)(1 + qt2)q0(q−1)(q+3q0+1)/2.

(P5) For any integerm ≥ 1, the number of rational places of FFqm/Fqm is

Nm = qm +1 − q0q
m/2(q −1)

[
(q + 3q0 +1) cos

mπ

2
+2(q+1) cos

5mπ

6

]
.

In particular FFqm/Fqm is maximal if and only if m ≡ 6 mod 12.

Note that properties (P1), (P2) and (P3) uniquely determine F (see [H-P]).

Throughout this paper, F will denote Fq(x, y1, y2) defined in (1.1) and G
its automorphism group Aut(F/Fq). For a subgroup H ≤ G, we denote by
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FH its fixed subfield

FH = {z ∈ F | σz = z for all σ ∈ H}.

In [C-O], we have determined the genera of a large family of subfields
Fq ( FH ( F corresponding to subgroups H ≤ G. Function fields with
many rational places are interesting and have many applications to coding
theory and related areas ([T-V], [S], [N-X]). A function field E of genus g(E)
with full constant field Fq is called optimal if it has as many rational places
as possible among the function fields of genus g(E) with full constant field
Fq. It is well known that F is an optimal function field. We will show that
some subfields of F also have many rational places. Using the methods of
[C-O], it is easy to determine the number of rational places under degree 1
places of F for the subfields constructed in [C-O]. However, for most of the
subgroups H ≤ G, there will be rational places of FH below higher degree
places of F (cf. [C-O, Remark 4.38]).

In this paper we determine the exact number of rational places of some
subfields of the form FH . We also determine the genera corresponding to
subgroups of the normalizer of a 3-Sylow subgroup of G, which was not
considered in [C-O]. We note that, as the L-polynomial of F has two irre-
ducible factors, the knowledge of the genus and the number of rational places
of a subfield of F enables us to determine its L-polynomial completely (see
Remark 7.2).

Let E/Fq be a function field and H ≤ Aut(E/Fq) be a subgroup of the
automorphism group Aut(E/Fq). In Section 4, under some assumptions, we
introduce a method in order to compute the number of rational places of EH

below higher degree places of E. This method allows us to determine the
exact number of rational places of FH for some H ≤ G. In particular we
determine the number of rational places corresponding to subgroups of the
normalizer of a 3-Sylow subgroup of G or to subgroups of a dihedral group D
of order 2(q − 1) in G.

The paper is organized as follows. In Section 2, we give some basic ob-
servations on the number of rational places of the subfields of EH ≤ E of
a function field E/Fq corresponding to subgroups H ≤ Aut(E/Fq). In Sec-
tion 3 we determine the number of rational places below degree 6 places of F
and hence, for an involution κ, we determine the number of rational places
of FH and F 〈κ〉×H , where H is an elementary Abelian 3-group in the cen-
tralizer of κ. We introduce our method and compute the number of rational
places below higher degree places of F in Section 4. Then we determine the
genera and the number of rational places of the subfields corresponding to
subgroups of the normalizer of a 3-Sylow subgroup of G. Section 6 considers
the subfields corresponding to subgroups of the dihedral group D. We give
some numerical examples in Section 7, including some function fields with
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the best known number of rational places (cf. [G-V]). Moreover we find a new

entry for the table [G-V] and we determine its explicit defining equations.

2. Some general observations. Let E be a function field over Fq and
H ≤ Aut(E/Fq) be a subgroup of the automorphism group of E over Fq.
In this section we give some basic observations on the number of rational
places of EH .

For m ≥ 1, let Bm denote the set of degree m places of E. We can
determine |Bm| using the L-polynomial of E. For each m ≥ 1, Aut(E/Fq)
and hence H acts on Bm. Let O(H,m) denote the set of orbits of the action
of H on Bm. We have

|Bm| =
∑

O∈O(H,m)

|O|.(2.1)

For any orbit O ∈ O(H,m), we have

Q1, Q2 ∈ O ⇒ Q1 ∩E
H = Q2 ∩ E

H .

We call P = Q1∩E
H the place of EH under the orbit O. Conversely, for any

place P of EH , there is a uniquely determined integer m ≥ 1 and a uniquely
determined orbit O ∈ O(H,m) such that P is the place of EH under the
orbit O. We call O the orbit of E over the place P .

Let O ∈ O(H,m) be an orbit, Q1, Q2 ∈ O be places in O and P be the
place of EH under the orbit O. As E/EH is a Galois extension, we have
e(Q1|P ) = e(Q2|P ), f(Q1|P ) = f(Q2|P ) and

|O| =
|H|

f(Q1|P )e(Q1|P )
.(2.2)

Moreover if P is a rational place of EH , then we have a tower of subgroups
H0(Q) ≤ H−1(Q) ≤ H such that

H−1(Q)/H0(Q) ∼= Zm,(2.3)

where H−1(Q) and H0(Q) are the decomposition and inertia groups of a
place Q ∈ O of the orbit O of E over P .

We denote the number of rational places of EH by N(EH). For m ≥ 1,
N(EH ,m) denotes the number of rational places of EH under the orbits of
O(H,m). Then we have

N(EH) =

∞∑

m=1

N(EH ,m).

We note that for g ∈ Aut(E/Fq) and m ≥ 1,

N(EH ,m) = N(EgHg−1

,m).
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Consider now the function field F defined by (1.1) and let H be a sub-
group of G = Aut(F/Fq). The number N(FH , 1) can be calculated using the
action of G on the degree 1 places of F (see [C-O, Examples 4.39, 4.40]). It
follows from property (P5) of Section 1 that there is no degree 2 or degree 3
place of F . Again using the action of G on the degree 6 places of F we show
how to compute N(FH , 6) in Section 3. In Section 4 we introduce a method
to compute, under some assumptions, the number of rational places below
unramified places of degree m > 1 for a function field E and apply this
method to F .

3. Rational places below degree 6 places. Let F be the function
field defined by (1.1). Let H be a subgroup of G = Aut(F/Fq) containing
elements of order 6. In this section we compute N(FH , 6), the number of ra-
tional places of FH below degree 6 places of F . We show that the methods of
[C-O] can be used for determining the number of rational places of subfields
below degree 6 places of F , as in the case of degree 1 places of F . There is no
degree 2 or degree 3 place of F . To determine the number of rational places
below degree m places with m 6∈ {1, 2, 3, 6}, we will need another method
introduced in Section 4. Let κ be an involution of G. Then the centralizer
C(κ) of κ can be written as C(κ) = 〈κ〉 × L′, where L′ is the unique sub-
group of C(κ) isomorphic to PSL(2, q) (cf. Subsection 4.1 in [C-O]). In this
section, we also compute the number of rational places of the function fields
F 〈κ〉, FH and F 〈κ〉×H for all elementary Abelian 3-groups H ≤ L′.

First we recall some group-theoretical notions that will be used through-
out the paper ([Ro], [C-O]). Let B be a finite group. A Hall subgroup A of B
is a subgroup with gcd(|A|, |B : A|) = 1. If A is an Abelian Hall subgroup
of B, then every subgroup of order dividing |A| is contained in a conju-
gate of A. The Ree group G has cyclic Hall subgroups of orders (q − 1)/2,
(q + 1)/4, q+ 3q0 + 1 and q− 3q0 + 1. A finite group Γ is called a Frobenius

group if it has a subgroup W ≤ Γ with 〈1〉 6= W 6= Γ such that

W ∩W σ = 〈1〉 for all σ ∈ Γ \W,

where W σ = σWσ−1. Then

K = Γ \
⋃

σ∈Γ

(W σ \ 〈1〉)

is a normal subgroup of Γ such that Γ = KW and W ∩ K = 〈1〉. K is
called the Frobenius kernel and W is called a Frobenius complement. The
Frobenius kernel K is uniquely determined by the conditions above and W
is uniquely determined up to K-conjugacy.

Now we fix some notation that will be used throughout the section.
From [C-O, Theorem 3.5] we know that there is a one-to-one correspondence
between the degree 6 places of F and the Hall subgroups of order q−3q0 +1.
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Let K be a Hall subgroup of order q− 3q0 + 1 and N(K) be its normalizer.
From property (6) in [C-O, Proposition 2.3] (see also [L-N]) we know that
N(K) is a Frobenius group with kernelK and a cyclic Frobenius complement
of order 6. The number of distinct Frobenius complements in N(K) is q −
3q0 + 1. Let W be one of these Frobenius complements. Let θ be the unique
involution of W and W3 the subgroup of order 3 of W . We have

N(K) = KW and W ≤ C(θ),

where C(θ) is the centralizer of θ in G. Let V be the 3-Sylow subgroup of
C(θ) containing W3.

