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In this paper, we present a new method for chaos generation in nonautonomous impulsive
systems. We prove the presence of chaos in the sense of Li–Yorke by implementing chaotic
perturbations. An impulsive Duffing oscillator is used to show the effectiveness of our technique,
and simulations that support the theoretical results are depicted. Moreover, a procedure to
stabilize the unstable periodic solutions is proposed.
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1. Introduction

It is well known how discrete dynamics is impor-
tant for chaos theory [Devaney, 1989; Li & Yorke,
1975; Lorenz, 1963; Wiggins, 1988]. Very interest-
ing examples of applications of discrete dynam-
ics to continuous chaos analysis were provided in
papers [Brown & Chua, 1993, 1996, 1997; Brown
et al., 2001]. In these studies, the general technique
of dynamical synthesis [Brown & Chua, 1993] was
developed. Besides that, it is of big interest to con-
sider chaotic processes where continuous dynamics
is intermingled with discontinuity [Akhmet, 2009a,
2009b; Battelli & Fec̆kan, 1997; Jiang et al., 2007;
Lin, 2005].

Impulsive differential equations describe the
dynamics of real world processes in which abrupt
changes occur. Such equations play an increasingly
important role in various fields such as mechan-
ics, electronics, neural networks, communication
systems and population dynamics [Akhmet, 2010;
Akhmet & Yılmaz, 2010; Khadra et al., 2003; Liu,
1994; Ruiz-Herrera, 2012; Yang & Chua, 1997;

Yang & Cao, 2007]. In this study, we present a rig-
orous method for chaotification of arbitrary high
dimensional impulsive systems.

Throughout the paper R, Z and N will denote
the sets of real numbers, integers and natural num-
bers, respectively.

The main purpose of our investigation is as
follows. Consider the collection of functions

A =
{
ϕ(t) : R → R

n

∣∣∣∣ sup
t∈R

‖ϕ(t)‖ ≤ H0

}
,

where H0 is a positive number, and suppose that A
is an equicontinuous family on R. We perturb the
impulsive system

x′(t) = Ax(t) + f(t, x(t)), t �= θk,

∆x|t=θk
= Bx(θk) +W (x(θk)),

(1)

by the functions ϕ(t) ∈ A to obtain the system

y′(t) = Ay(t) + f(t, y(t)) + ϕ(t), t �= θk,

∆y|t=θk
= By(θk) +W (y(θk)),

(2)
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where the functions f : R × R
n → R

n and W :
R

n → R
n are continuous in all their arguments,

A and B are n × n constant real valued matrices,
the sequence {θk}, k ∈ Z, of impulsive moments is
strictly increasing, ∆y|t=θk

= y(θk+) − y(θk) and
y(θk+) = limt→θk+ y(t). The main objective of the
present article is the verification of chaos in the
dynamics of system (2), provided that the collection
A is chaotic. The description of chaotic collection
of functions will be presented in the next section.

The term chaos, as a mathematical notion,
has first been used in [Li & Yorke, 1975] for one-
dimensional difference equations. According to Li
and Yorke [1975], a continuous map F : J → J,
where J ⊂ R is an interval, exhibits chaos if:
(i) For every natural number p, there exists a
p-periodic point of F in J ; (ii) there is an uncount-
able set S ⊂ J containing no periodic points
such that for every s1, s2 ∈ S with s1 �= s2
we have lim supj→∞ |F j(s1) − F j(s2)| > 0 and
lim infj→∞ |F j(s1) − F j(s2)| = 0; (iii) for every
s ∈ S and periodic point σ ∈ J we have
lim supj→∞ |F j(s) − F j(σ)| > 0.

The concept of snap-back repellers for high-
dimensional maps was introduced in [Marotto,
1978]. According to Marotto [1978], if a multidimen-
sional continuously differentiable map has a snap-
back repeller, then it is Li–Yorke chaotic. Marotto’s
theorem was used in [Li et al., 2007] to prove the
existence of Li–Yorke chaos in a spatiotemporal
chaotic system. Li–Yorke sensitivity, which links the
Li–Yorke chaos with the notion of sensitivity, was
studied in [Akin & Kolyada, 2003]. Moreover, gener-
alizations of Li–Yorke chaos to mappings in Banach
spaces and complete metric spaces were provided in
[Kloeden & Li, 2006; Shi & Chen, 2004, 2005]. In the
present article, we develop the concept of Li–Yorke
chaos to piecewise continuous functions, and prove
its presence rigorously in impulsive systems of the
form (2) without any restriction on the dimension.

Taking advantage of chaotically changing
impulsive moments, which are functionally depen-
dent on the initial moment, the presence of
Li–Yorke chaos in a nonautonomous impulsive
differential equation was rigorously proved in
[Akhmet, 2009b]. On the other hand, the existence
of Li–Yorke chaos and its control in an autonomous
impulsive differential system were discussed both
theoretically and numerically in the paper [Jiang
et al., 2007], where the presence of a snap-
back repeller was proved based on the qualitative

analysis using the Poincaré map and the Lambert
W-function. A system of impulsive differential equa-
tions with moments of impulses generated by a
sensitive map which depends on a parameter was
taken into account in [Lin, 2005], and sensitivity
was considered as a chaotic property. The existence
of chaos in singular impulsive systems was shown
in [Battelli & Fec̆kan, 1997] by means of transversal
homoclinic points. Moreover, chaos in the sense of
Devaney [1989] was studied in an impulsive model
of the cardiovascular system by means of chaotically
changing impulsive moments within the scope of
the article [Akhmet, 2009a]. Distinctively from the
papers [Akhmet, 2009a, 2009b; Battelli & Fec̆kan,
1997; Jiang et al., 2007; Lin, 2005], we make use
of chaotic perturbations to prove the existence of
Li–Yorke chaos, and this is the main novelty of
our study.

Small perturbations applied to control param-
eters can be used to stabilize chaos, keeping the
parameters in the neighborhood of their nominal
values [Gonzales-Miranda, 2004; Schuster, 1999],
and this idea was first introduced by Ott et al.
[1990]. Experimental applications of the OGY con-
trol method requires a permanent computer anal-
ysis of the system’s state. Since the method deals
with a Poincaré map, the parameter changes are
discrete in time. By this method, it is possible to
stabilize only those periodic orbits whose maximal
Lyapunov exponent is small compared to the
reciprocal of the time interval between parameter
changes [Pyragas, 1992].

In the example presented in Sec. 4, to obtain a
collection of chaotic functions, we will use a Duffing
oscillator which is forced by a relay function. On the
other hand, to support our new theoretical results,
an impulsive Duffing oscillator will be utilized. The
presented example shows the effectiveness of our
technique. Moreover, making use of the OGY con-
trol method [Ott et al., 1990], we will demonstrate
that the chaos of system (2) is controllable. This
method is useful for visually discerning the periodic
solutions, which are otherwise indistinguishable in
the set of irregular motions.

