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[1] We consider the efficient solution of electromagnetics problems involving dielectric
and composite dielectric-metallic structures, formulated with the electric and magnetic
current combined-field integral equation (JMCFIE). Dense matrix equations obtained from
the discretization of JMCFIE with Rao-Wilton-Glisson functions are solved iteratively,
where the matrix-vector multiplications are performed efficiently with the multilevel fast
multipole algorithm. JMCFIE usually provides well conditioned matrix equations that
are easy to solve iteratively. However, iteration counts and the efficiency of solutions
depend on the contrast, i.e., the relative variation of electromagnetic parameters across
dielectric interfaces. Owing to the numerical imbalance of off-diagonal matrix partitions,
solutions of JMCFIE become difficult with increasing contrast. We present a four-partition
block-diagonal preconditioner (4PBDP), which provides efficient solutions of JMCFIE by
reducing the number of iterations significantly. 4PBDP is useful, especially when the
contrast increases, and the standard block-diagonal preconditioner fails to provide a
rapid convergence.
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1. Introduction

[2] For the solution of electromagnetics problems
involving three-dimensional dielectric objects, the elec-
tric and magnetic current combined-field integral equa-
tion (JMCFIE) [Ylä-Oijala and Taskinen, 2005a, 2005b]
is a preferable formulation in terms of accuracy and
efficiency. In numerical solutions employing Rao-Wilton-
Glisson (RWG) functions [Rao et al., 1982] on triangles,
JMCFIE is more accurate than the normal (N) formula-
tions, such as the combined normal formulation (CNF)
[Ylä-Oijala et al., 2005b] and the modified normal Müller
formulation (MNMF) [Ylä-Oijala and Taskinen, 2005b].
In addition, iterative solutions of problems involving
large and complicated objects are more efficient with

JMCFIE, which requires fewer iterations than MNMF
and CNF [Ergül and Gürel, 2007, 2009]. For a given
discretization with the RWG functions, the tangential (T)
formulations, such as the combined tangential formulation
(CTF) [Ylä-Oijala et al., 2005b] and the Poggio-Miller-
Chang-Harrington-Wu-Tsai (PMCHWT) formulation
[Poggio and Miller, 1973; Chang and Harrington,
1977; Wu and Tsai, 1977], may provide more accurate
results than JMCFIE. On the other hand, matrix equations
obtained with the T formulations are difficult to solve
iteratively [Ylä-Oijala et al., 2005b, 2008; Ergül and
Gürel, 2007, 2009]. In fact, improving the accuracy of
JMCFIE solutions to the levels of the T formulations by
refining the discretization can be more efficient than using
the T formulations with coarse discretizations. Moreover,
JMCFIE becomes essential for large problems, which
might not easily be solved with the T formulations.
[3] JMCFIE can easily be applied to electromagnetics

problems involving multiple dielectric regions or com-
posite structures with coexisting metallic and dielectric
parts [Ylä-Oijala and Taskinen, 2005a, 2005b; Ylä-Oijala,
2008]. In general, equivalent problems, which are defined

RADIO SCIENCE, VOL. 44, RS6001, doi:10.1029/2009RS004143, 2009

1Department of Electrical and Electronics Engineering, Bilkent
University, Ankara, Turkey.

2Computational Electromagnetics Research Center, Bilkent Univer-
sity, Ankara, Turkey.

Copyright 2009 by the American Geophysical Union.

0048-6604/09/2009RS004143

RS6001 1 of 15



for all nonmetallic regions, are discretized with oriented
basis and testing functions. Then, the related unknowns on
the boundaries and the corresponding equations are com-
bined to form a single matrix equation to solve. This
procedure is detailed by Ylä-Oijala et al. [2005a, 2005b]
in the context of a PMCHWT formulation, and is extended
to JMCFIE in the work of Ylä-Oijala and Taskinen
[2005a, 2005b]. As discussed by Ylä-Oijala and Taskinen
[2005a, 2005b], JMCFIE is appropriate for complicated
structures involvingmultiple dielectric andmetallic regions.
[4] Electromagnetics problems involving large metal-

lic, dielectric, and composite objects can be solved
iteratively, where the required matrix-vector multiplica-
tions are performed efficiently with the multilevel fast
multipole algorithm (MLFMA) [Song et al., 1997; Sheng
et al., 1998; Chew et al., 2001; Donepudi et al., 2003].
Recently, MLFMA is used to solve electromagnetics
problems involving homogeneous dielectric objects
formulated with JMCFIE [Ergül and Gürel, 2007, 2009].
In this study, we extend the MLFMA solution of
JMCFIE to those problems involving multiple dielectric
and composite dielectric-metallic structures. We mainly
focus on the efficiency of the solutions and investigate
the number of iterations for increasingly large objects.
We show that iterative solutions of JMCFIE become
difficult as the contrast increases, i.e., when electromag-
netic parameters change significantly across dielectric
interfaces. For efficient solutions of JMCFIE, we present
a four-partition block-diagonal preconditioner (4PBDP),
which reduces the iteration counts significantly. This
preconditioner, which was originally developed by Ergül
and Gürel [2009] for homogeneous dielectric objects, is
particularly useful when a standard two-partition block-
diagonal preconditioner (2PBDP) fails to provide a
rapid convergence. In this paper, we present 4PBDP to
accelerate the solution of more complicated problems
involving multiple dielectric and metallic regions.
[5] The rest of the paper is organized as follows.

Section 2 presents the matrix equations obtained with
the JMCFIE formulation of electromagnetics problems
involving multiple dielectric and metallic regions.
MLFMA solutions are considered in section 3, where
we provide the specific details of our implementation.
Block-diagonal preconditioning is discussed in section 4,
followed by numerical examples in section 5, and our
concluding remarks in section 6. Time-harmonic electro-
magnetic fields with e�iwt time dependence are assumed
throughout the paper.