Lemma 3.1. We have

N(W ) = 〈θ〉 × V

where N(W ) is the normalizer of W in G.

Proof. If g = θv with v ∈ V , we have

gWg−1 = θvWv−1θ

= θWθ as V is Abelian and V ≤ C(θ)

= W.

Next we will prove the other direction, i.e. that

N(W ) ≤ 〈θ〉 × V.

Let g ∈ G satisfy gWg−1 = W . Then gθg−1 = θ and gW3g
−1 = W3. Let

U be the 3-Sylow subgroup of G containing W3 (or equivalently contain-
ing V ). We have g ∈ C(θ) and from property (9) in [C-O, Proposition 2.3]
we deduce that g ∈ N(W3) ≤ N(U). We have (see [C-O, Theorem 4.9(i)])

C(θ) ∩N(U) = V T,

where T ≤ G is a cyclic group of order q−1 containing θ. Therefore g ∈ V T .
Let τ ∈ T be an element of order (q − 1)/2. Then g can be written as

g = τ iθjv

where v ∈ V , 0 ≤ i < (q − 1)/2 and j = 0, 1. We want to show that τ i = 1.
Since 〈θ〉 × V ≤ N(W ), we have

gWg−1 = τ iWτ−i,

which implies τ iW3τ
−i = W3. Let h3 ∈W3 \ {1}. Then

τ ih3τ
−i = h3 or τ ih3τ

−i = h2
3.

So either h3 ∈ CU (τ i) or h3 ∈ CU (τ2i). But from property (8) in [C-O,
Proposition 2.3] (see also [W]) and since gcd(|τ i|, 2) = 1, we have τ i = 1.
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Lemma 3.2. Let K1 be a Hall subgroup of G of order q − 3q0 + 1 and

W1 be a Frobenius complement of the normalizer N(K1) of K1. Then there

exist g ∈ G and t ∈ K such that

K1 = gKg−1 and W1 = gtW (gt)−1.

Conversely , for each g ∈ G and t ∈ K, K1 = gKg−1 is a Hall subgroup of

order q − 3q0 + 1 with W1 = gtWt−1g−1 being a Frobenius complement of

the normalizer N(K1) of K1.

Proof. Since all Hall subgroups of G of order q − 3q0 + 1 are conjugate
in G, there exists g ∈ G such that K1 = gKg−1. Let W1 be a Frobenius
complement of the normalizer N(K1) of K1. Then g−1W1g is a Frobenius
complement of N(K). Since all Frobenius complements of N(K) are conju-
gate by means of a t ∈ K, we have

W = t−1(g−1W1g)t

for some t ∈ K. This is equivalent to

W1 = gtW (gt)−1.

We prove the converse similarly.

Corollary 3.3. W is also a Frobenius complement of the normalizer

of a conjugate K1 of K with K 6= K1 if and only if there exists g ∈ N(W ) \
N(K), in which case K1 = gKg−1.

Proof. Assume that K1 is a Hall subgroup of G of order q− 3q0 + 1 and
K1 6= K. We have K1 = gKg−1 for some g ∈ G and g 6∈ N(K). Assume
also that W is a Frobenius complement of the normalizer of K1 as well. By
Lemma 3.2 there exists t ∈ K such that (gt) ∈ N(W ). Let g1 = gt. By
Lemma 3.1, we have g1 ∈ 〈θ〉 × V and obviously g1 6∈ N(K).

Conversely assume that g ∈ N(W ) and g 6∈ N(K). Let K1 = gKg−1.
Then W is a Frobenius complement of the normalizer of K1 as well and
K1 6= K.

Lemma 3.4. We have

N(K) ∩N(W ) = W.

Proof. We know that W ≤ N(K) = KW and W ≤ N(W ). But |N(K)|
= 6(q − 3q0 + 1) and |N(W )| = 2q (by Lemma 3.1) so that gcd(|N(K)|,
|N(W )|) = 6 = |W |, which finishes the proof.

Proposition 3.5. Let {a1W, . . . , akW} be the set of all left cosets of W
in N(W ) and hence k = q/3. Then {a1Ka

−1
1 , . . . , akKa

−1
k } is the set of all

distinct Hall subgroups in G of order q − 3q0 + 1 with W being a Frobenius

complement of their normalizers.



Number of rational places of subfields of the Ree curve 85

Proof. By Corollary 3.3 we need only consider the conjugates aKa−1

of K with elements a ∈ N(W ). For a1, a2 ∈ N(W ), we have

a1Ka
−1
1 = a2Ka

−1
2 ⇔ a−1

1 a2Ka
−1
2 a1 = K

⇔ a−1
1 a2 ∈ N(K) ∩N(W )

⇔ a−1
1 a2 ∈W by Lemma 3.4.

This completes the proof.

We recall that for a given Hall subgroupK1 of G of order q−3q0+1, there
are q− 3q0 + 1 distinct Frobenius complements in N(K1). Now we consider
the union of all of these Frobenius complements over all Hall subgroups of
G of order q − 3q0 + 1.

Corollary 3.6. The number of Frobenius complements corresponding

to Hall subgroups of G of order q − 3q0 + 1 is

(q3 + 1)q2(q − 1)

2
.

Proof. The number of Hall subgroups of G of order q − 3q0 + 1 is the
number of degree 6 places of F , which is

q3(q − 1)(q + 1)(q + 3q0 + 1)

6

(see [C-O]). The normalizer of each of these Hall subgroups has exactly

q − 3q0 + 1

distinct Frobenius complements.

By Proposition 3.5, each Frobenius complement corresponding to some
Hall subgroup of G is a Frobenius complement of exactly q/3 distinct Hall
subgroups of G of order q − 3q0 + 1. Therefore the number of Frobenius
complements corresponding to Hall subgroups of G of order q − 3q0 + 1 is

q3(q−1)(q+3q0+1)
6 (q − 3q0 + 1)

q/3
=

(q3 + 1)q2(q − 1)

2
.

Proposition 3.7. Any cyclic subgroup of order 6 in G is a Frobenius

complement of exactly q/3 distinct Hall subgroups of order q − 3q0 + 1.

Proof. Let S be the set of all subgroups of order 6 in G. Any W1 ∈ S
can be written as W1 = 〈θ1〉 × W3,1 where θ1 is an involution of G, and
W3,1 ≤ G is a subgroup of order 3 which is contained in a 3-Sylow subgroup
V1 of C(θ1).

There exists a unique involution of G fixing any two distinct rational
places of F (cf. [C-O, Proposition 2.5(i)]). Moreover each involution of G
fixes exactly q+1 rational places of F (cf. [C-O, Proposition 2.5(iii)]). There-
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fore the number of involutions in G is
(
q3+1

2

)
(
q+1
2

) =
(q3 + 1)q3

(q + 1)q
.

Let θ1 be an involution of G. The number of 3-Sylow subgroups of C(θ1)
is q + 1 and each of them has (q − 1)/2 subgroups of order 3 (cf. [C-O,
Proposition 4.8 and Theorem 4.11]). Hence

|S| ≤
(q3 + 1)q3

(q + 1)q
(q + 1)

q − 1

2
=

(q3 + 1)q2(q − 1)

2
.(3.1)

Using Corollary 3.6 we observe that the right hand side of (3.1) is equal to
the number of Frobenius complements corresponding to Hall subgroups of
G of order q− 3q0 + 1. Therefore we have equality in (3.1) and any element
of S is a Frobenius complement for exactly q/3 distinct Hall subgroups of
G of order q − 3q0 + 1 (see also Proposition 3.5).

Proposition 3.7 implies that for any subgroup W ≤ H of order 6 there
are q/3 degree 6 places P such that W ≤ H−1(P ). As the results of this
section will be used in Section 5, we show in the following lemma that for H
a subgroup of the normalizer of a 3-Sylow subgroup, two distinct cyclic
subgroups of H of order 6 cannot be contained in the decomposition group
of the same degree 6 place.

Lemma 3.8. Let W1 and W2 be two distinct cyclic subgroups of order 6
in the normalizer of a 3-Sylow subgroup of G. Then there is no Hall subgroup

K1 of G of order q − 3q0 + 1 such that

W1 ⊆ N(K1) and W2 ⊆ N(K1).

Proof. Assume the contrary. Then W2 is the conjugate of W1 by a non-
identity element of K1. Since both W1 and W2 are contained in the normal-
izer of the same 3-Sylow subgroup of G, they both fix the same rational place
of F and do not fix any other rational place. But no nonidentity element of
K1 fixes a rational place, hence a contradiction.

