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Abstract—A hybrid method to calculate mutual coupling of electric
or magnetic current elements on a cylindrically layered structure using
closed-form Green’s functions is presented. When ρ = ρ′ and φ is not
very close to φ′, closed-form Green’s functions are employed in the
calculation of MoM matrix entries. When both ρ = ρ′ and φ = φ′,
series representation of the spectral domain Green’s functions do not
converge, therefore closed-form Green’s functions can not be employed.
In that case MoM matrix entries are evaluated using the proposed
hybrid method. The technique is applied to both printed dipoles and
slots placed on a layered cylindrical structures. The computational
efficiency of the analysis of mutual coupling of printed elements on
cylindrically layered geometries is increased with the use of proposed
hybrid method which employs closed-form Green’s functions.

1. INTRODUCTION

The importance of cylindrically layered structures has led to the
investigation of the scattering from infinite conducting, dielectric or
dielectric-coated conducting cylinders and the radiation from patches,
microstrip lines on cylindrical structures and cylindrical-rectangular,
wraparound microstrip antennas [1–20]. In this paper, a hybrid method
which combines the use of closed-form Green’s functions with the
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Figure 1. General cylindrically multilayered medium.

spectral domain analysis, is utilized to calculate the mutual coupling
of printed elements on cylindrically stratified structures.

For the rigorous analysis of printed geometries in multilayer media,
geometries, numerical algorithms based on the Method of Moments
(MoM) are widely favored over other rigorous techniques, such as
finite elements (FEM) and finite difference time domain methods
(FDTD). The Method of Moments (MoM) is the most frequently used
numerical technique to solve the problems of microstrip geometries
mounted on multilayer structures. In this method, the integral
equation is transformed into a matrix equation by approximating
the unknown function in terms of known basis functions, then using
testing functions the boundary conditions are applied to minimize the
weighted error due to this approximation. When MoM is applied in
the spatial domain, the numerical computation of MoM matrix entries
is very time consuming. The reason for that is a difficulty with the
numerical evaluation of the Sommerfeld integrals, which is mainly due
to the oscillatory nature of the Sommerfeld integrals, and the slow-
decaying nature of the spectral-domain Green’s functions. Closed-
form Green’s functions can be used to improve numerical efficiency
for the evaluation of MoM integral. For a general cylindrically
layered medium shown in Fig. 1, closed-form Green’s functions are
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Γ3

Figure 2. Deformed path.

obtained by approximating the spectral domain Green’s function in
terms of complex exponential functions in three consecutive steps on
a deformed integration path shown in Fig. 2 and then transforming
these exponential functions into the spatial domain analytically [21].
This technique eliminates the requirement of the time consuming
transformation by the numerical integration of the inverse Fourier
integral along the real axis on the complex kz plane where the
surface wave poles and the branch-point singularities are encountered.
Therefore, spatial domain Green’s functions are obtained in closed
forms rather than numerically evaluating Sommerfeld integral which
improves the numerical efficiency in the computation of the spatial
domain Green’s functions. Hence, analysis of different problems such
as radiation from microstrips, patches and slots mounted on cylindrical
surfaces, and scattering from dielectric shells and cylinders can be
numerically improved, considerably.

In a previously reported work [21], closed-form Green’s function
components for φ and z oriented sources were presented where series
representations of these Green’s functions were convergent in the
spectral domain when �ρ �= �ρ ′. In addition, in [22] a procedure
was proposed to ensure convergence at ρ = ρ′ but still convergence
problem exists when φ = φ′, i.e., �ρ = �ρ ′. In this paper, the work
presented in [21] and [22] is extended to a more general form, by adding
the components which were not provided in [21] and using a similar
procedure outlined in [22] to make these Green’s functions convergent
at ρ = ρ′ so that they can be used in the analysis of printed structures
using MoM with the aid of the method discussed in Section 3.

In this paper, the mutual coupling between two strips and
between two slots placed on a cylindrically layered medium using MoM
incorporation with the closed-form Green’s functions is discussed. For
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the calculation of the MoM matrix entries, a hybrid method is used,
depending on whether φ is close to φ′ or not. When ρ = ρ′, if φ is
not close to φ′ the closed-form Green’s functions are employed. When
φ is close to φ′, since the spectral-domain Green’s functions do not
converge, (φ − φ′) difference term is handled in the convolutional
integral in the spectral-domain in the calculation of MoM matrix
elements. The technique is applied to both printed dipoles and slots
placed on a layered cylindrical structure. The computational efficiency
of the anaysis of mutual coupling of printed elements on cylindrically
layered structures is increased with the use of proposed hybrid method
due to use of closed-form Green’s functions.