A concept in which impulsive differential equa-
tions are effectively used is the impulsive synchro-
nization of chaotic systems [Haeri & Dehghani,
2008; Li et al., 2004; Li et al., 2005; Liu et al., 2005;
Ren & Zhao, 2006; Sun et al., 2009; Wan & Sun,
2011]. This technique is appropriate for the syn-
chronization of Lorenz systems [Sun et al., 2002;
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Wu et al., 2007; Yang et al., 1997], Chua oscilla-
tors [Yang & Chua, 1997; Yang, 2001] and Rössler
systems [Zhang et al., 2007]. In the framework of
impulsive synchronization, one can set up an impul-
sive error system which admits the synchroniza-
tion error e = y − x as a solution, where x and
y denote the states of the drive and response sys-
tems, respectively, and require this system to pos-
sess a stable equilibrium point. According to the last
equation, the synchronized systems must have the
same dimensions. However, this is not requested in
our results. Therefore, we significantly extend the
chaos generation possibilities. Generally speaking,
we consider the chaotification procedure in the most
definitive and general form. On the other hand,
in our theory, it is not necessary to use a drive-
response couple. Instead, one can take into account
an impulsive system and perturb it by a previ-
ously obtained chaotic data. Moreover, in the theory
of impulsive synchronization the chaos type of the
drive and response systems is not considered. Con-
trarily, in our results, we rigorously prove that the
impulsive system exhibits the same type of chaos as
the chaotic perturbations.

The rest of the paper is organized as follows.
In Sec. 2, we introduce the ingredients of Li–Yorke
chaos for collections of piecewise continuous func-
tions and give sufficient conditions for the presence
of chaotic dynamics in system (2). Moreover, we
verify the attractiveness property of the bounded
on R solutions of system (2). Section 3 is devoted
to theoretical results such that the ingredients of
Li–Yorke chaos for system (2) are rigorously proved.
Our method of chaotification is applied to an impul-
sive Duffing oscillator in Sec. 4, and a procedure to
stabilize the existing unstable periodic solutions is
presented. Some concluding remarks are indicated
in Sec. 5.

2. Preliminaries

We say that a function ψ(t) : R → R
l, l ∈ N, belongs

to the set PC(R) if it is left-continuous and contin-
uous except, possibly, at the points where it has
discontinuities of the first kind. The definition of a
Li–Yorke chaotic set of piecewise continuous func-
tions is as follows.

Suppose that D is a set of uniformly bounded
functions ψ(t) : R → R

l which belong to PC(R) and
have common points of discontinuity.

We say that a couple (ψ(t), ψ̃(t)) ∈ D × D is
proximal if for arbitrary small ε > 0 and arbitrary
large E > 0, there exists an interval J with a length
no less than E such that ‖ψ(t)− ψ̃(t)‖ < ε for t ∈ J.

On the other hand, a couple (ψ(t), ψ̃(t)) ∈ D × D
is called frequently (ε0,∆)-separated if there exist
positive numbers ε0, ∆ and infinitely many disjoint
intervals, each with a length no less than ∆, such
that ‖ψ(t) − ψ̃(t)‖ > ε0 for each t from these inter-
vals, and each of these intervals contains at most
one discontinuity point of both ψ(t) and ψ̃(t). It is
worth noting that the numbers ε0 and ∆ depend on
the functions ψ(t) and ψ̃(t).

A couple (ψ(t), ψ̃(t)) ∈ D×D is a Li–Yorke pair
if it is proximal and frequently (ε0,∆)-separated
for some positive numbers ε0 and ∆. Moreover, an
uncountable set C ⊂ D is called a scrambled set
if C does not contain any periodic functions and
each couple of different functions inside C × C is a
Li–Yorke pair.

We say that the collection D is a Li–Yorke
chaotic set if: (i) There exists a positive number T0

such that D possesses a periodic function of period
mT0, for any m ∈ N; (ii) D possesses a scrambled
set C; (iii) for any function ψ(t) ∈ C and any peri-
odic function ψ̃(t) ∈ D, the couple (ψ(t), ψ̃(t)) is fre-
quently (ε0,∆)-separated for some positive numbers
ε0 and ∆.

One can obtain a new Li–Yorke chaotic set of
functions from a given one as follows. Suppose that
h : R

l → R
l is a function which satisfies for all

u1, u2 ∈ R
l that

L1‖u1 − u2‖ ≤ ‖h(u1) − h(u2)‖
≤ L2‖u1 − u2‖, (3)

where L1 and L2 are positive numbers. One can
verify that if D is a Li–Yorke chaotic set, then
the collection Dh = {h(ψ(t)) |ψ(t) ∈ D} is also
Li–Yorke chaotic.

The following conditions are needed in the
paper:

(A1) The matrices A and B commute and det(I +
B) �= 0, where I is the n× n identity matrix.

(A2) There exists a positive number T and a nat-
ural number p such that f(t+ T, y) = f(t, y)
for all t ∈ R, y ∈ R

n and θk+p = θk +T for all
k ∈ Z.

(A3) The eigenvalues of the matrix A + p
T ×

ln(I +B) have negative real parts.
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(A4) There exist positive numbers Mf and MW

such that

sup
t∈R,y∈Rn

‖f(t, y)‖ ≤Mf and

sup
y∈Rn

‖W (y)‖ ≤MW .

(A5) There exists a positive number Lf such that

‖f(t, y1) − f(t, y2)‖ ≤ Lf‖y1 − y2‖,
for all t ∈ R and y1, y2 ∈ R

n.
(A6) There exists a positive number LW such that

‖W (y1) −W (y2)‖ ≤ LW ‖y1 − y2‖,
for all y1, y2 ∈ R

n.

Throughout the paper, the uniform norm
‖Γ‖ = sup‖v‖=1 ‖Γv‖ for square matrices Γ will be
used.

Let us denote by U(t, s) the transition matrix
of the linear homogeneous system

u′(t) = Au(t), t �= θk, ∆u|t=θk
= Bu(θk).

Under the conditions (A1)–(A3), there exist pos-
itive numbers N and ω such that ‖U(t, s)‖ ≤
Ne−ω(t−s) for t ≥ s [Akhmet, 2010; Samoilenko &
Perestyuk, 1995].

The following conditions are also required:

(A7) N

(
Lf

ω
+

pLW

1 − e−ωT

)
< 1;

(A8) −ω + NLf +
p

T
ln(1 + NLW ) < 0;

(A9) LW‖(I +B)−1‖ < 1.

