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Abstract
Characteristic mode analysis of metal only unit cells of peri-
odic structures is performed using Method of Moments based
formulation. Ewald’s transformation is incorporated for a
fast and cost efficient solution and the advantages over spa-
tial Green’s function are discussed. The influence of the unit
cell size on the characteristic modes is demonstrated. Various
metal-only reflectarray elements are compared and their radi-
ation characteristics are interpreted using the theory of char-
acteristic modes. It is shown that characteristic modes of the
unit cell can help us to understand the radiation and scattering
behavior of the unit cell and this physical insight can be used
in periodic array unit cell design.

1. Introduction
The theory of characteristic mode (TCM) was introduced by
Garbacz [1], in 1971 and redefined by Harrington and Mautz
[2, 3]. Today, it is regarded as an efficient method for an-
tenna design and analysis. Different varieties of antennas such
as monopole and dipole antennas, mobile handset antennas
and electrically small antennas have been analyzed using the
TCM [4]. Their design aspects such as determination of the
feeding position and coupling behaviors were thoroughly in-
vestigated [5–9]. Characteristic mode analysis is also suitable
for the analysis of periodic arrays such as phased array an-
tennas, transmitarray antennas, reflectarray antennas and fre-
quency selective surfaces. In recent years, a reduced matrix
solution based on modal basis functions is proposed for fast
solution of the reflectarray antennas [10]. More recently, a mi-
crostip reflectarray unit cell has been analyzed using the char-
acteristic modes and the modal reflection phases are discussed
for the first time [11].

In this paper, characteristic mode analysis for metal-only
array unit cell is demonstrated. A Galerkin moment method
is utilized to analyze unit cell elements. Ewald’s transforma-
tion [12] for periodic Green’s function is performed for fast
and efficient computation. Characteristic mode analysis is car-

ried out by solving the corresponding generalized eigenvalue
equation. This work focuses on the analysis of several peri-
odic unit cell elements for reflectarray and frequency selective
surface (FSS) applications. Frequency selective surfaces are
optical filters in which element shape and the periodicity of
elements determine the transmission characteristics [13]. Re-
flectarray antennas are made of periodic elements in varying
shape and dimensions. They combine desired characteristics
of both phased arrays and reflectors [14]. Phase distribution
of the reflected field over the aperture of the array is adjusted
by varying some parameter of the array element to obtain de-
sired radiation characteristics. Although elements are usually
printed on a dielectric substrate with one side metal cladding,
metal-only solutions have also been investigated [15, 16]. In
this respect, our primary focus is on the characteristic mode
analysis of metal-only unit cell elements.

In this work, a solution tool based on MoM has been de-
veloped for the characteristic mode analysis of metal-only unit
cells in an infinite array environment. The relation between
characteristic modes and the radiation characteristics is dis-
cussed. Preliminary results are presented in [17,18]. Formula-
tion, results and discussion are extended in this paper.

The organization of this paper is as follows: Section 2
briefly explains the MoM formulation utilized for periodic unit
cell. Periodic Green’s function is defined. Ewald’s transfor-
mation is briefly explained and the benefits are discussed. The
details regarding the analysis of characteristic modes are pre-
sented. In Section 3, we touch upon the relation between the
dimensions of the unit cell and the characteristic modes. Sec-
tion 4 demonstrates an analysis for several reflectarray unit
cell elements. Their reflection characteristics and character-
istic modes are investigated. Section 5 presents concluding
remarks as well as planned future work.

2. Formulation
The problem geometry is a 2-D infinite array of metallic struc-
tures with unit cell dimensions a and b. Array is in x-y plane.



Total tangential electric field intensity on electric conductor
surface becomes zero thus the following integral equation on
the element surface is obtained

n̂×n̂×Ei = n̂× n̂×
jη0
k0

∫
dr′
[
∇∇′ · J(r′) + k20J(r

′)
]
G (r, r′)

(1)

whereEi is the incident field intensity, J is the current density
to be solved,G (r, r′) is the Green’s function of the system, η0
and k0 are intrinsic impedance and wavenumber, respectively.
In this formulation, ejωt time dependence is assumed. Method
of moments is applied to solve this problem. Current density
is expanded using basis functions and then inner product with
testing function is evaluated. Therefore linear equations are
constructed in the form of matrix-vector multiplication, i.e.,
Z = IV. Moment matrix element is

