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Multipole moments of heavy vector and axial-vector mesons in QCD
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The magnetic and quadrupole moments of the vector and axial-vector mesons containing a heavy quark
are estimated within the light-cone sum rules method. Our predictions on magnetic moments for the vector
mesons are compared with the results obtained by other approaches.
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I. INTRODUCTION

A study of the electromagnetic properties of hadrons
plays a crucial role in understanding their inner structure.
The magnetic moments are one of the fundamental char-
acteristics of hadrons. The magnetic moments of hadrons
are related to their magnetic form factors; more precisely,
the magnetic moment is equal to the magnetic form factor
at zero momentum square. The magnetic moments of
mesons have not received much interest compared to
baryons except the p meson, which has been intensively
studied in the literature within different approaches [1-11].
The magnetic moments of K* mesons have also been
investigated in several works [1-3,5,6,9,10]. On the other
hand, the magnetic moments of heavy mesons have been
calculated only in a few works [10,12,13]. In the face of this
situation, it is timely to study the magnetic moments of
heavy vector and axial-vector mesons. It is challenging to
measure the magnetic moments of vector mesons directly,
since their lifetimes are very short. Even though indirect
measurement is possible [14], it has a large uncertainty. It
should be noted that with the help of the magnetic dipole
transitions M1, for which there exist many experimental
data, it is possible to determine the transition magnetic
moments of heavy mesons. There are lots of theoretical
works, such as the quark model [15,16], nonrelativistic
QCD [17], the quark potential model [18-21], various
relativistic models, the bag model [22-24], the light front
model [25-27], the Bethe-Salpeter equation [28,29], QCD
sum rules [30-38], lattice QCD [39,40], the chiral model
[41-45], the Nambu-Jona-Lasinio model, the dispersion
approach, etc., devoted to this subject.
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In the present work, we calculate the magnetic moments
of heavy vector and axial-vector mesons within light-
cone QCD sum rules (LCSR) [46]. The calculation of the
multipole moments for axial-vector mesons is performed
for the first time.

The paper is organized as follows. In Sec. II, we
construct the LCSR for multipole moments of heavy vector
and axial-vector mesons. The following section is devoted
to the numerical analysis of the sum rules for the multipole
moments of heavy vector and axial-vector mesons. In this
section, the obtained results are also compared with
predictions of other approaches in the literature. The last
section contains a summary and discussions.

II. LIGHT-CONE SUM RULES FOR
MULTIPOLE MOMENTS

The LCSR for multipole moments of vector (axial-
vector) heavy mesons can be obtained by considering
the following correlation function:

e =2 [ b [ e O[T () ) (0))10)
(1)

where J#(x) = g%(x)y,Q%(x) is the interpolating current
with the quantum numbers of a heavy vector meson and a is
the color index. The interpolating current for axial-vector
mesons can be obtained from J#(x) with the simple replace-
ment y# — y*y°. The current j%(y) = e,q7"q + eoQr*Q is
the electromagnetic current, and e, and ep are the electric
charges of the light and heavy mesons, respectively.

The general strategy of QCD sum rules is that the
correlation function has to be calculated in different
kinematical domains. In one domain, it is saturated by
the corresponding heavy vector (axial-vector) mesons, i.e.,

P’ m%,g (mﬁg) (hadronic part). In the other domain, where

p* <0, (p+q)* <0, the calculation is performed by
using the operator product expansion (OPE) in terms of the
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photon distribution amplitudes (DAs) with an increasing
twist. Matching the results of these representations, one can
get the desired sum rules for the relevant physical
quantities.

|

(O uli(P)) i(P) el (LF (P DL (P)INO) + -

The hadronic part of the correlation function can be
obtained by inserting a complete set of states carrying the
same quantum numbers of the interpolating currents.
Isolating the ground state vector mesons, we have

H;wa(pv CI) = 2

(p

The matrix element (0|/,|i(p)) in Eq. (2) is defined as

O,li(p)) = fimiey, (3)

where f; is the leptonic decay constant of the corre-
sponding heavy vector mesons and ¢, is its polarization
|

—m;)(p” —m7)

(2)

2

|
vector. Using the parity and time-reversal invariance
of the electromagnetic interaction, the matrix element
of the electromagnetic current between two vector (axial-
vector) mesons is described in terms of three form
factors as [47]

G;(0%)

(Fp ejelli(p.en) = (e (e") {G1 (0%)9p(P" + P)a+ Ga(Q*)dpGap = dpIap) + =5 4pdp(P + p’)a}, 4)

where G; are the form factors and Q> = —g?. The form
factors G,;(Q?) are related to the charge, magnetic,
and quadrupole multipole form factors in the following
way [47]:

F(0?) = G(0?) + 3nF (€Y.
Fu(Q?) = 6:(07),
Fp(0?) = G(0%) = Gul @) + (14 m)G(Q2). (5)

where n = Q?/4m? and F(Q?), F;(Q?), and F),(Q?) are
the charge, magnetic, and quadrupole form factors, respec-
tively. The value of F.(Q?), F),(Q?), and F,(Q?) at the
Q? = —¢* = 0 point gives the charge, magnetic moment y,
and quadrupole moment D of the vector (axial-vector)
mesons.