2. GREEN’S FUNCTION FORMULATION

A cylindrically layered geometry is shown in Fig. 1. An electric or
magnetic source of z or φ orientation is embeded in region j and the
observation point may be located in any layer, denoted by region i.
Layers may vary in their electric or magnetic properties (ε, µ) as well
as the thickness. The method can also be applied to lossy dielectric
material. First the axial components of the spectral domain electric
and magnetic fields are derived for the source layer, then these field
components are transferred into the observation layer using a recursive
algorithm [21].

Spectral domain Green’s functions can be transformed into spatial
domain by evaluating the Sommerfeld integral,

GE,H(z − z′) =
1
2π

∞∫
−∞

e−jkz(z−z′)G̃E,H(kz)dkz (1)

where GE,H denotes spatial domain Green’s function. Since the
numerical evaluation of (1) has difficulties and is very time consuming,
to improve computational efficiency the deformed path [21] given in
Fig. 2. is used as the path of integration in (1). The spectral domain
Green’s functions are approximated in terms of complex exponential
functions in three consecutive steps and then these exponential
functions are transformed into the spatial domain, analytically.

The z and φ oriented components of spatial domain closed-form
Green’s functions for an electric and a magnetic dipole pointing in
z and φ direction were given in [21]. The remaining spatial domain
closed-form Green’s function components which are not given in [21]
are also obtained and the complete set of spectral-domain Green’s
functions is presented in the Appendix for the sake of completeness.
Additionally, the surface wave contribution in cylindrically stratified
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media is investigated. In that study, the effect of the surface wave
poles and the selection of the deformed path parameters are studied.
When a proper deformed path is used in the evaluation of spatial-
domain Green’s functions, it is observed that removing the surface
wave contributions from spectral-domain Green’s functions does not
provide an extra benefit [23].

The spatial domain Green’s functions given by [21] can only be
evaluated when ρ is not equal to ρ′. However, when MoM is applied in
the spatial domain, the spatial domain Green’s functions at ρ = ρ′ is
needed. To make the series representations of these Green’s functions
convergent in spectral domain when ρ = ρ′ a similar procedure reported
in [22] is employed.

To demonstrate the procedure, the spectral domain Green’s
function G̃E

zz is considered in this paper, where G̃E
zz has a summation

term S1 =
∞∑

n=−∞
f11e

jn(φ−φ′) that has a convergence problem when

ρ = ρ′, therefore infinite number of terms are needed to obtain a
convergent result. It is realized that the quasistatic components of f11
are slowly convergent, on the other hand the inverse Fourier transform
of the quasistatic components has a closed form. After the quasistatic
components are completely extracted from the Green’s functions
in spectral domain, the remaining parts have good convergence
behaviours which can be used to speed up the calculation of the inverse
Fourier transform. Then the quasistatic components are transformed
into spatial domain analytically and their contributions are added in
closed form [22].

The summation term, S1 can be expressed as

S1 =
∞∑

n=−∞

f11(
H

(2)
n (kρiρ)Jn(kρiρ

′)
) (
H(2)

n (kρiρ)Jn(kρiρ
′)

)
ejn(φ−φ′)

=
∞∑

n=−∞
C1

(
H(2)

n (kρiρ)Jn(kρiρ
′)

)
ejn(φ−φ′) (2)

where Jn() and H(2)
n () are nth order first-kind Bessel function and nth

order second-kind Hankel function, respectively.
The coefficient C1 depends on n and kz; if kz is fixed then C1 only

depends on n. With increasing n, C1 has an asymptotic value denoted
as C∗

1 . C∗
1 is independent of n, but depends on kz.

lim
n→∞C1(n, kz) ∼= C∗

1 (kz)

While moving along the Sommerfeld integration path on Γ3 path, C∗
1

is found to be almost a constant that is denoted as C∗∗
1 ; hence C∗∗

1 is
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independent of n and kz.

lim
kz→∞

C∗
1 (kz) ∼= C∗∗

1

As a summary, the complete procedure can be outlined as follows:

- The spectral domain Green’s functions are evaluated uniformly
along the deformed path given in Fig. 2 [21].

- The asymptotic terms C∗
1 and C∗∗

1 are subtracted to make the
remains of the Green’s function vanishing on path Γ3 and are
transformed into those in spatial domain in closed form [22].

- The resultant Green’s functions are sampled uniformly along two
deformed paths Γ1 and Γ2 and approximated in terms of N1 and
N2 complex exponentials of kz by using the Generalized Pencil of
Function (GPOF) method [24].

- Transforming the approximated Green’s functions into the spatial
domain turns out to be a simple contour integral of exponentials
which have closed forms.