2. Solutions of Electromagnetics Problems

With JMCFIE

[6] We consider the general case involving U regions,
namely, D0, D1,. . ., DU�1, and D0 is a region extending

to infinity. Each regionDu for u = 0, 1,. . ., (U� 1) is either
metallic with perfect conductivity or lossless dielectric
with constant electromagnetic parameters, i.e., permittiv-
ity �u and permeability mu. We assume that there is no
junction where three or more regions intersect and each
region Du has a nonzero volume bounded by a closed
surface Su. Then,

Su ¼
XU�1
v¼0
v 6¼u

Suv; ð1Þ

where Suv = Svu is the interface between the regions Du

and Dv. We note that JMCFIE and MLFMA are also
applicable to composite problems involving junctions and
lossy dielectric regions [Sheng et al., 1998; Ylä-Oijala and
Taskinen, 2005a, 2005b].
[7] Applying the equivalence principle and using the

boundary conditions for the tangential electric and mag-
netic fields on surfaces, equivalent electric and magnetic
currents are defined as

JðrÞ ¼ n̂ðrÞ �HðrÞ ð2Þ

MðrÞ ¼ �n̂ðrÞ � EðrÞ; ð3Þ

where n̂(r) is the unit normal vector. For an interface Suv
for u < v, we choose n̂ directed into the region Du. When
Suv is perfectly conducting, the tangential electric field
and the magnetic current M(r) on the surface are zero.

2.1. Discretization

[8] For numerical solutions, surface currents are
expanded in a series of RWG functions, i.e.,

JðrÞ ¼
XN
n¼1

aJ
nbnðrÞ ð4Þ

MðrÞ ¼
XND

n¼1
aM
n bnðrÞ; ð5Þ

where bn(r) for n = 1, 2,. . ., N represents the nth basis
function with a spatial support of An, while an

J and an
M are

the unknown coefficients. Since we assume that there is
no junction, each RWG function is located on the
interface of two regions, such as Du and Dv. For u < v, Du

and Dv are called the ‘‘first’’ and ‘‘second’’ regions,
respectively, of the RWG function. In addition, RWG
functions are indexed by first considering the nonmetallic
surfaces, which involve ND� N basis functions. On these
surfaces, which separate two dielectric regions, both the
electric and magnetic currents are expanded in a series of
the same set of RWG functions bn(r) for n = 1, 2,. . ., ND.
The remaining (N � ND) RWG functions, if any, are
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defined on metallic surfaces to expand the electric current.
Using aGalerkin scheme for the discretization, we employ
the same set of RWG functions as the testing functions,
i.e., there are N RWG functions to test the boundary
conditions.
[9] In general, discretizations of JMCFIE lead to

(N + ND) � (N + ND) dense matrix equations in the form
of

Z
ð11Þ
N�N Z

ð12Þ
N�ND

Z
ð21Þ
ND�N Z

ð22Þ
ND�ND

" #
� aJ

aM

� �
¼ vð1Þ

vð2Þ

� �
; ð6Þ

where

aJ ¼ aJ
1 aJ

2 . . . aJ
N

� �T ð7Þ

aM ¼ aM
1 aM

2 . . . aM
ND

h iT
ð8Þ

are column vectors involving the coefficients for the
expansion of the electric and magnetic currents. Matrix
elements and the elements of the right-hand side (RHS)
vector are derived in the next sections.

2.2. Matrix Elements

[10] Consider the interaction between a basis function
bn(r) and a testing function tm(r), and let a dielectric
region Du be common for the two functions. Then, the
corresponding matrix element in the diagonal partition
Z (11) in (6) can be written as

Zð11Þmn  �
þ � gngm

2

Z
Am

drtmðrÞ � bnðrÞ

þ gn

Z
Am

drtmðrÞ � n̂ðrÞ � KKKKKKufbngðrÞ

þ gngm

Z
Am

drtmðrÞ � TTTTT ufbngðrÞ; ð9Þ

where we use the ‘‘ �þ ’’ notation to indicate the
‘‘cumulative addition operation,’’ since the value in (9)
may not be the only contribution to Zmn

(11). Specifically, if
tm(r) and bn(r) are on the same nonmetallic surface, both
regions of these functions are common, and the
corresponding matrix element Zmn

(11) involves two sets of
contributions, i.e., interactions of the basis and testing
functions through the two regions.
[11] In (9), the integro-differential operators TTTTT u and
KKKKKKu for region Du are applied on the basis function, i.e.,

TTTTT ufbngðrÞ ¼ iku

Z
An

dr0bnðr0Þguðr; r0Þ

þ i

ku

Z
An

dr0r0 � bnðr0Þrguðr; r0Þ ð10Þ

KKKKKKufbngðrÞ ¼
Z

PV ;An

dr0bnðr0Þ � r0guðr; r0Þ; ð11Þ

where PV indicates the principal value of the integral,
ku = w

ffiffiffiffiffiffiffiffiffi
�umu

p
is the wave number, and

gu r; r0ð Þ ¼ exp ikuRð Þ
4pR

R ¼ jr � r0jð Þ ð12Þ

denotes the homogeneous-space Green’s function.
Using a Galerkin scheme, both KKKKKKu and TTTTT u operators
are well tested in the diagonal partitions of JMCFIE
[Ylä-Oijala and Taskinen, 2005a, 2005b; Ylä-Oijala et
al., 2005b]. In (9), the signs gm = ±1 and gn = ±1 are
determined by the orientation of the basis and testing
functions. If the common region Du is the ‘‘first’’
region for the basis (testing) function, then gn = +1
(gm = +1); otherwise, gn = �1 (gm = �1).
[12] When the basis function bn(r) is not on a metallic

surface, i.e., n � ND, there exists a matrix element Zmn
(12)

in (6). A contribution to this element due to the
interaction of the basis and testing functions through
the common region Du can be written as

Zð12Þmn  �
þ � gn

2
h�1u

Z
Am

drtmðrÞ � n̂ðrÞ � bnðrÞ

þ gnh
�1
u

Z
Am

drtmðrÞ � n̂ðrÞ � TTTTT ufbngðrÞ

� gngmh
�1
u

Z
Am

drtmðrÞ � KKKKKKufbngðrÞ; ð13Þ

where hu is the impedance of the region. As opposed to
the diagonal partitions, KKKKKKu and TTTTT u operators are weakly
tested in (13) using a Galerkin scheme. When the testing
function tm(r) is not on a metallic surface, i.e., m � ND,
there exists a matrix element Zmn

(21) with a contribution as

Zð12Þmn  �
þ gn

2
hu

Z
Am

drtmðrÞ � n̂ðrÞ � bnðrÞ

� gnhu

Z
Am

drtmðrÞ � n̂ðrÞ � TTTTT ufbngðrÞ

þ gngmhu

Z
Am

drtmðrÞ � KKKKKKufbngðrÞ: ð14Þ

Finally, when both basis and testing functions are not on
metallic surfaces, there exists a matrix element Zmn

(22),
which is equal to the corresponding element of Z (11), i.e.,

Zð22Þmn ¼ Zð11Þmn ; ð15Þ

for m � ND and n � ND. If a structure does not involve
any metallic surfaces, the diagonal partitions of the
matrix equations obtained with JMCFIE are identical.
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This is a desirable property in terms of conditioning and
iterative convergence [Ylä-Oijala et al., 2005b].

