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Abstract

Quantal effects on growth of spinodal instabilities in charge asymmetric nuclear matter are

investigated in the framework of a stochastic mean field approach. Due to quantal effects, in both

symmetric and asymmetric matter, dominant unstable modes shift towards longer wavelengths and

modes with wave numbers larger than the Fermi momentum are strongly suppressed. As a result of

quantum statistical effects, in particular at lower temperatures, magnitude of density fluctuations

grows larger than those calculated in semi-classical approximation.
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I. INTRODUCTION

In many processes, such as induced fission, heavy-ion fusion near barrier energies and spin-

odal instabilities and nuclear multi-fragmentation, dynamics of density fluctuations play a

dominant role. For description of these processes mean-field transport models, such as

time-dependent Hartree-Fock (TDHF) [1, 2] and the Boltzmann-Uhling-Uhlenbeck (BUU)

[3] models are not very useful. TDHF includes, the so called, one-body dissipation mecha-

nism, but associated fluctuation mechanism is not incorporated into the model. Similarly,

the extended TDHF and its semi-classical approximation BUU model involves one-body

and collisional dissipation, but the associated fluctuation mechanisms are not included into

the description. It is well known that no dissipation takes place without fluctuations. In

order to describe dynamics of density fluctuations, we need to develop stochastic trans-

port models by incorporating fluctuation mechanisms into the description. There are two

different mechanisms for density fluctuations: (i) collisional fluctuations generated by two-

body collisions and (ii) one-body mechanism or mean-field fluctuations. Much effort has

been given to improve the transport description by incorporating two-body dissipation and

fluctuation mechanisms. The resultant stochastic transport theory, known as Boltzmann-

Langevin model [4, 6], provides a suitable framework for dynamics of density fluctuations

in nuclear collisions around Fermi energy. However, two-body dissipation and fluctuation

mechanisms do not play an important role at low energies. At low bombarding energies,

mean-field fluctuations provide the dominant mechanism for fluctuations of collective nu-

clear motion. In a recent work, we addressed this question [7]. Restricting our treatment

at low energies, we proposed a stochastic mean-field approach for nuclear dynamics, which

incorporates one-body dissipation and fluctuation mechanisms in accordance with quan-

tal dissipation-fluctuation theorem. Therefore, the stochastic mean-field approach provides

a powerful microscopic tool for describing low energy nuclear processes including induced

fission, heavy-ion fusion near barrier energies and spinodal decomposition of nuclear matter.

Much work has been done to understand the spinodal instabilities and their connection

with liquid gas phase transformation in symmetric and more recently charge asymmetric nu-

clear matter. Most of these investigations have been carried out in the basis of semi-classical

Boltzmann- Langevin (BL) type stochastic transport models [8]. There are two major prob-

lems with these investigations. First of all, numerical simulations of BL model are not very
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easy, even with approximate methods, simulations require large amount of numerical effort.

The second problem is related with the semi-classical description of spinodal decomposition

of nuclear matter. According to our previous investigations, quantal statistical effects play

an important role in spinodal dynamics [9, 10]. There are qualitatively two different regimes

during evolution of nuclear collisions in Fermi energy domain. During the initial regime

of heavy ion-collisions, namely, from touching until formation of hot and compressed piece

of nuclear matter, collisional dissipation and fluctuations are substantially important. On

the other hand, during expansion of the system into mechanically unstable spinodal region,

collisional effects may be neglected. In the spinodal region, local density fluctuations, which

are accumulated during the initial regime, are mainly driven by the mean-field until system

breaks up into clusters. Recently proposed stochastic mean-field approach provides a useful

tool for describing spinodal decomposition of expanding hot piece of nuclear matter. The

approach includes quantum statistical effects and at the same time, numerical simulations

of the approach can be carried out without much difficulty.

In this work, we study early growth of density fluctuations in charge asymmetric nuclear

matter and investigate quantum statistical effects on spinodal instabilities and on growth

rates of dominant unstable modes on the basis of stochastic mean-field approach. In sec-

tion 2, we present a brief description of the stochastic mean-field approach. In section 3,

we calculate early growth of density fluctuations, growth rates and phase diagram of dom-

inant modes in charge asymmetric systems, and study quantal effects on these quantities.