3. MUTUAL COUPLING ANALYSIS

Main contribution of this paper is to employ closed-form Green’s
functions to evaluate the MoM matrix entries in order to increase
the computational efficiency in the analysis of cylindrically multilayer
geometries. Since when ρ = ρ′ and φ = φ′ numerical difficulties
exist in the evaluation of closed-form Green’s functions, a hybrid
method is used. The hybrid method employs the closed-form Green’s
functions in the spatial domain whenever φ is not close to φ′, otherwise
(φ−φ′) difference term is handled with the convolutional integral in the
spectral domain. Using closed-form Green’s functions in the evaluation
of MoM matrix entries avoids the requirement of the tedious and time
consuming numerical integration of the Sommerfeld integral where the
surface wave poles and the branch point singularities are encountered.
Since the closed-form expressions of the Green’s functions derived for a
specific point remain to be valid when the z coordinate of this point is
altered, the need for recomputing the Green’s functions for the points
with varying z coordinates is eliminated. Hence, the proposed hybrid
method saves great amount of computational time in the calculation
of MoM matrix elements.

In this section, the analysis of mutual coupling between two
narrow strips and between two narrow slots placed on a cylindrically
layered medium is presented. Mutual impedance and mutual coupling
coefficient formulations are also provided for both strip and slot
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examples to demonstrate the use of both electric and magnetic type
Green’s functions in cylindrically layered media.

3.1. Mutual Coupling between Two Strips

A cylindrical 3-layer medium with two narrow strips placed on ρ = a1

is given in Fig. 3.

Figure 3. A 3-layer structure with Region 0: PEC, Region 1:
εr1 = 2.3, µr1 = 1, Region 2: free space, a0 = 20 mm, a1 = 21 mm,
f = 4.7 GHz.

For the spatial domain MoM formulation, the typical matrix
equation can be written in the following form


〈
Jm1, G

E ∗ Jn1

〉 〈
Jm1, G

E ∗ Jn2

〉
〈
Jm2, G

E ∗ Jn1

〉 〈
Jm2, G

E ∗ Jn2

〉

[
an1

an2

]
=


 −

〈
Jm1, G

E ∗ J i
〉

−
〈
Jm2, G

E ∗ J i
〉




(3)
where mi, ni = 1, . . . , N, i = 1, 2, ∗ denotes convolution, J i is taken
as a delta gap source, Jm1, Jn1 and Jm2, Jn2 are testing and basis
functions of the first strip and the second strip, respectively.

The matrix entries in (3) can be written in the following form

Zmn =
∫∫

dzdlJmz(z, l)
∫∫

dz′dl′GE
zz(z − z′, l − l′)Jnz(z′, l′) (4)
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where l and l′ are the “arc length” variables which are given as l = a1φ
and l′ = a1φ

′.
Galerkin’s procedure is employed in the mutual coupling analysis

with the selection of testing function Jm and basis function Jn of
each strip same. This choice results in a symmetric matrix, hence
considerably reduces the computation time of Zmn.

By changing of variables u = z − z′ and v = l − l′, (4) can be
written as

Zmn =
∫∫

dzdl

∫∫
dudvGE

zz(u, v)Jmz(z, l)Jnz(z − u, l − v) (5)

Putting the closed-form of Gzz [21] given in (6) into (5), (7) is obtained,

GE
zz(u, v) =

1
2π

∫
dkze

−jkz(z−z′)
∑
k

Gk
zz(ρ = ρ′, kz)ejk(φ−φ′) (6)

Zmn =
∫∫

dzdl

∫∫
dudv

{
1
2π

∫
dkze

−jkz(z−z′)

(∑
k

Gk
zze

jk(φ−φ′)

)}

×Jmz(z, l)Jnz(z − u, l − v) (7)

Expressing the current density Jmz by a rooftop function, i.e., a
Triangular function in z direction and a Pulse function in φ direction,
i.e., Jmz = Tmz(z)Pmz(l) and changing the order of integrals, (8) is
obtained,

Zmn =
∫∫

dudv

{
1
2π

∫
dkze

−jkzu

(∑
k

Gk
zze

jk(φ−φ′)

)}

×
∫
dlPmφ(l)Pnφ(l − v)

∫
dzTmz(z)Tnz(z − u) (8)

For the calculation of (8), a hybrid method is used, depending on
whether φ is close to φ′ or not. If φ is not close to φ′ the closed-
form Green’s functions are employed. When φ is close to φ′, since the
spectral-domain Green’s functions do not converge, (φ− φ′) difference
term is handled with the convolutional integral in the spectral-domain
in the calculation of MoM matrix element Zmn.