We say that a left-continuous function y(t) :
R → R

n is a solution of (2) if: (i) It has discon-
tinuities only at the points θk, k ∈ Z, and these
discontinuities are of the first kind; (ii) the deriva-
tive y′(t) exists at each point t ∈ R\{θk}, and the
left-sided derivative exists at the points θk, k ∈ Z;
(iii) the differential equation is satisfied by y(t) on
R\{θk}, and it holds for the left derivative of y(t)
at every point θk, k ∈ Z; (iv) the jump equation is
satisfied by y(t) for every k ∈ Z.

According to the results of [Akhmet, 2010;
Samoilenko & Perestyuk, 1995], for any function
ϕ(t) ∈ A , one can confirm under the conditions
(A1)–(A7) that there exists a unique bounded on
R solution φϕ(t) of system (2) which satisfies the
relation

φϕ(t) =
∫ t

−∞
U(t, s)[f(s, φϕ(s)) + ϕ(s)]ds

+
∑
θk<t

U(t, θk)W (φϕ(θk)).

It can be verified for each ϕ(t) ∈ A that the
inequality supt∈R ‖φϕ(t)‖ ≤ K0 holds, where

K0 =
N(Mf +H0)

ω
+

pNM W

1 − e−ωT
.

By means of the collection A , let us construct
the set

B = {φϕ(t) |ϕ(t) ∈ A }.
For a given function ϕ(t) ∈ A , let us denote

by yϕ(t, y0) the solution of (2) with yϕ(0, y0) = y0.
We say that the collection B is an attractor if for
any ϕ(t) ∈ A and y0 ∈ R

n, we have ‖yϕ(t, y0) −
φϕ(t)‖ → 0 as t→ ∞. The attractiveness feature of
the collection B is mentioned in the next assertion.

Lemma 1. If the conditions (A1)–(A8) are valid,
then the collection B is an attractor.

Proof. Fix an arbitrary function ϕ(t) ∈ A and
y0 ∈ R

n. Taking advantage of the relations

yϕ(t, y0) = U(t, 0)y0

+
∫ t

0
U(t, s)[f(s, yϕ(s, y0)) + ϕ(s)]ds

+
∑

0≤θk<t

U(t, θk)W (yϕ(θk, y0))

and

φϕ(t) = U(t, 0)φϕ(0)

+
∫ t

0
U(t, s)[f(s, φϕ(s)) + ϕ(s)]ds

+
∑

0≤θk<t

U(t, θk)W (φϕ(θk)),

for t ≥ 0 we obtain the inequality

eωt‖yϕ(t, y0) − φϕ(t)‖

≤ N‖y0 −φϕ(0)‖+
∫ t

0
NLfe

ωs‖yϕ(s, y0)−φϕ(s)‖

+
∑

0≤θk<t

NLW eωθk‖yϕ(θk, y0) − φϕ(θk)‖.
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Applying the Gronwall–Bellman lemma for piece-
wise continuous functions, one can verify that

‖yϕ(t, y0) − φϕ(t)‖
≤ N(1 + NLW )p‖y0 − φϕ(0)‖

× e[−ω+NLf +(p/T ) ln(1+NLW )], t ≥ 0.

Consequently, in accordance with condition (A8),
we have that ‖yϕ(t, y0) − φϕ(t)‖ → 0 as t→ ∞.

�

In the next section, we will prove that if the
collection A is chaotic in the sense of Li–Yorke,
then the same is true for the collection B.

3. Chaotic Dynamics

The ingredients of Li–Yorke chaos for system (2)
will be considered in Lemmas 2 and 3. The main
conclusion of the present study will be stated in
Theorem 1.

In the proof of the next assertion, we will denote
by i((a, b)) the number of terms of the sequence
{θk} which belong to the interval (a, b), where a
and b are real numbers such that a < b. Clearly,
i((a, b)) ≤ p+ p

T (b− a).

Lemma 2. Suppose that the conditions (A1)–(A8)
hold. If a couple of functions (ϕ(t), ϕ(t)) ∈ A × A
is proximal, then the same is true for the couple
(φϕ(t), φϕ(t)) ∈ B × B.

Proof. Fix an arbitrary small positive number ε
and an arbitrary large positive number E. Let us
denote α = ω − NLf − p

T ln(1 + NLW ) and set

γ = 1 +
N

ω
+
N2Lf

ωα
(1 + NLW )p

+
(
N2LW

ω

)(
pe2αT

eαT − 1

)
(1 + NLW )p.

Since the couple (ϕ(t), ϕ(t)) ∈ A × A is prox-
imal, there exists an interval J = [σ, σ + E1],
where E1 ≥ E, such that ‖ϕ(t) − ϕ(t)‖ < ε/γ
for t ∈ J.

For the sake of clarity, we will denote y(t) =
φϕ(t) ∈ B and y(t) = φϕ(t) ∈ B. The functions
y(t) and y(t) satisfy the relations

y(t) =
∫ t

−∞
U(t, s)[f(s, y(s)) + ϕ(s)]ds

+
∑
θk<t

U(t, θk)W (y(θk))

and

y(t) =
∫ t

−∞
U(t, s)[f(s, y(s)) + ϕ(s)]ds

+
∑
θk<t

U(t, θk)W (y(θk)),

respectively. By means of these relations, we obtain
that

y(t) − y(t) =
∫ σ

−∞
U(t, s)[f(s, y(s)) − f(s, y(s)) + ϕ(s) − ϕ(s)]ds

+
∫ t

σ
U(t, s)[f(s, y(s)) − f(s, y(s)) + ϕ(s) − ϕ(s)]ds

+
∑
θk≤σ

U(t, θk)[W (y(θk)) −W (y(θk))] +
∑

σ<θk<t

U(t, θk)[W (y(θk)) −W (y(θk))].

Using the inequalities∥∥∥∥∥∥
∑
θk≤σ

U(t, θk)[W (y(θk)) −W (y(θk))]

∥∥∥∥∥∥ ≤
∑
θk≤σ

2NM W e−ω(t−θk) = 2NM W e−ωt
∞∑
l=0

∑
σ−(l+1)T<θk≤σ−lT

eωθk

≤ 2NM W e−ωt
∞∑
l=0

peω(σ−lT ) =
2pNM W

1 − e−ωT
e−ω(t−σ)

and ∥∥∥∥
∫ σ

−∞
U(t, s)[f(s, y(s)) − f(s, y(s)) + ϕ(s) − ϕ(s)]ds

∥∥∥∥ ≤ 2N(Mf +H0)
ω

e−ω(t−σ),
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it can be verified for t ∈ J that

‖y(t) − y(t)‖ ≤
(

2N(Mf +H0)
ω

+
2pNMW

1 − e−ωT

)
e−ω(t−σ) +

Nε

γω
(1 − e−ω(t−σ))

+NLf

∫ t

σ
e−ω(t−s)‖y(s) − y(s)‖ds + NLW

∑
σ<θk<t

e−ω(t−θk)‖y(θk) − y(θk)‖.