Let H be a subgroup of the normalizer of a 3-Sylow subgroup of G, and
let n6(H) be the number of distinct cyclic subgroups of order 6 of H. Then
from Proposition 3.7 and Lemma 3.8, there are n6(H)q/3 degree 6 places
P such that |H−1(P )| = 6 (note that the extension F/FH is unramified at
degree 6 places). So N(FH , 6) is calculated as

N(FH , 6) =
6

|H|
n6(H)

q

3
.(3.2)

Let κ be an involution of G and L′ be the subgroup of C(κ) isomorphic
to PSL(2, q). There exists an elementary Abelian subgroup H ≤ L′ with
|H| = 3f if and only if 1 ≤ f ≤ 2s+ 1.
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Theorem 3.9. For 1 ≤ f ≤ 2s + 1, let H be an elementary Abelian

subgroup H ≤ L′ with |H| = 3f and for f = 0 let H = 〈1〉. For the number

of rational places of FH and F 〈κ〉×H we have

N(FH) = 1 +
q3

3f
,(3.3)

N(F 〈κ〉×H) = 1 +
q

3f
+
q3 − q

2 · 3f
+
q(3f − 1)

2 · 3f
.(3.4)

Proof. From [C-O, Subsection 4.1.1] we know that all rational places of
F split completely in F/FH except a place P which is totally ramified. Then

N(FH , 1) = 1 +
q3

3f
.

There is no cyclic subgroup in H of order distinct from 3. We recall that
F has no degree 3 places, which follows from property (P5) in Section 1.
Therefore

N(FH) = N(FH , 1).

Let {P0, . . . , Pq} be the rational places of F fixed by κ and assume that H
fixes P0, without loss of generality. From [C-O, Subsection 4.1.1] we know
e(Pi|Pi ∩ F

〈κ〉×H) = 2, f(Pi|Pi ∩ F
〈κ〉×H) = 1 for 1 ≤ i ≤ q. Moreover the

rational places of F distinct from P0, . . . , Pq split in F/F 〈κ〉×H . Therefore

N(F 〈κ〉×H , 1) = 1 +
q

3f
+
q3 − q

2 · 3f
.

There are (3f − 1)/2 distinct subgroups of degree 6 in 〈κ〉 × H. Therefore
using (3.2) we get

N(F 〈κ〉×H , 6) =
q(3f − 1)

2 · 3f
.

The result follows from the observation that N(F 〈κ〉×H) = N(F 〈κ〉×H , 1) +
N(F 〈κ〉×H , 6).

Recall that the genera of FH and F 〈κ〉×H in (3.3) and (3.4) are (cf. [C-O])

g(FH) =
1

2

[
3q0q

2 + q2 − q

3f
− 3q0

]
,

g(F 〈κ〉×H) =
1

4

[
3q0q

2 + q2 − 2q

3f
− 3q0 + 1

]
.

4. Rational places below unramified higher degree places. Let E
be a function field over a finite field Fq and H ≤ Aut(E/Fq) be a subgroup of
the automorphism group of E over Fq. In this section we develop a method
to computeN(EH ,m), the number of rational places of EH below the degree
m places of E. The problem here is that, even if the ramification structure of
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the extension E/EH is known, the computation of the decomposition group
H−1(P ) at an unramified place P of E is difficult. Our method uses the
defining equations of the function field E/Fq and the explicit descriptions
of the automorphisms in H.

Assume that the function field E/Fq (with Fq its full constant field) is
defined as

E = Fq(z0, z1, . . . , zn)

where z0, . . . , zn satisfy the equations

Fi(z0, . . . , zn) = 0, i = 1, . . . , r,(4.1)

where, for each i = 1, . . . , r, Fi(Z0, . . . , Zn) is a polynomial over Fq in
the variables Z0, . . . , Zn. Let m > 1 be an integer. We want to compute
N(EH,m), so we assume E contains places of degreem (otherwiseN(EH,m)
= 0 trivially). We need the following definition.

Definition 4.1. For r ≥ 1, n ≥ 0, let Ri(Z0, . . . , Zn), i = 1, . . . , r, be
rational functions over Fq in the independent variables Z0, . . . , Zn. Then, for
m ≥ 1, we call an n + 1-tuple (ζ0, . . . , ζn) ∈ Fn+1

qm a purely Fqm-solution of
the set of equations {Ri(Z0, . . . , Zn) = 0 | i = 1, . . . , r} if Ri(ζ0, . . . , ζn) = 0
for each i = 1, . . . , r and the set {ζ0, . . . , ζn} ⊆ Fqm is not contained in a
smaller subfield of Fqm . Note that if (ζ0, . . . , ζn) is a purely Fqm-solution of
a set of equations defined over Fq then the m distinct Fq-conjugates

(ζ0, . . . , ζn), (ζq
0 , . . . , ζ

q
n), . . . , (ζqm−1

0 , . . . , ζqm−1

n )

are also purely Fqm-solutions.

We make the following assumptions on the degree m places of E:

A1 Any degree m place P of E is unramified in the extension E/EH .
A2 For any degree m place P of E and for each i = 0, . . . , r, we have

zi ∈ OP .
A3 For each purely Fqm-solution (ζ0, . . . , ζn) ∈ Fn+1

qm of the defining equa-
tions of E/Fq, Fi(Z0, . . . , Zn), i = 1, . . . , r, there is a unique degree 1
place P of the constant field extension E.Fqm with z0 − ζ0, z1 − ζ1, . . .
. . . , zn − ζn ∈ P .

Let P be a degree m place of E. From assumption A1, the place PH

of EH below P is a degree 1 place of EH if and only if H−1(P ) is cyclic of
order m, in which case H−1(P ) is generated by an element σ ∈ H acting as
the Frobenius morphism on the residue field OP /P :

σ(z) ≡ zq mod P for all z ∈ OP ,

where σ is called the Frobenius substitution of P (see [Se]). So we assume
that H contains elements of order m (otherwise N(EH ,m) = 0 again). Now,
given an element τ ∈ H of order m, we want to find the number of degree m
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places P such that H−1(P ) = 〈τ〉. If H−1(P ) = 〈τ〉, then some generator
of the cyclic group 〈τ〉 is the Frobenius substitution of P . So we first find a
method to find the number of degree m places P such that H−1(P ) = 〈τ〉
and τ is the Frobenius substitution of P . Repeating the procedure for each
element in H of order m will determine the number N(EH ,m).

Lemma 4.2. Let E = Fq(z0, z1, . . . , zn) be a function field over Fq defined

by the equations (4.1). Let τ ∈ Aut(E/Fq) be an automorphism of order

m > 1 and H be a subgroup of Aut(E/Fq) containing τ . Assume that , for

each i = 0, . . . , n, we can write the element τ(zi) explicitly as

τ(zi) = Ti(z0, . . . , zn)

where Ti(Z0, . . . , Zn) is a known rational function over Fq in n+1 variables.

Assume moreover that the degree m places of E satisfy assumptions A1,
A2 and A3. Then there is a one-to-one correspondence between the sets of

Fq-conjugate purely Fqm-solutions

{(ζ0, . . . , ζn), (ζq
0 , . . . , ζ

q
n), . . . , (ζqm−1

0 , . . . , ζqm−1

n )}

of the set of equations

Fi(Z0, . . . , Zn) = 0, i = 1, . . . , r,(4.2)

Ti(Z0, . . . , Zn) − Zq
i = 0, i = 0, . . . , n,(4.3)

and the degree m places P of E such that H−1(P ) = 〈τ〉 and τ is the

Frobenius substitution of P . In particular the number of such places is equal

to the number of purely Fqm-solutions of the equations (4.2), (4.3) divided

by m.

Proof. Let P be a degree m place of E. Observe that the statement

H−1(P ) = 〈τ〉 and τ is the Frobenius substitution of P

is equivalent to

τ(z)(P ) = τ(z) + P = zq + P = zq(P ) for each z ∈ OP .(4.4)

From assumption A2 and the fact that z0, . . . , zn generates E over Fq,
OP/P is generated by z0(P ), . . . , zn(P ) as a field over Fq. So (4.4) holds
if and only if

τ(zi)(P ) = zq
i (P ) for each i = 0, . . . , n.(4.5)

Consider now the constant field extensionEm =E.Fqm and let P1, . . . , Pm

be the degree 1 places of Em extending P . Let zi be any of z0, . . . , zn.
From assumption A2, zi does not have a pole at a degree m place of E.
As τ ∈ Aut(E/Fq) maps degree m places to degree m places, τ(zi) is an
element of OP and also of OPj for each j = 1, . . . ,m. So we have
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τ(zi)(P ) = zq
i (P ) iff τ(zi)(Pj) = zq

i (Pj) for some j = 1, . . . ,m,

in which case τ(zi)(Pj) = zq
i (Pj) for each j = 1, . . . ,m.