To be more explanatory, the last integral in (8), which is a
convolution integral, is evaluated analytically. For the rest of the
calculation of the matrix entry Zmn, a hybrid method is used:

- when φ is not close to φ′, the ‘dl’ integration and the closed-form
of GF

zz are evaluated independently; MoM matrix elements are
obtained in the spatial domain,
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- when φ is close to φ′, (9) is obtained from (8) and used for
the calculation for the matrix entry Zmn such as: first, Pulse
functions are integrated giving an analytical result in terms of v,
then the multiplication of this analytical term with ejkv is used as
an integrand in v integration, at the last step, the spectral domain
kz integral is calculated in closed-form.

Zmn =
∫
du

{
1
2π

∫
dkze

−jkzu

{∑
k

Gk
zz

∫
dvejkv

(∫
dlPmφ(l)Pnφ(l−v)

)}}

×
{∫

dzTmz(z)Tnz(z − u)
}

(9)

3.2. Mutual Coupling between Two Slots

A cylindrical 3-layer medium with two narrow slots placed on ρ = a1

is given in Fig. 4. For this geometry, the slot is represented by an
equivalent magnetic-current distribution Jm by using the equivalence
principle. Therefore Green’s functions due to magnetic current
elements are employed.

Since the tangential electric field across the slot can be represented
by the equivalent magnetic-current distribution

J
m = E × n̂ = E × âρ (10)

The unit normal to the surface is denoted by n̂ which is âρ for this
problem.

The equivalent magnetic-current distributions inside and outside
of PEC can be written as

For ρ > a1, J
m
out = E × âρ = Eφâφ × âρ = −Eφâz (11)

For ρ < a1, J
m
in = E × (−âρ) = Eφâφ × (−âρ) = Eφâz (12)

We shall use the boundary condition that the tangential magnetic
field is continous across the aperture,

H
in
z

(
J

m
in

)
= Hout

z

(
J

m
out

)
+ Jsδ(z − d) at ρ = a1 (13)

where Js is the known probe current density at z = d.
Knowing that H in = GH ∗ Jm

in and Hout = GH ∗ Jm
out, (13) can be

written as(
G

H
zzin
∗ Jm

zin

)
=

(
G

H
zzout

∗ Jm
zout

)
+ Jsδ(z − d) at ρ = a1. (14)
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Figure 4. A 3-layer structure with Region 0: εr0 = 2, µr0 = 1, Region
1: εr1 = 5, µr1 = 1, Region 2: free space, a0 = 20 mm, a1 = 21 mm.

PECφ1

 φ2

m
zJ 1

m
zJ 2

Figure 5. Equivalent magnetic current distributions on each slot.

Here, GH
zz is the magnetic type Green’s function in z direction due to

z-oriented magnetic current source.
According to MoM, the total surface current density Jm

z can be
expressed interms of N subsectional basis functions as

J
m
zin

= −Jm
zout

=
∑
n1

an1Jn1 +
∑
n2

an2Jn2 (15)
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where Jn1 is basis function of the first slot, Jn2 is the basis function of
the second slot.

For the spatial domain MoM formulation, the typical matrix
equation can be written as


〈
Jm1, (G

H
zzin

+GH
zzout

) ∗ Jn1

〉 〈
Jm1, (G

H
zzin

+GH
zzout

) ∗ Jn2

〉
〈
Jm2, (G

H
zzin

+GH
zzout

) ∗ Jn1

〉 〈
Jm2, (G

H
zzin

+GH
zzout

) ∗ Jn2

〉

[
an1

an2

]

=




〈
Jm1, Jsδ(z − d)

〉
〈
Jm2, Jsδ(z − d)

〉

 (16)

where mi, ni = 1, . . . , N, i = 1, 2, ∗ denotes convolution, Js is taken
as a delta gap source, Jm1, Jn1 and Jm2, Jn2 are testing and basis
functions of the first slot and the second slot, respectively.

The matrix entries in (16) can be written in the following form

Zmn =
∫∫

dzdlJmz(z, l)
∫∫

dz′dφ′GH
zz(z − z′, l − l′)Jnz(z′, l′) (17)

In this application, the matrix entries Zmn given in (17) are evaluated
using the same procedure as applied in (4)–(9).