Substituting Eqgs. (3)-(5) into Eq. (2) and performing a
summation over the spins of vector mesons for the hadronic
part of the correlation function, we get

a
€y

(m7 = p*)(m; = (p + q)?)

PuPv Pudy
X {2FC(O)pa <g/4v - :nz - #2 >

i mj

a _ 2.2
Hﬂauey _fimi

p
+ FM(O) |:Qﬂgua ~ 990 — m_(z (puqv - pyqlt>:|

- [P0+ Fo(0) %5 0.0, )

where €, is the photon polarization vector. To derive this
expression, the transversality condition ge = 0 is used.

Now let us turn our attention to the calculation of Eq. (1)
from the OPE side. By introducing the electromagnetic
background field of a plane wave,

Fm/ = i(ezqu - e;qy)eiqx’ (7)

the correlation function can be written in the following
way:

et = i / e O[T{7, ()5 (0)}[0)y.  (8)

In this expression, the subscript /' means that the vacuum
expectation value is evaluated in the presence of the
background field F,,. The correlation function given in
Eq. (1) can be obtained from Eq. (8) by expanding it in
linear powers of F,,. More details about the background
field method are given in two excellent reviews [48,49].

Using the explicit expressions of the interpolating
currents and applying the Wick theorem for the correlation
function, we obtain

e = i / dxe (018 ()7, S(—x)7 0. (9)

From this expression, it follows that, to calculate the
correlation function in the deep Euclidean domain, it is
necessary to know the explicit expressions of the light and
heavy quark propagators in the presence of the background
gluonic and electromagnetic fields. The expressions of
these propagators are obtained in Refs. [50,51]:
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where 1 =1 —u, A =(0.540.1) GeV [52] is the scale
parameter separating the perturbative and nonperturbative
domains, and yz = 0.577 is the Euler constant. Note that
the four quark particle §ggq and gG*q operator contribu-
tions are small and are not presented in Eq. (10) [50,53].

In light-cone sum rules, the nonperturbative contribution
appears when a photon is emitted at long distances. To
obtain these contributions, it is necessary to expand the
quark propagator near the light cone x> = 0. In this case,
the following matrix elements of nonlocal operators in the
presence of the external background field need to be
evaluated:

(01g(x)r'q(0)|0) £,
(01g(x)T'Gpq(0)[0) £,
(01(x)T'F,.,4(0)[0) £, (12)

where I' is arbitrary Dirac matrices. These matrix elements
are described by photon distribution amplitudes, which were
determined in Ref. [49] and are presented in Appendix A for
completeness.

From Eq. (6), it follows that we have numerous struc-
tures which can be used to calculate the magnetic and
quadrupole moments of heavy vector (axial-vector) mes-
ons. We adopt the structures (pe)p,p, and (pe)p,q, to
determine F.(0), Fy,(0), and F.(0) + Fp(0). The choice
of these structures is dictated by the fact that they contain
the maximal number of momenta, which exhibits good
convergence, in general. The theoretical part of the corre-
lation function can be obtained from Eq. (9) by substituting
the explicit expressions of the heavy and light quark
propagators and the photon DAs. Performing an integration
over x, the expression of the correlation function in the
momentum representation can be obtained. Matching
these two expressions of the correlation function via the
dispersion relation and performing doubly Borel trans-
formations on —p? and —(p + ¢)? in order to suppress the
contributions of higher states and continuum, we get the
desired sum rules for the multipole form factors. Note that
the higher state contributions are taken into account by
using the quark-hadron duality ansatz.

1
2 A du{axaaﬂ + Maa/if} Ga/j(ux)

—ie 1 B "
vty [ duwto + umpt) P

272

im ) x°A
T;Fﬂ,,(ux)aﬂ In <—T+2y5> }, (10)

ux, .
P G /’(ux)y/;}

Ga/} a/ +
m

(ux)6,p + (11)

UXy
Fa/i ,
sz — k2 Tp }

|
In result, we get the following sum rules for the charge

F.(0), magnetic moment F';(0), and the sum of charge and

quadrupole moment form factors at the Q* = 0 point:

1 epep@)
Fel0) = =5 mem/M,
1
FM(O) — _]Tzemf/MZHgi‘)’
1
F.(0) + Fp(0) = —]Tzem?/Mzngi). (13)

(+)

Explicit expressions of H(li), Hgi), and II5™ are presented
in Appendix B. The upper (lower) sign corresponds to
vector (axial-vector) mesons. Moreover, we denote D; and
Dy, axial-vector mesons with mass 2420 and 2460 MeV,
respectively.