Conclusions are given in section 4.

II. STOCHASTIC MEAN-FIELD APPROACH

In the standard TDHF description of a many-body system, time-dependent wave function

is assumed to be a single Slater determinant constructed with time-dependent single-particle

wave functions. The standard approach provides a good description for the average evolution

of collective motion, however it severely restricts fluctuations of collective motion [1, 2]. In

order to describe fluctuations, we must give up single determinantal description and consider

superposition of determinantal wave functions. In the stochastic mean-field description, an

ensemble of single-particle density matrices associated with the ensemble of Slater deter-

minants is generated in a stochastic framework by retaining only initial correlations [7]. A
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member of single-particle density matrix, indicated by label λ , can be expressed as,

ρλa(~r, ~r
′, t) =

∑

ij

Φ∗

i (~r, t;λ) < i|ρλa(0)|j > Φj(~r
′, t;λ). (1)

In this expression and in the rest of the paper label a = n, p represents neutron and proton

species and < i|ρλa(0)|j > are time-independent elements of density matrix determined by

the initial correlations. The main assumption of the approach is that each matrix element

is a Gaussian random number specified by a mean value < i|ρλa(0)|j > = δijρa(i) and a

variance,

< i|δρλa(0)|j >< j′|δρλb (0)|i
′ > =

1

2
δabδii′δjj′{ρa(i)[1− ρa(j)] + ρa(j)[1− ρa(i)]}. (2)

In these expressions < i|δρλa(0)|j > represents fluctuating elements of initial density matrix,

ρa(j) denotes the average occupation number. At zero temperature, the average occupation

numbers are zero and one and at finite temperature, they are given by the Fermi-Dirac

distribution. In each event, different from the standard TDHF, time-dependent single-

particle wave functions of neutrons and protons are determined by their own self-consistent

mean-field according to,

i~
∂

∂t
Φa

j (~r, t;λ) = hλ
a Φa

j (~r, t;λ). (3)

Here hλ
a = p2/2ma + Ua(n

λ
n, n

λ
p) denotes the self-consistent mean-field Hamiltonian in the

event, which depends on proton and neutron local densities nλ
a(r, t). We can express stochas-

tic mean-field evolution in terms of single-particle density matrices of neutrons and protons

as,

i~
∂

∂t
ρλa(t) = [hλ

a, ρ
λ
a(t)]. (4)

In the stochastic mean-field approach an ensemble of single-particle density matrices is

generated associated with different events. In this approach, we can calculate, not only

the mean value of observables, also probability distribution of observables. Even if the

magnitude of initial fluctuations is small, in particular in the vicinity of instabilities mean-

field evolution can enhance the fluctuations, and hence events can substantially deviate from

one another. By projecting on a collective path, it is demonstrated that the stochastic mean-

field approach incorporates one-body dissipation and one-body fluctuation mechanisms in

accordance with quantal dissipation-fluctuation relation [7].

In this work, we investigate the early growth of density fluctuations in spinodal region

in charge asymmetric nuclear matter. For this purpose it is sufficient to consider the linear
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response treatment of dynamical evolution [8]. The small amplitude fluctuations of the

single-particle density matrix around an equilibrium state (ρ0n, ρ
0
p) are determined by the

linearized TDHF equations. The linearized TDHF equations for fluctuations of neutron and

proton density matrices, δρλa(t) = ρλa(t)− ρ0a, are given by,

i~
∂

∂t
δρλa(t) = [h0

a, δρ
λ
a(t)] + [δUλ

a (t), ρ
0
a]. (5)

Since for infinite matter, the equilibrium state and the associated mean-field Hamiltonian h0
a

are homogenous, it is suitable to analyze these equations in the plane wave representations,

i~
∂

∂t
< ~p1|δρa(t)|~p2 >=

[εa(~p1)− εa(~p2)] < ~p1|δρa(t)|~p2 > [ρa(~p1)− ρa(~p2)] < ~p1|δUa(t)|~p2 > . (6)

According to the basic assumption, matrix elements of the initial density matrix are Gaus-

sian random numbers. In the plane wave representation the second moments of the initial

correlations is given by,

< ~p1|δρa(0)|~p2 >< ~p2
′|δρb(0)|~p1

′ > = (7)

δab(2π~)
6δ(~p1 − ~p1

′)δ(~p2 − ~p2
′)
1

2
[ρa(~p1)(1− ρa(~p2)) + ρa(~p2)(1− ρa(~p1))],

where the factor (2π~)6 arises from normalization of the plane waves.