3.3. Mutual Impedance and Mutual Coupling Coefficient

The mutual impedance is given by [25]

Z21 =
∫∫
S1

ds1J1(r1) ·


∫∫

S2

ds2G(r1, r2)J2(r2)


 (18)

The coupling coefficient matrix S can be defined as [26],

S =
[
S11 S12

S21 S22

]
=

(
Z − Z0

) (
Z + Z0

)−1
(19)

Hence it can be written as,

S =
[
S11 S12

S21 S22

]

=
([
Z11 Z12

Z21 Z22

]
−

[
Z0 0
0 Z0

])([
Z11 Z12

Z21 Z22

]
+

[
Z0 0
0 Z0

])−1

(20)
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log10|k0(z-z’)| 

lo
g 1

0 
|G

E
z

 | 

__   Closed-form 
 
 O     Exact 

Figure 6. log10 |GE
zφ| for a magnetic dipole pointing in φ direction, for

the geometry shown in Figure 3, ρ = ρ′ = 21 mm, φ− φ′ = 10◦, εr1 =
2.3, th = 1 mm, f = 10 GHz.

Then, the mutual coupling coefficient S21 can be found as

S21 =
2Z12Z0

(Z11 + Z0)(Z22 + Z0)− Z12Z21
(21)

where Z0 is the characteristic impedance of the feeding coax which is
assumed to be 50 Ω.

4. NUMERICAL RESULTS AND DISCUSSIONS

A 3-layer structure in Fig. 3 with Region 0: PEC, Region 1: εr1 , µr1 =
1, Region 2: free space, a1 = 20 mm, a2 = 21 mm, dielectric thickness
th = 1 mm, is presented to demonstrate the validity of the technique.
GE

zφ due to a magnetic dipole pointing in φ direction for φ− φ′ = 10◦

and GE
zz due to an electric dipole pointing in z direction for φ−φ′ = 15◦

are calculated when ρ = ρ′ = 21 mm, which are given in Fig. 6 and
Fig. 7, respectively. The exact (numerical integration of (1)) and our
closed-form (approximate) Green’s functions are plotted together and
they are found to be in good agreement.

In Fig. 8 and Fig. 9 our results are compared with those given in
[27] which is based on eigenfunction solution. The geometry given in
Fig. 3 is used, each strip having L = λ0/2 length and 0.002λ0 width,
dielectric constant εr1 = 2.
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 log10|k0(z-z’)| 
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| 

Figure 7. log10 |GE
zz| for an electric dipole pointing in z direction, for

the geometry shown in Figure 3, ρ = ρ′ = 21 mm, φ− φ′ = 15◦, εr1 =
10, th = 1 mm, f = 6.8 GHz.

---   Real PropMethod
O    Real (Eigenfunction Soln.)

-.-.- Imag PropMethod
x      Imag (Eigenfunction Soln.)

S   /

Z
21

0λϕ

Figure 8. Real and Imaginary parts of the mutual impedance
Z21 between two identical z-directed strips versus separation when
f = 4.7 GHz, a1 = 0.5λ0, th = 0.02λ0, L = λ0/2.
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---   Real PropMethod
O    Real (Eigenfunction Soln.)

-.-.- Imag PropMethod
x      Imag (Eigenfunction Soln.)

S   /

Z
21

0λϕ

Figure 9. Real and Imaginary parts of the mutual impedance
Z21 between two identical z-directed strips versus separation when
f = 2 GHz, a1 = 0.5λ0, th = 0.02λ0, L = λ0/2.

Fig. 8 shows mutual impedance Z21 between two identical z-
directed strips versus Sϕ when frequency f is 4.7 GHz and the outer
cylinder radius ‘a1’ is 0.5λ0, dielectric thickness ‘th’ is 0.02λ0.

Sϕ is the angular spacing between two z-directed strips with
respect to free-space wavelength λ0. Fig. 9 shows mutual impedance
Z21 between two identical z-directed strips versus Sϕ when frequency f
is 2 GHz and the outer cylinder radius ‘a1’ is 0.5λ0, dielectric thickness
‘th’ is 0.02λ0.

It is clearly seen that the results for eigenfunction solution [27]
and the proposed method in this paper are in good agreement with
each other.

Mutual coupling between z-directed two narrow strips on a
cylindrical 3-layer medium given in Fig. 3 is evaluated using the method
discussed in the previous section. The excitation is done by a probe.
Each strip has L = λ0/2 length and 0.025λ0 width.

Fig. 10 and Fig. 11 show the mutual impedance Z21 and coupling
coefficient S21 of two z-directed identical strips versus the angular
spacing Sϕ when f = 4.7 GHz, εr1 = 2.3.