III. NUMERICAL ANALYSIS

This section is devoted to the numerical analysis of the
sum rules for the multipole moments of the heavy vector
(axial-vector) mesons. The values of the input parameters
entering the sum rules are presented in Table L. In this study,
we use the MS mass, m.(m.) = (1.275 + 0.035 GeV),
my,(m;) = (4.18 £0.03 GeV), and take into account the
scale dependence of the MS masses coming from the
renormalization group equation:

my () = my,(my) (;(82)) o/
me(p) = mc(mc)< a (1) )12/25.

as(m)

(14)

Besides the input parameters that are presented in Table I,
sum rules contain two more extra parameters, namely,
the continuum threshold s, and the Borel mass parameter
M?. The domain of M? is determined by demanding the
standard criteria; namely, both power corrections and
continuum contributions should be sufficiently suppressed.
The continuum threshold is determined from the condition
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TABLE 1. The values of the input parameters.

(gq)(1 GeV) (—0.246700%8)3 GeV? [54]
(5s)(1 GeV) 0.8 x (gq) [54]
m} (0.8 +£0.2) GeV? [55]

my(2 GeV) 9618 x 107%) GeV [56]
fpr 0.263 +0.021) GeV [57]
o 0.308 4 0.021) GeV [57]

(

(

; (

IB (0.19675:92%) GeV [57]
IB: (0.255 £0.019) GeV [57]
I, (0.332 £ 0.018) GeV [57]
ey (0.245 £ 0.017) GeV [57]
Is, (0.335 £ 0.018) GeV [57]
I, (0.348 £ 0.018) GeV [57]

(1 GeV) —(2.85+£0.5) GeV~2 [48]
Y —0.0039 GeV~2 [49]
TABLE II. Working region of M? and s, parameters are shown.
Mesons M? (GeV?) s (GeV?)
B* 11+3) (35+1)
B} (12 +3) (B7+1)
B, (13 +2) 42+1)
B (14 £3) “43+1)
D* “4.5+1.5) (6.5£0.5)
D; “4.5+1.5) (7.5£0.5)
D, 5+2) (8.5+£0.5)
Dy 5+£2) 9.5+0.5)

that the sum rules should reproduce the mass of the ground
state mass with 10% accuracy. These conditions are ful-
filled in the regions of M? and s, presented in Table II.
Having specified all input parameters, we are ready to
calculate the numerical values of the magnetic and quadru-
pole moments, i.e., corresponding form factors at the g =
0 point of all considered vector and axial-vector mesons.

In Figs. 1 and 2, we presented the dependency of F' f,,“
and FB" on M? at two fixed values of the continuum
threshold, respectively, for illustration. From these figures,
we observe good stability of F,~ and F% to the variation
of M?. In Fig. 3, we depict the dependence of F2™~ + FD™
on M? at two fixed values of s,. Similar to the magnetic
momentum case Fy;(0), the F2™" 4+ FB" shows a weak
dependency on the variation of M?. Performing similar
calculations for all vector and axial-vector mesons consid-
ered, we get the values of F;(0) and Fp(0) presented in
Tables III and 1V, respectively.

The uncertainties result from the variation of Borel
parameter M? and continuum threshold s, as well as
from uncertainties in input parameters. All uncertainties

3 T T T T
25 =
2 AORK -
(ID-LE '1 5 -
1 g
—— 5,=6.5GeV* ]
0.5 —— 5,=7.0GeV? ]
O 1 1 1 1
2 2.2 2.4 2.6 2.8 3

M? (GeV?)

FIG. 1. The dependency of the magnetic moment of the D**
meson on M? at two fixed values of s,.

are taken quadratically. Moreover, for completeness, in
Table III, we also present the predictions on the magnetic
moment obtained from the nonrelativistic (NR) quark
model [54], Nambu-Jona-Lasinio (NJL) model [10], bag
model [12], expanded bag model [58], and chiral pertur-
bation theory (ChPT) [59].

We see that the values of the magnetic moments of D**
and D*" predicted by the light-cone sum rules framework
are in good agreement with the other approaches. Once the

—¥— ;=37 GeV?

—o— ;=38 GeV?

O 1 1 1
6 6.5 7 7.5 8

M? (GeV?)

FIG. 2. The same as in Fig. 1, but for the B** meson.