Zmn =
j

ωε0

∫
Sm

drtm(r) · ∇
∫
Sn

dr′∇′ · bn(r′)G (r, r′)+

jωµ0

∫
Sm

drtm(r) ·
∫
Sn

dr′bn(r
′)G (r, r′)

(2)

and the voltage vector element becomes

Vm =

∫
Sm

drtm(r) ·Ei. (3)

We use Galerkin method and choose both testing and basis
functions as Rao-Wilton-Glisson (RWG) [19] functions. 3-
order Gaussian quadrature [20] is applied to solve integral
equations with respect to source elements. Singularity extrac-
tion is applied when source and observation points are in vicin-
ity, hence extracted terms are dealt using analytical represen-
tations as presented in [21].

Free space Green’s function for 2-D periodicity can be
written as

Gp (r, r
′) =

1

4π

∞∑
m=−∞

∞∑
n=−∞

e−jkt00·ρmn
e−jkRmn

Rmn
(4)

where

kt00 = x̂k0sinθi cosφi + ŷk0 sin θi sinφi.

The distance between source point and shifted observation
points is

Rmn = |R− ρmn| = |r − r′ − ρmn| (5)

where the translation vector is ρmn = ms1 + ns2 with s1
and s2 are vectors defining each unit lattice cell. Note that
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Figure 1: Maximum current density on 4 mm width square
patch in 15.2 mm square unit lattice cell at 11 GHz, as a func-
tion of T . (a) Using spatial periodic Green’s function. (b)
Using Ewald’s transformation.

s1 = ax̂ and s2 = bŷ, for a rectangle unit lattice cell with
dimensions a× b. Because there is infinite number of terms to
be summed in (4), we need to truncate both summations. The
problem here is that we need enormous number of terms to be
calculated for an accurate solution.

In Fig. 1a, the convergence of the current density is illus-
trated at 11 GHz for 4 mm width square patch constructed with
8 triangles and the dimension of the unit lattice cell is chosen
as 15.2 x 15.2 mm. T is the truncation number for the infinite
double sum which limits the summations in (4) from−T to T .
As can be seen from the figure, calculating thousands of terms
is not sufficient to solve an element with 8 triangles. For larger
objects with more than hundreds of triangles, it will not be a
feasible solution. In order to circumvent this pitfall, we have
applied Ewald’s transformation for the 3-D periodic Green’s
function. In this representation, Green’s function is defined as
a sum of modified spectral series and spatial series by utilizing
complementary error function or Faddeeva function [22]. Note
that modified spectral series are based on 2-D quasi-periodic
Fourier series which are also known as Floquet series. Both
spatial and spectral terms as well as their singularity-free ex-
pressions can be found in [22]. The aforementioned example
is solved using this representation of the Green’s function and
the convergence of the current density is depicted in Fig. 1b.
As can be seen, it converges at T = 2 which circumvents a
huge computational load.
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For the analysis of periodic slots/apertures on metallic
plates, additional RWG elements should be defined to ensure
the continuity of current at periodic unit cell boundary. For this
reason, triangular meshes at the opposite sides of the unit cell
boundary are constructed in mirror symmetry. Therefore, tri-
angles coinciding with the right and left unit cell boundary as
well as up and down unit cell boundary form additional RWG
functions [23].

In the characteristic mode analysis, the moment matrix is
divided into its real and imaginary components as Z = R+jX
and since R is positive semi-definite, the generalized eigen-
value equation, i.e.,

XJn = λnRJn (6)

yields orthogonal radiation patterns where Jn represents
eigenvector of the system and λ is the corresponding eigen-
value. MATLAB’s eig function is utilized for the solution of
this equation. Using this method, we can decompose the cur-
rent into its orthogonal components

J =
∑
n

αnJn (7)

in which each eigenvector is regarded as modal eigencurrents
and independent of the excitation. Note that eigenvectors are
normalized hence following orthogonality properties hold [4]:

< Jm,R · J∗n > = δmn (8a)
< Jm,X · J∗n > = λnδmn (8b)
< Jm,Z · J∗n > = (1 + jλn)δmn (8c)

where δmn is 1 when m = n and 0, otherwise. The modal
weighting coefficients in (7) can be found by taking inner prod-
uct excitation with eigencurrents and applying orthogonality
properties, i.e.,

αn =
< Ei,Jn >

1 + jλn
. (9)

The eigenvalues can be shown in a compact form, and called
as modal significance (MS), in which values vary between 0
and 1,

MSn =
1

|1 + jλn|
. (10)

Therefore physical behavior of eigenvalues can be interpreted
in terms of the modal significance values. Recently, a bench-
marking work is performed by the Special Interest Group [24]
for validation of characteristic mode solvers. We have partici-
pated in this work, and results show that our solver is in strong
agreement with other participants’ solver tools [25].