Mutual coupling between two z-directed narrow slots on a
cylindrical 3-layer medium given in Fig. 4 is evaluated using the method
discussed in the previous section. The geometry in Fig. 12 is used for
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|S
21

|d
B

S   / 0λϕ

Figure 10. Mutual impedance Z21 for H-plane coupling case of
two z-directed strips at f = 4.7 GHz, a0 = 20 mm, a1 = 21 mm,
εr1 = 2.3, L = λ0/2.

|S
21

|d
B

S   / 0λϕ

2

Figure 11. Mutual coupling coefficient S21 for H-plane coupling case
of two z-directed strips at f = 4.7 GHz, a0 = 20 mm, a1 = 21 mm,
εr1 = 2.3, L = λ0/2.
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m
zJ 1

m
zJ 2

∆z

L

z

z

PEC

φ

 w

’φ

Figure 12. Geometry used for mutual coupling between two z-
directed narrow slots.

|Z
21

|d
B

S   / 0λϕ

Figure 13. Mutual impedance Z21 for H-plane coupling case of two
z-directed narrow slots at f = 2 GHz, a0 = 20 mm, a1 = 21 mm,
∆z = 0, εr0 = 2, εr1 = 5, L = λ0/2.

the mutual coupling evaluation. The excitation is done by a coax by
connecting the inner conductor of coax to the slot. Each slot has length
as L = λ0/2 and width as w = 0.04λ0.

Fig. 13 and Fig. 14 show the mutual impedance Z21 of two z-
directed narrow slots versus the angular spacing Sϕ for ∆z = 0 (the
slots are parallel in z direction) and ∆z = λ0/4 values when f = 2 GHz,
εr0 = 2 and εr1 = 5.

Fig. 15 and Fig. 16 show the mutual coupling coefficient S21 of two
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|Z
21

|d
B

S   / 0λϕ

Figure 14. Mutual impedance Z21 for H-plane coupling case of two
z-directed narrow slots at f = 2 GHz, a0 = 20 mm, a1 = 21 mm,
∆z = λ0/4, εr0 = 2, εr1 = 5, L = λ0/2.

|S
21

|d
B

S   / 0λϕ

Figure 15. Mutual coupling coefficient S21 for H-plane coupling case
of two z-directed narrow slots at f = 2 GHz, a0 = 20 mm, a1 = 21 mm,
∆z = 0, εr0 = 2, εr1 = 5, L = λ0/2.
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|S
21

|d
B

S   / 0λϕ

Figure 16. Mutual coupling coefficient S21 for H-plane coupling case
of two z-directed narrow slots at f = 2 GHz, a0 = 20 mm, a1 = 21 mm,
∆z = λ0/4, εr0 = 2, εr1 = 5, L = λ0/2.

z-directed narrow slots versus the angular spacing Sϕ for ∆z = 0 (the
slots are parallel in z direction) and ∆z = λ0/4 values when f = 2 GHz,
εr0 = 2 and εr1 = 5.

5. CONCLUSIONS

A hybrid method to calculate mutual coupling of electric or magnetic
current elements on a cylindrically layered structure using MoM is
presented. For the calculation of the MoM matrix entries, when ρ = ρ′,
if φ is not close to φ′, the closed-form Green’s functions are employed.
When φ is close to φ′, since the spectral-domain Green’s functions
do not converge, MoM matrix elements are calculated in the spectral
domain. The technique is applied to both microstriplines and slots
placed on a layered cylindrical structure. The computational efficiency
of the anaysis of mutual coupling of printed elements on a cylindrically
layered structure is increased with the use of proposed hybrid method
due to use of closed-form Green’s functions.

Beside the presented geometries used in the analysis, multilayer
coupling geometries such as slot-coupled microstrip patch antennas and
slot antenna with microstrip feeding can also be analyzed.
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APPENDIX A. SPECTRAL-DOMAIN GREEN’S
FUNCTIONS

For the sake of completeness, complete-set of spectral-domain Green’s
functions are given as a reference. Among the spectral-domain Green’s
functions listed below, (A1)–(A4), (A7)–(A10), (A19)–(A22), (A25)–
(A28) are given in [21]. The remaining spectral-domain Green’s
functions (A11)–(A18), (A23), (A24), (A29)–(A33), (A36) are given
in [28] as corrections.

z-oriented electric dipole:

G̃En
zz =

k2
ρj

εj
f11 (A1)

G̃Hn
zz =

k2
ρj

εj
f21 (A2)

G̃En
φz =

k2
ρj

εj

(
nkz

k2
ρi
ρ
f11 +

jωµi

k2
ρi

∂f21
∂ρ

)
(A3)

G̃Hn
φz =

k2
ρj

εj

(
−jωεi
k2

ρi

∂f11
∂ρ

+
nkz

k2
ρi
ρ
f21

)
(A4)

G̃En
ρz =

k2
ρj

εj

(
−jkz

k2
ρi

∂f11
∂ρ

+
ωµin

k2
ρi
ρ
f21

)
(A5)

