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Abstract

The solvability of The Dirac equation is studied for the exponential-type potentials with the

pseudospin symmetry by using the parametric generalization of the Nikiforov-Uvarov method.

The energy eigenvalue equation, and the corresponding Dirac spinors for Morse, Hulthen, and q-
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κ = 0, or κ 6= 0.

Keywords: Pseudospin symmetry, Morse potential, Hulthen potential, q-deformed Rosen-Morse

potential, Dirac equation, Nikiforov-Uvarov Method

PACS numbers: 03.65.-w; 03.65.Ge; 12.39.Fd

∗E-mail: arda@hacettepe.edu.tr
†E-mail: sever@metu.edu.tr
‡E-mail: ctezcan@baskent.edu.tr

1

http://arxiv.org/abs/0909.0821v1
mailto:arda@hacettepe.edu.tr
mailto:sever@metu.edu.tr
mailto:ctezcan@baskent.edu.tr


I. INTRODUCTION

The concept of pseudo-spin was constructed firstly in spherical nuclei [1, 2], and it is

observed experimentally that the single particle levels labeled as pseudo-spin doublets are

very close in energy [3]. The pseudo-spin doublets in nuclei are decomposed by using radial

(nr), orbital (ℓ ), and total angular momentum (j) quantum numbers as (nr, ℓ, j = ℓ+1/2),

and (nr − 1, ℓ + 2, j = ℓ + 3/2). The pseudo orbital angular momentum, ℓ̃ = ℓ + 1, and

the pseudo spin, s̃, quantum numbers give total angular momentum, j = ℓ̃ + s̃, and the

pseudo-spin doublets are degenerate with respect to pseudo spin, s̃ [4]. The pseudo-spin

doublets occur in nuclei, when the magnitude of scalar, Vs(r), and vector, Vv(r), potentials

are nearly equal, with opposite sign, i.e., Vs(r) ≃ −Vv(r) [5]. The pseudo-spin symmetry

is studied based on Dirac equation in real nuclei, and shown that it is related with the

competition between the centrifugal barrier, and pseudo-spin orbital potential [6]. The

pseudo-spin concept is discussed in deformed nuclei [7], and exotic nuclei as well [3]. It is

observed that the pseudo-spin symmetry is also an important one in the case of triaxiality

[8].

The pseudo-spin orbital potential creates the splitting of the pseudo-spin doublets, and

the pseudo-spin symmetry is exact symmetry in real nuclei, when the derivative of the

difference between scalar, and vector potentials vanishes, but the above condition gives a

good symmetry for exotic nuclei [3, 6]. The pseudo-spin symmetry is identified as a SU(2)

symmetry of the Dirac Hamiltonian, under the condition that the sum of scalar, and vector

potentials is equal to zero [9]. Recently, it is pointed out that the shape of the lower

components of the Dirac spinor for the doublets is the same, when the pseudo-spin doublets

are degenerate [4]. It is showed that it becomes possible to construct a map which relates

the normal state (ℓ, s) with the pseudo state (ℓ̃, s̃) by applying of the helicity operator to

the non-relativistic single-particle eigenfunction to understand of the mechanism to generate

the pseudo-spin symmetry [10]. The pseudo-spin concept is discussed in the non-relativistic

harmonic oscillator, and obtained that the condition between the coefficients of spin-orbit,

and orbit-orbit terms in the case of non-relativistic single-particle Hamiltonian having the

pseudo-spin symmetry is consistent with the result obtained relativistic mean-field theory

[11, 12].

The pseudo-spin symmetry concept has found a great application area, especially in
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nuclear theory. The identical bands observed in nuclei are explained by using the pseudo-

spin symmetry [13]. The idea of the pseudo-spin has been considered to be useful to construct

an effective shell-model coupling scheme [14]. Some features of nuclei, such as deformation,

and superdeformation can be explained in the context of the pseudo-spin symmetry [13, 15,

16].