Now, let u(t) = eωt‖y(t) − y(t)‖. Under the circumstances we have that

u(t) ≤ c+
Nε

γω
eωt + NLf

∫ t

σ
u(s)ds + NLW

∑
σ<θk<t

u(θk), t ∈ J,

where

c = eωσ

(
2N(Mf +H0)

ω
+

2pNMW

1 − e−ωT
− Nε

γω

)
.

Implication of the analogue of Gronwall’s lemma for piecewise continuous functions leads to the
inequality

u(t) ≤ Nε

γω
eωt + c+

∫ t

σ
NLf

(
Nε

γω
eωs + c

)
(1 + NLW )i((s,t))eNLf (t−s)ds

+
∑

σ<θk<t

NLW

(
Nε

γω
eωθk + c

)
(1 + NLW )i((θk ,t))eNLf (t−θk).

With the aid of the equation

(1 + NLW )i((σ,t))eNLf (t−σ) = 1 +
∫ t

σ
NLf (1 + NLW )i((s,t))eNLf (t−s)ds

+
∑

σ<θk<t

NLW (1 + NLW )i((θk ,t))eNLf (t−θk)

one can attain that

u(t) ≤ Nε

γω
eωt + c(1 + NLW )i((σ,t))eNLf (t−σ) +

N2Lf ε

γω

∫ t

σ
eωs(1 + NLW )i((s,t))eNLf (t−s)ds

+
N2LW ε

γω

∑
σ<θk<t

eθk(1 + NLW )i((θk ,t))eNLf (t−θk)

≤ Nε

γω
eωt + c(1 + NLW )pe(ω−α)(t−σ) +

N2Lf ε

γωα
(1 + NLW )peωt(1 − e−α(t−σ))

+
N2LW ε

γω
(1 + NLW )pe(ω−α)t

∑
σ<θk<t

eαθk .

Let q = q(t) = 	 t−σ
T 
, that is, q is the greatest integer which is not larger than t−σ

T . Under the
circumstances we have that∑

σ<θk<t

eαθk ≤
∑

σ<θk<σ+(q+1)T

eαθk ≤
q∑

l=0

∑
σ+lT≤θk<σ+(l+1)T

eαθk <

q∑
l=0

peα[σ+(l+1)T ]

= pe(σ+T )α e
(q+1)αT − 1
eαT − 1

≤ pe(σ+T )α

eαT − 1
(eα(t−σ+T ) − 1) <

pe2αT

eαT − 1
eαt.
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The last inequality implies that

u(t) <
Nε

γω
eωt(1 − (1 + NLW )pe−α(t−σ)) +

N2Lf ε

γωα
(1 + NLW )peωt(1 − e−α(t−σ))

+
(
N2LW ε

γω

)(
pe2αT

eαT − 1

)
(1 + NLW )peωt + (1 + NLW )p

(
2N(Mf +H0)

ω
+

2pNMW

1 − e−ωT

)
eωte−α(t−σ)

and multiplying both sides by e−ωt one can obtain the inequality

‖y(t) − y(t)‖ < Nε

γω
(1 − (1 + NLW )pe−α(t−σ)) +

N2Lf ε

γωα
(1 + NLW )p(1 − e−α(t−σ))

+
(
N2LW ε

γω

)(
pe2αT

eαT − 1

)
(1 + NLW )p

+ (1 + NLW )p
(

2N(Mf +H0)
ω

+
2pNMW

1 − e−ωT

)
e−α(t−σ)

<
Nε

γω
+
N2Lf ε

γωα
(1 + NLW )p +

(
N2LW ε

γω

)(
pe2αT

eαT − 1

)
(1 + NLW )p

+ (1 + NLW )p
(

2N(Mf +H0)
ω

+
2pNMW

1 − e−ωT

)
e−α(t−σ).

Set β = (1 + NLW )p(2N(Mf +H0)
ω + 2pNMW

1−e−ωT ), and suppose that the number E is sufficiently large such
that E ≥ 2

α ln(γβ
ε ). In this case, βe−α(t−σ) < ε/γ for t ∈ [σ + E/2, σ + E1]. Thus, the inequality

‖y(t) − y(t)‖ < ε

γ

[
1 +

N

ω
+
N2Lf

ωα
(1 + NLW )p +

(
N2LW

ω

)(
pe2αT

eαT − 1

)
(1 + NLW )p

]
= ε

holds for t ∈ [σ + E/2, σ + E1]. The interval J̃ =
[σ + E/2, σ + E1] has a length no less than E/2.
Consequently, the couple (φϕ(t), φϕ(t)) ∈ B ×B is
proximal. �

Next, we shall continue with the second ingre-
dient of Li–Yorke chaos in the following lemma.

Lemma 3. Suppose that the conditions (A1)–(A7),
(A9) are fulfilled. If a couple of functions (ϕ(t),
ϕ(t)) ∈ A × A are frequently (ε0,∆)-separated
for some positive numbers ε0 and ∆, then the cou-
ple (φϕ(t), φϕ(t)) ∈ B × B are frequently (ε1,∆)-
separated for some positive numbers ε1 and ∆.

Proof. Since the couple of functions (ϕ(t), ϕ(t)) ∈
A × A is frequently (ε0,∆)-separated for some
positive numbers ε0 and ∆, there exist infinitely
many disjoint intervals Ji, i ∈ N, each with a length
no less than ∆, such that ‖ϕ(t) − ϕ(t)‖ > ε0 for
each t from these intervals. Without loss of general-
ity, suppose that the intervals Ji, i ∈ N, are all open
subsets of R. In that case, one can find a sequence

{∆i} satisfying ∆i ≥ ∆, i ∈ N, and a sequence {αi},
αi → ∞ as i→ ∞, such that Ji = (αi, αi + ∆i).

In the proof, we will verify the existence of pos-
itive numbers ε1, ∆ and infinitely many disjoint
intervals J1

i , i ∈ N, each with length ∆, such that
the inequality ‖φϕ(t)− φϕ(t)‖ > ε1 holds for each t
from these intervals.

