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EXISTENCE OF COMPATIBLE CONTACT STRUCTURES ON
G2-MANIFOLDS∗

M. FIRAT ARIKAN† , HYUNJOO CHO‡ , AND SEMA SALUR§

Abstract. In this paper, we show the existence of (co-oriented) contact structures on certain
classes of G2-manifolds, and that these two structures are compatible in certain ways. Moreover,
we prove that any seven-manifold with a spin structure (and so any manifold with G2-structure)
admits an almost contact structure. We also construct explicit almost contact metric structures on
manifolds with G2-structures.
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1. Introduction. Let (M, g) be a Riemannian 7-manifold whose holonomy
group Hol(g) is the exceptional Lie group G2 (or, more generally, a subgroup of
G2). Then M is naturally equipped with a covariantly constant 3-form ϕ and 4-form
∗ϕ. We can define (M,ϕ, g) as the G2-manifold with G2 structure ϕ.

We can also define a (co-oriented) contact manifold as a pair (N, ξ) where N is an
odd-dimensional manifold and ξ, called a (co-oriented) contact structure, is a totally
non-integrable (co-oriented) hyperplane distribution on N .

In dimension 7, so far contact geometry and G2 geometry have been studied
independently and each geometry has very distinguished characteristics which are
rather different than those in the other. A basic example of such differences is the
following: In contact geometry there are no local invariants, in other words, every
contact 7-manifold is locally contactomorphic to R7 equipped with the standard con-
tact structure. On the other hand, in G2 geometry it is the G2 structure itself that
determines how local neighborhoods of points look like, and as a result, manifolds
with G2 structures can look the same only at a point, [7], [9].

The aim of this paper is to initiate a new interdisciplinary research area between
contact and G2 geometries. More precisely, we study the existence of (almost) contact
structures on 7-dimensional manifolds with (torsion-free) G2-structures.

The paper is organized as follows: After the preliminaries (Section 2), we show the
existence of almost contact structures on 7-manifolds with spin structures in Section
3. In particular, we prove the following theorem:

Theorem. Every manifold with G2-structure admits an almost contact structure.

In Section 4, we define A- and B-compatibility between contact and G2 structures,
and also present the motivating example for R7. We also prove the nonexistence result:

Theorem. Let (M,ϕ) be a manifold with G2-structure such that dϕ = 0. If M
is closed (i.e., compact and ∂M = ∅), then there is no contact structure on M which
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is A-compatible with ϕ.

In Section 5, for any non-vanishing vector field R on a manifold M with
G2-structure ϕ, we construct explicit almost contact structure, denoted by
(JR, R, αR, gϕ), and indeed prove the following theorems:

Theorem. Let (M,ϕ) be a manifold with G2-structure. Then the quadruple
(JR, R, αR, gϕ) defines an almost contact metric structure onM for any non-vanishing
vector field R on M . Moreover, such a structure exists on any manifold with G2-
structure.

Theorem. Let (M,ϕ) be a manifold with G2-structure. Suppose that ξ is a con-
tact structure on M such that (JR, R, αR, gϕ) is an associated almost contact metric
structure for ξ. Then ξ is A-compatible.

In Section 6, we define contact−G2−structures on 7-manifolds and analyze their
relations with A-compatible contact structures, the main results of that section are:

Theorem. Let (M,ϕ) be a manifold with G2-structure. Assume that there are
nowhere-zero vector fields X, Y and Z onM satisfying ιZϕ = Y ♭∧X♭ where X♭ (resp.
Y ♭) is the covariant 1-form of X (resp. Y ) with respect to the G2-metric gϕ. Also
suppose that d(iX iY ϕ) = iX iY ∗ ϕ. Then the 1-form α := Z ♭ = gϕ(Z, ·) is a contact
form on M and it defines an A-compatible contact structure Ker(α) on (M,ϕ).

Theorem. Let (ϕ,R, α, f, g) be a contact−G2−structure on a smooth manifold
M7. Then α is a contact form on M . Moreover, ξ =Ker(α) is an A-compatible
contact structure on (M,ϕ). In particular, if M is closed, then it does not admit a
contact−G2−structure with dϕ = 0.

Theorem. Let (M,ϕ) be any manifold with G2-structure. Then every A-
compatible contact structure on (M,ϕ) determines a contact−G2−structure on M .

Finally, in Section 7, we present some examples of A-compatible structures and
contact−G2−structures.