Recently, the solutions of the Klein-Gordon, and Dirac equations including the spin-orbit

coupling term have been studied by many authors for different potentials, such as Morse

potential [17-20], Pöschl-Teller potential [21-23], Woods-Saxon potential [24], Eckart [25-28],

harmonic oscillator [29, 30], three parameter diatomic molecular potential [31], and angle-

dependent potential [32]. In the present work, we deal with the approximate solutions,

and corresponding wave functions of the Dirac equation including spin-orbit coupling term

under the exact pseudo-spin symmetry for Morse, Hulthén, and q-deformed Rosen-Morse

potentials. We point out that the parametric generalization of the Nikiforov-Uvarov method

can be applied to the Dirac equation with the above potentials, and the energy eigenvalue

equation, and corresponding eigenfunctions can be obtained for the values of spin-orbit

quantum number κ = 0, or κ 6= 0.

II. THE DIRAC EQUATION WITH SPIN-ORBIT COUPLING

The Dirac equation for a fermion with mass m moving in an external scalar, and vector

potentials reads (h̄ = c = 1)

[α . p̂+ β[m+ Vs(r)] + Vv(r)]Ψ(r) = EΨ(r) , (1)

where E is the energy of the particle, p̂ is the three-momentum operator, and α, and β are

the 4 × 4 Dirac matrices written in terms of2 × 2 Pauli matrices, and unit matrix. Under

the consideration that the system has a spherical symmetry for which the potential fields

depend on the radial coordinate, the quantum state of the particle is labeled by the quantum

number set (nr, j,m, κ), where m is the projection of the total angular momentum on the

z-axis, and κ = ±(j + 1/2) is the eigenvalues of the operator κ̂ = −β(σ̂ . L̂+ 1) [33]. Here,

κ = −(j + 1/2) denotes the aligned spin (s1/2, p3/2, etc.), and κ = +(j + 1/2) denotes the

unaligned spin (p1/2, d3/2, etc.). The spherically symmetric Dirac wave function can than be
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written in terms of upper, and lower components as [34]

Ψ(r) =
1

r

(
f (r)[ Yℓ χ ]jm

ig (r)[ Yℓ̃ χ ]jm

)
(2)

where f(r), and g(r) are the radial wave functions, Yℓ (θ, φ), and χ are the spherical, and

spin functions, respectively. Substituting Eq (2) into Eq. (1), we get the following radial

Dirac equations

(
d

dr
+

κ

r

)
f(r)− [M(r) + ǫ ]g(r) = 0 , (3)

(
d

dr
− κ

r

)
g(r)− [M(r)− ǫ ]f(r) = 0 . (4)

where M(r) = m+Vs(r), and ǫ = E−Vv(r). Using the expression for g(r) obtained from Eq.

(3), and inserting it into Eq. (4), we have two second order differential equations including

spin-orbit coupling term

{ d2

dr2
− κ(κ + 1)

r2
− [M2(r)− ǫ2]

}
f(r) =

{ 1

M(r) + ǫ

d

dr
[Vs(r)− Vv(r)](

d

dr
+

κ

r
)
}
f(r) , (5)

{ d2

dr2
− κ(κ− 1)

r2
− [M2(r)− ǫ2]

}
g(r) =

{ 1

M(r)− ǫ

d

dr
[Vs(r) + Vv(r)](

d

dr
− κ

r
)
}
g(r) , (6)

Under the condition of the exact pseudo-spin symmetry, i.e., d
dr
[Vv(r) + Vs(r)] = 0, or

Vv(r) + Vs(r) = C = const., Eq. (6) gives

{ d2

dr2
− κ(κ− 1)

r2
+ [m−E + C][Vv(r)− Vs(r)]

}
g(r) = [m2 − E2 + C(m+ E)]g(r) . (7)

From the last equation, the energy eigenvalues depend also on the quantum number ℓ̃ because

of the relations given by κ(κ−1) = ℓ̃(ℓ̃+1), and κ(κ+1) = ℓ(ℓ+1). So, the energy eigenstates

with j = ℓ̃±1/2 are degenerate for ℓ̃ 6= 0, which gives the situation of the exact pseudo-spin

symmetry in the Dirac equation.