2.3. RHS Vector

[13] The RHS vector in (6) is obtained by testing the
incident electromagnetic fields. In general, each nonme-
tallic region may host some external sources that pro-
duce incident electric and magnetic fields, i.e.,
Eu
inc(r) and Hu

inc(r). Consider an RWG function tm(r) on
the surface of a nonmetallic region Du. The incident
fields in Du are tested by tm(r) and added to the related
element in the upper partition of the RHS vector, i.e.,

vð1Þm  �
þ �gm

Z
Am

drtmðrÞ � n̂ðrÞ �H inc
u ðrÞ

� gmh
�1
u

Z
Am

drtmðrÞ � Einc
u ðrÞ; ð16Þ

where gm = ±1 is determined by the orientation of tm(r).
In addition, when the testing function tm(r) is not on a
metallic surface, i.e., m < ND, there exists a correspond-
ing element in the second partition of the RHS vector in
(6). Contribution to this element due to the incident fields
in region Du can be written as

vð2Þm  �
þ

gm

Z
Am

drtmðrÞ � n̂ðrÞ � Einc
u ðrÞ

� gmhu

Z
Am

drtmðrÞ �H inc
u ðrÞ: ð17Þ

3. MLFMA Solutions of Electromagnetics

Problems Formulated With JMCFIE

[14] Matrix equations obtained with JMCFIE can be
solved iteratively by employing a Krylov subspace
algorithm, where the required matrix-vector multipli-
cations are performed efficiently with MLFMA in
O(N logN) time using O(N logN) memory [Song et al.,
1997]. A multilevel tree structure with O(logN) levels is
constructed by placing the object in a cubic box and
recursively dividing the computational domain into
subdomains (clusters). Then, interactions of the basis
and testing functions that are far from each other can be
calculated approximately and efficiently in a group-by-
group manner. In general, each matrix-vector multi-
plication performed by MLFMA involves three main
stages called aggregation, translation, and disaggrega-
tion. These stages, which are performed on the multilevel
tree structure, can be summarized as follows:
[15] 1. The first stage is aggregation. Radiated fields of

clusters are calculated from the bottom of the tree
structure to the highest level. In the lowest level, the

radiated field of a cluster is obtained by combining the
radiation patterns of the basis functions inside the cluster.
In the upper levels, the radiated field of a cluster is the
combination of the radiated fields of its subclusters.
[16] 2. The second stage is translation. Radiated fields

computed during the aggregation stage are translated into
incoming fields. For each cluster at any level, there are
O(1) clusters to translate the radiated field to.
[17] 3. The third stage is disaggregation. Total incom-

ing fields at cluster centers are calculated from the top of
the tree structure to the lowest level. The total incoming
field for a cluster is obtained by combining incoming
fields due to translations and the incoming field to the
center of its parent cluster, if it exists. In the lowest level,
incoming fields are received by testing functions.
[18] MLFMA is investigated extensively in various

references [e.g., Song et al., 1997; Sheng et al.,
1998; Chew et al., 2001; Donepudi et al., 2003]. In this
paper, we provide only the specific details of our
implementation.
[19] 1. For a general problem involving U regions,

MLFMA must be applied for each nonmetallic region
separately [Donepudi et al., 2003; Luo and Lu, 2007;
Fostier and Olyslager, 2008]. This is because the
Green’s function depends on the electromagnetic para-
meters of the region, i.e., �u and mu. In addition, radiated
and incoming fields of clusters are defined and sampled
on the unit sphere, and the number of samples depends
on the cluster size as measured by the wavelength [Koc
et al., 1999]. Hence, the sampling rate and the resulting
tree structure also depend on the electromagnetic
parameters of the region.
[20] 2. For each region Du, we perform four matrix-

vector multiplications with the four partitions of the
system matrix, i.e.,

yð1Þ ¼ Z
ð11Þ
u � xJ þ Z

ð12Þ
u � xM ð18Þ

yð2Þ ¼ Z
ð21Þ
u � xJ þ Z

ð22Þ
u � xM ; ð19Þ

where the coefficients xJ and xM are provided by the
iterative algorithm. We note that a set of aggregation,
translation, and disaggregation stages is performed once
for a multiplication with a partition, although each
partition involves some combination of the integro-
differential operators. This is possible, since the radiated
and incoming fields do not depend on the type of the
integro-differential operator [Ergül and Gürel, 2009].
Only the receiving patterns of the testing functions
depend on the operator and the testing type, i.e., t̂ � TTTTT ,
n̂ � TTTTT , t̂ � KKKKKK, and n̂ � KKKKKK.
[21] 3. At the beginning of an aggregation stage,

radiation patterns of the RWG functions are multiplied
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with the coefficients provided by the iterative algorithm
and combined to obtain the radiated fields of the clusters
in the lowest level. In the aggregation stage performed
for a region Du, only the RWG functions located on the
surface of the region (Su) are considered. Besides, for the
partitions Zu

(12) and Zu
(22), basis functions located on

metallic surfaces are omitted.
[22] 4. At the end of a disaggregation stage, incoming

fields are received by the testing functions. Similar to the
aggregation stage, a disaggregation stage performed for a
region Du involves only the RWG functions located on
the surface of the region. In addition, testing functions
located on metallic surfaces do not receive incoming
fields for the partitions Zu

(21) and Zu
(22).

[23] 5. The signs gm and gn in (9), (13), and (14), are
introduced when the radiation patterns of the basis
functions are combined or when the incoming fields are
multiplied with the receiving patterns of the testing
functions in the lowest level.