2. Preliminaries.

2.1. G2-structures and G2-manifolds. A smooth 7-dimensional manifold M
has a G2-structure, if the structure group of TM can be reduced to G2. The group
G2 is one of the five exceptional Lie groups which is the group of all linear auto-
morphisms of the imaginary octonions imO ∼= R7 preserving a certain cross product.
Equivalently, it can be defined as the subgroup of GL(7,R) which preserves the 3-form

ϕ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356

where (x1, ..., x7) are the coordinates on R7, and eijk = dxi ∧ dxj ∧ dxk. As an
equivalent definition, a manifold with a G2-structure ϕ is a pair (M,ϕ), where ϕ
is a 3-form on M , such that (TpM,ϕ) is isomorphic to (R7, ϕ0) at every point p in
M . Such a ϕ defines a Riemannian metric gϕ on M . We say ϕ is torsion-free if
∇ϕ = 0 where ∇ is the Levi-Civita connection of gϕ. A Riemannian manifold with
a torsion-free G2-structure is called a G2-manifold. Equivalently, the pair (M,ϕ)
is called a G2-manifold if its holonomy group (with respect to gϕ) is a subgroup
of G2. As an another characterization, one can show that ϕ is torsion-free if and
only if dϕ = d(∗ϕ) = 0 where “∗” is the Hodge star operator defined by the metric gϕ.



EXISTENCE OF CONTACT STRUCTURES ON G2-MANIFOLDS 323

The 3-form ϕ also determines the cross product and the orientation top (volume)
form Vol on M . In fact, for any vector fields u, v, w on M , we have

(1) ϕ(u, v, w) = gϕ(u× v, w),

(2) (ιuϕ) ∧ (ιvϕ) ∧ ϕ = 6gϕ(u, v) Vol.

Also we will make use of the following formula as well:

(3) u× (u× v) = −‖u‖2v + gϕ(u, v)u.

See [2], [3], [9] and [10] for more details on G2 geometry.

2.2. Contact and almost contact structures. A contact structure on a
smooth (2n + 1)-dimensional manifold M is a global 2n-plane field distribution ξ
which is totally non-integrable. Non-integrability condition is equivalent to the fact
that locally ξ can be given as the kernel of a 1-form α such that α ∧ (dα)n 6= 0. If
α is globally defined (in such a case, it is called a contact form), then one can define
the Reeb vector field of α to be the unique global nowhere-zero vector field R on M
satisfying the equations

(4) ιRdα = 0, α(R) = 1

where “ι” denotes the interior product.

Using R, we can co-orient ξ and, as a result, the structure group of the tangent
frame bundle can be reduced to U(n) × 1. Such a reduction of the structure group
is called an almost contact structure on M . Therefore, for the existence of a co-
oriented contact structure on M , one should first ask the existence of an almost
contact structure. We refer the reader to [1] and [7] for more on contact geometry.

Definition 2.1 ([8]). Let M2n+1 be a smooth manifold. If the structure group
of its tangent bundles TM2n+1 reduces to U(n) × 1, then M2n+1 is said to have an
almost contact structure.

3. Almost contact structures on 7-manifolds with a spin structure. Al-
though no explicit description is given, nevertheless the following result shows the
existence of almost contact structures not only on manifolds with G2-structures but
also on a much wider family of 7-manifolds. Recall that if a manifold admits a spin
structure, then its second Stiefel-Whitney class is zero.

Theorem 3.1. Every 7-manifold with a spin structure admits an almost contact
structure.

Proof. Assume that M is a 7-manifold with a spin structure. By definition, M
admits an almost contact structure if and only if the structure group of TM can be
reduced to U(3)× 1. Equivalently, the associated fiber bundle TM [SO(7)/U(3)] with
fiber SO(7)/U(3) admits a cross-section [13]. If s is a cross section of fiber bundle
over the the (i− 1)-skeleton of M , then the cohomology class

oi(s) ∈ Hi(M,πi−1(SO(7)/U(3))
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is the obstruction to extending s over the i-skeleton. Since we have

πi(SO(7)/U(3)) = 0

unless i = 2, 6, the only obstructions to the existence of such a cross section arise in
Hi(M,Z) for i = 3, 7. In [11], Massey shows that these obstructions are the integral
Stiefel-Whitney classes of the associated dimensions. Recall that the integral Stiefel-
Whitney classes are defined as the images β(wi) of the Stiefel-Whitney classes under
the Bockstein homomorphism. Here the Bockstein homomorphism is the connecting
homomorphism β : Hi(M,Z/2Z) → Hi+1(M,Z) which arises from the short exact
sequence

0 −−−−→ Z
×2

−−−−→ Z −−−−→ Z/2Z −−−−→ 0.