0.6¢ : : : : .
0.5 .
+ 04
[a)a]
L
++ 0.3 .
oo
- 02 ]
—#—s,=6.5GeV’ ]
0.1 —e—sD=7.OGeV2_:
03 22 24 26 28 3
M? (GeV?)
FIG. 3. The dependency of F2™ + F5™ on M? for the D**

meson.
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TABLE III. Magnetic moments (in nuclear magneton) of heavy vector and axial-vector mesons.
Particle Our NJL [10] NR [56] Bag [12] Extended-bag [58] ChPT [59]
D (0.30 £ 0.04) e —1.47 -0.89 -1.28 1487022
D*+ (1.16 £ 0.08) 1.16 1.32 1.17 1.13 1.627 008
D? (1.00 £ 0.14) 0.98 1.00 1.03 0.93 0.69f§;§é
B*T (0.90 £ 0.19) 1.47 1.92 1.54 1.56 L7755
B —(0.21 £0.04) e —0.87 —0.64 —0.69 -0.92:91
B; —(0.17 £ 0.02) —-0.55 -0.47 -0.51 _0,27j8_~l‘8
DY (0.18 £ 0.04) e
DY (0.90 £+ 0.08)
Dy, (0.87 £ 0.08)
BY (0.14 +£0.08)
Bf (0.60 +£0.07)
By (0.13 +£0.09)

(eg —e,)A + epB, (15)

TABLE 1V. The quadrupole moments of heavy vector and
axial-vector mesons are depicted in natural units.

Fp (in e/m? unit)

D*° (0.25 +0.05)
D** —(0.64 +0.02)
D; —(0.60 £ 0.02)
B*t —(0.80 £ 0.10)
B —(0.20 +0.03)
B —(0.17 £0.03)
DY (0.18 £ 0.02)
Dy —(0.60 +0.02)
Dy, —(0.59 +£0.02)
BY —(0.12 4+ 0.02)
BT —(0.78 £0.02)
By, —(0.10 £ 0.02)

uncertainties are taken into account, our result on the B:°
magnetic moment is compatible with the prediction of the
chiral perturbation theory.

SU(3) symmetry dictates that the magnetic moments of
D**, D, B, BY, Dy, Df, BY, and B% should be very
close to each other. Our predictions for the magnetic
moments of these mesons are in good agreement within
SU(3) symmetry expectations. The violation of SU(3)
symmetry is about maximum 20%. The violation of SU(3)
symmetry is due to the mass of the strange quark and the
different values of quark condensates for u, d, and s quarks
as well as the values of the leptonic decay constants.
However, predictions of the chiral perturbation theory [59]
lead to a huge (4 times) violation of SU(3) symmetry
which seems highly unnatural.

The difference between our predictions and the other
approaches on the magnetic moments can be explained as
follows. The main contribution to the magnetic moments in
light-cone sum rules results from the perturbative part of
the spectral density. The perturbative part schematically can
be written as

where numerically A is larger than B. In the charged meson
case, eg — e, is equal to one, and for this reason the
magnetic moment is quite large. However, for the neutral
meson case, ¢y — ¢, = 0, and, hence, the magnetic moment
is rather small. Our last remark to this section is as follows.
To increase the precision of our calculations, the next-to-
leading-order (NLO) QCD corrections to the correlation
functions should be taken into account. In addition, the same
order of NLO corrections should be included for the
calculation of the leptonic decay constants. However, since
the expressions for considered multipole moments depend
on the ratio of these two factors, it is expected that our
findings may not be changed considerably.

Finally, we emphasize that the magnetic moments of
axial-vector heavy mesons are calculated for the first time to
our knowledge. It would be interesting to have results within
other approaches for the magnetic moments of these mesons.

IV. CONCLUSION

The magnetic and quadrupole moments of vector and
axial-vector mesons containing a heavy quark are estimated
within the light-cone QCD sum rules framework by using
photon distribution amplitudes. The magnetic moments
of axial-vector mesons are estimated for the first time.
Moreover, we compared our predictions on magnetic
moments with the results obtained from other approaches.
Our findings agree with the results of other methods for D**
and D mesons. Besides, our predictions for the magnetic
moments of D**, Df, B*9, BY, D, DY, BY, and B, mesons
are consistent with SU(3) symmetry expectations. However,
the chiral perturbation theory predicts huge SU(3) symmetry
breaking (about 4 times), which is bizarre. The calculation of
these magnetic moments for the axial-vector mesons within
other approaches can be very useful for understanding the
inner structure of heavy mesons.
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APPENDIX A: PHOTON DISTRIBUTION AMPLITUDES

In this Appendix, we present the matrix element of nonlocal operators in terms of photon DAs and their explicit
expressions:

X2
(r(9)14(x)0,,4(0)0) = —ie(aq)(€.q, — €,4,) Al due'™* (Wy(u) + —A(u)>

i X ex 1 .
- 7 _ ) — _ - igx
2(qx) “a{d4) [x” <€” o qx) ” (8” o qx)] A due™hy(w)
_ ex Vo e
@ 00) = ety (5= 0,55 ) [ auetsry o
1 1 -
HIaWr50)10) = = eaf e’ as® [ duey(u),
(r(9)|a(x)g,G,., (vx)4(0)[0) = ~ie,(qq)(e.q, — €,9,) / Dae' )9S (a),
<}/(q)|Z](x)gséﬂyly5(vx)q(0) |0> = _ieq<qq> (Sﬂqv - 81/%4) / Daiei(a,—ﬁrvag)qu'(ai)’
<y(Q)|Zl(x)gséyv(vx)7a7/5('I(O)|0> = equyQa(g;t(’Iy - €I/Qﬂ) / ’Daiei(a,-,-&-vay)qu(ai)’
<)/(q)|Z](x)gSGW(vx)iyaq(0) |0> = equyqa(eyQu - EvQﬂ) / fDal_ei(aq-&-vag)qu(ai)’
<y(Q) m(x)aaﬁgsG;w(Ux)Q(o)|O>
B £x 1 ex 1
=€y <QQ> Eu— Q;ta Jav _a (anu + QL/xa) qp—\ €u— Qua 9pu _a (qﬁxv + QDX/J) 9da
1 &x 1 i(az+va,)gx
Gop — qx (qaxﬂ + (’Iyxa) qp +le— qua 9pu _a (Qﬁxﬂ + (’Iyxﬂ) da Daie 7 i Tl (ai)
1 £X 1
Gup — gx (qu/} + qﬂxﬂ) qdv—\ €a— qaa Gup _5(611/)(/} + Qﬁxb) qu

1 ex 1 .
Ep—dp _) (g/m - q_ (LIﬂxa + q(l'x[l)) q,+ (gﬂ —dp q_) (gz/a - a (QUxa + qaxv)> Qy:| /Daiel(%-’—v%)q)(?}(ai)

1
qx

+

1 [ a,)gx
(Qy —q,x )( €adp—€p9a /Dae agtvay) qu ( ) gx (qaxﬁ_qﬂxa)(8MQD_quﬂ)/Daielqurwg)q T4(ai)}’

where y is the magnetic susceptibility of the quarks, ¢,(u) is the leading twist 2, w"(u), w“(u), A, and V are the
twist 3, and hy(u), A,and 7; (i =1, 2, 3, 4) are the twist 4 photon distribution amplitudes. The integral measure Da; is

defined as
1 1 1
Da; :/0 dag/o daq/o dog 6(1 —ay —a, — ay). (A1)

The expressions of the photon DAs which we need in our calculations are [49]

@, () = 6uit[l + ¢y (u)C5* (u — )],

w'(u) = 3[32u—1)2 = 1] +%(15wy —5w)[3 = 30(2u — 1)2 +35(2u — 1)*],

) = 1= u= 17017 - 03 (1 ot - ).
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TABLE V. The values of the constant parameters entering into the distribution amplitudes at the renormalization scale y = 1 GeV.

»2 K Kt & & & & f3, (GeV?) wy Wl
0.0 0.2 0.0 0.4 0.0 0.3 0.0 (—4.0 £2.0) x 1073 (3.8 +1.8) (=2.1+1.0)

A(a;) = 360a,a;0% |1 +wi = (Ta, —3) |,

1

)

V(a;) = 540wy (a, — ag)a,aza;,

h,(u) = =10(1 + 2K‘+)C *(u— i),

A(u) = 40ui® 3k — k™ + 1) + 8(&5 — 3&,) [uit(2 + 13uit) + 2u®(10 — 15u + 6u?) In(u)
+ 23 (10 — 15@ + 6i?) In(i@1)],

T (o) = —=120(38, + &3 ) (ag — a,)aga,ay,
To(a;) = 30a(az — ap)[(k = &) + (£ = £F) (1 = 2ay) + £5(3 — 4ay)],
T5(a;) = =120(38, = &5 ) (a7 — ag)aza,aq,
Ty(a;) = 30ag(az — ap)[(k +x7) + (& + ¢ = 2a,) + (3 - 4a,)),
S(ai) = 30ag{(x + &) (1 —ay) + (&1 + )1 — ) (1 = 20,) + &[3(ag — @) — (1 —ay)]},
S(a;) = =300 {(k = k") (1 = &) + (&1 = &)1 = ap)(1 = 2a,) + $[3(a5 — @) = a (1 = a))]}. (A2)

where C7! is the Gegenbauer polynomial. The constants entering the above DAs are adapted from Ref. [49], and their values
are given in Table V.

APPENDIX B: EXPLICIT EXPRESSIONS OF THE INVARIANT FUNCTIONS

In this Appendix, we present the explicit expressions of the invariant functions H(li), Héi), and Hgi>.