Suppose that ϕ(t) = (ϕ1(t), ϕ2(t), . . . , ϕn(t))
and ϕ(t) = (ϕ1(t), ϕ2(t), . . . , ϕn(t)), where ϕj and
ϕj, 1 ≤ j ≤ n, are real valued functions. According
to the equicontinuity of the collection A , one can
find a positive number τ < ∆, such that for any
t1, t2 ∈ R with |t1 − t2| < τ, the inequality

|(ϕj(t1) − ϕj(t1)) − (ϕj(t2) − ϕj(t2))| < ε0
2n

(4)

holds for all 1 ≤ j ≤ n.
For each i, let ηi = αi + ∆i

2 . That is, ηi is
the midpoint of the interval Ji. Moreover, define
a sequence {ζi}, i ∈ N, through the equation ζi =
ηi − τ

2 .
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Fix a natural number i. For each t ∈ Ji, there
exists an integer ji = ji(t), 1 ≤ ji ≤ n, such that

|ϕji(t) − ϕji(t)| ≥
1
n
‖ϕ(t) − ϕ(t)‖.

Otherwise, if there exists t0 ∈ Ji such that for all
1 ≤ j ≤ n the inequality

|ϕj(t0) − ϕj(t0)| < 1
n
‖ϕ(t0) − ϕ(t0)‖

holds, then we encounter with a contradiction since

‖ϕ(t0) − ϕ(t0)‖ ≤
n∑

j=1

|ϕj(t0) − ϕj(t0)|

< ‖ϕ(t0) − ϕ(t0)‖.
For this reason, there exists an integer ji = ji(ηi),
1 ≤ ji ≤ n, such that

|ϕji(ηi) − ϕji(ηi)| ≥ 1
n
‖ϕ(ηi) − ϕ(ηi)‖ > ε0

n
. (5)

On the other hand, making use of the inequality (4),
it is easy to verify for all t ∈ [ζi, ζi + τ ] that

|ϕji(ηi) − ϕji(ηi)| − |ϕji(t) − ϕji(t)|

≤ |(ϕji(t) − ϕji(t)) − (ϕji(ηi) − ϕji(ηi))| < ε0
2n
.

Therefore, by virtue of (5), we obtain the inequality

|ϕji(t) − ϕji(t)| > |ϕji(ηi) − ϕji(ηi)| − ε0
2n

>
ε0
2n
, t ∈ [ζi, ζi + τ ]. (6)

It is possible to find numbers si
1, s

i
2, . . . , s

i
n ∈

[ζi, ζi + τ ] such that∫ ζi+τ

ζi

(ϕ(s) − ϕ(s))ds

= τ(ϕ1(si
1) − ϕ1(si

1), ϕ2(si
2)

−ϕ2(si
2), . . . , ϕn(si

n) − ϕn(si
n)).

Hence, the inequality (6) implies that

∥∥∥∥
∫ ζi+τ

ζi

(ϕ(s) − ϕ(s))ds
∥∥∥∥ ≥ τ |ϕji(s

i
ji
) − ϕji(s

i
ji
)|

>
τε0
2n

. (7)

For the sake of clarity, let us denote y(t) =
φϕ(t) and y(t) = φϕ(t). For t ∈ [ζi, ζi + τ ], using
the couple of relations

y(t) = y(ζi) +
∫ t

ζi

[Ay(s) + f(s, y(s)) + ϕ(s)]ds

+
∑

ζi≤θk<t

[By(θk) +W (y(θk))]

and

y(t) = y(ζi) +
∫ t

ζi

[Ay(s) + f(s, y(s)) + ϕ(s)]ds

+
∑

ζi≤θk<t

[By(θk) +W (y(θk))],

one can verify that

‖y(ζi + τ) − y(ζi + τ)‖

≥
∥∥∥∥
∫ ζi+τ

ζi

(ϕ(s) − ϕ(s))ds
∥∥∥∥

−‖y(ζi) − y(ζi)‖

−
∫ ζi+τ

ζi

(‖A‖ + Lf )‖y(s) − y(s)‖ds

−
∑

ζi≤θk<ζi+τ

(‖B‖ + LW )‖y(θk) − y(θk)‖.

Making use of the last inequality together with (7),
we obtain that

sup
t∈[ζi,ζi+τ ]

‖y(t) − y(t)‖ > τε0
2n

− [1 + τ(‖A‖ + Lf )] sup
t∈[ζi,ζi+τ ]

‖y(t) − y(t)‖

− p

T
(T + τ)(‖B‖ + LW ) sup

t∈[ζi,ζi+τ ]
‖y(t) − y(t)‖

and therefore supt∈[ζi,ζi+τ ] ‖y(t) − y(t)‖ > M0, where

M0 =
τε0

2n
[
2 + τ(‖A‖ + Lf ) +

p

T
(T + τ)(‖B‖ + LW )

] .
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Set θ = min1≤k≤p(θk+1 − θk), and define the numbers

ε1 =
M0

2
min

{
1 − LW‖(I +B)−1‖

‖(I +B)−1‖ ,
1

1 + ‖B‖ + LW

}

and

∆ = min
{
θ,

M0

4[(‖A‖ + Lf )K0 +H0](2 + ‖B‖ + LW )
,

M0(1 − LW ‖(I +B)−1‖)
4[(‖A‖ + Lf )K0 +H0][1 + (1 − LW )‖(I +B)−1‖]

}
.

First, suppose that there exists ξi ∈ [ζi, ζi + τ ]
such that supt∈[ζi,ζi+τ ] ‖y(t) − y(t)‖ = ‖y(ξi) −
y(ξi)‖.

Let

ζ1
i =



ξi, if ξi ≤ ζi +

τ

2

ξi − ∆, if ξi > ζi +
τ

2

.

Since ∆ ≤ θ, there exists at most one impulsive
moment on the interval (ζ1

i , ζ
1
i + ∆).

We shall start by considering the case ξi > ζi +
τ
2 . Assume that there exists an impulsive moment
θj ∈ (ζ1

i , ζ
1
i +∆). Under the circumstances, one can

verify for t ∈ (θj, ζ
1
i + ∆) that

‖y(t) − y(t)‖

≥ ‖y(ξi) − y(ξi)‖ −
∥∥∥∥
∫ t

ξi

A(y(s) − y(s))ds
∥∥∥∥

−
∥∥∥∥
∫ t

ξi

[f(s, y(s)) − f(s, y(s))]ds
∥∥∥∥

−
∥∥∥∥
∫ t

ξi

[ϕ(s) − ϕ(s)]ds
∥∥∥∥

> M0 − 2∆[(‖A‖ + Lf )K0 +H0]

>
M0

2
> ε1.

In particular, the inequality ‖y(θj+) − y(θj+)‖ >
M0−2∆[(‖A‖+Lf )K0+H0] is valid. Taking advan-
tage of the relations y(θj+) = (I + B)y(θj) +
W (y(θj)) and y(θj+) = (I + B)y(θj) + W (y(θj)),
we obtain that

‖y(θj) − y(θj)‖ ≥ ‖y(θj+) − y(θj+)‖
1 + ‖B‖ + LW

>
M0 − 2∆[(‖A‖ + Lf )K0 +H0]

1 + ‖B‖ + LW
.