G̃Hn
ρz =

k2
ρj

εj

(
−ωεin
k2

ρi

f11
ρ
− j kz

k2
ρi

∂f21
∂ρ

)
(A6)

φ-oriented electric dipole:

G̃En
zφ =

nkz

εjρ′
f11 − jω

∂f12
∂ρ′

(A7)

G̃Hn
zφ =

nkz

εjρ′
f21 − jω

∂f22
∂ρ′

(A8)

G̃En
φφ =

nkz

εjρ′

(
nkz

k2
ρi
ρ
f11 +

jωµi

k2
ρi

∂f21

∂ρ

)
− jω ∂

∂ρ′

(
nkz

k2
ρi
ρ
f12 +

jωµi

k2
ρi

∂f22
∂ρ

)

(A9)

G̃Hn
φφ =

nkz

εjρ′

(
−jωεi
k2

ρi

∂f11
∂ρ

+
nkz

k2
ρi
ρ
f21

)
−jω ∂

∂ρ′

(
−jωεi
k2

ρi

∂f12
∂ρ

+
nkz

k2
ρi
ρ
f22

)

(A10)
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G̃En
ρφ =

nkz

εjρ′

(
−jkz

k2
ρi

∂f11
∂ρ

+
ωµin

k2
ρi
ρ
f21

)
−jω ∂

∂ρ′

(
−jkz

k2
ρi

∂f12
∂ρ

+
ωµin

k2
ρi
ρ
f22

)

(A11)

G̃Hn
ρφ =

nkz

εjρ′

(
−ωεin
k2

ρi
ρ
f11−

jkz

k2
ρi

∂f21
∂ρ

)
−jω ∂

∂ρ′

(
−ωεin
k2

ρi
ρ
f12−

jkz

k2
ρi

∂f22
∂ρ

)

(A12)

ρ-oriented electric dipole:

G̃En
zρ =

(
jkz

εj

∂f11
∂ρ′

+
nω

ρ′
f12

)
(A13)

G̃En
φρ =

1
k2

ρi

(
kzn

ρ

(
jkz

εj

∂f11
∂ρ′

+
nω

ρ′
f12

)
+jωµi

∂

∂ρ

(
jkz

εj

∂f21
∂ρ′

+
nω

ρ′
f22

))

(A14)

G̃En
ρρ =

1
k2

ρi

(
−jkz

∂

∂ρ

(
jkz

εj

∂f11
∂ρ′

+
nω

ρ′
f12

)
+
ωnµi

ρ

(
jkz

εj

∂f21
∂ρ′

+
nω

ρ′
f22

))

(A15)

G̃Hn
zρ =

jkz

εj

∂f21
∂ρ′

+
nω

ρ′
f22 (A16)

G̃Hn
φρ =

1
k2

ρi

[
−jωεi

∂

∂ρ

(
jkz

εj

∂f11
∂ρ′

+
nω

ρ′
f12

)
+
kzn

ρ

(
jkz

εj

∂f21
∂ρ′

+
nω

ρ′
f22

)]

(A17)

G̃Hn
ρρ =

1
k2

ρi

(
−nωεi

ρ

(
jkz

εj

∂f11
∂ρ′

+
nω

ρ′
f12

)
−jkz

∂

∂ρ

(
jkz

εj

∂f21
∂ρ′

+
nω

ρ′
f22

))

(A18)

z-oriented magnetic dipole:

G̃En
zz =

k2
ρj

µj
f12 (A19)

G̃Hn
zz =

k2
ρj

µj
f22 (A20)

G̃En
φz =

k2
ρj

µj

(
nkz

k2
ρj
ρ
f12 +

jωµi

k2
ρj

∂f22
∂ρ

)
(A21)

G̃Hn
φz =

k2
ρj

µj

(
−jωεi
k2

ρi

∂f12
∂ρ

+
nkz

k2
ρi
ρ
f22

)
(A22)
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G̃En
ρz =

k2
ρj

µj

(
−jkz

k2
ρi

∂f12
∂ρ

+
ωµin

ρk2
ρi

f22

)
(A23)

G̃Hn
ρz =

k2
ρj

µj

(
−ωεin
k2

ρi
ρ
f12 −

jkz

k2
ρi

∂f22
∂ρ

)
(A24)

φ-oriented magnetic dipole:

G̃En
zφ = jω

∂f11
∂ρ′

+
nkz

µjρ′
f12 (A25)

G̃Hn
zφ = jω

∂f21
∂ρ′

+
nkz

µjρ′
f22 (A26)