1. Coefficient of the (¢ -p)p,p, structure

1 —mi/M2

e
Y = — 5 [3(eq — e, ) myMA(T5 — m3T,)) -

- mZ 2
S 8 eqm, (@q) + e e (GG YmbT)]

>~]

e—mi/M2 e—mi/M2

WeQm%mq<EIQ> +W6Qm%m2qu<ZIQ>' (B1)

2. Coefficient of the (¢ p)p,q, structure

H(zi> = —4i7[2m2QM2[eQIZ + (eg — 3eq)m2QI3 —2(eg - eq)m‘éL;]
Py /M
96ﬂ2M2[ (GG?) + 14degmyr*(qq) +2e" /™ e (GG )my L] & — —[2emo (4q)a(h))]
oM Y.
g Comim(@4) + e

+ e, (7 G?)[£12(qq) ja(hy) + f3,mo(4]1 (w") +y (o))}
em/M? - e~my/M ~
36M8 eq <g?G2>m3Q<ZICI>J2<h}/) - T eqf3y [4Jl (l//v) + l//a(MO)]' (B2)

mQ{36eQm(2)QOq<51q>

:F
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3. Coefficient of the (¢ p)q,q, structure

1 —mb/M2
My = — 5 Bleg = e mpM*(Ts = mhT)] = e (48eqm,(4q) + "M e (GG T
£ 384e,mon*(qq)[iy(T1,1) +i7(T5, 1) = iy (T35, 1) = iy (T4, 1]}
e—mi/M2 5 B e—mz/M2 B 5 o )
+W6Qm0mq<QQ>+ 36M° {mgBegmymy(qq) + e,f3,(5:G*)ji (w")]}
+ &M e, 5, 200V, v) + i5(A 1) = iy(V. 1) = T ()]}, (B3)
where
T, = / K dse_S/M
/Da/ dvg(ag. ay, a,)f(v)0(k — u),
) :/Dai/ dvp(ag, ay. a,)f(v)6(k — uy),
(. f(v /Da/ dvg(ag. ay. a,)f(v)0(k" — uy),
4 f0) = [ Day [ dvglag.ay.a) f(0)50K = ),
() = [ dus),
~ 01
Ja(r(w) = [ dutu= ) (w)
and 2102 2
MM M
k=a, + ayv, K =a,+a,(1-v), Mzzm, uozm.

In calculations, we take M7 =

M3, since the initial and final state mesons are the same; hence, uy = 1

2

[1] T.M. Aliev, A. Ozpineci, and M. Savci, Phys. Lett. B 678,
470 (2009).

[2] E X. Lee, S. Moerschbacher, and W. Wilcox, Phys. Rev. D
78, 094502 (2008).

[3] J.N. Hedditch, W. Kamleh, B. G. Lasscock, D. B. Leinweber,
A. G. Williams, and J. M. Zanotti, Phys. Rev. D 75, 094504
(2007).

[4] A. Samsonov, J. High Energy Phys. 02 (2003) 061.

[5] A.M. Badalian and Y. A. Simonov, Phys. Rev. D 87,
074012 (2013).

[6] M.S. Bhagwat and P. Maris, Phys. Rev. C 77, 025203
(2008).

[7] B. L. Bakker, H.-M. Choi, and C.-R. Ji, Phys. Rev. D 65,
116001 (2002).

[8] H.-M. Choi and C.-R. Ji, Phys. Rev. D 70, 053015 (2004).
[9] E. T. Hawes and M. A. Pichowsky, Phys. Rev. C 59, 1743
(1999).
[10] Y.-L. Luan, X.-L. Chen, and W.-Z. Deng, Chin. Phys. C 39,
113103 (2015).
[11] D. Djukanovic, E. Epelbaum, J. Gegelia, and U. G. Meifner,
Phys. Lett. B 730, 115 (2014).
[12] S.K. Bose and L. P. Singh, Phys. Rev. D 22, 773 (1980).
[13] T. A. Lihde, Nucl. Phys. A714, 183 (2003).
[14] G. Toledo Sanchez and D. Garcia Gudifio, Int. J. Mod. Phys.
Conf. Ser. 35, 1460463 (2014).
[15] P. Colangelo, F. De Fazio, and G. Nardulli, Phys. Lett. B
316, 555 (1993).
[16] W. Jaus, Phys. Rev. D 53, 1349 (1996).

054009-8


https://doi.org/10.1016/j.physletb.2009.06.073
https://doi.org/10.1016/j.physletb.2009.06.073
https://doi.org/10.1103/PhysRevD.78.094502
https://doi.org/10.1103/PhysRevD.78.094502
https://doi.org/10.1103/PhysRevD.75.094504
https://doi.org/10.1103/PhysRevD.75.094504
https://doi.org/10.1088/1126-6708/2003/12/061
https://doi.org/10.1103/PhysRevD.87.074012
https://doi.org/10.1103/PhysRevD.87.074012
https://doi.org/10.1103/PhysRevC.77.025203
https://doi.org/10.1103/PhysRevC.77.025203
https://doi.org/10.1103/PhysRevD.65.116001
https://doi.org/10.1103/PhysRevD.65.116001
https://doi.org/10.1103/PhysRevD.70.053015
https://doi.org/10.1103/PhysRevC.59.1743
https://doi.org/10.1103/PhysRevC.59.1743
https://doi.org/10.1088/1674-1137/39/11/113103
https://doi.org/10.1088/1674-1137/39/11/113103
https://doi.org/10.1016/j.physletb.2014.01.001
https://doi.org/10.1103/PhysRevD.22.773
https://doi.org/10.1016/S0375-9474(02)01362-3
https://doi.org/10.1142/S2010194514604633
https://doi.org/10.1142/S2010194514604633
https://doi.org/10.1016/0370-2693(93)91043-M
https://doi.org/10.1016/0370-2693(93)91043-M
https://doi.org/10.1103/PhysRevD.53.1349

MULTIPOLE MOMENTS OF HEAVY VECTOR AND ...