(a)

(b)

Figure 2: Jerusalem Cross element inside 15 x 15 mm square
unit cell. (a) The geometry. (b) The modal significance values.

3. Characteristic Modes on Array Unit Cells
Jerusalem cross is a widely used element in FFS applica-
tions. In this work, we consider Jerusalem cross element, in-
side square unit cell with 15 mm edge size, as depited in Fig.
2a. The element geometry is taken from [26]. Characteristic
modes of this unit cell is calculated using the formulation in
Section 2. In Fig. 2b, modal significance values are shown
as a function of the frequency. As can be seen from the ge-
ometry, only the first two modes are excited below 20 GHz.
Since modal significance values are same, these modes can be
regarded as degenerated modes. In other words, modes yield
same eigenvalues but corresponding currents are 90◦ out of
phase. At frequencies higher than 20 GHz, higher order modes
are excited as well and behaviors of the first two modes are
changed. When frequency is below 20 GHz, the wavelength
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Figure 3: The modal significance values for rectangle patch
inside 15 x 15 mm square unit cell.

is greater than 15 mm, which is the cell size of the unit cell.
Therefore, only first two characteristic modes are significant
when cell size is smaller than wavelength. We can interpret
this phenomena using Floquet series representation. When the
cell size is smaller than one wavelength and the normal inci-
dence is considered, only the first two Floquet modes are prop-
agating. Therefore the frequency that makes the cell size one
wavelength is a cut-off frequency for higher order modes. As
a second example, a rectangle element is investigated inside
15 x 15 mm square lattice cell. The rectangle shape of patch
ensures that the element is not symmetric with respect to the
center of the unit cell. As illustrated in Fig. 3, two significant
modes do not yield same eigenvalues, in other words, they are
no longer degenerate modes. Furthermore, 4 cm x 6 cm rectan-
gle patch element is placed in 6 cm x 8 cm rectangle unit cell,
and generated modal significance values are plotted in Fig. 4.
This time, there are two non-zero MS values below 3.75 GHz.
Between 3.75 GHz and 5 GHz, we observe six non-zero MS
values. At frequencies above 5 GHz, more higher modes are
excited. We can conclude that 3.75 GHz and 5 GHz are cut-off
frequencies due to the edge lengths of the lattice cell, 8 cm and
6 cm, respectively.

4. Metal-Only Reflectarray Unit Cell
After examining modal characteristics of unit cells of different
shapes, characteristic mode analysis is utilized to investigate
reflection phase characteristics of metal only reflectarray unit
cells. Three metal only unit cell geometries are chosen from

Figure 4: The modal significance values for rectangle patch
inside 8 x 6 cm rectangle unit cell.

the literature [16]: square-slot, rectangle-slot and square-slot
element with square ring inside. In order to design a reflectar-
ray, phase of the reflected field of unit cell is calculated as a
function of control parameter of the reflectarray element, such
as patch size, stub length. For the design of reflectarray, 360◦

reflection phase range must be achievable with the unit cell by
changing some parameter of the element geometry. Further-
more, reflection phase curve must be smoothly varying with
the control parameter. Thus, our aim is to interpret modal be-
havior of reflectarray cells, get some physical insight and in-
vestigate the relation between behavior of characteristic modes
and reflection phase curves; then use this information in the de-
sign of reflectarrays.