Therefore, the obstructions o3, o7 to the existence of an almost contact structures on
7-manifolds are 2-torsion classes.

Now we know that w2(M) = 0 (since M is spin), and hence the third integral
Stiefel-Whitney class vanishes, i.e., o3 = W3(M) = β(w2) = 0. Therefore, the only
obstruction lies in the cohomology group H7(M).

We consider the following cases: First, ifM is a closed manifold, then by Poincaré
duality H7(M) ∼= H0(M) ∼= Z and hence the top-dimensional obstruction o7 vanishes.
Secondly, if M has a boundary, then (again by the duality) we have o7 ∈ H7(M) ∼=
H0(M,∂M) ∼= 0. Now, ifM is non-compact without a boundary, then the cohomology
group H7(M) ∼= (H0

cs(M))∗ where Hcs denotes the compactly supported cohomology.
Hence, it is torsion-free.

Since every manifold with G2-structure is spin, we get

Corollary 3.2. Every manifold with G2-structure admits an almost contact
structure.

4. Compatibility and the motivating example. Assuming the existence of a
contact structure on a manifold with a G2-structure, we can also ask if and how these
two structures are related. We define two different notions of compatibility between
them as follows:

Definition 4.1. A (co-oriented) contact structure ξ on (M,ϕ) is said to be A-
compatible with the G2-structure ϕ if there exist a vector field R on M and a nonzero
function f :M → R such that dα = ιRϕ for some contact form α for ξ and fR is the
Reeb vector field of a contact form for ξ.

Definition 4.2. A (co-oriented) contact structure ξ on (M,ϕ) is said to be
B-compatible with the G2-structure ϕ if there are (global) vector fields X , Y on M
such that α = ιY ιXϕ is a contact form for ξ.

In this paper, we will mainly consider A-compatible contact structures. We re-
mark that if ϕ is torsion-free or at least dϕ = 0, then Definition 4.1 makes sense
only if M is noncompact or compact with boundary. Indeed, we can easily prove the
following:

Theorem 4.3. Let (M,ϕ) be a manifold with G2-structure such that dϕ = 0.
If M is closed (i.e., compact and ∂M = ∅), then there is no contact structure on M
which is A-compatible with ϕ.
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Proof. Suppose ξ is an A-compatible contact structure on (M,ϕ). Therefore,
dα = ιRϕ for some contact form α for ξ and some nonvanishing vector field R. Using
the equation (2), we have

dα ∧ dα ∧ ϕ = (ιRϕ) ∧ (ιRϕ) ∧ ϕ = 6‖R‖2 Vol.

Since dϕ = 0, we have dα ∧ dα ∧ ϕ = d(α ∧ dα ∧ ϕ). Now by Stokes’ Theorem,

0 �

∫

M

6‖R‖2 Vol =

∫

M

d(α ∧ dα ∧ ϕ) =

∫

∂M

α ∧ dα ∧ ϕ = 0

(as ∂M = ∅). This gives a contradiction.

For another application of this argument on specific vector fields on manifolds
with G2 structures, see [5].

We now explore the relation between the standard contact structure ξ0 and the
standard G2-structure ϕ0 on R7. Indeed, the notion of A- and B-compatibility relies
on this motivating example.

Fix the coordinates (x1, x2, x3, x4, x5, x6, x7) on R7. In these coordinates,

ϕ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356

where eijk denotes the 3-form dxi∧dxj∧dxk . Consider the standard contact structure
ξ0 on R7 as the kernel of the 1-form

α0 = dx1 − x3dx2 − x5dx4 − x7dx6.

For simplicity, through out the paper we will denote ∂/∂xi by ∂xi (so we have
dxi(∂xj) = δij). Consider the vector fields

R = ∂x1, X = ∂x7 and Y = −x7∂x1 + x5∂x3 − x3∂x5 − ∂x6 + f∂x7
where f : R7 → R is any smooth function (in fact, it is enough to take f ≡ 0 for our
purpose). By a straightforward computation, we see that

dα0 = ιR(ϕ0), α0 = ιY ιX(ϕ0).

Also observe that R is the Reeb vector field of α0. Note that this contact structure is
not unique A-compatible with ϕ0. In fact we have various ways of choosing the contact
structures by rotating indexes and signes. For example, the contact structure α =
dx2+x3dx1−x6dx4+x7dx5 with R = ∂x2 is another A-compatible contact structure
with ϕ0 and by choosing two vectorsX = ∂x7, Y = ∂x5−x3∂x6+x6∂x3−x7∂x2+f∂x7
it is easily seen as being B-compatible with ϕ0. Therefore, we have proved:

Theorem 4.4. There are contact structures ξ on R7 which are both A- and
B-compatible with the standard G2-structure ϕ0.