4. Block-Diagonal Preconditioning

of JMCFIE

[24] MLFMA provides the solution of large problems
by reducing the complexity of the matrix-vector multi-
plications required by the iterative solvers from O(N2) to
O(N log N). For efficient solutions, however, the number
of iterations should also be small, in addition to fast
matrix-vector multiplications. In general, JMCFIE is a
second-kind integral equation, and its Galerkin discreti-
zation involves well tested identity operators, which lead
to well conditioned matrix equations [Ylä-Oijala and
Taskinen, 2005a, 2005b; Ylä-Oijala et al., 2005b].
Matrix equations obtained with JMCFIE are easy to
solve iteratively, especially when the contrasts between
the neighboring dielectric regions are low, i.e., permit-
tivity and permeability do not change significantly across
dielectric interfaces. However, iterative solutions of
JMCFIE become difficult as the contrast increases
[Ylä-Oijala et al., 2005b; Ylä-Oijala, 2008; Ergül and
Gürel, 2009], and effective preconditioners are required
to reduce the number of iterations, especially when the
problem size is large.

4.1. Effect of the Contrast in JMCFIE

[25] When a problem does not involve any metallic
surface, the diagonal partitions of JMCFIE are identical.
For composite structures with metallic surfaces, however,
these partitions are not identical, and they have different
sizes, which may deteriorate the numerical balance of the
matrix equations. On the other hand, iterative solutions
of JMCFIE become difficult with the increasing contrast,
even in the case of nonmetallic objects. The main reason

is the existence of off-diagonal partitions, which are
numerically sensitive to the contrast. In general, off-
diagonal partitions of JMCFIE are significantly unbal-
anced due to multiplications with hu

�1 and hu in (13)
and (14), respectively. Although this may not be critical
for low contrasts, the off-diagonal partition Z (21) dom-
inates the overall matrix, as the contrast of the object
increases. As a result, the overall matrix equation becomes
significantly unbalanced and difficult to solve iteratively.
[26] For a further analysis, we consider a special case

involving a dielectric object in homogeneous space.
Matrix elements in this case are derived explicitly in
Appendix A. In general, the numerical significance of
the off-diagonal Z (21) grows rapidly with the increasing
contrast. Our investigations also show that a combined
operator (h0TTTTT 0 � h1TTTTT 1) presents a major contribution in
Z (21) for relatively high contrasts. The related term can
be written as

Z
ð21Þ
mn;TTT ¼ iw

Z
Am

drtmðrÞ � n̂ðrÞ

�
Z
An

dr0bnðr0Þ m0g0ðr; r0Þ � m1g1ðr; r0Þ½ �
�

þ 1

w2

Z
An

dr0r0 � bnðr0Þr
g0ðr; r0Þ
�0

� g1ðr; r0Þ
�1

� ��
:

ð20Þ

Using a Taylor series expansion for the exponential in
the Green’s function,

m0g0ðr; r0Þ � m1g1ðr; r0Þ½ �

¼ 1

4pR

X1
s¼0

ðiwRÞs

s!
m0ðm0�0Þ

s=2 � m1ðm1�1Þ
s=2

h i
ð21Þ

and

r g0ðr; r0Þ
�0

� g1ðr; r0Þ
�1

� �

¼ R̂

4pR2

X1
s¼0

ðiwRÞsþ1

s!

ðm0�0Þ
s=2þ1=2

�0
� ðm1�1Þ

s=2þ1=2

�1

" #

� R̂

4pR2

X1
s¼0

ðiwRÞs

s!

ðm0�0Þ
s=2

�0
� ðm1�1Þ

s=2

�1

" #
; ð22Þ

where R = (r � r0) = R̂R. We note that 1/R and 1/R2

singularities in (21) and (22) exist when m0 6¼ m1 and
�0 6¼ �1, respectively. In addition, numerical values of
the expressions in (21) and (22), thus the contribution
of (h0TTTTT 0 � h1TTTTT 1) in Z (21), grow rapidly with the
increasing contrast. Finally, the resulting matrix
equation becomes significantly unbalanced, due to
large elements in Z (21).
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4.2. Preconditioning

[27] In general, the matrix equation in (6) can be
preconditioned as

ðPÞ�1 � Z
ð11Þ

Z
ð12Þ

Z
ð21Þ

Z
ð22Þ

� �
� aJ

aM

� �
¼ ðPÞ�1 � vð1Þ

vð2Þ

� �
;

ð23Þ

where P is a (N + ND) � (N + ND) preconditioner matrix.
In MLFMA, there are O(N) near-field interactions,
which are calculated directly and are available for
constructing preconditioners. These interactions are
between the basis and testing functions that are located
in the same cluster or in two touching clusters in the
lowest level of the tree structure. During solutions with
MLFMA, we reorder the RWG functions according to
their positions in the multilevel tree. Let C be the number
of clusters in the lowest level and N(c) represent the
number of RWG functions in cluster c = 1, 2,. . ., C.
Then, the RWG functions in cluster c are indexed from
NT(c) + 1 to NT(c) + N(c), where

NT ðcÞ ¼
Xc�1
c0¼1

NðcÞ: ð24Þ

This way, the system matrix in (6) has a block structure,
where each block represents the interaction of a pair of
lowest-level clusters. In the sparse near-field matrix, only
the blocks corresponding to the self interactions of the
clusters or the interactions of two touching clusters
involve nonzero elements.
[28] The block-diagonal preconditioner (BDP), which

is based on using the self interactions of the lowest-level
clusters, is commonly used to accelerate MLFMA sol-
utions of electromagnetics problems involving perfectly
conducting objects [Song et al., 1997; Chew et al.,
2001]. The preconditioner matrix, which has a block-
diagonal structure, can be inverted and used efficiently
with O(N) complexity. Although BDP is successful in
reducing the iteration counts for second-kind integral
equations [Song et al., 1997], such as the combined-field
integral equation (CFIE), it may not accelerate the
iterative solutions of first-kind integral equations [Gürel
and Ergül, 2006], such as the electric field integral
equation (EFIE). In fact, EFIE solutions are usually
decelerated with BDP [Gürel and Ergül, 2003], and
BDP is rarely useful for EFIE [Ubeda et al., 2006;
Ergül et al., 2007].