PHYS. REV. D 101, 054009 (2020)

[17] N. Brambilla, Y. Jia, and A. Vairo, Phys. Rev. D 73, 054005
(20006).

[18] S.S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. V.
Tkabladze, Phys. Rev. D 51, 3613 (1995).

[19] L. P. Fulcher, Phys. Rev. D 60, 074006 (1999).

[20] T. Barnes, S. Godfrey, and E. S. Swanson, Phys. Rev. D 72,
054026 (2005).

[21] O. Lakhina and E.S. Swanson, Phys. Lett. B 650, 159
(2007).

[22] W. Wilcox, O. V. Maxwell, and K. A. Milton, Phys. Rev. D
31, 1081 (1985).

[23] Y.S. Zhong, T. S. Cheng, and A. W. Thomas, Nucl. Phys.
AS559, 579 (1993).

[24] A. Hiorth Orsland and H. Hogaasen, Eur. Phys. J. C 9, 503
(1999).

[25] P.J. O’Donnell and Q. P. Xu, Phys. Lett. B 336, 113 (1994).

[26] F. Cardarelli, I. L. Grach, I. M. Narodetskii, G. Salmé, and
S. Simula, Phys. Lett. B 359, 1 (1995).

[27] H.-M. Choi, Phys. Rev. D 75, 073016 (2007).

[28] M. Koll, R. Ricken, D. Merten, B. C. Metsch, and H. R.
Petry, Eur. Phys. J. A 9, 73 (2000).

[29] T. A. Ldhde, C.J. Nyfilt, and D.O. Riska, Nucl. Phys.
A674, 141 (2000).

[30] A.Y. Khodjamirian, Phys. Lett. B 90, 460 (1980).

[31] H.G. Dosch and S. Narison, Phys. Lett. B 368, 163
(1996).

[32] T. M. Aliev, E. Iltan, and N. K. Pak, Phys. Lett. B 334, 169
(1994).

[33] T. M. Aliev, D. A. Demir, E. Iltan, and N. K. Pak, Phys. Rev.
D 54, 857 (1996).

[34] M. A. Shifman, Z. Phys. C 4, 345 (1980).

[35] T.M. Aliyev, Z. Phys. C 26, 275 (1984).

[36] V. A. Beilin and A. V. Radyushkin, Nucl. Phys. B260, 61
(1985).

[37] T. M. Aliev, E. Iltan, and N. K. Pak, Phys. Lett. B 329, 123
(1994).

[38] P. Colangelo, F. De Fazio, and A. Ozpineci, Phys. Rev. D
72, 074004 (2005).

[39] D. Betirevi¢ and B. Haas, Eur. Phys. J. C 71, 1734 (2011).

[40] G. C. Donald, C. T. H. Davies, R. J. Dowdall, E. Follana, K.
Hornbostel, J. Koponen, G.P. Lepage, and C. McNeile,
Phys. Rev. D 86, 094501 (2012).

[41] P. Cho and H. Georgi, Phys. Lett. B 296, 408 (1992).

[42] J.F. Amundson, C.G. Boyd, E. Jenkins, M. Luke, A. V.
Manohar, J. L. Rosner, M. J. Savage, and M. B. Wise, Phys.
Lett. B 296, 415 (1992).

[43] W. A. Bardeen, E.J. Eichten, and C. T. Hill, Phys. Rev. D
68, 054024 (2003).

[44] A. Hiorth and J. O. Eeg, Eur. Phys. J. C 39, 27 (2005).

[45] Y.-H. Chen, Z.-H. Guo, and B.-S. Zou, Phys. Rev. D 91,
014010 (2015).

[46] V.M. Braun, in Proceedings of the 4th International
Workshop on Progress in Heavy Quark Physics, Rostock,
Germany (1997), pp. 105118, https://labs.inspirehep.net/
literature/452985.

[47] S.J. Brodsky and J.R. Hiller, Phys. Rev. D 46, 2141
(1992).

[48] J. Rohrwild, J. High Energy Phys. 09 (2007) 073.

[49] P. Ball, V. M. Braun, and N. Kivel, Nucl. Phys. B649, 263
(2003).

[50] L. Balitsky and V. Braun, Nucl. Phys. B311, 541 (1989).

[51] V.M. Belyaev, V.M. Braun, A. Khodjamirian, and R.
Riickl, Phys. Rev. D 51, 6177 (1995).