The last inequality implies for t ∈ (ζ1
i , θj] that

‖y(t) − y(t)‖

≥ ‖y(θj) − y(θj)‖ −
∥∥∥∥∥
∫ t

θj

A(y(s) − y(s))ds

∥∥∥∥∥
−
∥∥∥∥∥
∫ t

θj

[f(s, y(s)) − f(s, y(s))]ds

∥∥∥∥∥
−
∥∥∥∥∥
∫ t

θj

[ϕ(s) − ϕ(s)]ds

∥∥∥∥∥
>
M0 − 2∆[(‖A‖ + Lf )K0 +H0]

1 + ‖B‖ + LW

− 2∆[(‖A‖ + Lf )K0 +H0]

=
1

1 + ‖B‖ + LW
[M0 − 2∆(2 + ‖B‖ + LW )

× ((‖A‖ + Lf )K0 +H0)]

≥ M0

2(1 + ‖B‖ + LW )
≥ ε1.

On the other hand, if none of the impulsive
moments belong to (ζ1

i , ζ
1
i + ∆), then for each t

from this interval we have that ‖y(t)− y(t)‖ > M0
2 .

Therefore, in the case of ξi > ζi + τ
2 , the inequality

‖y(t) − y(t)‖ > ε1 holds for all t ∈ (ζ1
i , ζ

1
i + ∆),

regardless of the existence of an impulsive moment
in this interval.

Next, we continue with the case ξi ≤ ζi + τ
2 . If

there exists an impulsive moment θj ∈ (ζ1
i , ζ

1
i +∆),

then it is easy to show for t ∈ (ζ1
i , θj ] that

‖y(t)− y(t)‖>M0 − 2∆[(‖A‖+Lf )K0 +H0]> ε1.

Since ‖y(θj)−y(θj)‖ > M0−2∆[(‖A‖+Lf )K0+H0],
the condition (A9) implies that

‖y(θj+) − y(θj+)‖
≥ ‖(I +B)(y(θj) − y(θj))‖ − LW‖y(θj) − y(θj)‖
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≥ ‖y(θj) − y(θj)‖
‖(I +B)−1‖ − LW‖y(θj) − y(θj)‖

>

(
1 − LW‖(I +B)−1‖

‖(I +B)−1‖
)

× [M0 − 2∆((‖A‖ + Lf )K0 +H0)].

Making use of the last inequality, we attain for all
t ∈ (θj, ζ

1
i + ∆) that

‖y(t) − y(t)‖ ≥ ‖y(θj+) − y(θj+)‖
− 2∆[(‖A‖ + Lf )K0 +H0]

>

(
1 − LW ‖(I +B)−1‖

‖(I +B)−1‖
)

× [M0 − 2∆((‖A‖ + Lf )K0 +H0)]

− 2∆[(‖A‖ + Lf )K0 +H0]

≥ M0

2

(
1 − LW ‖(I +B)−1‖

‖(I +B)−1‖
)
.

Therefore, for all t ∈ (ζ1
i , ζ

1
i + ∆) it is clear that

‖y(t) − y(t)‖ > ε1. Besides, the same inequality
holds even if the interval (ζ1

i , ζ
1
i + ∆) does not con-

tain an impulsive moment.
Now, suppose that there exists an impulsive

moment θl ∈ [ζi, ζi + τ ] such that

sup
t∈[ζi,ζi+τ ]

‖y(t) − y(t)‖ = ‖y(θl+) − y(θl+)‖.

Let us define

ζ1
i =



θl, if θl ≤ ζi +

τ

2

θl − ∆, if θl > ζi +
τ

2

.

In the case that θl > ζi + τ
2 , taking advantage of the

inequality

‖y(θl) − y(θl)‖ ≥ ‖y(θl+) − y(θl+)‖
1 + ‖B‖ + LW

>
M0

1 + ‖B‖ + LW
,

one can verify that

‖y(t) − y(t)‖ ≥ ‖y(θl) − y(θl)‖
− 2∆[(‖A‖ + Lf )K0 +H0]

>
M0

2(1 + ‖B‖ + LW )
≥ ε1,

for all t ∈ (ζ1
i , ζ

1
i + ∆). In a similar way, if θl ≤

ζi + τ
2 , then we have for t ∈ (ζ1

i , ζ
1
i + ∆) that

‖y(t) − y(t)‖ ≥ ‖y(θl+) − y(θl+)‖
− 2∆[(‖A‖ + Lf )K0 +H0]

>
M0

2
> ε1.

Consequently, on each of the intervals J1
i = (ζ1

i ,
ζ1

i + ∆), i ∈ N, the inequality ‖y(t) − y(t)‖ > ε1
holds. Therefore, the couple of functions (φϕ(t),
φϕ(t)) ∈ B×B is frequently (ε1,∆)-separated. �

The main theorem of the present study is as
follows.

Theorem 1. Suppose that the conditions (A1)–
(A9) are valid. If A is a Li–Yorke chaotic set which
possesses an mT -periodic function for each natural
number m, then B is also a Li–Yorke chaotic set.

Proof. By means of conditions (A1)−(A7), one can
confirm that if ϕ(t) ∈ A is mT -periodic for some
natural number m, then φϕ(t) ∈ B is a periodic
function with the same period, and vice versa.

Suppose that the set CA is a scrambled set
inside A , and define the set

CB = {φϕ(t)(t) |ϕ(t) ∈ CA }.
It is easy to verify that there is a one-to-one corre-
spondence between the sets CA and CB. Since the
set CA is uncountable, the same is true for CB.
Moreover, no periodic functions exist inside CB,
since no such functions take place inside the set CA .

Because each pair of functions that belong to
CA × CA is proximal, Lemma 2 implies the same
feature for each pair inside CB × CB. In connec-
tion with Lemma 3, there exist positive numbers
ε1 and ∆ such that each couple of functions from
CB × CB are frequently (ε1,∆)-separated. Hence,
CB is a scrambled set inside B. If we denote by
PA and PB the sets of periodic functions inside A
and B, respectively, then a similar discussion holds
for each pair inside CB×PB, since the same is true
for any pair from the set CA × PA . Consequently,
the collection B is Li–Yorke chaotic. �
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In the next section, we will apply our results to
an impulsive Duffing oscillator.