4.3. Two-Partition Block-Diagonal Preconditioner

[29] A direct extension of BDP for dielectric prob-
lems, which we call 2PBDP, involves the self inter-

actions of the lowest-level clusters in the diagonal
partitions, i.e.,

P2P �
P
ð11Þ
N�N 0

0 P
ð22Þ
ND�ND

" #
; ð25Þ

where

P
ð11Þ
N�N � Z

ð11Þ
N�N ð26Þ

P
ð22Þ
ND�ND

� Z
ð22Þ
ND�ND

ð27Þ

are block-diagonal matrices. Then, a preconditioned
matrix equation can be written as

B
ð11Þ � Z ð11Þ B

ð11Þ � Z ð12Þ
B
ð22Þ � Z ð21Þ B

ð22Þ � Z ð22Þ
� �

� aJ

aM

� �
¼ B

ð11Þ � vð1Þ
B
ð22Þ � vð2Þ

� �
;

ð28Þ

where

B
ð11Þ
N�N ¼ P

ð11Þ
N�N

	 
�1
ð29Þ

B
ð22Þ
ND�ND

¼ P
ð22Þ
ND�ND

	 
�1
ð30Þ

are also block-diagonal matrices. As presented in section
5, 2PBDP accelerates iterative solutions of problems
involving dielectric regions with relatively low contrasts.
As the contrast increases, however, 2PBDP, which does
not employ the large elements in Z (21), can be
insufficient to accelerate the iterations. For those
problems, better preconditioners are required to reduce
the iteration counts and to increase the efficiency of the
solutions.

4.4. Four-Partition Block-Diagonal Preconditioner

[30] To improve the iterative solutions of JMCFIE, we
propose 4PBDP, which is based on using the diagonal
blocks, i.e., self interactions of the lowest-level clusters,
in all four partitions of the matrix equations. This way,
some of the large elements in Z (21) are considered in
constructing an effective preconditioner. The resulting
preconditioner matrices are in the form of

P4P �
P
ð11Þ
N�N P

ð12Þ
N�ND

P
ð21Þ
ND�N P

ð22Þ
ND�ND

" #
; ð31Þ

where PN�N
(11) and PND�ND

(22) are block-diagonal matrices as
in 2PBDP. The partitions

P
ð12Þ
N�ND

� Z
ð12Þ
N�ND

ð32Þ
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P
ð21Þ
ND�N � Z

ð21Þ
ND�N ð33Þ

are also block matrices involving the self interac-
tions of the clusters. However, these partitions are
square and block-diagonal only when a problem does
not involve metallic surfaces (ND = N); otherwise, they
are rectangular matrices. In addition, the blocks in
PN�ND

(12) and PND�N
(21) are not necessarily square, and some

of them can be rectangular, depending on the object and
the clustering scheme in MLFMA.

[31] Using 4PBDP, a preconditioned matrix equation
can be written as

B
ð11Þ

B
ð12Þ

B
ð21Þ

B
ð22Þ

� �
� Z

ð11Þ
Z
ð12Þ

Z
ð21Þ

Z
ð22Þ

� �
� aJ

aM

� �

¼ B
ð11Þ � vð1Þ þ B

ð12Þ � vð2Þ
B
ð21Þ � vð1Þ þ B

ð22Þ � vð2Þ

� �
; ð34Þ

where

B
ð11Þ
N�N ¼ P

ð11Þ
N�N

	 
�1
þ P

ð11Þ
N�N

	 
�1
� Pð12ÞN�ND

� SND�ND

� ��1�Pð21ÞND�N � P
ð11Þ
N�N

	 
�1
ð35Þ

B
ð12Þ
N�ND

¼ � P
ð11Þ
N�N

	 
�1
� Pð12ÞN�ND

� SND�ND

� ��1 ð36Þ

B
ð21Þ
ND�N ¼ � SND�ND

� ��1� Pð21ÞND�N � P
ð11Þ
N�N

	 
�1
ð37Þ

B
ð22Þ
ND�ND

¼ SND�ND

� ��1 ð38Þ

and

SND�ND
¼ P

ð22Þ
ND�ND

� P
ð21Þ
ND�N � P

ð11Þ
N�N

	 
�1
�Pð12ÞN�ND

ð39Þ

is the Schur complement of PN�N
(11) [Gürel and Chew,

1990]. Matrix operations in (35)–(39), i.e., matrix-
matrix multiplications, the inversion of PN�N

(11) , and the
inversion of SND�ND

can be performed efficiently in O(N)
time using O(N) memory. Our numerical experiments
show that the extra cost of 4PBDP with respect to
2PBDP is always negligible, considering the overall cost
of the solutions with MLFMA. Nevertheless, as demon-
strated in the next section, 4PBDP can significantly
improve the efficiency of solutions by reducing iteration
counts, and it is especially useful when the acceleration
provided by 2PBDP is not sufficient.

5. Results

[32] In this section, we present iterative solutions for
various scattering problems and investigate their iteration
counts when the solutions are acceleratedwith 2PBDP and
4PBDP, in addition to the no-preconditioner (NP) case.
Scatterers are illuminated by a plane wave propagating
in the �x direction with the electric field polarized in the
y direction. Surfaces are discretized with about l0/10
mesh size, where l0 is the wavelength in medium D0

(free space) that extends to infinity. Iterative solutions are
performed using the biconjugate-gradient-stabilized

Figure 1. Iteration counts for the solution of scattering
problems involving a dielectric sphere with a relative
permittivity of (a) 2.0 and (b) 4.0, when the radius of the
sphere is in the range of 0.75l0 to 7.5l0, where l0 is the
wavelength in free space.
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(BiCGStab) algorithm [Van der Vorst, 1992], which is
known to provide rapid solutions for second-kind
integral equations. In all solutions, matrix-vector multi-
plications are accelerated via MLFMA, and the relative
residual error for the iterative convergence is set to 10�3.
[33] First, we consider scattering problems involving a

dielectric sphere. Figure 1a presents the number of
BiCGStab iterations when the relative permittivity of
the sphere is 2.0 and the radius of the sphere (a) changes
from l0 to 7.5l0. Discretizations of problems lead to