In the present work, we intend to solve the last equation four different potentials, Morse,

Hulthén, and q-deformed Rosen-Morse potentials, namely. The Dirac equation in Eq. (7)

can not be solved exactly because of the spin-orbit coupling term. So, we use the Pekeris
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approximation [35] to find the suitable expression instead of the spin-orbit coupling term in

the case of Morse potential. This approximation makes possible to write the interaction term

in the form of the Morse potential in terms of new parameters Di(i = 0, 1, 2). In the case of

Hulthén, and q-deformed Rosen-Morse potential, we introduce the following approximation

instead of the spin-orbit coupling term [22]

1

r2
≈ α2e−αr

(1− e−αr)2
, (8)

which gives a second order differential equation from Eq. (7) without (1/r2)-term. In all

case of potentials, we use the parametric generalization of the Nikiforov-Uvarov method

[36], and so we prove that the parametric version of the method can be applied to the Dirac

equation with Morse, Pöschl-Teller, Hulthén, and q-deformed Rosen-Morse potential.

III. NIKIFOROV-UVAROV METHOD

By using an appropriate coordinate transformation, the Schrödinger equation is trans-

formed into the following form

Ψ′′(s) +
τ̃ (s)

σ(s)
Ψ′(s) +

σ̃(s)

σ2(s)
Ψ(s) = 0 , (9)

where σ(s), σ̃(s) are polynomials, at most second degree, and τ̃ (s) is a first degree poly-

nomial. In the NU-method, the polynomial π(s), and the parameter k are required, and

defined as

π(s) =
1

2
[σ′(s)− τ̃(s)]±

√
1

4
[σ′(s)− τ̃ (s)]2 − σ̃(s) + kσ(s), (10)

and

λ = k + π′(s), (11)

where λ is a constant. The function under the square root in the polynomial in π(s) in Eq.

(10) must be square of a polynomial in order that π(s) be a first degree polynomial, so the
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derivative of π(s) is a constant, and this defines the constant k. Replacing k into Eq. (10),

we define

τ(s) = τ̃ (s) + 2π(s). (12)

where the derivative of τ(s) should be negative [35], which let us know the choice of the

solution. The hypergeometric type equation in Eq. (9) has a particular solution with degree

n, if λ in Eq. (11) satisfies

λ = λn = −nτ ′ − [n(n− 1)σ′′]

2
, n = 0, 1, 2, . . . (13)

To obtain the solution of Eq. (9) it is assumed that the solution is a product of two

independent parts

Ψ(s) = φ(s) y(s), (14)

where y(s) can be written as

yn(s) =
an
ρ(s)

dn

dsn
[σn(s) ρ(s)] , (15)

where an is normalization constant, and the function ρ(s) is the weight function, and should

satisfy the condition

dσ(s)

ds
ρ(s) + σ(s)

dρ(s)

ds
= τ(s) ρ(s) , (16)

The other factor is defined as

φ′(s)

φ(s)
=

π(s)

σ(s)
. (17)

In order to clarify the parametric generalization of the NU method, let us take the following

equation, which represents a general form of the Schrödinger-like equation written for any

potential,
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[
d2

ds2
+

α1 − α2s

s(1− α3s)

d

ds
+

−ξ1s
2 + ξ2s− ξ3

[s(1− α3s)]2

]
Ψ(s) = 0. (18)

When Eq. (18) is compared with Eq. (9), we get

τ̃ (s) = α1 − α2s ; σ(s) = s(1− α3s) ; σ̃(s) = −ξ1s
2 + ξ2s− ξ3 . (19)

Substituting these into Eq. (10)

π(s) = α4 + α5s±
√
(α6 − kα3)s2 + (α7 + k)s+ α8 , (20)

where the parameter set are

α4 =
1
2
(1− α1) , α5 =

1
2
(α2 − 2α3) ,

α6 = α2
5 + ξ1 , α7 = 2α4α5 − ξ2 ,

α8 = α2
4 + ξ3 .