For each i = 0, . . . , n and j = 1, . . . ,m we can identify zi(Pj) with a
unique value ζi,j ∈ Fqm ⊂ Em such that ζi,j = ζi,j(Pj) = zi(Pj). So (4.5)
holds if and only if

Ti(ζ0,j, . . . , ζn,j) = ζq
i,j for each i = 0, . . . , n and j = 1, . . . ,m,(4.6)

equivalently if and only if the tuples (ζ0,j, . . . , ζn,j), j = 1, . . . ,m, are so-
lutions of the equations (4.3). Observe that the tuples (ζ0,j, . . . , ζn,j), j =
1, . . . ,m, are Fq-conjugate purely Fqm-solutions of the defining equations
(4.2) of E/Fq. Now assumption A3 implies that there is a one-to-one corre-
spondence between the sets of Fq-conjugate purely Fqm-solutions

{(ζ0, . . . , ζn), (ζq
0 , . . . , ζ

q
n), . . . , (ζqm−1

0 , . . . , ζqm−1

n )}

of the equations (4.2) and the degree m places of E. Restricting this corre-
spondence to the solutions of the equations (4.3) will settle the result.

Given an element τ ∈ H of order m, let M(τ) denote the number of
degree m places P of E such that H−1(P ) = 〈τ〉 and τ is the Frobenius
substitution of P . This number can be calculated using Lemma 4.2 provided
the corresponding number of Fqm-solutions in Lemma 4.2 can be calculated.
Now, for any degreem place P withH−1(P ) = 〈τ〉 there is a unique integer l,
1 ≤ l < m, with gcd(l,m) = 1 such that τ l is the Frobenius substitution
of P . Therefore the number of degree m places P with H−1(P ) = 〈τ〉 is

∑

1≤l<m
gcd(m,l)=1

M(τ l)

and the number of degree m places P with |H−1(P )| = m can be written
as: ∑

τ∈H
|τ |=m

M(τ).

Now, assume that P is a degree m place of E with |H−1(P )| = m (equiva-
lently the place of EH below P is rational). Then, since P is unramified in
the extension E/EH (by assumption A1), the orbit of H containing P has
|H|/m elements. Therefore the number N(EH ,m) is calculated as

N(EH ,m) =
m

|H|

∑

τ∈H
|τ |=m

M(τ).(4.7)

Unfortunately, this method may be difficult to apply in general. First,
one needs to know explicitly the elements τ(z0), . . . , τ(zn) for every auto-
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morphism τ ∈ H of order m. Even in that case, it may be hard to find the
number of solutions of the equations (4.2), (4.3) in Lemma 4.2.

Now, we shall apply the method described above to the function field F .
Let GP∞

be the subgroup of G fixing the place P∞, the pole of x. From [P],
we know explicitly the automorphisms in GP∞

(see (5.1) in Section 5). So in
what follows, we will consider automorphisms of distinct orders in GP∞

. In
particular we will compute M(τ) for elements τ ∈ GP∞

of order m | (q − 1)
with m > 2, m = 9 and m = 6.

Let m | (q−1), m > 2, τ ∈ GP∞
be an element of order m and H ≤ G be

a subgroup containing τ . From [C-O, Theorem 2.6], τ fixes one more place
P0 of F . As the value of M(τ) does not change by taking a conjugate of τ ,
we shall assume that P0 is the common zero of x, y1 and y2. Then, from [P],
τ is written as

τ(x) = αx, τ(y1) = αq0+1y1, τ(y2) = α2q0+1y2,(4.8)

where α ∈ F×
q and |α| = m. Let us check that the degreem places of F satisfy

assumptions A1–A3. Since m 6∈ {1, 6}, any degree m place is unramified
in the extension F/FH , so A1 is satisfied. Now, each of x, y1 and y2 has
a unique pole, P∞, which is rational. So A2 is also satisfied. To check A3,
it is enough to check whether the affine curve defined by equations (1.1) is
nonsingular. Therefore A3 also holds. Now by Lemma 4.2, M(τ) is equal to
the number of purely Fqm-solutions of the equations

Y q
1 − Y1 −Xq0(Xq −X) = 0,

Y q
2 − Y2 −X2q0(Xq −X) = 0,

αX −Xq = 0,

α(q0+1)Y1 − Y q
1 = 0,

α(2q0+1)Y2 − Y q
2 = 0,

(4.9)

divided by m. We have:

Proposition 4.3. The set of nonzero solutions (in F3
q) of the system

(4.9) is given by

S =

{
(X,Y1, Y2) ∈ F3

q

∣∣∣∣X
q−1 = α, Y1 =

α− 1

αq0+1 − 1
X, Y2 =

α− 1

α2q0+1 − 1
X

}
.

The set S has q−1 elements and each solution in S is purely Fqm. Therefore,
for any τ ∈ G of order |τ | = m, with m | (q − 1), m > 2, we have

M(τ) =
q − 1

m
.

Proof. It is easy to see that S is indeed the set of nonzero solutions of
the system (4.9) and that S has q − 1 elements. For each X ∈ Fq with
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Xq−1 = α, the smallest i with Xqi
= X is m. So each solution in S is purely

Fqm . The last assertion follows from Lemma 4.2.

Let us now consider the case m = 9. So let τ ∈ GP∞
be an element of

order 9 and H ≤ G be a subgroup containing τ . So the automorphism τ can
be explicitly written as

τ(x) = x+ β,

τ(y1) = y1 + βq0x+ γ,(4.10)

τ(y2) = y2 − βq0y1 + β2q0x+ δ,

where β, γ, δ ∈ Fq and β 6= 0. It is easy to check that the degree 9 places of F
satisfy assumptions A1–A3. By Lemma 4.2, M(τ) is equal to the number
of purely Fq9-solutions of the equations

Y q
1 − Y1 −Xq0(Xq −X) = 0,(4.11)

Y q
2 − Y2 −X2q0(Xq −X) = 0,(4.12)

X + β −Xq = 0,(4.13)

Y1 + βq0X + γ − Y q
1 = 0,(4.14)

Y2 − βq0Y1 + β2q0X + δ − Y q
2 = 0,(4.15)

divided by 9. Let Tr(·) denote the absolute trace of an element of Fq. We
have:

Proposition 4.4. The system of equations (4.11), . . . , (4.15) has solu-

tions over Fq if and only if

Tr(β−(q0+1)γ) = s mod 3, where q0 = 3s,(4.16)

and in that case the solution set of the system is given by

S = {(X,Y1, Y2) ∈ F3
q |

β−3X3 − (β−1X + 1 − (β−(q0+1)γ)3 − (β−(q0+1)γ)3q0) = 0,

Y1 − β−q0(β2q0X −X2q0β + δ) = 0, Y q
2 − (Y2 +X2q0β) = 0}.

The set S has 3q elements and each solution in S is purely Fq9 . Therefore,
for τ ∈ GP∞

defined by (4.10), β 6= 0, we have

M(τ) =

{
q/3 if Tr(β−(q0+1)γ) = s,

0 otherwise.

Proof. From (4.11), (4.13) and (4.14) we get

β−q0Xq0 = β−1X + β−(q0+1)γ.(4.17)

Equation (4.17) together with (4.13) gives

β−3X3 = β−1X + 1 − (β−(q0+1)γ)3 − (β−(q0+1)γ)3q0 ,(4.18)
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and calculating β−q0Xq0 using (4.18), we get

β−q0Xq0 = β−1X + β−(q0+1)γ + s− Tr(β−(q0+1)γ).(4.19)

Now equating the right hand sides of (4.17) and (4.19), we conclude

Tr(β−(q0+1)γ) = s.(4.20)

So if Tr(β−(q0+1)γ) 6= s then the system (4.11), . . . , (4.15) has no solution.
Let us assume that (4.20) holds. Let X = χ be a solution of (4.18). Then
the other two solutions are χ + β and χ + 2β. Any of the three solutions
of (4.18) also satisfies (4.13), and the smallest extension of Fq containing
solutions of (4.13) is Fq3 . From (4.12), (4.13), (4.15) and (4.17), we get

Y1 = β−q0(β2q0X −X2q0β + δ).(4.21)

Using equations (4.12) and (4.13) we get

Y q
2 = Y2 +X2q0β.(4.22)

So any solution of the system of equations (4.11), . . . , (4.15) is an element
of S. We leave it to the reader to check that any element of S satisfies
equations (4.11), . . . , (4.15).

For each solution X = χ, χ+β or χ+2β of (4.18), the solution for Y1 is
uniquely determined from (4.21) and is also an element of Fq3 . The equation
(4.22) has q distinct solutions for Y2. So S has 3q distinct elements.