4142 and 412,998 unknowns, respectively, for radii
0.75l0 and 7.5l0. As depicted in Figure 1a, 2PBDP
accelerates the iterative convergence substantially, com-
pared to the NP case. Using 4PBDP further reduces the
iteration counts, but the improvement with respect to
4PBDP is considerable only when a = 6l0. Figure 1b
presents the iteration counts with respect to the number
of unknowns when the relative permittivity of the sphere
is 4.0. In general, iterative solutions become difficult
with increasing contrast. For a radius of 6l0, conver-
gence is not achieved in 1000 iterations without
preconditioning. Furthermore, unlike the low-contrast
(�r = 2.0) case, 2PBDP is unable to reduce the iteration
counts when �r = 4.0. When we use 4PBDP, however,
iterative solutions are accelerated significantly, and we
obtain efficient solutions.
[34] Figure 2 depicts iteration counts for the solution of

scattering problems involving a spherical object with
multiple dielectric regions. A dielectric sphere of radius a
is coated with a dielectric shell of radius 2a, where a
changes from 0.5l0 to 2.5l0. Discretizations of problems
lead to 13,176 and 316,032 unknowns, respectively,
when a = 0.5l0 and a = 2.5l0. Figure 2a presents
iteration counts with respect to the number of unknowns
when the relative permittivities of the core and the shell
are 4.0 and 2.0, respectively. In this case, 2PBDP reduces
iteration counts substantially in comparison to the NP
case, while 4PBDP does not provide a significant
improvement over 2PBDP. On the other hand, when
the permittivity of the shell and the core are exchanged,
we obtain the iteration counts depicted in Figure 2b,
where 4PBDP presents a superior performance in
comparison to 2PBDP. Owing to the relatively high
contrast between the shell and free space, solutions of
JMCFIE become difficult without preconditioning. For
example, when a = 1.67l0, convergence cannot be
achieved in 1000 iterations. 2PBDP accelerates the
convergence for large problems, but the improvement is
not sufficient. Using 4PBDP, the number of iterations is
less than 100 for all solutions in Figure 2.
[35] Next, we consider iterative solutions of scattering

problems involving a spherical composite object. In this
case, a metallic sphere of radius a is coated with a
dielectric shell of radius 2a, where a changes from 0.5l0
to 2.5l0. Figure 3 presents iteration counts with respect
to the number of iterations. Similar to the previous
example, 2PBDP reduces the iteration counts signifi-
cantly for the low-contrast case, i.e., when the relative
permittivity of the shell is 2.0, as depicted in Figure 3a.
In this case, 4PBDP provides some improvement over
2PBDP, as the problem size grows. When the relative
permittivity of the shell is 4.0, however, 4PBDP
accelerates the iterative solutions significantly, compared
to 2PBDP. In fact, 2PBDP decelerates the solutions for
large problems, and there is a large discrepancy between

Figure 2. Iteration counts for the solution of scattering
problems involving a dielectric sphere of radius a coated
with a dielectric shell of radius 2a, where a changes from
0.5l0 to 2.5l0. (a) Low-contrast case when the relative
permittivities of the core and shell are 4.0 and 2.0,
respectively. (b) High-contrast case when the relative
permittivities of the core and shell are 2.0 and 4.0,
respectively.
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the performances of 2PBDP and 4PBDP. Using 4PBDP,
the number of iterations is again less than 100 for all
solutions in Figure 3.
[36] We also consider electromagnetics problems

involving dielectric and composite objects with sharp
edges and corners. Figure 4 presents iteration counts for
the solution of scattering problems involving a coated
dielectric cube. The core and shell have edges of a and
2a, respectively, where a changes from 0.5l0 to 2.5l0.
Faces of the object are parallel to the coordinate axes.
Discretizations of problems lead to matrix equations with
9864 to 228,132 unknowns. Figure 4a depicts iteration
counts as a function of the number of unknowns, when

the relative permittivities of the core and shell are 4.0 and
2.0, respectively. The results are similar to those for the
spherical object depicted in Figure 2a, i.e., 2PBDP
accelerates the iterative solutions significantly, and
4PBDP further reduces the iteration counts slightly
compared to 2PBDP. When the relative permittivities of
the core and shell are exchanged, however, 4PBDP
performs much better than 2PBDP, as depicted in
Figure 4b. On the other hand, unlike the solutions of the

Figure 3. Iteration counts for the solution of scattering
problems involving a perfectly conducting sphere of
radius a coated with a dielectric shell of radius 2a, where
a changes from 0.5l0 to 2.5l0. The relative permittivity
of the shell is (a) 2.0 and (b) 4.0.

Figure 4. Iteration counts for the solution of scattering
problems involving a dielectric cube coated with a
dielectric shell. The core and shell have edges of a and
2a, respectively, where a changes from 0.5l0 to 2.5l0.
(a) Low-contrast case when the relative permittivities of
the core and shell are 4.0 and 2.0, respectively. (b) High-
contrast case when the relative permittivities of the core
and shell are 2.0 and 4.0, respectively.
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spherical object in Figure 2b, 2PBDP is also effective for
the high-contrast case in Figure 4b. This is probably due to
the larger numbers of elements being used in constructing
2PBDP for the cubic object, i.e., the lowest-level clusters
in the multilevel tree are more populated for the cubic
object than for the spherical object. Nevertheless, 4PBDP
is again preferable for all solutions in Figure 4.
[37] Figure 5 presents the solution of scattering prob-

lems involving a coated metallic cube. The sizes of the
core and shell are the same as those in the coated
dielectric cube. Similar to previous examples, 4PBDP

provides the most efficient results, and it presents
improved convergence in comparison to 2PBDP, when
the contrast is relatively high.
[38] In Figure 6, we present the solution of scattering

problems involving a spherical object with three dielectric
regions. A dielectric sphere of radius 0.3a is coated with
two dielectric shells of radii 0.5a and a, where a changes
from 2l0 to 2.6l0. Relative permittivities of the core, inner
shell, and outer shell are 1.44, 1.96, and 4.0, respectively.
Only one discretization involving 215,304 unknowns is
used for the entire frequency range. As depicted in Figure 6,
solutions are performed efficiently with maximum 101
iterations using 4PBDP. Figure 6 also presents the normal-
ized radar cross section (RCS/pa2) in the backscattering
direction as a function of a in terms of the wavelength. We
observe that computational values are in agreement with
analytical values obtained by Mie-series solutions.
[39] Finally, to demonstrate the effectiveness of an

implementation involvingMLFMA, JMCFIE, and 4PBDP,

Figure 5. Iteration counts for the solution of scattering
problems involving a perfectly conducting cube coated
with a dielectric shell. The core and shell have edges of a
and 2a, respectively, where a changes from 0.5l0 to
2.5l0. The relative permittivity of the shell is (a) 2.0 and
(b) 4.0.