(21)

In NU-method, the function under the square root in Eq. (20) must be the square of a

polynomial [35]. This condition gives the roots of the parameter k, and they can be written

as

k1,2 = −(α7 + 2α3α8)± 2
√
α8α9 , (22)

where the k-values can be real or imaginary, and α9 = α3α7 + α2
3α8 + α6 . Different k’s lead

to the different π(s)’s. For

k = −(α7 + 2α3α8)− 2
√
α8α9 , (23)

π(s) becomes

π(s) = α4 + α5s− [(
√
α9 + α3

√
α8 )s−

√
α8 ] , (24)

7



and also

τ(s) = α1 + 2α4 − (α2 − 2α5)s− 2 [(
√
α9 + α3

√
α8 )s−

√
α8 ] . (25)

Thus, we impose the following for satisfying the condition that the derivative of the function

τ(s) should be negative in the method

τ ′(s) = −(α2 − 2α5)− 2(
√
α9 + α3

√
α8 )

= −2α3 − 2(
√
α9 + α3

√
α8 ) < 0. (26)

From Eqs. (11), (12), (25), and (26), and equating Eq. (11) with the condition that λ should

satisfy given by Eq. (13), we find the eigenvalue equation

α2n− (2n+ 1)α5 + (2n+ 1)(
√
α9 + α3

√
α8 ) + n(n− 1)α3

+ α7 + 2α3α8 + 2
√
α8α9 = 0. (27)

We get from Eq. (16)

ρ(s) = sα10−1(1− α3s)
α11

α3
−α10−1

, (28)

and substituting into Eq. (15) gives

yn(s) = P
(α10−1,

α11

α3
−α10−1)

n (1− 2α3s) , (29)

where

α10 = α1 + 2α4 + 2
√
α8 ; α11 = α2 − 2α5 + 2(

√
α9 + α3

√
α8) . (30)

and P (α,β)
n (1− 2α3s) are the Jacobi polynomials. From Eq. (17), one gets

φ(s) = sα12(1− α3s)
−α12−α13

α3 , (31)
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then the general solution Ψ(s) = φ(s)y(s) becomes

Ψ(s) = sα12(1− α3s)
−α12−α13

α3 P
(α10−1,

α11

α3
−α10−1)

n (1− 2α3s) (32)

where

α12 = α4 +
√
α8 ; α13 = α5 − (

√
α9 + α3

√
α8 ) . (33)

IV. BOUND-STATE SOLUTIONS

A. Morse Potential

We set the difference between scalar, and vector potentials in Eq. (6) as the Morse

potential [37] given by

VMorse(r) = D[e−2αx − 2e−αx] , (34)

where D is the dissociation energy of the potential, α = ar0, x = r
r0
−1, r0 is the equilibrium

distance, and the positive parameter a is the potential width. According to the Pekeris

approximation, the spin-orbit coupling term can be written in terms of three new parameters

D0, D1, and D2 as

κ(κ− 1)

r2
≃ γ(D0 +D1e

−αx +D2e
−2αx) , (35)

where γ = κ(κ − 1))r20 (see Ref [17], for details). Substituting Eq. (34), and (35) into Eq.

(6), we get

d2g(x)

dx2
+
{
a23e

−2αx − a22e
−αx − a21

}
g(x) = 0 , (36)

where a21 = r20[γD0 + Σm(m+ E)], a22 = r20(γD1 + 2DΣm), and a23 = r20(DΣm − γD2) in the

above equations. By using the new variable s = e−αx, we obtain
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d2g(s)

ds2
+

1

s

dg(s)

ds
+
{
a23β

2 − a22β
2

s
− a21β

2

s2

}
g(s) = 0 . (37)

where β2 = 1/α2, and Σm = m−E +C. Comparing the Eq. (37) with Eq. (18), we obtain

the following parameter set

α1 = 1 , −ξ1 = a23β
2

α2 = 0 , ξ2 = −a22β
2

α3 = 0 , −ξ3 = −a21β
2

α4 = 0 , α5 = 0

α6 = ξ1 , α7 = −ξ2

α8 = ξ3 , α9 = ξ1

α10 = 1 + 2
√
ξ3 , α11 = 2

√
ξ1

α12 =
√
ξ3 , α13 = −

√
ξ1

(38)

Substituting the above expressions in Eq. (27), we obtain the energy eigenvalue equation of

a fermion moving in the Morse potential under the exact pseudo-spin symmetry

(2n+ 1)
√
γD2 −DΣm + βr0(γD1 + 2DΣm)

+ 2βr0
√
[γD0 + Σm(m+ E)](γD2 −DΣm) = 0 , (39)

and the lower spinor component from Eq. (32)

g(s) = sβr0
√

γD0+Σm(m+E) e−βr0
√
γD2−DΣm s

× L
2βr0

√
γD0+Σm(m+E)

n (2βr0
√
γD2 −DΣm s) , (40)

where L(k)
n (x) are the Laguerre polynomials.