Using (4.17), we get

X2q0 + (X2q0)q + (X2q0)q2

= 2β2q0,

and combining with (4.22) we get Y q3

2 = Y2 +2β2q0 and Y q9

2 = Y2. Therefore
if X is replaced by χ, χ+β or χ+2β in (4.22) then any of the q solutions for
Y2 is in Fq9 , and Fq9 is the smallest extension of Fq containing them. So any
solution in S is purely Fq9 . The last assertion follows from Lemma 4.2.

Now we shall show how to compute N(FH ,m) when m = 6 by using the
method described in this section. Observe that any two cyclic subgroups
of order 6 in G are conjugate. Indeed any cyclic subgroup of order 6 is a
Frobenius complement of a Hall subgroup of order q − 3q0 + 1 (cf. Proposi-
tion 3.7). Since Frobenius complements of the same Hall subgroup of order
q − 3q0 + 1 are conjugate and the Hall subgroups of order q − 3q0 + 1 are
conjugate, we see that any two cyclic subgroups of order 6 are also conjugate
(cf. Lemma 3.2). So we will consider the cyclic subgroup 〈τ〉 generated by
the following element:

τ(x) = −x, τ(y1) = y1 + 1, τ(y2) = −y2,(4.23)

and then compute M(τ) and M(τ5). Note that the definition of τ5 differs
only at y1, namely τ5(x) = −x, τ5(y2) = −y2 and τ5(y1) = y1 − 1. We
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assume that the extension F/FH is unramified at degree 6 places, so that
the degree 6 places of F satisfy assumptions A1–A3. Consider the equations

Y q
1 − Y1 −Xq0(Xq −X) = 0,(4.24)

Y q
2 − Y2 −X2q0(Xq −X) = 0,(4.25)

−X −Xq = 0,(4.26)

Y1 + γ − Y q
1 = 0,(4.27)

−Y2 − Y q
2 = 0,(4.28)

where γ = 1 or −1. Then by Lemma 4.2, M(τ) (resp. M(τ5)) is equal to
the number of purely Fq6-solutions of the equations (4.24), . . . , (4.28) with
γ = 1 (resp. γ = −1) divided by 6. We have:

Proposition 4.5. The system of equations (4.24), . . . , (4.28) with γ = 1
(resp. γ = −1) has solutions over Fq if and only if s is odd (resp. s is even)
and in that case the solution set of the system is given by

S = {(X,Y1, Y2) ∈ F3
q | X2 = −1, Y q

1 − Y1 = γ, Y2 = −X}.

The set S has 2q elements and each solution in S is purely Fq6 . Therefore,
for τ defined by (4.23), we have

M(τ) =

{
q/3 if s is odd,

0 if s is even,

M(τ5) =

{
q/3 if s is even,

0 if s is odd.

In particular , for any cyclic subgroup of H of order 6, the number of degree

6 places P of F such that H−1(P ) = 〈τ〉 is q/3.

Proof. From (4.24), (4.26) and (4.27) we get

Xq0+1 = γ.(4.29)

Raising (4.29) to the power q0 − 1, we get

Xq2
0 = X,

which implies

Xq = X3.(4.30)

The equations (4.26) and (4.30) give

X3 = −X.(4.31)

The nonzero solutions of (4.31) are ω and −ω ∈ Fq2 where ω2 = −1. It is
easy to check that ω and −ω satisfy (4.26). Replacing X with ω or −ω in
(4.24) we get

Y q
1 − Y1 = (−1)s+1,(4.32)

which together with (4.27) implies γ = (−1)s+1. Hence, for γ = 1 (resp.
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γ = −1) the system has solutions iff s is odd (resp. s is even). Assume
γ = (−1)s+1. Replacing X with ω or −ω in (4.25) and combining with
(4.28), we get Y2 = −X. So the solutions of the system (4.24), . . . , (4.28)
satisfy

X2 = −1,(4.33)

Y q
1 − Y1 = γ,(4.34)

Y2 = −X.(4.35)

Now the system (4.33)–(4.35) has 2q solutions over Fq. Moreover any solution
of (4.33) is purely Fq2 and any solution of (4.34) is purely Fq3 , so that any
solution of (4.33)–(4.35) is purely Fq6 .

Remark 4.6. Using Proposition 3.7 and Lemma 3.8, we already know
how to compute N(FH , 6). Nevertheless we prefer to keep Proposition 4.5,
which uses a different method and gives an application of Lemma 4.2.

5. Normalizer of a 3-Sylow subgroup. In this section we compute
the number of rational places of subfields of F fixed by subgroups of the
normalizer of a 3-Sylow subgroup of G. Let U be a 3-Sylow subgroup of
G = Aut(F/Fq) and N(U) be its normalizer. We assume U fixes the place
P∞, the pole of x. Then the automorphisms in N(U) = {ψα,β,γ,δ | α ∈
F∗

q , β, γ, δ ∈ Fq} are explicitly written as (see [P])

ψα,β,γ,δ =





x 7→ αx+ β,

y1 7→ αq0+1y1 + αβq0x+ γ,

y2 7→ α2q0+1y2 − αq0+1βq0y1 + αβ2q0x+ δ.

(5.1)

The group N(U) is of order q3(q−1) and is written as N(U) = UT where
T is cyclic of order q − 1. It follows from property (7) in [C-O, Proposition
2.3] that U has order q3 and U has trivial intersection with its conjugates.
Its center Z(U) is elementary Abelian of order q, U is of class 3, and U
contains a normal elementary Abelian subgroup U1 of order q2 containing
Z(U) which is both the derived group and the Frattini subgroup of U . The
members of U−U1 have order 9, their cubes forming Z(U)−〈1〉 (see [C-O]).
Let us assume that T fixes the place P0, the common zero of x, y1 and y2.
Then we have

(5.2)
T = {ψα,0,0,0 | α ∈ F∗

q},

U = {ψ1,β,γ,δ | β, γ, δ ∈ Fq},

U1 = {ψ1,0,γ,δ | γ, δ ∈ Fq},

Z(U) = {ψ1,0,0,δ | δ ∈ Fq}.

Let H be a subgroup of N(U) of order |H| = n3b+c+d where n | (q − 1)
and 0 ≤ b, c, d ≤ 2s + 1. Let |H ∩ U1| = 3c+d and |H ∩ Z(U)| = 3d.
Unfortunately, the possible values of n, b, c, d are not all known. Recall that
N(FH ,m) is the number of rational places of FH under the degree m places
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of F . Let us now find for which values of m > 1, N(FH ,m) can be nonzero.
Since any place P of degree m > 1 is unramified in the extension F/FH ,
H−1(P ) is a cyclic group. So let us find the order of elements in N(U). Let
κ = ψ−1,0,0,0 be the involution of T . Let us first consider the elements in the
subset S1 = U.(T \ {κ}) = {ψα,β,γ,δ | α 6= −1}. Observe that any element
in S1 \ U is contained in some conjugate of T . So, for any ψ ∈ S1, we have
|ψ| = 3, 9 or m where m | (q − 1), m 6= 2. Let us now consider the subset
S2 = U.{κ} = {ψ−1,β,γ,δ}. By (5.1), the orders of elements in S2 are

|ψ−1,β,−βq0+1,δ| = 2 for β, δ ∈ Fq,

|ψ−1,β,γ,δ| = 6 for β, γ, δ ∈ Fq and γ 6= −βq0+1.

In particular we have:

Lemma 5.1. Let H = S1 ⊔ S2 be the disjoint decomposition of H as

defined above. The set of orders of the elements in S1 is {3, 9}∪{m : m 6= 2
and m divides q − 1} and the set of orders of the elements in S2 is {2, 6}.

Now, F does not have any degree 2 or degree 3 place. Therefore we need
only compute N(FH ,m) for m = 6 or 9 or m | (q − 1), m > 2. For the case
m = 6 we will use the results of Section 3, and for the cases m = 9 and
m | (q − 1), m > 2 we shall use the results of Section 4. Let us first prove a
result on the number of elements of distinct orders in H.

Proposition 5.2. Assume that n > 1. Then H has a cyclic subgroup

TH of order n, which is contained in a conjugate of T such that H = THUH

where UH =U ∩H. Moreover , TH normalizes UH and n | gcd(3b − 1, 3c − 1,
3d − 1, q− 1). If n 6= 2, then TH has 3b+c+d distinct conjugates in H and for

any m |n, m > 2, H has 3b+c+dφ(m) distinct elements of order m, φ(·) being

Euler’s Phi function. In the case 2 |n, let κ be the involution of TH . The

order of the centralizer CUH
(κ) of κ in UH is 3c, and H has 3b+d distinct

involutions and 3b+d(3c − 1) distinct elements of order 6.