Figure 6. Iteration counts for the solution of scattering
problems involving a dielectric sphere of radius 0.3a
coated with two dielectric shells of radii 0.5a and a,
where a changes from 2l0 to 2.6l0. Relative permittiv-
ities of the core, inner shell, and outer shell are 1.44,
1.96, and 4.0, respectively. Normalized RCS (RCS/pa2)
of the structure in the backscattering direction is also
plotted as a function of a in terms of wavelength.
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we present the solution of large scattering problems
discretized with 1,264,128 unknowns. A sphere of radius
5l0 is placed inside another sphere of radius 10l0. We
consider four different cases: (1) Relative permittivities
of the core and shell are 4.0 and 2.0, respectively. (2)
Relative permittivities of the core and shell are 2.0 and
4.0, respectively. (3) The core is metallic and the relative
permittivity of the shell is 2.0. (4) The core is metallic
and the relative permittivity of the shell is 4.0.
[40] Scattering problems are solved via 6-level

MLFMA, and the iteration counts are 101, 283, 75,
and 187, respectively, for 10�3 residual error. Figures 7
and 8 present the normalized bistatic RCS (RCS/l0

2)
values on the x-z plane, where 0� and 180� correspond to
the forward scattering and backscattering directions,
respectively. We observe that computational and analy-
tical results agree perfectly.

6. Concluding Remarks

[41] In this paper, we present an efficient solution of
JMCFIE using MLFMA and block-diagonal precondi-

tioners. We provide the details of an MLFMA imple-
mentation for the solution of electromagnetics problems
involving multiple dielectric and metallic regions. In
general, JMCFIE is a preferable formulation that pro-
vides well conditioned matrix equations that are easy to
solve iteratively. However, iterative solutions of JMCFIE
can be difficult for problems involving dielectric regions
with relatively high contrasts. This is mostly due to the
numerical imbalance of the off-diagonal partitions of the
matrix equations obtained with JMCFIE. To accelerate
the iterative solutions, we present 4PBDP, which is an
efficient preconditioner based on using the diagonal
blocks in all four partitions of the matrix equations. We
show that 4PBDP reduces the iteration counts signifi-
cantly and performs better than the standard 2PBDP,
which can be insufficient to improve the iterative con-
vergence as the contrast increases.

Appendix A

[42] In this Appendix A, we present the matrix equa-
tions for the special cases depicted in Figure A1, i.e., a

Figure 7. Normalized bistatic RCS (RCS/l0
2) of a

structure involving spheres of radii 5l0 and 10l0, when
(a) relative permittivities of the core and shell are 4.0 and
2.0, respectively, and (b) relative permittivities of the
core and shell are 2.0 and 4.0, respectively.

Figure 8. Normalized bistatic RCS (RCS/l0
2) of a

structure involving spheres of radii 5l0 and 10l0, when
(a) the core is metallic and the relative permittivity of the
shell is 2.0, and (b) the core is metallic and the relative
permittivity of the shell is 4.0.
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dielectric object and a coated dielectric or metallic object
in homogeneous space. We assume that the incident
fields exist only in region D0, which extends to infinity.
[43] In the case of a dielectric object as depicted in

Figure A1a, there are two regions, namely, D0 and D1.
Since there is no metallic surface, ND = N, and the size of
the matrix equation obtained from the discretization of
JMCFIE is 2N � 2N. All RWG functions are located on
the same surface, and each matrix element involves two
sets of contributions due to the interactions of the basis
and testing functions through the regions D0 and D1.
Using (9), (13), and (14), we obtain

Zð11Þmn ¼ Zð22Þmn ¼ �
Z
Am

drtmðrÞ � bnðrÞ

þ
Z
Am

drtmðrÞ � n̂ðrÞ � KKKKKK0 �KKKKKK1½ �fbngðrÞ

þ
Z
Am

drtmðrÞ � TTTTT 0 þ TTTTT 1½ �fbngðrÞ; ðA1Þ

Zð12Þmn ¼
1

2
h�11 � h�10

� � Z
Am

drtmðrÞ � n̂ðrÞ � bnðrÞ

þ
Z
Am

drtmðrÞ � n̂ðrÞ

� h�10 TTTTT 0 � h�11 TTTTT 1

� �
fbngðrÞ

�
Z
Am

drtmðrÞ � h�10 KKKKKK0 þ h�11 KKKKKK1

� �
fbngðrÞ;

ðA2Þ

Zð21Þmn ¼
1

2
h0 � h1ð Þ

Z
Am

drtmðrÞ � n̂ðrÞ � bnðrÞ

�
Z
Am

drtmðrÞ � n̂ðrÞ � h0TTTTT 0 � h1TTTTT 1½ �fbngðrÞ

þ
Z
Am

drtmðrÞ � h0KKKKKK0 þ h1KKKKKK1½ �fbngðrÞ ðA3Þ

for m, n = 1, 2,. . ., N. In addition, by testing the incident
electric and magnetic fields, elements of the RHS vector
can be calculated as

uð1Þm ¼ �
Z
Am

drtmðrÞ � n̂ðrÞ �H inc
0 ðrÞ

� h�10

Z
Am

drtmðrÞ � Einc
0 ðrÞ; ðA4Þ

uð2Þm ¼
Z
Am

drtmðrÞ � n̂ðrÞ � Einc
0 ðrÞ

� h0

Z
Am

drtmðrÞ �H inc
0 ðrÞ ðA5Þ

for m = 1, 2,. . ., N.
[44] In the case of a coated dielectric object, there are

three nonmetallic regions, namely, D0, D1, and D2, while
D1 is between D0 and D2. Since there is no metallic
surface, ND = N, and the size of the resulting matrix
equation is again 2N � 2N. Let the first N01 RWG
functions and the remaining N12 = (N � N01) RWG
functions be defined on surfaces S01 and S12, respec-
tively. Each partition in (6) can be divided into four
subpartitions, i.e.,

Z
ðabÞ ¼ Z

ðab;11Þ
Z
ðab;12Þ

Z
ðab;21Þ

Z
ðab;22Þ

� �
N�N

ðA6Þ

for a = 1, 2 and b = 1, 2. In (A6), Z (ab,11) and Z (ab,22)

representN01�N01 andN12�N12matrices containing the
interactions of the RWG functions located on S01 and
S12, respectively. Calculations of these interactions are
similar to those in (A1)–(A3). For m, n = 1, 2,. . ., N01,