The first reflectarray element is an L × L mm square-slot
as depicted in Fig. 5a. The phase of the reflected field from
reflectarray surface is calculated and presented in Fig. 5b, as
a function of the slot size for various heights from the ground
plane at 12.5 GHz. The phase of the reflected field is also
solved in FEKO EM solver and strong aggreement is observed.
As also illustrated in [16], the phase range increases as the dis-
tance between the ground plane and element increases. For
instance when the distance increases from 4 mm to 10 mm,
the phase coverage increases about 200◦. Characteristic mode
analysis of this structure is performed using the proposed for-
mulation in Section 2. In Fig. 6, corresponding modal signifi-
cance values are calculated. It shows that only first four modes
are excited where the first two modes and the next two modes
are degenerated modes. When the distance between ground

137



(a)

L(mm) 
0 2 4 6 8 10 12 

-100 

-50 

0 

50 

100 

150 

200 

MoM h=4mm 

MoM h=8mm 

MoM h=10mm 

FEKO h=4mm 

FEKO h=8mm 

FEKO h=10mm 

L(mm) 

R
ef

le
ct

io
n 

Ph
as

e 
(d

eg
re

es
)

(b)

Figure 5: Square-slot reflectarray element. (a) The geometry
and mesh. (b) The reflection phase.
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Figure 6: Modal significance for square-slot reflectarray ele-
ments. (a) h=4. (b) h=8 mm. (c) h=10 mm.
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Figure 7: Rectangle-slot reflectarray element geometry and
mesh.

L (mm)
1 2 3 4 5 6 7 8 9 10

M
od

al
 S

ig
ni

fic
an

ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mode 1, h=10mm
Mode 2, h=10mm
Mode 3, h=10mm
Mode 4, h=10mm

Figure 8: Modal significance for rectangle-slot reflectarray el-
ement.
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Figure 9: Ring-type reflectarray element in square-slot. (a)
The geometry and mesh. (b) The reflection phase.
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Figure 10: Modal significance for ring-type reflectarray ele-
ments. (a) h=2 mm. (b) h=6 mm. (c) h=10 mm.

plane and the element increases, we observe more variation in
modal significance values with L. For instance, for h=4 mm
modal significance of mode 1-2 remains close to 1 and MS of
mode 3-4 changes from 0.5 to 0.2; whereas for case h=10 mm,
modal significance (MS) of mode 1-2 decreases from 1 to 0.1
with an increase in L. While MS values of mode 1-2 decreases,
second set of modes takes over i.e. MS values of mode 3-4 in-
creases from 0.2 to 1 with L. Therefore, we can conclude that
large reflection phase ranges are related to large variation in the
eigenvalues of at least two modes with the control parameter.

As a second example, rectangle slot of L×(L+2) is consid-
ered for the same configuration as depicted in Fig. 7. First two
modes and next two modes are no more degenerated modes
since the symmetry with respect to the origin of the unit cell
is distorted. Slight separation of degenerated modes can be
observed in Fig. 8. When the element is illuminated by an
incidence field polarized in either horizontal or vertical direc-
tions with respect to the element, one of the first two modes
and one of the next two modes would yield non-zero weight-
ing coefficients in either square or rectangle slots. It means
that the total current is formed by modal currents similar to
the square case hence similar reflection characteristics are ob-
tained for both rectangle and square slots. Due to this reason,
reflection and modal characteristics are not presented in detail
due to the brevity concerns.

Finally, we analyze 11 × 11 mm square-slot with square
ring inside at 12.5 GHz. The length for the outer edge of the
ring is the varying parameter and the thickness of the ring is
chosen as 1 mm. Corresponding geometry is depicted in Fig.
9a. In Fig. 9b, 360◦ phase coverage is observed. Again, our
results closely follow the results extracted from FEKO EM
solver. Corresponding modal significance values are plotted
in Fig. 10. For heights h=2 mm and h=6 mm, it is observed
from Fig. 9b that, reflection phase curves has a steep slope,
which is not desirable for good reflectarray design. However,
when h=10 mm, reflection phase gradually changes with the
size. Similar characteristics are observed in the variation of
modal significance values of characteristic modes given in Fig.
10. More smooth variation in MS values as a function of L is
obtained for the case h=10 mm.

5. Conclusions
We have developed an efficient formulation to calculate char-
acteristic modes for unit cell elements. Incorporation of Ewald
transformation leads fast and a low-cost analysis. The relation
between cell size and number of modes is discussed. Reflec-
tion and modal characteristics of different periodic unit cell
elements are investigated, compared and presented. Investiga-
tion of the modal characteristics of the array unit cells provide
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physical insight which is valuable for the systematic and ef-
ficient designs of periodic structures such as array antennas,
reflectarrays, frequency selective surfaces. In the future, this
work can be extended for composite elements of metal and di-
electrics. Reactive loadings for the reflectarray slot elements
can also be analyzed. We believe that more information on
radiation and scattering characteristic of large arrays can be
extracted using the theory of characteristic modes.
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