III. GROWTH OF DENSITY FLUCTUATIONS

A. Spinodal Instabilities

In this section, we apply the stochastic mean-field approach in small amplitude limit to

investigate spinodal instabilities in charge asymmetric nuclear matter [11]. We note that

the following quantity

δña(~k, t) = 2

∫

∞

−∞

d3p

(2π~)3
< ~p+ ~~k/2|δρa(t)|~p− ~~k/2 > (8)

defines the Fourier transform of the local density fluctuations of neutrons and protons. In

this expression and in other formulas in this section, we omit the event label λ for clarity of

notation. We can obtain solution of the linear response Eq. (6) by employing the standard

method of one-sided Fourier transform in time,

δña(~k, ω) =

∫

∞

0

dteiωtδna(~k, t). (9)
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After transformation, we obtain a set of coupled algebraic equations for the Fourier trans-

forms of fluctuating parts of local neutron and proton densities [12],

[1 + F nn
0 χn(~k, ω)]δñn(~k, ω) + F np

0 χn(~k, ω)δñp(~k, ω) = iAn(~k, ω) (10)

and

[1 + F pp
0 χp(~k, ω)]δñp(~k, ω) + F pn

0 χp(~k, ω)δñn(~k, ω) = iAp(~k, ω). (11)

In these expressions, derivative of the mean-field potential Ua(nn, np) evaluated at the equi-

librium density F ab
0 = (∂Ub/∂na)0 denotes the zero-order Landau parameters and χa(~k, ω)

is the Lindhard functions associated with neutron and proton distributions,

χa(~k, ω) = −2

∫

∞

−∞

d3p

(2π~)3
ρa(~p− ~~k/2)− ρa(~p+ ~~k/2)

~ω − ~p · ~~k/m
. (12)

The source terms Aa(~k, ω) are determined by the initial conditions,

Aa(~k, ω) = 2~

∫

∞

−∞

d3p

(2π~)3
< ~p+ ~~k/2|δρa(0)|~p− ~~k/2 >

~ω − ~p · ~~k/m
. (13)

The solution of the coupled algebraic equations for Fourier transform of density fluctuations

is given by,

δñn(~k, ω) = i
[1 + F pp

0 χp(~k, ω)]An(~k, ω)− F np
0 χn(~k, ω)Ap(~k, ω)

ε(~k, ω)
(14)

and

δñp(~k, ω) = i
[1 + F nn

0 χn(~k, ω)]Ap(~k, ω)− F pn
0 χp(~k, ω)An(~k, ω)

ε(~k, ω)
, (15)

where the quantity

ε(~k, ω) = 1 + F nn
0 χn(~k, ω) + F pp

0 χp(~k, ω) + [F nn
0 F pp

0 − F np
0 F pn

0 ]χn(~k, ω)χp(~k, ω) (16)

denotes the susceptibility.

Time dependence of Fourier transform of density fluctuations δña(~k, t) is determined by

taking the inverse transformation of Eqs. (14) and (15) [13]. The inverse Fourier trans-

formations in time can be calculated with the help of residue theorem, keeping only the

growing and decaying collective poles we find,

δña(~k, t) = δn+
a (
~k)e+Γkt + δn−

a (
~k)e−Γkt, (17)
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where the initial amplitude of density fluctuations are given by

δn∓

n (
~k) = −

{

[1 + F pp
0 χp(~k, ω)]An(~k, ω)− F np

0 χn(~k, ω)Ap(~k, ω)

∂ε(~k, ω)/∂ω

}

ω=∓iΓk

(18)

and

δn∓

p (
~k) = −

{

[1 + F nn
0 χn(~k, ω)]Ap(~k, ω)− F pn

0 χp(~k, ω)An(~k, ω)

∂ε(~k, ω)/∂ω

}

ω=∓iΓk

. (19)

Growth and decay rates ω = ∓iΓk are determined from the dispersion relation ε(~k, ω) = 0,

i.e. from the roots of susceptibility.