4. An Example

This part of the paper is devoted to an illustrative
example. In Theorem 1 we have shown that if the
perturbation term ϕ(t) in system (2) belongs to a
collection which is chaotic in the sense of Li–Yorke,
then system (2) exhibits chaotic motions. There-
fore, to actualize our results, we need a source of
Li–Yorke chaotic functions. To construct such a col-
lection, we will consider a Duffing oscillator which is
forced with a relay function [Akhmet, 2009c, 2009d,
2009e; Akhmet & Fen, 2012, 2013]. The switch-
ing moments of the relay function are generated
through the logistic map

Fµ(s) = µs(1 − s), (8)

which is chaotic in the sense of Li–Yorke for the
parameter µ between 3.84 and 4 [Li & Yorke, 1975].
We note that the interval [0, 1] is invariant under the
iterations of the map Fµ(s) if 0 < µ ≤ 4 [Hale &
Koçak, 1991]. An impulsive Duffing oscillator will
be used for the main illustration. Moreover, in the
example, a procedure to control the chaos of the
impulsive system will be presented. In our evalua-
tions, we will make use of the usual Euclidean norm
[Horn & Johnson, 1992].

Example. Consider the forced Duffing oscillator

z′′(t) + 0.6z′(t) + 5z(t) − 0.02z3(t)

= ν(t, t0, µ), (9)

where t ∈ R, t0 belongs to the interval [0, 1] and the
relay function ν(t, t0) is defined as

ν(t, t0, µ) =




0.6, if ζ2j(t0, µ) < t ≤ ζ2j+1(t0, µ),

j ∈ Z,

2.5, if ζ2j−1(t0, µ) < t ≤ ζ2j(t0, µ),

j ∈ Z.

(10)

In Eq. (10), the switching moments ζj(t0, µ), j ∈
Z, are defined through the equation ζj(t0, µ) =
j + κj(t0, µ), where the sequence {κj(t0, µ)},
κ0(t0, µ) = t0, is generated by the logistic map (8),
that is, κj+1(t0, µ) = Fµ(κj(t0, µ)). More informa-
tion about the dynamics of relay systems can be
found in [Akhmet, 2009c, 2009d, 2009e; Akhmet &
Fen, 2012, 2013].

By means of the variables z1 = z and z2 = z′,
Eq. (9) can be reduced to the system

z′1(t) = z2(t),

z′2(t) = −5z1(t) − 0.6z2(t)

+ 0.02z3
1(t) + ν(t, t0, µ).

(11)

According to the results of [Akhmet, 2009d], sys-
tem (11) with the parameter value µ = 3.9 is Li–
Yorke chaotic. Moreover, for each natural number
m, the system admits different unstable periodic
solutions with periods 2m.

In system (11) we set µ = 3.9, and represent in
Fig. 1 the z1- and z2-coordinates of the solution of
the system with z1(t0) = 0.492 and z2(t0) = −0.143,
where t0 = 0.385. It is seen in Fig. 1 that sys-
tem (11) possesses chaotic motions.

The function h(z1, z2) = (z1 + 0.5z3
1, z2) sat-

isfies the inequality (3) with L1 = 1/
√

2 and

0 10 20 30 40 50 60 70
−0.2

0
0.2
0.4
0.6
0.8

t

z 1

0 10 20 30 40 50 60 70

−1

−0.5

0

0.5

1

t

z 2

Fig. 1. The chaotic behavior of system (11) with µ = 3.9. The initial data z1(t0) = 0.492, z2(t0) = −0.143, where t0 = 0.385,
is used in the simulation.
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L2 = 1.96
√

2 on the compact region in which the
chaotic attractor of system (11) with µ = 3.9 takes
place. Therefore, the collection consisting of func-
tions of the form (z1(t) + 0.5z3

1(t), z2(t)), where
(z1(t), z2(t)) is a bounded on R solution of sys-
tem (11), is Li–Yorke chaotic.

Next, we take into account the impulsive Duff-
ing oscillator

x′′(t) + 2x′(t) + 3x(t) + 0.025x3(t)

= 0.2 cos(πt), t �= θk,

∆x|t=θk
= −3

4
x(θk),

∆x′|t=θk
= −3

4
x′(θk) + 0.05(x′(θk))2,

(12)

where t ∈ R and θk = 2k, k ∈ Z. Clearly, θk+p =
θk + T, where p = 1 and T = 2.

Defining the new variables x1 = x and x2 = x′,
one can reduce (12) to the system

x′1(t) = x2(t),

x′2(t) = −3x1(t) − 2x2(t) − 0.025x3
1(t)

+ 0.2 cos(πt), t �= θk,

∆x1|t=θk
= −3

4
x1(θk),

∆x2|t=θk
= −3

4
x2(θk) + 0.05(x2(θk))2.

(13)

Let us demonstrate numerically that the sys-
tem (13) possesses an asymptotically stable peri-
odic solution. Figure 2 shows the graphs of the

x1- and x2-coordinates of system (13). The initial
data x1(1) = −0.019, x2(1) = −0.056 is used in the
simulation. The existence of an asymptotically sta-
ble periodic solution is observable in the figure, and
therefore, one can conclude that system (13) is not
chaotic.

We perturb (13) by the solutions of (11) to set
up the system

y′1(t) = y2(t) + z1(t) + 0.5z3
1(t),

y′2(t) = −3y1(t) − 2y2(t) − 0.025y3
1(t)

+ 0.2 cos(πt) + z2(t), t �= θk,

∆y1|t=θk
= −3

4
y1(θk),

∆y2|t=θk
= −3

4
y2(θk) + 0.05(y2(θk))2.

(14)

System (14) is in the form of (2), where

A =

(
0 1

−3 −2

)
, B =



−3

4
0

0 −3
4


,

f(t, y1, y2) = (0,−0.025y3
1 + 0.2 cos(πt)) and

W (y1, y2) = (0, 0.05y2
2).

The matrices A and B commute, and the matrix

A+
p

T
ln(I +B) =

(
− ln 2 1

−3 −2 − ln 2

)

has eigenvalues λ1,2 = −1 − ln 2 ± i
√

2.

0 5 10 15 20 25 30

−0.04

−0.02

0

0.02

t

x 1

0 5 10 15 20 25 30

−0.05

0

0.05

t

x 2

Fig. 2. The graphs of the x1- and x2-coordinates of system (13).
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Fig. 3. The chaotic behavior of the perturbed impulsive Duffing oscillator (14). The initial data y1(t0) = −0.254,
y2(t0) = 0.297 is used, where t0 = 0.385. The irregular behavior observed in the graphs support our theoretical results.

Let us denote by U(t, s) the transition matrix of the linear homogeneous system

u′1(t) = u2(t), u′2(t) = −3u1(t) − 2u2(t), t �= θk,

∆u1|t=θk
= −3

4
u1(θk), ∆u2|t=θk

= −3
4
u2(θk).