5. An explicit almost contact metric structure. We first give an alterna-
tive definition of an almost contact structure, and then construct an explicit almost
contact structure on a manifold with G2-structure. The reader is referred to [1] for
the equivalence between the previous definition (Definition 2.1) and this new one.

Definition 5.1 ([12]). An almost contact structure on a differentiable manifold
M2n+1 is a triple (J,R, α) consists of a field J of endomorphisms of the tangent spaces,
a vector field R, and a 1-form α satisfying
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(i) α(R) = 1,
(ii) J2 = −I + α⊗R

where I denotes the identity transformation.

For completeness, we provide the proof of the following lemma.

Lemma 5.2 ([12]). Suppose that (J,R, α) is an almost contact structure on
M2n+1. Then J(R) = 0 and α ◦ J = 0

Proof. Since J2(R) = −R+α(R)R = −R+1 ·R = 0, we have either J(R) = 0 or
J(R) is nonzero vector field whose image is 0. Suppose J(R) is nonzero vector field
which is mapped to 0 by J . Then from

0 = J2(J(R)) = −J(R) + α(J(R)) ·R

we get J(R) = α(J(R)) · R, and so α(J(R)) 6= 0 (as J(R) 6= 0). But then

J2(R) = J(J(R)) = J(α(J(R))R) = α(J(R)) · J(R) = [α(J(R))]2 ·R 6= 0

which contradicts to assumption that J2(R) = J(J(R)) = 0. Hence, we conclude
that J(R) = 0 must be the case.

Now for any vector X , we see that

J3(X) = J(J2(X)) = J((−X) + α(X)R) = −J(X) + J(α(X)R)

and also we have

J3(X) = J2(J(X)) = −J(X) + α(J(X))R.

So combining these we compute

α(J(X))R = J3(X) + J(X)

= −J(X) + J(α(X)R) + J(X) = J(α(X)R).

But using the fact J(R) = 0 we have

J(α(X)R) = α(X)J(R) = 0.

Therefore, α(J(X)) = 0 as R 6= 0. Hence, α ◦ J = 0 for any vector X .

We can also introduce a Riemannian metric into the picture as suggested in the
following definition.

Definition 5.3 ([12]). An almost contact metric structure on a differentiable
manifold M2n+1 is a quadruple (J,R, α, g) where (J,R, α) is an almost contact struc-
ture on M and g is a Riemannian metric on M satisfying

(5) g(Ju, Jv) = g(u, v)− α(u)α(v)

for all vector fields u, v in TM . Such a g is called a compatible metric.

Remark 5.4. Every manifold with an almost contact structure admits a com-
patible metric (see [1], for a proof). Also setting u = R in Equation (5) gives
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g(JR, Jv) = g(R, v) − α(R)α(v). Since J(R) = 0, an immediate consequence is
that α is the covariant form of R, that is, α(v) = g(R, v).

Definition 5.5 ([12]). Let M be an odd-dimensional manifold, and α be a
contact form on M with the Reeb vector field R. Therefore, dα is a symplectic form
on the contact structure (or distribution) ξ = Ker(α). We say that the triple (J,R, α)
is an associated almost contact structure for ξ if J is dα-compatible almost complex
structure on the complex bundle ξ, that is

dα(JX, JY ) = dα(X,Y ) and dα(X, JX) > 0 for all X,Y ∈ ξ.

Furthermore, if g is a metric on M , we consider two equations:

(6) g(JX, JY ) = g(X,Y )− α(X)α(Y )

(7) dα(X,Y ) = g(JX, Y )

for all X,Y ∈ TM . We say that (J,R, α, g) is an associated almost contact metric
structure if two equations (6) and (7) hold. In this case, g is called an associated
metric.

Suppose that (M,ϕ) is a manifold with G2-structure. There might be many ways
to construct almost contact metric structures on (M,ϕ). Here we give a particular way
of constructing almost contact metric structures on (M,ϕ). Denote the Riemannian
metric and the cross product (determined by ϕ) by gϕ = 〈·, ·〉ϕ and ×ϕ, respectively.
Suppose that R is a nowhere vanishing vector field on M . By normalizing R using
gϕ, we may assume that ‖R‖ = 1. Then using the metric, we define the 1-form αR as
the metric dual of R, that is,

αR(u) = gϕ(R, u) = 〈R, u〉ϕ.