In numerical calculations we employ the same effective Skyrme potential as in reference

[11],

Ua(nn, np) = A

(

n

n0

)

+B

(

n

n0

)α+1

+ C

(

n′

n0

)

τa +
1

2

dC

dn

n′2

n0
−D∆n+D′∆n′τa (20)

where n = nn+np and n′ = nn−np are total and relative densities, and τa = +1 for neutrons

and τa = −1 for protons. The parameters A = −356.8 MeV , B = +303.9 MeV , α = 1/6

and D = +130.0 MeV fm5 are adjusted to reproduce the saturation properties of symmetric

nuclear matter: The binding energy ε0 = 15.7 MeV/nucleon and zero pressure at the

saturation density n0 = 0.16 fm−3, compressibility modulus K = 201 MeV and the surface

energy coefficient in the Weizsacker mass formula asurf = 18.6 MeV [14]. Magnitude of the

parameter D′ = +34 MeV fm5 is close to magnitude given by the SkM∗ interaction [15].

The potential symmetry energy coefficient is C(n) = C1−C2(n/n0)
α with C1 = +124.9MeV

and C2 = 93.5 MeV . These parameters for the symmetry energy coefficient in Weizsacker

mass formula, at saturation density gives asym = εF (n0)/3 + C(n0)/2 = 36.9/3 + 31.4/2 =

28.0 MeV .

As an example, Fig. 1(a) shows the growth rates of unstable modes as a function of wave

number in the spinodal region corresponding to initial density n = 0.2 n0 and n = 0.4 n0

for initial asymmetry I = 0.0 at a temperature T = 5 MeV . The initial charge asymmetry

is defined according to I = (n0
n − n0

p)/(n
0
n + n0

p). In this figure and also in other figures,

solid-lines and dashed-lines show quantal and semi-classical results, respectively. Since, at

low densities, wave numbers of most unstable modes are comparable to Fermi momentum,

long-wavelength expansion of the Linhard function is not valid, and hence there is important

quantal effect in the dispersion relation. At the initial density n = 0.2 n0 and the initial

asymmetry I = 0.0, in the quantal calculations unstable modes are confined to a narrower
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FIG. 1: Growth rates of unstable modes as a function of wave number in spinodal region corre-

sponding initial densities and at a temperature T = 5 MeV . (a) for initial asymmetry I = 0.0 ,

(b) for initial asymmetry I = 0.5.

range centered around wavelengths λ ≈ 8− 10fm, as compared to a broader range centered

around λ ≈ 7fm in the semi-classical calculations. Growth rates in semi-classical framework

are determined by the roots of semi-classical susceptibility, which is defined as in Eq. (16)

by taking the Lindhard functions χa(~k, ω) in the long wavelength limit given by Eq. (28).

As a result, in the quantal calculations, the source has a tendency to break up into larger

fragments as compared to the semi-classical calculations. Also, due to quantum effects, the

maximum of dispersion relation is reduced by about a factor 3/4. Therefore, fluctuations
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take more time to develop when quantum effects are introduced. At higher initial density

n = 0.4 n0 , in both quantal and semi-classical calculations, dispersion relation is shifted

towards longer wavelengths and it exhibits a similar trend as the one at the initial density

n = 0.2 n0. This quantal effect in dispersion relation of unstable modes was pointed out

in the case of symmetric matter in a previous publication [16]. Charge asymmetric nuclear

matter exhibits a similar behavior as seen from figure 1(b), which shows dispersion relation

corresponding to initial densities n = 0.2 n0 and n = 0.4 n0 for initial charge asymmetry

I = 0.5 at a temperature T = 5 MeV . Figs. 2(a) and 2(b) shows the boundary of spinodal

region in density-temperature plane corresponding to initial charge asymmetries I = 0.0 and

I = 0.5 at a temperature T = 5 MeV for the unstable modes with wavelengths λ = 9 fm

and λ = 12 fm, respectively. It is seen that with increasing charge asymmetry, spinodal

region shrinks to smaller size in both quantal and semi-classical calculations. Furthermore,

unstable modes are quite suppressed by quantal effects as compared to the semi-classical

results in both symmetric and asymmetric matter. Results of semi-classical calculation are

in agreement with the result obtained in reference [11].