Proof. We first prove thatH has an element of order n. As UH is the only
3-Sylow subgroup of H, UH is normal in H. Therefore H/UH is a subgroup
of N(U)/U which is isomorphic to the cyclic group T . Then H/UH is a cyclic
group of order n and there exists σ ∈ H such that σn ∈ UH and σi 6∈ UH for
1 ≤ i < n. Since UH ≤ U , the order of σ is either n, 3n or 9n. Using Lemma
5.1 and the equality gcd(q − 1, 3) = 1, we deduce that the order of σ is n if
n 6= 2 and is either 2 or 6 if n = 2. Taking σ3 if necessary, we choose and fix
σ ∈ H such that |σ| = n.

Let TH = 〈σ〉 be the cyclic group generated by σ. Since T is an Abelian
Hall subgroup of N(U), TH is contained in a conjugate of T (cf. [C-O,
Theorem 2.1]). Note that TH normalizes UH and TH ∩ UH = 〈1〉. Then we
have H = THUH .
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Recall that a characteristic subgroup of a group is invariant under the
group automorphisms. Note that the derived group U1 and the center Z(U)
are characteristic subgroups of U . Moreover T and hence TH normalizes U .
Therefore TH also normalizes U1 and Z(U).

If 2 ∤n, then σ (respectively σ2 if 2 |n) acts without a fixed point on the
nonidentity elements of U by conjugation (cf. [C-O, Proposition 2.3(8)]).
Let k = n if 2 ∤n and k = n/2 if 2 |n. Therefore k | (|UH | − 1) = 3b+c+d − 1,
k | (|U1 ∩H| − 1) = 3c+d − 1 and k | (|Z(U) ∩ H| − 1) = 3d − 1, or equiva-
lently k | gcd(3b − 1, 3c − 1, 3d − 1). As gcd(2, (q− 1)/2) = 1, 4 ∤n and hence
n | gcd(3b − 1, 3c − 1, 3d − 1).

For the case n 6= 2 and m |n with m > 2, we now determine the number
of distinct elements in H of order m. It follows from [C-O, Proposition
2.3(8)], that σ does not commute with a nonidentity element of UH . So TH

has |UH | = 3b+c+d distinct conjugates in H. Therefore in this case H has
3b+c+dφ(m) distinct elements of order m.

Finally, we consider the case 2 |n. It follows from properties (7) and (8)
of [C-O, Proposition 2.3] that for any u1 ∈ U1 there exist v ∈ CU (κ) and
z ∈ Z(U) such that u1 = vz. For u1 ∈ H∩U1, let v ∈ CU (κ) and z ∈ Z(U) be
such that u1 = vz. As κzκ ∈ Z(U) and κ(κzκz)κ = κzκz, using property (8)
of [C-O, Proposition 2.3] we obtain κzκ = z−1. Since U1 is an elementary
Abelian 3-group, this implies that κu1κ = vz−1 ∈ H ∩ U1, v ∈ CUH

(κ) and
z ∈ H∩Z(U). Therefore H∩U1 = CUH

(κ)×(H∩Z(U)) and |CUH
(κ)| = 3c.

Any involution θ of H is a conjugate of κ by an element of UH . Therefore
|CUH

(θ)| = 3c for any involution of H and the number of distinct involu-
tions inH is 3b+c+d/3c. Each involution θ ofH commutes with exactly 3c − 1
elements of order 3 in H, namely the nonidentity elements of CUH

(θ). There-
fore there are 3b+d(3c − 1) elements of order 6 in this case.

First we compute N(FH , 6) and we assume that 2 | |H|. As φ(6) = 2, by
Proposition 5.2, H has 3b+d(3c − 1)/2 distinct cyclic subgroups of order 6.
So from (3.2), we have

N(FH , 6) =
6

|H|
·
3b+d(3c − 1)

2
·
q

3
=
q(3c − 1)

3cn
.(5.3)

Let us now calculate the number N(FH ,m) where m |n, m > 2. So
assume n > 2 and let m |n, m > 2. From Proposition 4.3, for each element
τ ∈ H of order m, M(τ) = (q − 1)/m. So we need only find the number of
elements of order m in H. Using Proposition 5.2 and (4.7) we get

N(FH ,m) =
m

|H|
· 3b+c+dφ(m) ·

q − 1

m
=
q − 1

n
φ(m).(5.4)

Consider now the case m = 9. Unfortunately, we cannot give a formula
for N(FH , 9) in terms of n, b, c, d. Note that the number of elements of
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order 9 in H is 3b+c+d − 3c+d. Let ñ9(H) be the number of order 9 elements
in H which satisfy the condition (4.16) in Proposition 4.4, i.e.

ñ9(H) = |{ψ1,β,γ,δ ∈ H | β 6= 0, Tr(β−(q0+1)γ) = s}|.(5.5)

Then, by Proposition 4.4, M(τ) = q/3 for ñ9(H) elements of order 9 in H
and M(τ) = 0 for the remaining elements of order 9. So from (4.7) the
number N(FH , 9) is calculated as

N(FH , 9) =
9

|H|
ñ9(H)

q

3
.(5.6)

Now, we are ready to calculate the number of rational places of FH :

Theorem 5.3. Let U be the 3-Sylow subgroup of G fixing the place P∞,
the pole of x, U1 the derived subgroup of U , Z(U) the center of U and

N(U) the normalizer of U in G. Let H be a subgroup of N(U). Assume

the order of H is |H| = n3b+c+d where n | gcd(q − 1, 3b − 1, 3c − 1, 3d − 1),
0 ≤ b, c, d ≤ 2s+ 1, |H ∩ U1| = 3c+d and |H ∩ Z(U)| = 3d. Let N(FH) and

g(FH) denote the number of rational places and the genus of FH respectively.

Let ñ9(H) be defined by (5.5). We have:

(i) if n = 1 then

N(FH) = 1 +
q3

3b+c+d
+

3

3b+c+d
ñ9(H)q,

g(FH) =
1

2 · 3b+c+d
· 3q0(q

2 + qq0 − 3c+d − q03
d);

(ii) if n > 1 and 2 ∤n then

N(FH) = 2 +
q3 − 3b+c+d

n3b+c+d
+

3

n3b+c+d
ñ9(H)q +

q − 1

n
(n− 1),

g(FH) =
1

2n3b+c+d
· 3q0(q

2 + qq0 − 3c+d − q03
d);

(iii) if n > 1 and 2 | n then

N(FH) = 2 +
2(q/3c − 1)

n
+
q3 − q3b+d

n3b+c+d

+
3

n3b+c+d
ñ9(H)q +

q(3c − 1)

3cn
+
q − 1

n
(n− 2),

g(FH) =
1

2n3b+c+d
[3q0(q

2+qq0− 3c+d−q03
d) − 3b+c+d(q/3c− 1)].

Proof. Recall that for a subgroup H ≤ N(U), FH may have rational
places below places of F of degree 1, 9, 6 or m where m |n, m > 2. So the
number of rational places of FH is computed from

N(FH) = N(FH , 1) +N(FH , 9) +N(FH , 6) +
∑

m|n
m>2

N(FH ,m).(5.7)
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If n = 1 or 2, the last sum in (5.7) is equal to 0. Otherwise, from (5.4), we
have

∑

m|n
m>2

N(FH ,m) =
q − 1

n

∑

m|n
m>2

φ(m)

where

∑

m|n
m>2

φ(m) =

{
n− 1 if 2 ∤n,

n− 2 if 2 |n.
(5.8)

Observe also that N(FH , 6) = 0 if 2 ∤n. As N(FH , 6) and N(FH , 9) are
computed in (5.3) and (5.6) respectively, we need to calculate N(FH , 1) and
g(FH) in each case. So we need to find the ramifications at rational places.
The place P∞ is fully ramified in the extension F/FH and the different
exponent at P∞ is

dP∞
= (n3b+c+d − 1) + (3b+c+d − 1) + 3q0(3

c+d − 1) + q(3d − 1).

If n > 2, each cyclic group of order n in H fixes P∞ and one more rational
place of F . In the case 2 | n, each involution in H fixes P∞ and q more
places. Moreover, two distinct involutions in H do not fix the same place
except P∞ (cf. [C-O, Proposition 2.5(i)]). Let g = 3

2q0(q − 1)(q + q0 + 1) be

the genus of F and gH be the genus of FH .

In the following, in each case, we list the ramified places of F , write
N(FH , 1) and state the Riemann–Hurwitz formula from which g(FH) is
calculated:

(i) If n = 1 then only P∞ is ramified and we have

N(FH , 1) = 1 +
q3

3b+c+d
,

2g − 2 = |H|(2gH − 2) + dP∞
.

(ii) If n > 1 and 2 ∤ n then

• P∞ is fully ramified,
• 3b+c+d places are ramified with ramification index n,
• q3 − 3b+c+d places are unramified.