Moreover, using the cross product and R, we can define an endomorphism JR : TM →
TM of the tangent spaces by

JR(u) = R×ϕ u.

Note that JR(R) = 0, and so JR, indeed, defines a complex structure on the orthogonal
complement R⊥ of R with respect to gϕ. With these, we have

Theorem 5.6. Let (M,ϕ) be a manifold with G2-structure. Then the quadruple
(JR, R, αR, gϕ) defines an almost contact metric structure onM for any non-vanishing
vector field R on M . Moreover, such a structure exists on any manifold with G2-
structure.

Proof. As before, we will assume that R is already normalized using gϕ. First,
note that αR(R) = gϕ(R,R) = ‖R‖2 = 1. Also we have

J2
R(u) = JR(R×ϕ u) = R×ϕ (R×ϕ u) = −‖R‖2u+ gϕ(R, u)R = −u+ α(u)R

where we made use of the identity (3). This shows that the endomorphism JR :
TM → TM satisfies the condition

J2
R = −I + α⊗R.
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Therefore, the triple (JR, R, αR) is an almost contact structure onM . Next, we check
gϕ is a compatible metric with this structure. Using (1) and (3), we compute

gϕ(JRu, JRv) = gϕ(R×ϕ u,R×ϕ v) = ϕ(R, u,R×ϕ v) = −ϕ(R,R×ϕ v, u)

= −gϕ(R ×ϕ (R×ϕ v), u) = −gϕ(−‖R‖2v + gϕ(R, v)R, u)

= −gϕ(−v + gϕ(R, v)R, u) = gϕ(v, u)− gϕ(αR(v)R, u)

= = gϕ(u, v)− αR(v) gϕ(R, u)
︸ ︷︷ ︸

αR(u)

= gϕ(u, v)− αR(u)αR(v)

which holds for all vector fields u, v in TM . This proves that gϕ satisfies (5). Hence,
(JR, R, αR, gϕ) is an almost contact metric structure on M .

For the last statement, we know that there always exists a nowhere vanishing
vector field R on any 7-dimensional manifold. In particular, (JR, R, αR, gϕ) can be
constructed on any manifold M with G2-structure ϕ.

Theorem 5.7. Let (M,ϕ) be a manifold with G2-structure, and (JR, R, αR, gϕ)
be an almost contact metric structure on M constructed as above. Suppose that ξ is
a contact structure on M such that (JR, R, αR, gϕ) is an associated almost contact
metric structure for ξ. Then ξ is A-compatible.

Proof. By assumption (JR, R, αR, gϕ) is an associated almost contact metric struc-
ture for ξ. Therefore, gϕ is an associated metric and satisfies

dαR(u, v) = gϕ(JR(u), v) for all u, v ∈ TM.

But then using the equation defining JR and (1), we obtain

dαR(u, v) = gϕ(R×ϕ u, v) = ϕ(R, u, v) = iRϕ(u, v), ∀u, v ∈ TM.

Therefore, we have dαR = iRϕ. Also R is the Reeb vector field of αR by assumption.
Hence, ξ is A-compatible by definition.

Corollary 5.8. Let (M,ϕ) be a manifold with G2-structure such that dϕ = 0,
and (JR, R, αR, gϕ) be an almost contact metric structure on M constructed as above.
If M is closed, then there is no contact structure on M whose associated almost
contact metric structure is (JR, R, αR, gϕ).

Proof. On the contrary, suppose that ξ = Ker(αR) is a contact structure on
a closed manifold M equipped with a G2-structure ϕ and dϕ = 0, and also that
(JR, R, αR, gϕ) is an associated almost contact metric structure. Then, by Theorem
5.7, ξ is A-compatible, but this contradicts to Theorem 4.3.

6. Contact−G2−structures on 7-manifolds. Suppose that (M,ϕ) is a mani-
fold with G2-structure. Let us recall the decomposition of the space Λ2 of 2-forms on
M obtained from G2-representation and some other useful formulas which we will use.
A good source for these is [2] and also [9]. According to irreducible G2-representation,
Λ2 = Λ2

7 ⊕ Λ2
14 where

Λ2
7 = {ivϕ; v ∈ Γ(TM)}

= {β ∈ Λ2; ∗(ϕ ∧ β) = −2β}

= {β ∈ Λ2; ∗(∗ϕ ∧ (∗(∗ϕ ∧ β))) = 3β}(8)

Λ2
14 = {β ∈ Λ2; ∗ϕ ∧ β = 0}

= {β ∈ Λ2; ∗(ϕ ∧ β) = β}
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Also on any Riemannian n-manifold, for any k-form α and a vector field v, the
following equalities hold:

(9) iv ∗ α = (−1)k ∗ (v♭ ∧ α) and

(10) ivα = (−1)nk+n ∗ (v♭ ∧ ∗α).