B. Growth of Density fluctuations

In this section, we calculate early growth of local density fluctuations in charge asym-

metric nuclear matter. Spectral intensity of density correlation function σ̃ab(~k, t) is related

to the second moment of Fourier transform of density fluctuations according to,

σ̃ab(~k, t)(2π)
3δ(~k − ~k ′) = δña(~k, t)δñb(−~k ′, t). (21)

We calculate the spectral functions using the solution (17) and employing expression (7) for

the initial correlations to find,

σ̃ab(~k, t) =
E+

ab(
~k, iΓk)

|[∂ε(~k, ω)/∂ω]ω=iΓk
|2
(e2Γkt + e−2Γkt) +

2E−

ab(
~k, iΓk)

|[∂ε(~k, ω)/∂ω]ω=iΓk
|2

(22)

where quantities E∓

ab(
~k, iΓk), a, b = n, p, are given by,

E∓

nn(
~k, iΓk) = 4~2(1 + F pp

0 χp)
2I∓n + 4~2(F np

0 χn)
2 I∓p , (23)

E∓

pp(
~k, iΓk) = 4~2(1 + F nn

0 χn)
2I∓p + 4~2(F pn

0 χp)
2 I∓n (24)
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FIG. 2: Boundary of spinodal region in density-temperature plane corresponding to initial charge

asymmetries I = 0.0 and I = 0.5 for the unstable mode: (a) with wavelength λ = 9 fm , (b) with

wavelength λ = 12 fm.

and

E∓

np(
~k, iΓk) = −4~2(1 + F pp

0 χp)F
pn
0 χp I∓n − 4~2(1 + F nn

0 χn)F
np
0 χn I∓p (25)

with

I∓a =

∫

d3p

(2π~)3
(~Γk)

2 ∓ (~p · ~~k/m)2

[(~Γk)2 + (~p · ~~k/m)2]2
ρa(~p+ ~~k/2)[1− ρa(~p− ~~k/2)]. (26)
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Semi-classical limit of these expressions are obtained by replacing the integrals I∓a and

χa(~k, ω) with following expressions in the long wave-length limit,

I∓a (sc) =

∫

d3p

(2π~)3
(~Γk)

2 ∓ (~p · ~~k/m)2

[(~Γk)2 + (~p · ~~k/m)2]2
ρa(~p)[1− ρa(~p] (27)

and

χsc
a (

~k, ω) = −2

∫

∞

−∞

d3p

(2π~)3
(~p · ~~k/m)2

(~Γk)2 + (~p · ~~k/m)2

∂

∂ε
ρa. (28)

Figs. 3(a) and 3(b) shows spectral intensity σ̃nn(~k, t) of neutron-neutron density corre-

lation function as function of wave number at times t = 0 and t = 50 fm/c for density

n = 0.4 n0 and the initial charge asymmetry I = 0.5 at temperature T = 1 MeV and

T = 5 MeV , respectively.

As mentioned above, in all figures solid-lines and dashed-lines indicate quantal and semi-

classical results, respectively. As seen, in particular at towards the high end of the wave

number spectrum, considerable quantal effects are present at initial fluctuations. Quantum

statistical effects in the initial fluctuations become even larger at smaller temperatures. In

fact at zero temperature, since the quantities I∓a (sc) becomes zero, spectral functions vanish

σ̃ab(~k, t) = 0. However, in quantal calculations spectral functions remains finite even at

zero temperature, reflecting quantum zero point fluctuations of the local density. Looking

at the results at t = 50 fm/c , we observe that largest growth occurs over the range of

wave numbers corresponding to the range of dominant unstable modes. At T = 5 MeV ,

magnitude of fluctuations is about the same in both quantal and semi-classical calculations.

At the lower temperature T = 1 MeV , magnitude of fluctuations in the most unstable

range is nearly doubled in quantal calculations as compared to semi-classical calculations.