We have

N(FH , 1) = 1 + 1 +
q3 − 3b+c+d

n3b+c+d
,

2g − 2 = |H|(2gH − 2) + dP∞
+ 3b+c+d(n− 1).

(iii) If n > 1 and 2 |n then

• P∞ is fully ramified,
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• 3b+c+d places are ramified with ramification index n,
• q3b+d − 3b+c+d = 3b+d(q− 3c) more places are ramified with ram-

ification index 2,
• q3 − q3b+d places are unramified.

We have

N(FH , 1) = 1 + 1 +
2(q/3c − 1)

n
+
q3 − q3b+d

n3b+c+d
,

2g − 2 = |H|(2gH − 2) + dP∞
+ 3b+c+d(n− 1) + 3b+d(q − 3c).

Unfortunately, we do not know all the possible values of n, b, c, d in Theo-
rem 5.3. Now we construct some subgroups of N(U) with all possible values
of n, c and d for the case b = 0. First we give some properties for some
elements of N(U). Let α1, α2, α ∈ Fq \ {0} and γ1, γ2, γ, δ1, δ2, δ ∈ Fq. The
following properties are easy consequences of (5.1):

ψα1,0,0,0 ◦ ψα2,0,0,0 = ψα1α2,0,0,0,

ψ1,0,γ1,δ1 ◦ ψ1,0,γ2,δ2 = ψ1,0,(γ1+γ2),(δ1+δ2),(5.9)

ψα−1,0,0,0 ◦ ψ1,0,γ,δ = ψ1,0,γαq0+1,δα2q0+1 ◦ ψα−1,0,0,0.

For integers c, d ≤ 2s+ 1, let e = gcd(c, d, 2s+ 1). Note that

gcd(3c − 1, 3d − 1, q − 1) = 3e − 1.

Let {γ1, . . . , γc/e} and {δ1, . . . , δd/e} be F3e-linearly independent subsets
of Fq. The set

S = {ψ1,0,(γ1α1,1+γ2α1,2+···+γc/eα1,c/e),(δ1α2,1+δ2α2,2+···+δd/eα2,d/e) |

α1,1, . . . , α1,c/e, α2,1, . . . , α2,d/e ∈ F3e}

is a subset of N(U) of size 3c+d. Moreover using (5.9) we observe that S is
a subgroup of U1 with |S ∩ Z(U)| = 3d.

For n | (3e−1), let α0 be an element of F3e \{0} of multiplicative order n.
Let

H = {ψαi
0
,0,0,0 ◦ ψ | 1 ≤ i ≤ n and ψ ∈ S}.(5.10)

Using (5.9) we observe that H is a subgroup of N(U) of order n3c+d. It is
easy to observe that H = THUH , where UH = S and

TH = {ψαi
0
,0,0,0 | 1 ≤ i ≤ n}.

In the following corollary, we give the number of rational places and the
genera of the subfields FH of F with H as in (5.10).

Corollary 5.4. Let 0 ≤ c, d ≤ 2s+ 1 and n | gcd(q− 1, 3c − 1, 3d − 1).
Then N(U) has a subgroup H, given in (5.10), of order n3c+d where

|H ∩ U | = |H ∩ U1| = 3c+d and |H ∩ Z(U)| = 3d.
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We have:

(i) if n = 1 then

N(FH) = 1 +
q3

3c+d
,

g(FH) =
1

2 · 3c+d
· 3q0(q

2 + qq0 − 3c+d − q03
d);

(ii) if n > 1 and 2 ∤ n then

N(FH) = 2 +
q3 − 3c+d

n3c+d
+
q − 1

n
(n− 1),

g(FH) =
1

2n3c+d
· 3q0(q

2 + qq0 − 3c+d − q03
d);

(iii) if n > 1 and 2 |n then

N(FH) = 2 +
2(q/3c − 1)

n
+
q3 − q3d

n3c+d
+
q(3c − 1)

3cn
+
q − 1

n
(n− 2),

g(FH) =
1

2n3c+d
[3q0(q

2 + qq0 − 3c+d − q03
d) − 3c+d(q/3c − 1)].

In Section 7, for q = 27 we give more examples, including some examples
with b 6= 0.

Remark 5.5. We note that Theorem 3.9 corresponds to the very special
subcase of Corollary 5.4 with d = 0 and n ∈ {1, 2}.

6. Dihedral groups of order 2(q − 1). Let F be the function field
defined by (1.1) and G be its automorphism group Aut(F/Fq). Let T2 be a
Hall subgroup of order (q − 1)/2 and D be the normalizer of T2, which is a
dihedral group of order 2(q− 1) (cf. property (5) in [C-O, Proposition 2.3]).
Let T be the cyclic group of order q−1 inD. Let κ be the involution of T . We
note that D is a subgroup of the centralizer C(κ) of κ and C(κ) = 〈κ〉×L′,
where L′ is the unique subgroup of C(κ) isomorphic to PSL(2, q) (cf. Sub-
section 4.1 in [C-O]). There exists a dihedral subgroup D′ of L′ such that

D = 〈κ〉 ×D′.

In this section we determine the number of rational places of a subfield
FH fixed by a subgroup H ≤ D. We note that any dihedral subgroup of G of
order 2n with n | (q−1) is contained in a conjugate of D (cf. [C-O, Theorem
2.4, property (5) in Proposition 2.3 and Remark 2.2]).

As H ≤ D and gcd(2(q− 1), q− 3q0 + 1) = 1, the degree 6 places, so the
nonrational places of F , are unramified in the extension F/FH . Any cyclic
subgroup ofD is either of degree 2 or contained in T . Since F has no degree 2
place, N(H,m) can be nonzero only for integers m 6= 2 dividing q − 1.
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If the order of H is 2, then N(FH) = N(FH , 1). Assume that the order
of H is greater than 2. So H is either a cyclic subgroup of T of order n or a
dihedral subgroup of order 2n with n|(q−1). If H is a cyclic subgroup of T ,
then it is also a subgroup of the normalizer N(U) of a 3-Sylow subgroup U
of G and its number of rational places is already determined in Corollary 5.4
(corresponding to the case c = d = 0 in Corollary 5.4). We assume that H
is a dihedral group with |H| = 2n and n | (q − 1).

Let P∞ and P0 be the places of F corresponding to the pole of x, and
to the common zero of x, y1 and y2 respectively in (1.1). There exists a
conjugate of T fixing P0 and P∞ (cf. [C-O, Remark 2.2 or Proposition 2.5]).
Therefore we assume, without loss of generality, that T fixes P0 and P∞.
For m > 2 and m |n, H has a unique cyclic subgroup of order m and the
number of distinct elements of order m in H is φ(m), where φ(·) is Euler’s
Phi function. The number N(FH ,m) will be determined using the results
of Section 4. It follows from (4.7) and Proposition 4.3 that

N(FH ,m) =
q − 1

|H|
φ(m).

Now we are ready to calculate the number N(FH) of rational places of FH .

Theorem 6.1. For n | (q − 1), there exists a dihedral subgroup of or-

der 2n. For a dihedral subgroup H of order 2n with n | (q − 1) we have:

(i) if 2 ∤ n, then

N(FH) = 1 +
q + 1

2
+
q3 − 1

2n
+
q − 1

2n
(n− 1),

g(FH) =
1

4n
(q − 1)(3q0q + q + 3q0 − n);

(ii) if 2 |n, then

N(FH) = 1 +
q − 1

n
+
q + 1

2
+
q3 − q

2n
+
q − 1

2n
(n− 2),

g(FH) =
1

4n
(q − 1)(3q0q + q + 3q0 − n− 1).

Proof. We have

N(FH) = N(FH , 1) +
∑

m|n
m>2

N(FH ,m),(6.1)

and using (5.8) we get

∑

m|n
m>2

N(FH ,m) =





q − 1

2n
(n− 1) if 2 ∤n,

q − 1

2n
(n− 2) if 2 |n.

(6.2)

When 2 ∤n, the number of involutions in H is n and none of them fixes P0

or P∞. So there are n(q+1) more ramified places with ramification index 2.
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Therefore, we have

N(FH , 1) = 1 + (q + 1) +
q3 − 1 − n(q + 1)

2n
.(6.3)

In the case 2 |n, H has n+ 1 involutions and exactly one of them fixes the
places P0 and P∞. So (q−1)+n(q+1) places are ramified with ramification
index 2. We have

N(F, 1) = 1 +
q − 1

n
+ (q + 1) +

q3 − 1 − (q − 1 + n(q + 1))

2n
.(6.4)

Using (6.1)–(6.4) we calculate the number of rational places in both cases.
The genus in each case is computed in [C-O, page 153]).