As a last one we recall a very useful equality: For any k-form λ, and any (n+1−k)-
form µ and any vector field v on a smooth manifold of dimension n, we have

(11) (ιvλ) ∧ µ = (−1)k+1λ ∧ (ιvµ).

Now we are ready to prove:

Theorem 6.1. Let (M,ϕ) be a manifold with G2-structure. Assume that there
are nowhere-zero vector fields X, Y and Z on M satisfying

(12) ιZϕ = Y ♭ ∧X♭

where X♭ (resp. Y ♭) is the covariant 1-form of X (resp. Y ) with respect to the
G2-metric gϕ. Also suppose that

(13) d(iX iY ϕ) = iX iY ∗ ϕ.

Then the 1-form α := Z ♭ = gϕ(Z, ·) is a contact form on M and it defines an A-
compatible contact structure Ker(α) on (M,ϕ).

Proof. From (8) we know that ιZϕ is an element of Λ2
7. Set ιZϕ = β ∈ Λ2

7, and
so we have ιZϕ = β = Y ♭ ∧X♭ by (12). Also applying (9) twice gives

iXiY ∗ ϕ = −iX(∗(Y
♭ ∧ ϕ)) = − ∗ (X♭ ∧ Y ♭ ∧ ϕ) = ∗(Y ♭ ∧X♭ ∧ ϕ) = ∗(β ∧ ϕ)

from which we get

(14) iX iY ∗ ϕ = −2β

where we use the second line in (8). Moreover, by (10) followed by (9),

(15) iX iY ϕ = iX(∗(Y ♭ ∧ ∗ϕ)) = − ∗ (X♭ ∧ Y ♭ ∧ ∗ϕ) = ∗(β ∧ ∗ϕ).

Now putting (14) and (15) into (13) gives us

(16) d ∗ (β ∧ ∗ϕ) = −2β = −2 ιZϕ.

Recall the formula (ivϕ) ∧ ∗ϕ = 3 ∗ v♭ which is true for any vector field v. By taking
v = Z, we compute the left-hand side in (16) as

d ∗ (β ∧ ∗ϕ) = d ∗ (3 ∗ Z♭) = 3 dZ♭ = 3 dα.

Combining these together we obtain

(17) dα = −
2

3
ιZϕ.
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Next, consider the identity (11) by taking λ = ϕ, v = Z and µ = α ∧ (dα)2: Using
(17), we compute the left-hand side as

(ιZϕ) ∧ α ∧ (dα)2 = −
3

2
α ∧ (dα)3,

and the right-hand side as

ϕ ∧ ιZ(α ∧ (dα)2) = α(Z)ϕ ∧ dα ∧ dα =
4

9
‖Z‖2 ϕ ∧ (ιZϕ) ∧ (ιZϕ).

Therefore, by using the identity (2) in the right-hand side, we obtain

α ∧ (dα)3 = −
16

9
‖Z‖4 Vol.

Hence, we conclude that α∧(dα)3 is a volume form onM (as being a nonzero function
multiple of the volume form Vol on M determined by the metric gϕ). Equivalently,
α is a contact form on M . Moreover, it follows from (17) that (1/‖Z‖2)Z is the
Reeb vector field of α, i.e., it satisfies (4). Hence, Ker(α) is an A-compatible contact
structure on (M,ϕ).

With the inspiration we get from the proof of Theorem 6.1, we define a new
structure on 7-manifolds as follows:

Definition 6.2. Let M7 be a smooth manifold. A contact−G2−structure on
M is a quintuple (ϕ,R, α, f, g) where ϕ is a G2-structure, R is a nowhere-zero vector
field, α is a 1-form on M , and f, g : M → R are nowhere-zero smooth functions such
that

(i) α(R) = f
(ii) d(g α) = ιRϕ.

Observe that we have already seen an example of a contact−G2−structure in the
above proof (of course under the assumptions of Theorem 6.1) with R = Z, α =
Z ♭, f = ‖Z‖2, g ≡ −3/2. The reason why we call the quintuple (ϕ,R, α, f, g)
“contact−G2−structure” is given by the following theorem.

Theorem 6.3. Let (ϕ,R, α, f, g) be a contact−G2−structure on a smooth mani-
fold M7. Then α is a contact form on M . Moreover, ξ =Ker(α) is an A-compatible
contact structure on (M,ϕ). In particular, if M is closed, then it does not admit a
contact−G2−structure with dϕ = 0.