[52] K. G. Chetyrkin, A. Khodjamirian, and A. A. Pivovarov,
Phys. Lett. B 661, 250 (2008).

[53] V.M. Braun and I. E. Filyanov, Z. Phys. C 48, 239 (1990);
Yad. Fiz. 52, 199 (1990) [Sov. J. Nucl. Phys. 52, 126
(1990)].

[54] A. Khodjamirian, C. Klein, T. Mannel, and N. Offen, Phys.
Rev. D 80, 114005 (2009).

[55] V.M. Belyaev and B. L. Ioffe, Zh. Eksp. Teor. Fiz. 83, 876
(1982) [Sov. Phys. JETP 56, 493 (1982)].

[56] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,
030001 (2018).

[57] Z.-G. Wang, Eur. Phys. J. C 75, 427 (2015).

[58] V. Simonis, Eur. Phys. J. A 52, 90 (2016).

[59] B. Wang, B. Yang, L. Meng, and S.-L. Zhu, Phys. Rev. D
100, 016019 (2019).

054009-9


https://doi.org/10.1103/PhysRevD.73.054005
https://doi.org/10.1103/PhysRevD.73.054005
https://doi.org/10.1103/PhysRevD.51.3613
https://doi.org/10.1103/PhysRevD.60.074006
https://doi.org/10.1103/PhysRevD.72.054026
https://doi.org/10.1103/PhysRevD.72.054026
https://doi.org/10.1016/j.physletb.2007.01.075
https://doi.org/10.1016/j.physletb.2007.01.075
https://doi.org/10.1103/PhysRevD.31.1081
https://doi.org/10.1103/PhysRevD.31.1081
https://doi.org/10.1016/0375-9474(93)90261-U
https://doi.org/10.1016/0375-9474(93)90261-U
https://doi.org/10.1007/s100520050044
https://doi.org/10.1007/s100520050044
https://doi.org/10.1016/0370-2693(94)00975-9
https://doi.org/10.1016/0370-2693(95)01058-X
https://doi.org/10.1103/PhysRevD.75.073016
https://doi.org/10.1007/PL00013675
https://doi.org/10.1016/S0375-9474(00)00154-8
https://doi.org/10.1016/S0375-9474(00)00154-8
https://doi.org/10.1016/0370-2693(80)90974-0
https://doi.org/10.1016/0370-2693(95)01417-9
https://doi.org/10.1016/0370-2693(95)01417-9
https://doi.org/10.1016/0370-2693(94)90606-8
https://doi.org/10.1016/0370-2693(94)90606-8
https://doi.org/10.1103/PhysRevD.54.857
https://doi.org/10.1103/PhysRevD.54.857
https://doi.org/10.1007/BF01421576
https://doi.org/10.1007/BF01421766
https://doi.org/10.1016/0550-3213(85)90310-4
https://doi.org/10.1016/0550-3213(85)90310-4
https://doi.org/10.1016/0370-2693(94)90527-4
https://doi.org/10.1016/0370-2693(94)90527-4
https://doi.org/10.1103/PhysRevD.72.074004
https://doi.org/10.1103/PhysRevD.72.074004
https://doi.org/10.1140/epjc/s10052-011-1734-y
https://doi.org/10.1103/PhysRevD.86.094501
https://doi.org/10.1016/0370-2693(92)91340-F
https://doi.org/10.1016/0370-2693(92)91341-6
https://doi.org/10.1016/0370-2693(92)91341-6
https://doi.org/10.1103/PhysRevD.68.054024
https://doi.org/10.1103/PhysRevD.68.054024
https://doi.org/10.1140/epjcd/s2004-01-003-1
https://doi.org/10.1103/PhysRevD.91.014010
https://doi.org/10.1103/PhysRevD.91.014010
https://labs.inspirehep.net/literature/452985
https://labs.inspirehep.net/literature/452985
https://labs.inspirehep.net/literature/452985
https://labs.inspirehep.net/literature/452985
https://doi.org/10.1103/PhysRevD.46.2141
https://doi.org/10.1103/PhysRevD.46.2141
https://doi.org/10.1088/1126-6708/2007/09/073
https://doi.org/10.1016/S0550-3213(02)01017-9
https://doi.org/10.1016/S0550-3213(02)01017-9
https://doi.org/10.1016/0550-3213(89)90168-5
https://doi.org/10.1103/PhysRevD.51.6177
https://doi.org/10.1016/j.physletb.2008.02.031
https://doi.org/10.1007/BF01554472
https://doi.org/10.1103/PhysRevD.80.114005
https://doi.org/10.1103/PhysRevD.80.114005
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1140/epjc/s10052-015-3653-9
https://doi.org/10.1140/epja/i2016-16090-5
https://doi.org/10.1103/PhysRevD.100.016019
https://doi.org/10.1103/PhysRevD.100.016019