7. Examples. Let F = F27(x, y1, y2) be the function field over F27

defined by

y27
1 − y1 = x3(x27 − x), y27

2 − y2 = x6(x27 − x),

let G = Aut(F/F27) be its automorphism group, N(U) the normalizer of a
3-Sylow subgroup U < G, and D < G a dihedral subgroup of order 52. In
this section, we give the number of rational places N(FH) and the genus
g(FH) of subfields FH fixed by various subgroups of N(U) and D.

Let H ≤ N(U) be a subgroup of order |H| = n3b+c+d, with n | 26 and
0 ≤ b, c, d ≤ 3 where |H ∩ U1| = 3c+d and |H ∩ Z(U)| = 3d as in Section 5,
and let ñ9(H) be defined by (5.5) (here we assume U fixes the place P∞,
the pole of x). The following examples are a consequence of Theorem 3.9:

• H with n = 2, b = 0, c = 0, d = 0, ñ9(H) = 0:
N(FH) = 9856, g(FH) = 1800.

• H with n = 1, b = 0, c = 3, d = 0, ñ9(H) = 0:
N(FH) = 730, g(FH) = 117.

• H with n = 2, b = 0, c = 3, d = 0, ñ9(H) = 0:
N(FH) = 379, g(FH) = 65.

Using Corollary 5.4 we obtain the following examples:

• H with n = 26, b = 0, c = 0, d = 0, ñ9(H) = 0:
N(FH) = 784, g(FH) = 139.

• H with n = 1, b = 0, c = 1, d = 3, ñ9(H) = 0:
N(FH) = 244, g(FH) = 36.

• H with n = 1, b = 0, c = 3, d = 1, ñ9(H) = 0:
N(FH) = 244, g(FH) = 40.

• H with n = 2, b = 0, c = 0, d = 3, ñ9(H) = 0:
N(FH) = 379, g(FH) = 52.

Using Theorem 5.3 and constructing subgroups of N(U) with b 6= 0 explic-
itly, we obtain the following examples:
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• H with n = 1, b = 1, c = 1, d = 3, ñ9(H) = 81:
N(FH) = 109, g(FH) = 12.

• H with n = 2, b = 1, c = 1, d = 2, ñ9(H) = 18:
N(FH) = 145, g(FH) = 19.

• H with n = 1, b = 1, c = 0, d = 3, ñ9(H) = 27:
N(FH) = 271, g(FH) = 39.

• H with n = 1, b = 2, c = 2, d = 3, ñ9(H) = 729:
N(FH) = 37, g(FH) = 1.

Let now H be a subgroup of D. From the results in Section 6, the fol-
lowing examples are obtained:

• |H| = 2 · 2, dihedral: N(FH) = 4942, g(FH) = 897.
• |H| = 2 · 13, dihedral: N(FH) = 796, g(FH) = 133.
• |H| = 2 · 26, dihedral: N(FH) = 406, g(FH) = 63.

We note that the examples above with genera 12, 36, 39, 40 are function
fields with the best known number of rational places (cf. [G-V]). Moreover
the example with genus 19 is a new entry for the table of [G-V]. In the
following we work out this example and moreover we determine its explicit
defining equations for the corresponding function field.

Example 7.1. Let H be the subgroup of G generated by ψ = ψ1,1,γ+2,0

and κ = ψ2,0,0,0 where γ ∈ F27 with Tr(γ) 6= 0. By explicit computations
we get

H ∩ U = 〈ψ1,1,2,0, ψ1,0,γ,0, ψ1,0,0,1, ψ1,0,0,γ〉 ,

H ∩ U1 = 〈ψ1,0,γ,0, ψ1,0,0,1, ψ1,0,0,γ〉 ,

H ∩ Z(U) = 〈ψ1,0,0,1, ψ1,0,0,γ〉 .

Moreover the elements ψ1,β′,γ′,δ′ in H satisfying β′ 6= 0 and Tr((β′)−(q0+1)γ′)
= 1 are

ψ1,k,γ+2,i+jγ , i, j = 0, 1, 2, k = 1, 2, when Tr(γ) = 1,

ψ1,k,2γ+2,i+jγ , i, j = 0, 1, 2, k = 1, 2, when Tr(γ) = 2.

Therefore we have n = 2, b = 1, c = 1, d = 2, ñ9(H) = 18 and from
Theorem 5.3 it follows that g(FH) = 19, N(FH) = 145. We first find
defining equations for the function field FH∩U1 . Let w1, w2 ∈ F be given by

w1 = y3
1 − γ2y1, w2 = y9

2 −
γ9 − γ

γ3 − γ
y3
2 +

γ9 − γ3

γ3 − γ
y2.

The elements of H ∩ U1 fix x,w1, w2. Moreover FH∩U1 = F27(x,w1, w2)
where

w9
1 + γ18w3

1 + γ24w1 − x3(x27− x) = 0,

w3
2 +

γ − γ3

γ9 − γ3
w2− x6(x27 − x) = 0.
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Now we will determine defining equations for the function field FH∩U .
Let ψ be the restriction of ψ1,1,2,0 to the function field F27(x,w1, w2). We
have

ψ(x) = x+ 1,

ψ(w1) = w1 + x3 − γ2x+ γ2 + 2,

ψ(w2) = w2 − w3
1 +

γ7 − γ

γ3 − γ
w1 + x9 −

γ9 − γ

γ3 − γ
x3 +

γ9 − γ3

γ3 − γ
x.

Let u, v1, v2 ∈ FH∩U1 be given by

u = x3 − x,

v1 = w1 − x4 − (γ2 + 1)x2,

v2 = w2 + xw3
1 −

γ7 − γ

γ3 − γ
xw1 + x11 −

γ9 − γ

γ3 − γ
x5 +

γ9 − γ3

γ3 − γ
x.

Then ψ and so the restriction of each element in H ∩ U to F27(x,w1, w2)
fixes u, v1 and v2. Moreover FH∩U = F27(u, v1, v2) where

v9
1 + γ18v3

1 + γ24v1 + u12 + (γ18 − 1)u6 + (γ24 + 1)u2 = 0,

v3
2 +

γ − γ3

γ9 − γ3
v2 +

γ − γ3

γ9 − γ3
uv3

1 + γ24uv1 −
γ − γ3

γ9 − γ3
u5 +

γ7 − γ9

γ9 − γ3
u3 − u = 0.

Let κ be the restriction of κ = ψ2,0,0,0 to the function field F27(u, v1, v2).
Then κ(u) = −u, κ(v1) = v1 and κ(v2) = −v2. Let t = u2, z1 = v1 and z2 =
uv2. Then κ, and hence the restriction of each element of H to F27(u, v1, v2),
fixes t, z1 and z2. Therefore FH = F27(t, z1, z2) with its explicit defining
equations

z9
1 + γ18z3

1 + γ24z1 + t6 + (γ18 − 1)t3 + (γ24 + 1)t = 0,

z3
2 +

γ − γ3

γ9 − γ3
tz2 +

γ − γ3

γ9 − γ3
t2z3

1 + γ24t2z1 −
γ − γ3

γ9 − γ3
t4 +

γ7 − γ9

γ9 − γ3
t3− t2 = 0.

Remark 7.2. Let E be a subfield of F with full constant field Fq. Let
N(E) and g(E) denote the number of rational places and genus of E. In this
remark we determine the L-polynomial LE(t) of E completely, using N(E)
and g(E). The L-polynomial L(t) of F is given in property (P4) of Section 1.
We note that the polynomials 1 + 3q0t + qt2 and 1 + qt2 are irreducible in
Z[t]. Using [La] we observe that LE(t) divides L(t) and hence

LE(t) = (1 + 3q0t+ qt2)a(1 + qt2)b.(7.1)

Moreover,

2a+ 2b = 2g(E)(7.2)

and as the coefficient of t in LE(t) is 3q0a we have

N(E) = q + 1 + 3q0a(7.3)
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(cf. [S, Theorem V.1.15]). Using (7.1)–(7.3) we obtain

LE(t) = (1 + 3q0t+ qt2)(N(E)−q−1)/3q0(1 + qt2)g(E)−(N(E)−q−1)/3q0.
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[C-O] E. Çakçak and F. Özbudak, Subfields of the function field of the Deligne–Lusztig

curve of Ree type, Acta Arith. 115 (2004), 133–180.
[G-V] G. van der Geer and M. van der Vlugt, Tables of curves with many points,

available at http://www.science.uva.nl/˜geer/tables-mathcomp15.ps.
[H-P] J. P. Hansen and J. P. Pedersen, Automorphism groups of Ree type, Deligne–

Lusztig curves and function fields, J. Reine Angew. Math. 440 (1993), 99–109.
[La] G. Lachaud, Sommes d’Eisenstein et nombre de points de certaines courbes
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