Fig. 3(c) shows spectral intensity σ̃nn(~k, t) as function of wave number at times t = 0

and t = 50 fm/c at a lower density n = 0.2 n0 for initial charge asymmetry I = 0.5 and

temperature T = 5 MeV . At the lower density, growth rates of dominant modes in the semi-

classical limit are considerably larger than those of quantal calculations. Consequently, the

result of semi-classical calculations at time t = 50 fm/c overshoots the result of quantal

calculations over the range of dominant modes. Fig. 4 illustrates that the spectral intensity

for symmetric matter has similar properties as for asymmetric matter with I = 0.0.

We note that quantal effects enter into the spectral density in two different ways: (i)

quantal effects in growth rates of modes and (ii) quantum statistical effects on the initial
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FIG. 3: Spectral intensity σ̃nn(~k, t) of neutron-neutron density correlation function as function of

wave number k at times t = 0 and t = 50 fm/c for the initial charge asymmetry I = 0.5 : (a)

for density n = 0.4 n0 at temperature T = 1 MeV , (b) for density n = 0.4 n0 at temperature

T = 5 MeV , (c) for density n = 0.2 n0 at temperature T = 5 MeV .

density fluctuations, which becomes increasingly more important at lower temperatures. We

also note that in determining time evolution of δñ(~k, t) with the help of residue theorem,

there are other contributions arising from non-collective poles of susceptibility ε(~k, ω) and

from poles of Aa(~k, ω). These contributions, in particular towards short wavelengths, are

important at the initial state, however they damp out in a short time interval [17]. Therefore

the approximate expression (22) for the spectral intensity σ̃(~k, t) of density fluctuations
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FIG. 4: Same as Fig. 3 but for asymmetry I = 0.0.

becomes more accurate for increasing time.

Local density fluctuations δna(~r, t) are determined by the Fourier transform of δña(~k, t).

In terms of spectral intensity σ̃ab(~k, t), which is defined in Eq. (21), equal time density

correlation function as a function of distance between two space locations is expressed as,

σab(|~r − ~r ′|, t) = δna(~r, t)δnb(~r ′, t) =

∫

d3k

(2π)3
ei
~k·(~r−~r ′)σ̃ab(~k, t). (29)

Total density correlation function is given by sum over neutrons and protons and cross-

term, σ(|~r − ~r ′|, t) = σnn(|~r − ~r ′|, t) + σpp(|~r − ~r ′|, t) + 2σnp(|~r − ~r ′|, t). The behavior of

density correlation function as a function of initial density and temperature carries valuable
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information about the unstable dynamics of the matter in the spinodal region. As an

example, Figs. 5(a) and 5(b) illustrate total density correlation function as a function of

distance between two space points at times t = 0 and t = 50 fm/c at density n = 0.4 n0

and the initial charge asymmetry I = 0.5 for temperatures T = 1 MeV and T = 5 MeV ,

respectively. At temperature T = 5MeV , quantal effects are not important, and hence semi-

classical calculations provide good approximation for density correlation function. However,

at lower temperature T = 1 MeV , semi-classical calculations severely underestimates peak

value of density correlation function. Fig. 5(c) shows density correlation function at times

t = 0 and t = 50 fm/c at a lower density n = 0.2 n0 for initial charge asymmetry

I = 0.5 and a temperature T = 5 MeV . On the other hand, at lower density, semi-classical

approximation overestimates the peak value of the correlation function. As indicated above,

this is due to the fact that growth rates of dominant modes in semi-classical limit are

considerably larger than those obtained in quantal calculations. For asymmetry I = 0.0, as

seen from Fig. 6, behavior of density correlation function is similar to the charge asymmetric

case. Complementary to the dispersion relation, correlation length of density fluctuations

provides an additional measure for the average size of primary fragmentation pattern. We

can estimate the correlation length of density fluctuations as the width of correlation function

at half maximum. Correlation length depends on density, and to some extend, depends on

temperature as well. From these figures, we can estimate that the correlation length of

density fluctuations is about 3.5 fm at density n = 0.4 n0, and about 3.0 fm at density

n = 0.2 n0.