(15)

One can verify that

U(t, s) = e−(t−s)P

(
cos(

√
2(t− s)) − sin(

√
2(t− s))

sin(
√

2(t− s)) cos(
√

2(t− s))

)
P−1(I +B)i([s,t)), t > s,

where i([s, t)) is the number of the terms of the
sequence {θk} that belong to the interval [s, t) and
P =

( 0 1√
2 −1

)
. Making use of the matrix norm

which is induced by the usual Euclidean norm in
R

n [Horn & Johnson, 1992], it is easy to show that
‖U(t, s)‖ ≤ Ne−ω(t−s), t ≥ s, where ω = 1 and
N = 2.415.

The conditions (A4)–(A9) hold for system (14)
with Mf = 0.2183, MW = 0.0845, Lf = 0.0608 and
LW = 0.13. Thus, according to Theorem 1, sys-
tem (14) is Li–Yorke chaotic.

Making use of the initial data y1(t0) = −0.254
and y2(t0) = 0.297, where t0 = 0.385, we illustrate
in Fig. 3 the y1- and y2-coordinates of the solu-
tion of system (14) with the solution (z1(t), z2(t))
of system (11) which is illustrated in Fig. 1. On
the other hand, Fig. 4 depicts the trajectory of the
same solution on the y1–y2 plane. Even if the sys-
tem (13) is not chaotic, the simulation results shown
in Figs. 3 and 4 support our theoretical results such
that a chaotic attractor takes place in the dynamics
of system (14).

Now, we shall present a method to control the
chaos of system (14). This procedure depends on

the idea that to control the chaos of system (14) it
is sufficient to stabilize an unstable periodic solu-
tion of system (11). For this reason, we will apply
the OGY control method for the logistic map [Ott
et al., 1990; Schuster, 1999], since the map gives

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.5

0

0.5

1

y
1

y 2

Fig. 4. The chaotic trajectory of system (14).
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rise to the chaotic behavior in system (11). Let us
explain the method briefly.

Suppose that the parameter µ in the logistic
map (8) is allowed to vary in the range [3.9−ε, 3.9+
ε], where ε is a given small positive number. Con-
sider an arbitrary solution {κj}, κ0 ∈ [0, 1], of the
map and denote by κ(i), i = 1, 2, . . . , p0, the target
unstable p0-periodic orbit to be stabilized. In the
OGY control method [Schuster, 1999], at each iter-
ation step j after the control mechanism is switched
on, we consider the logistic map with the parameter
value µ = µj , where

µj = 3.9

(
1 +

(2κ(i) − 1)(κj − κ(i))
κ(i)(1 − κ(i))

)
, (16)

provided that the number on the right-hand side
of the formula (16) belongs to the interval [3.9 −
ε, 3.9 + ε]. In other words, formula (16) is valid if
the trajectory {κj} is sufficiently close to the tar-
get periodic orbit. Otherwise, we take µj = 3.9,
so that the system evolves at its original parame-
ter value, and wait until the trajectory {κj} enters
in a sufficiently small neighborhood of the periodic
orbit κ(i), i = 1, 2, . . . , p0, such that the inequal-
ity −ε ≤ 3.9 (2κ(i)−1)(κj−κ(i))

κ(i)(1−κ(i))
≤ ε holds. If this

is the case, the control of chaos is not achieved
immediately after switching on the control mech-
anism. Instead, there is a transition time before the
desired periodic orbit is stabilized. The transition
time increases if the number ε decreases [Gonzales-
Miranda, 2004].

To apply the OGY method for controlling the
chaos of system (11), we replace the parameter µ

in system (11) with µj , which is introduced by for-
mula (16), and set up the system

z′1(t) = z2(t),

z′2(t) = −5z1(t) − 0.6z2(t)

+ 0.02z3
1(t) + ν(t, t0, µj).

(17)

System (17) is the control system conjugate to (11).
We consider the solution of system (17) with

z1(t0) = 0.492 and z2(t0) = −0.143, where t0 =
0.385, and apply the OGY control method around
the period-1 orbit, that is the fixed point 2.9/3.9, of
the logistic map F3.9(s). Figure 5 depicts the sim-
ulation results. One can observe in the figure that
a 2-periodic solution of system (17) is stabilized.
The value ε = 0.05 is used. The control mecha-
nism is switched on at t = ζ20 and switched off at
t = ζ40. The control becomes dominant approxi-
mately at t = 37 and its effect lasts approximately
until t = 93, after which the instability becomes
dominant and irregular behavior develops again.

In the next simulation, we demonstrate that the
chaos of system (14) can be controlled by stabiliz-
ing an unstable periodic solution of system (11). We
consider system (14) with the solution (z1(t), z2(t))
of system (17) which is illustrated in Fig. 5, and
simulate in Fig. 6 the solution (y1(t), y2(t)) of sys-
tem (14) with y1(t0) = −0.254 and y2(t0) = 0.297,
where t0 = 0.385. It is seen in Fig. 6 that a 2-
periodic solution of the system is stabilized. The
moments where the control is switched on and
switched off and the period of time in which the
stabilization becomes dominant are the same with
the results presented in Fig. 5. The simulations seen

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

t

z 1

0 20 40 60 80 100 120

−1

−0.5

0

0.5

1

t

z 2

Fig. 5. Chaos control of system (11) by means of the corresponding control system (17). In the simulation, the value ε = 0.05
is used. The control is switched on at t = ζ20 and switched off at t = ζ40. It is seen in the figure that an unstable 2-periodic
solution of system (11) is stabilized.
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Fig. 6. Chaos control of the perturbed impulsive Duffing oscillator (14). To control the chaos of this system, the OGY control
method is applied to system (11), which gives rise to the presence of chaos in (14).

in Fig. 6 confirm that to control the chaos of sys-
tem (14) it is sufficient to stabilize an unstable
periodic solution of system (11).

5. Conclusions

In this article, we present a technique to obtain
chaotic impulsive systems with the aid of chaotic
perturbations. Chaotic collections of piecewise con-
tinuous functions are introduced based on the Li–
Yorke definition of chaos. Our results are useful for
generating multidimensional discontinuous chaos,
especially if one requires a rigorous proof for the
phenomenon.

We applied our method to an impulsive Duff-
ing oscillator to show the feasibility. According to
their instability, the existing periodic solutions of
system (2) are invisible in the simulations. A peri-
odic solution of the perturbed impulsive Duffing
oscillator is illustrated by means of the OGY con-
trol method [Ott et al., 1990] applied to the logis-
tic map. Other control procedures, such as the
Pyragas method [Pyragas, 1992], can also be used
for this purpose. The results of the present study
are convenient for construction and stabilization
of chaotic mechanical systems and electrical cir-
cuits with impulses. Moreover, our approach can be
applied to other types of chaos such as the one ana-
lyzed through period-doubling cascade [Sander &
Yorke, 2011].
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