Proof. We first show that α is a contact form on M . Consider the 1-form

α ′ := g α.

Note that Ker(α) = Ker(α ′) as g is a nowhere-zero function. Therefore, if we show
that α ′ is a contact form on M , then it will imply that so is α. The conditions in
Definition 6.2 translate into

α ′(R) = fg and dα ′ = ιRϕ.

Also from the equation (2) we get

(dα ′)2 ∧ ϕ = (ιRϕ) ∧ (ιRϕ) ∧ ϕ = 6‖R‖2 Vol.
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Now if we write the equation (11) by taking λ = ϕ, µ = α ′ ∧ (dα ′)2 and v = R, then
the left-hand side gives

(ιRϕ) ∧ α
′ ∧ (dα ′)2 = (dα ′) ∧ α ′ ∧ (dα ′)2 = α ′ ∧ (dα ′)3,

and from the right-hand side we have

ϕ ∧ ιR(α
′ ∧ (dα ′)2) = α ′(R)ϕ ∧ (dα ′)2 = fg ϕ ∧ (dα ′)2 = 6 fg‖R‖2 Vol.

Therefore, we conclude

α ′ ∧ (dα ′)3 = 6 fg‖R‖2 Vol

which implies that α ′ (and so α) is a contact form onM as 6 fg‖R‖2 is a nowhere-zero
function on M .

Next, we consider the vector field R ′ = (1/fg)R. Clearly, α ′(R ′) = 1. Also we
compute

ιR ′dα ′ = (1/fg) ιRdα
′ = (1/fg) ιR(ιRϕ) = 0

as ϕ is skew-symmetric. Therefore, R ′ is the Reeb vector field of α ′, and so ξ =
Ker(α ′) is an A-compatible contact structure on (M,ϕ) by definition. Finally, the
last statement now follows from Theorem 4.3.

The next result shows that we can go also in the reverse direction.

Theorem 6.4. Let (M,ϕ) be any manifold with G2-structure. Then every A-
compatible contact structure on (M,ϕ) determines a contact−G2−structure on M .

Proof. Let ξ be a given A-compatible contact structure on (M,ϕ). By definition,
there exist a non-vanishing vector field R onM , a contact form α for ξ and a nowhere-
zero function h : M → R such that dα = ιRϕ and hR is the Reeb vector field of
some contact form (possibly different than α) for ξ. Being a Reeb vector field, hR is
transverse to the contact distribution ξ. Therefore, R is also transverse to ξ because h
is nowhere-zero on M . As a result, there must be a nowhere-zero function f :M → R
such that

α(R) = f.

To check this, assume, on the contrary, that the functionM → R given by x 7→ αx(Rx)
has a zero, say at p. So, we have αp(Rp) = 0 which means that Rp ∈ Ker(αp) = ξp .
But this contradicts to the fact that R is everywhere transverse to ξ. Hence, we obtain
a contact−G2−structure (ϕ,R, α, f, 1). This finishes the proof.

7. Some examples. In this final section, we give some examples ofG2-manifolds
admitting A-compatible contact structures. In fact, by Theorem 6.4, in each example
we will also have a corresponding contact−G2−structure.

7.1. CY × S1 (or CY × R). Consider a well-known example of G2-manifold
(CY × S1, ϕ) where we assume CY (Ω, ω) is a 3-fold Calabi-Yau manifold which is
either noncompact or compact with boundary. Assume Kähler form ω on CY is exact,
i.e. ω = dλ for some λ ∈ Ω1(CY ) and set α = dt+ λ where t is the coordinate on S1.
Then α∧ (dα)3 = ω3 ∧ dt is a volume form, and so α is a contact 1-form on CY ×S1.
Moreover, ∂t is the Reeb vector field of α as ι∂tα = 1 and ι∂tdα = ι∂tω = 0. Also
observe that since ϕ = Re(Ω) + ω ∧ dt (see [10], for instance), we compute
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ι∂tϕ = ι∂t(Re(Ω) + ω ∧ dt) = ι∂tRe(Ω) + ι∂t(ω ∧ dt) = ωι∂tdt = ω = dλ = dα.
Thus, ξ =Ker(α) is an A-compatible contact structure on (CY×S1, ϕ), or in other

words, (ϕ, ∂t, α, 1, 1) is a contact−G2−structure on CY ×S1. We note that, by consid-
ering t as a coordinate on R, the above argument also gives a contact−G2−structure
on CY × R.