During spinodal decomposition, initial charge asymmetry shifts towards symmetry in

liquid phase while gas phase moves toward further asymmetry. As a result, produced frag-

ments are more symmetric than the charge asymmetry of the source. This interesting fact

is experimentally observed and it may provide a useful guidance to gain information about

symmetry energy in low density nuclear matter. For each event, we can define perturbation

charge asymmetry during early evolution of density fluctuations as,

Ipt =
δnn(~r, t)− δnp(~r, t)

δnn(~r, t) + δnp(~r, t)
=

[δnn(~r, t)]
2 − [δnp(~r, t)]

2

[δnn(~r, t) + δnp(~r, t)]2
. (30)

We are interested in the ensemble average value of this quantity, which can approximately

be evaluated according to

Ipt ≈
σnn(t)− σpp(t)

σnn(t) + 2σnp(t) + σpp(t)
. (31)
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FIG. 5: Density correlation function σ(x, t) as a function of distance x =| ~r − ~r ′ | between two

space points at times t = 0 and t = 50 fm/c and the initial charge asymmetry I = 0.5 : (a)

for density n = 0.4 n0 at temperature T = 1 MeV , (b) for density n = 0.4 n0 at temperature

T = 5 MeV , (c) for density n = 0.2 n0 at temperature T = 5 MeV .

where σab(t) = σab(| ~r − ~r ′ |= 0, t). The average value of the perturbation asymmetry is

nearly independent of time. As an example, Fig. 7 shows this quantity as function of initial

asymmetry at temperature T = 5 MeV for densities n = 0.2 n0 and n = 0.4 n0. As a result

of the driving force of symmetry energy, perturbation asymmetry drifts towards symmetry.

At this temperature quantal effects do not play an important role and these calculations are
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FIG. 6: Same as Fig. 5 but for asymmetry I = 0.0.

consistent with results of ref. [11].

IV. CONCLUSIONS

Recently proposed stochastic mean-field theory incorporates both one-body dissipation

and fluctuation mechanisms in a manner consistent with quantal fluctuation-dissipation the-

orem of non-equilibrium statistical mechanics. Therefore, this approach provides a powerful

tool for microscopic description of low energy nuclear processes in which two-body dissi-

pation and fluctuation mechanisms do not play important role. The low energy processes
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FIG. 7: Perturbation asymmetry as function of initial asymmetry at temperature T = 5 MeV for

densities n = 0.2 n0 and n = 0.4 n0.

include induced fission, heavy-ion fusion near barrier energies, spinodal decomposition of

nuclear matter and nuclear multi-fragmentations. In this work we investigate quantal ef-

fects on spinodal instabilities and early growth of density fluctuations in charge asymmetric

nuclear matter. For this purpose it is sufficient to consider the linear response treatment of

the stochastic mean-field approach. Retaining only growing and decaying collective modes,

it is possible to calculate time evolution of spectral intensity of density correlation function

and the density correlation function itself including quantum statistical effects. Growth

rates of unstable collective modes are determined from a quantal dispersion relation, i.e.

from the roots of susceptibility. Due to quantal effects, growth rates of unstable modes, in

particular with wave numbers larger than the Fermi momentum, are strongly suppressed.

As a result, dominant collective modes are shifted to longer wavelengths than those obtained

in the semi-classical description with the same effective interaction, in both symmetric and

asymmetric matter. The size of spinodal zone associated with these modes is reduced by

the quantal effects. In calculation of density correlation function, quantal effects enter into
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the description through the growth rates of the modes and through the initial density fluc-

tuations. Quantum statistical influence on density correlation functions grows larger at

lower temperatures and also at lower densities. Quantal effects appear to be important

for a quantitative description of spinodal instabilities and growth of density fluctuations in

an expanding nuclear system. Stochastic mean-field approach incorporates both one-body

dissipation and fluctuations mechanisms in a manner consistent with dissipation-fluctuation

theorem. Therefore, it will be very interesting to investigate spinodal decomposition of an

expanding nuclear system in this framework. We also note that numerical effort in simu-

lation of stochastic mean-field approach is not so much greater than the effort required in

solving ordinary three dimensional time dependent Hartree-Fock equations.
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