We give the upper spinor component from Eq. (4), by using Eq. (40)

f(s) = aΣ−1
m sβr0

√
γD0+Σm(m+E) e−βr0

√
γD2−DΣm s

×
{
βr0

√
γD2 −DΣm s

[
L
2βr0

√
γD0+Σm(m+E)

n (2βr0
√
γD2 −DΣm s)

10



+ L
1+2βr0

√
γD0+Σm(m+E)

n−1 (2βr0
√
γD2 −DΣm s)

]

−
[
βr0

√
γD0 + Σm(m+ E) +

κ

ar0 − lns

]

× L
2βr0

√
γD0+Σm(m+E)

n (2βr0
√
γD2 −DΣm s)

}
. (41)

where we use some recursion relations of the Laguerre polynomials.

B. Hulthén Potential

The Hulthén potential reads

V (r) = −V0
e−x

1− e−x
, (42)

where x = r
r0
, and r0 denotes the spatial range [38, 39]. We choose the difference between

scalar, and vector potentials as Hulthén potential potential, and using the approximation in

Eq. (8), which becomes 1
r2

≃ ex

r2
0
(ex−1)2

in the present case, we obtain from Eq. (6)

d2g(r)

dr2
−
{
κ(κ− 1)ex

r20(e
x − 1)2

+ Σm

(
m+ E +

V0

ex − 1

)}
g(r) = 0 , (43)

Using the new variable s = e−x, Eq. (43) becomes

d2g(s)

ds2
+

1− s

s(1− s)

dg(s)

ds
+

1

[s(1− s)]2

{
− r20Σm(m+ E)

+
[
− κ(κ− 1) + 2r20Σm(m+ E)− r20ΣmV0

]
s

+
[
− r20Σm(m+ E) + r20ΣmV0

]
s2
}
g(s) = 0 . (44)

Comparing with Eq. (18), we get

11



α1 = 1 , −ξ1 = r20Σm[−m−E + V0]

α2 = 1 , ξ2 = r20Σm[2(m+ E)− V0]− κ(κ− 1)

α3 = 1 , −ξ3 = −r20Σm(m+ E)

α4 = 0 , α5 = −1/2

α6 =
1
4
+ ξ1 , α7 = −ξ2

α8 = ξ3 , α9 = ξ1 − ξ2 + ξ3 +
1
4

α10 = 1 + 2
√
ξ3 , α11 = 2 + 2(

√
ξ1 − ξ2 + ξ3 +

1
4
+
√
ξ3 )

α12 =
√
ξ3 , α13 = −1

2
−
√
ξ1 − ξ2 + ξ3 +

1
4
−

√
ξ3

(45)

The energy eigenvalue equation is written from Eq. (27)

r0
√
Σm(m+ E)

[
2n + 1 +

√
4κ(κ− 1) + 1

]
+ (n +

1

2
)
√
4κ(κ− 1) + 1

+n(n+ 1) + κ(κ− 1) + r20ΣmV0 +
1

2
= 0 , (46)

and corresponding lower, and upper Dirac spinors by using Eqs. (4) and (32), respectively,

g(s) = sr0
√

Σm(m+E) (1− s)
1

2
[1+

√
4κ(κ−1)+1 ]

× P
(2r0

√
Σm(m+E) ,

√
4κ(κ−1)+1 )

n (1− 2s) , (47)

f(s) = (r0Σm)
−1 sr0

√
Σm(m+E)(1− s)

1

2
[1+

√
4κ(κ−1)+1 ]

×
{[

− r0
√
Σm(m+ E) +

1

2
[1 +

√
4κ(κ− 1) + 1 ]

s

1− s

+
κ

lns

]
P

(2r0
√

Σm(m+E) ,
√

4κ(κ−1)+1 )
n (1− 2s)

+
(
n+ 2r0

√
Σm(m+ E) +

√
4κ(κ− 1) + 1 + 1

)
s

× P
(1+2r0

√
Σm(m+E) , 1+

√
κ(κ−1)+1 )

n−1 (1− 2s) . (48)

where P (k,m)
n (x) are the Jacobi polynomials, and we have used some recursion relations of

the Jacobi polynomials to obtain Eq. (48).