G̃En
φφ = jω

∂

∂ρ′

(
nkz

k2
ρi
ρ
f11 +

jωµi

k2
ρi

∂f21
∂ρ

)
+
nkz

µjρ′

(
nkz

k2
ρi
ρ
f12 +

jωµi

k2
ρi

∂f22
∂ρ

)

(A27)

G̃Hn
φφ = jω

∂

∂ρ′

(
−jωεi
k2

ρi

∂f11
∂ρ

+
nkz

k2
ρi
ρ
f21

)
+
nkz

µjρ′

(
−jωεi
k2

ρi

∂f12
∂ρ

+
nkz

k2
ρi
ρ
f22

)

(A28)

G̃En
ρφ = jω

∂

∂ρ′

(
−jkz

k2
ρi

∂f11
∂ρ

+
ωµin

k2
ρi
ρ
f21

)
+
nkz

µjρ′

(
−jkz

k2
ρi

∂f12
∂ρ

+
ωµin

k2
ρi
ρ
f22

)

(A29)

G̃Hn
ρφ = jω

∂

∂ρ′

(
−ωεin
k2

ρi
ρ
f11−

jkz

k2
ρi

∂f21
∂ρ

)
+
nkz

µjρ′

(
−ωεin
k2

ρi
ρ
f12−

jkz

k2
ρi

∂f22
∂ρ

)

(A30)

ρ-oriented magnetic dipole:

G̃En
zρ =

(
−nω
ρ′
f11 +

jkz

µj

∂f12
∂ρ′

)
(A31)

G̃En
φρ =

1
k2

ρi

(
kzn

ρ

(
−nω
ρ′
f11+

jkz

µj

∂f12
∂ρ′

)
+jωµi

∂

∂ρ

(
−nω
ρ′
f21+

jkz

µj

∂f22
∂ρ′

))

(A32)

G̃En
ρρ =

1
k2

ρi

(
−jkz

∂

∂ρ

(
−nω
ρ′
f11+

jkz

µj

∂f12
∂ρ′

)
+
ωµin

ρ

(
−nω
ρ′
f21+

jkz

µj

∂f22
∂ρ′

))

(A33)
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G̃Hn
zρ =

(
−nω
ρ′
f21 +

jkz

µj

∂f22
∂ρ′

)
(A34)

G̃Hn
φρ =

1
k2

ρi

(
−jωεi

∂

∂ρ

(
−nω
ρ′
f11+

jkz

µj

∂f12
∂ρ′

)
+
kzn

ρ

(
−nω
ρ′
f21+

jkz

µj

∂f22
∂ρ′

))

(A35)

G̃Hn
ρρ =

1
k2

ρi

(
−nωεi

ρ

(
−nω
ρ′
f11+

jkz

µj

∂f12
∂ρ′

)
−jkz

∂

∂ρ

(
−nω
ρ′
f21+

jkz

µj

∂f22
∂ρ′

))

(A36)

with

Fn(ρ, ρ′) =
[
f11 f12
f21 f22

]

=




[
Jn(kρiρ)I +H2

n(kρiρ)R̃i,i−1

]
·T̃ j,i · M̃ j− ·

[
H2

n(kρjρ
′)I + Jn(kρjρ

′)R̃j,j+1

]
, i < j[

H2
n(kρiρ)I + Jn(kρiρ)R̃i,i+1

]
·T̃ j,i · M̃ j+ ·

[
Jn(kρjρ

′)I +H2
n(kρjρ

′)R̃j,j−1

]
, i > j

where source and observation points are located in regions j and i,
respectively, R̃j,j∓1 is the generalized reflection matrix, T̃ i,i±1 is the
generalized transmission matrix and M̃ j∓ = (I − R̃j,j±1, R̃j,j∓1)−1 is a
factor accounting for multiple reflections in the source region j [21].

Electric or magnetic spectral domain Green’s function in α

direction due to β-oriented source, G̃E,H
αβ [21],

G̃E,H
αβ = − 1

4ω

∞∑
n=−∞

ejn(φ−φ′)G̃En,Hn

αβ = − 1
4ω

∞∑
n=−∞

ejn(φ−φ′)Fn(ρ, ρ′)←−S n

←−
S n is a 2× 1 matrix operator of the form

←−
S n =




1
εj

(
k2

j âz + jkz
�∇′

)
· β̂

−jwβ̂ ·
(
âz × �∇′

)



for the fields due to an electric source and

←−
S n =


 jwβ̂ ·

(
âz × �∇′

)
1
µj

(
k2

j âz + jkz
�∇′

)
· β̂
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for the fields due to a magnetic source and �∇′ is defined as

�∇′ = âρ
∂

∂ρ′
+ âφ

∂

ρ′∂φ′
+ âz

∂

∂z′
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