7.2. W × S1 (or W × R). We now give a special case of the above example.
First, we need some definitions: A Stein manifold of complex dimension n is a triple
(W 2n, J, ψ) where J is a complex structure on W and ψ : W → R is a smooth map
such that the 2−form ωψ = −d(dψ ◦J) is non-degenerate (and so an exact symplectic
form) on W . Indeed, (W,J, ωψ) is an exact Kähler manifold. We say that (M2n−1, ξ)
is Stein fillable if there is a Stein manifold (W 2n, J, ψ) such that ψ is bounded from
below, M is a non-critical level of ψ, and −(dψ ◦ J) is a contact form for ξ.

Next, consider a parallelizable Stein manifold (W,J, ψ) of complex dimension
three. By a result of [6], we know that c1(W,J) = 0, i.e., the first Chern class
of (W,J) vanishes. Therefore, W admits a Calabi-Yau structure with associated
Kähler form ωψ = −d(dψ ◦ J). Let Ω be the non-vanishing holomorphic 3-form
on W corresponding to this Calabi-Yau structure. Then by the previous example,
(W × S1, ϕ) is a G2-manifold with ϕ = Re(Ω) + ωψ ∧ dθ (where θ is the coordinate
on S1), α = dθ − (dψ ◦ J) is a contact 1-form on W × S1 with the Reeb vector field
∂θ, and ξ = Ker(α) is an A-compatible contact structure on (W × S1, ϕ). Again
by considering θ as a coordinate on R, we obtain an A-compatible contact structure
on (W × R, ϕ). Note that the corresponding contact−G2−structure in both cases is
(ϕ, ∂θ, α, 1, 1).

Now consider the unit disk D2 ⊂ C. Then (W × D2, J × i, ψ + |z|2) is a Stein
manifold where i is the usual complex structure and z = reiθ is the coordinate on C.
Let η be the induced contact structure on the boundary

∂(W × D2) = (∂W × D2) ∪ (W × S1).

Then we remark that the restriction of the Stein fillable structure η on W ×S1 is the
contact structure ξ constructed above.

7.3. R3 × K4. Let K be a Kähler manifold with an exact Kähler form ω, i.e.
ω = dλ for some λ ∈ Ω1(K). Note that K is either noncompact or compact with
boundary. Consider the G2-manifold R3 ×K4 with the G2-structure

ϕ = dx1dx2dx3 + ω ∧ dx1 +Re(Ω) ∧ dx2 − Im(Ω) ∧ dx3

where (x1, x2, x3) are the coordinates on R3 (see [10]). Then α = dx1 + x2dx3 + λ is
a contact 1-form as α ∧ (dα)3 = dx1dx2dx3 ∧ ω2 is a volume form on R3 ×K4. One
can easily check that ∂x1 is the Reeb vector field of α. Furthermore,

i∂x1
ϕ = i∂x1

(dx1dx2dx3 + ω ∧ dx1 + ω ∧ dx2 + ω ∧ dx3)

= dx2dx3 + i∂x1
(ω ∧ dx1) = dx2dx3 + ω = d(x2dx3 + λ) = dα

Hence, ξ = Ker(α) is an A-compatible contact structure on (R3 × K4, ϕ) and the
corresponding contact−G2−structure on R3 ×K4 is (ϕ, ∂x1, α, 1, 1).

7.4. T ∗M3×R. LetM be any oriented Riemannian 3-manifold and T ∗M denote
the cotangent bundle ofM . It is shown in [4] that T ∗M×R has a G2-structure ϕ with
dϕ = 0. To describe ϕ, let (x1, x2, x3) be local coordinates onM around a given point,
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and consider the corresponding standard local coordinates (x1, x2, x3, ξ1, ξ2, ξ3) on the
cotangent bundle T ∗M . These define the standard symplectic structure ω = −dλ on
T ∗M where λ = Σ3

i=1ξidxi is the tautological 1-form on T ∗M . Let t denote the
coordinate on R. Then ϕ = Re(Ω)− ω ∧ dt where Ω = (dx1 + idξ1) ∧ (dx2 + idξ2) ∧
(dx3 + idξ3) is the complex-valued (3, 0)-form on M . On the other hand, the 1-form
α = dt + λ is a contact form on T ∗M × R with the Reeb vector field ∂t. Now it
is straightforward to check that ξ = Ker(α) is an A-compatible contact structure on
(T ∗M×R, ϕ) and also that (ϕ, ∂t, α, 1, 1) is the corresponding contact−G2−structure
on T ∗M × R.
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