C. q-Deformed Rosen-Morse Potential

The q-deformed Rosen-Morse Potential reads [40]
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V (r) =
V1

1 + qe−2x
− V2q

e−2x

(1 + qe−2x)2
, (49)

where x = αr, and q is the deformation parameter.

We prefer to solve the Dirac equation for κ = 0 in Eq. (6) with the PT -symmetric version

of the potential by setting to the difference between scalar, and vector potentials

V PT (r) =
V1

1 + qe−2ix
− V2q

e−2ix

(1 + qe−2ix)2
. (50)

We obtain the following equation under the above consideration by using the transformation

s = −e−2ix

d2g(s)

ds2
+

1− qs

s(1− qs)

dg(s)

ds
+

1

[s(1− qs)]2

{
δ2[V1Σm − Σm(m+ E)]

+ δ2Σm[2q(m+ E)− qV1 + V2]s− δ2q2Σm(m+ E)s2
}
g(s) = 0 , (51)

Comparing the Eq. (51) with Eq. (18), we get

α1 = 1 , −ξ1 = δ2q2Σm(m+ E)

α2 = q , ξ2 = δ2Σm[2q(m+ E)− qV1 + V2]

α3 = q , −ξ3 = δ2[V1Σm − Σm(m+ E)]

α4 = 0 , α5 = −q/2

α6 =
q2

4
+ ξ1 , α7 = −ξ2

α8 = ξ3 , α9 = ξ1 − qξ2 + q2ξ3 +
q2

4

α10 = 1 + 2
√
ξ3 , α11 = 2q + 2(

√
ξ1 − qξ2 + q2ξ3 +

2

4
+ q

√
ξ3 )

α12 =
√
ξ3 , α13 = − q

2
−
√
ξ1 − qξ2 + q1ξ3 +

q2

4
+ q

√
ξ3

(52)

The energy eigenvalue equation is written from Eq. (27)

2δ
√
Σm(m+ E − V1)

[
2n+ 1 +

1

2

√
1− (4V2Σm)/q

]
+ (n+

1

2
)
√
1− (4V2Σm)/q

+n(n + 1) +
1

2
− δ2Σm(V1 + V2)/q = 0 . (53)

and corresponding lower, and upper Dirac spinors by using Eqs. (4) and (32), respectively,
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g(s) = sδ
√

Σm(m+E−V1) (1− qs)
1

2
[1+

√
1−(4V2Σm)/q ]

× P
(2δ
√

Σm(m+E−V1) ,
√

1−(4V2Σm)/q )
n (1− 2qs) , (54)

f(s) = 2iαΣ−1
m sδ

√
Σm(m+E−V1)(1− qs)

1

2
[1+

√
1−(4V2Σm)/q ]

×
{[

− δ
√
Σm(m+ E − V1) +

q

2
[1 +

√
1− (4V2Σm)/q ]

s

1− qs

− κ

lns

]
P

(2δ
√

Σm(m+E−V 1) ,
√

1−(4V2Σm)/q )
n (1− 2qs)

+ q
(
n+ 2δ

√
Σm(m+ E − V1) +

√
1− (4V2Σm)/q + 1

)

× P
(1+2δ

√
Σm(m+E−V1) , 1+

√
1−(4V2Σm)/q )

n−1 (1− 2qs) . (55)

where δ2 = 1/(4α2) in the above equations.

V. CONCLUSION

We have approximately solved the Dirac equation for the Morse, Hulthén, and q-deformed

Rosen-Morse potentials with the exact pseudospin symmetry for arbitrary spin-orbit quan-

tum number κ. We have found the eigenvalue equation, and corresponding Dirac spinors

in terms of Jacobi (or Laguerre) polynomials by using the parametric generalization of the

NU-method within the framework of an approximation to the spin-orbit coupling term. We

have observed that the parametric form of the NU method can be used to solve the Dirac

equation with the above potentials. Our results for the cases of Morse potential is good

agreement with the ones obtained in the literature.
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