Zð11;11Þmn ¼ Zð22;11Þmn

¼ �
Z
Am

drtmðrÞ � bnðrÞ

þ
Z
Am

drtmðrÞ � n̂ðrÞ � KKKKKK0 �KKKKKK1½ �fbngðrÞ

þ
Z
Am

drtmðrÞ � TTTTT 0 þ TTTTT 1½ �fbngðrÞ; ðA7Þ

Zð12;11Þmn ¼ 1

2
h�11 � h�10

� � Z
Am

drtmðrÞ � n̂ðrÞ � bnðrÞ

þ
Z
Am

drtmðrÞ � n̂ðrÞ

� h�10 TTTTT 0 � h�11 TTTTT 1

� �
fbngðrÞ

�
Z
Am

drtmðrÞ � h�10 KKKKKK0 þ h�11 KKKKKK1

� �
fbngðrÞ;

ðA8Þ

Figure A1. Electromagnetics problems involving (a) a
single dielectric object and (b) a coated dielectric or
metallic object located in homogeneous space.
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Zð21;11Þmn ¼ 1

2
h0 � h1ð Þ

Z
Am

drtmðrÞ � n̂ðrÞ � bnðrÞ

�
Z
Am

drtmðrÞ � n̂ðrÞ� h0TTTTT 0 � h1TTTTT 1½ �fbngðrÞ

þ
Z
Am

drtmðrÞ � h0KKKKKK0 þ h1KKKKKK1½ �fbngðrÞ: ðA9Þ

For m, n = (N01 + 1), (N01 + 2),. . ., (N01 + N12),
and (m0, n0) = (m � N01, n � N01),

Z
ð11;22Þ
m0n0 ¼ Z

ð22;22Þ
m0n0 ¼ �

Z
Am

drtmðrÞ � bnðrÞ

þ
Z
Am

drtmðrÞ � n̂ðrÞ � KKKKKK1 �KKKKKK2½ �fbngðrÞ

þ
Z
Am

drtmðrÞ � TTTTT 1 þ TTTTT 2½ �fbngðrÞ; ðA10Þ

Z
ð12;22Þ
m0n0 ¼ 1

2
h�12 � h�11

� � Z
Am

drtmðrÞ � n̂ðrÞ � bnðrÞ

þ
Z
Am

drtmðrÞ � n̂ðrÞ

� h�11 TTTTT 1 � h�12 TTTTT 2

� �
fbngðrÞ

�
Z
Am

drtmðrÞ � h�11 KKKKKK1 þ h�12 KKKKKK2

� �
fbngðrÞ;

ðA11Þ

Z
ð21;22Þ
m0n0 ¼ 1

2
h1 � h2ð Þ

Z
Am

drtmðrÞ � n̂ðrÞ � bnðrÞ

�
Z
Am

drtmðrÞ � n̂ðrÞ

� h1TTTTT 1 � h2TTTTT 2½ �fbngðrÞ

þ
Z
Am

drtmðrÞ � h1KKKKKK1 þ h2KKKKKK2½ �fbngðrÞ:

ðA12Þ

On the other hand, the off-diagonal subpartitions, i.e.,
Z (ab,12) and Z (ab,21), involve the interactions of the basis
and testing functions that are located on different
surfaces. These basis and testing functions interact only
through the regionD1. Form = 1, 2,. . ., N01, n = (N01 + 1),
(N01 + 2),. . ., (N01 + N12), and n0 = n � N01,

Z
ð11;12Þ
mn0 ¼ Z

ð22;12Þ
mn0

¼ 1

2

Z
Am

drtmðrÞ � bnðrÞ

þ
Z
Am

drtmðrÞ � n̂ðrÞ � KKKKKK1fbngðrÞ

�
Z
Am

drtmðrÞ � TTTTT 1fbngðrÞ; ðA13Þ

Z
ð12;12Þ
mn0 ¼ � h�11

2

Z
Am

drtmðrÞ � n̂ðrÞ � bnðrÞ

þ h�11

Z
Am

drtmðrÞ � n̂ðrÞ � TTTTT 1fbngðrÞ

þ h�11

Z
Am

drtmðrÞ � KKKKKK1fbngðrÞ; ðA14Þ

Z
ð21;12Þ
mn0 ¼ h1

2

Z
Am

drtmðrÞ � n̂ðrÞ � bnðrÞ

� h1

Z
Am

drtmðrÞ � n̂ðrÞ � TTTTT 1fbngðrÞ

� h1

Z
Am

drtmðrÞ � KKKKKK1fbngðrÞ: ðA15Þ

Form=(N01+1), (N01+2),. . ., (N01+N12),n=1,2,. . .,N01,
N01, and m0 = m � N01,

Z
ð11;21Þ
m0n ¼ Z

ð22;21Þ
m0n

¼ 1

2

Z
Am

drtmðrÞ � bnðrÞ

�
Z
Am

drtmðrÞ � n̂ðrÞ � KKKKKK1fbngðrÞ

�
Z
Am

drtmðrÞ � TTTTT 1fbngðrÞ; ðA16Þ

Z
ð12;21Þ
m0n ¼ h�11

2

Z
Am

drtmðrÞ � n̂ðrÞ � bnðrÞ

� h�11

Z
Am

drtmðrÞ � n̂ðrÞ � TTTTT 1fbngðrÞ

þ h�11

Z
Am

drtmðrÞ � KKKKKK1fbngðrÞ; ðA17Þ

Z
ð21;21Þ
m0n ¼ � h1

2

Z
Am

drtmðrÞ � n̂ðrÞ � bnðrÞ

þ h1

Z
Am

drtmðrÞ � n̂ðrÞ � TTTTT 1fbngðrÞ

� h1

Z
Am

drtmðrÞ � KKKKKK1fbngðrÞ: ðA18Þ

Finally, incident electromagnetic fields are tested only by
the RWG functions located on the surface S01, and the
elements of the RHS vector for m = 1, 2,. . ., N01 are
calculated as in (A4) and (A5).
[45] Next, we consider a coated metallic object in

homogeneous space. In this case, there are two nonme-
tallic regions, i.e., D0 and D1, and the size of the matrix
equation is (N + ND) � (N + ND), where ND < N. Let the
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first ND RWG functions be located on the surface S01 and
the remaining N12 = (N � ND) RWG functions be located
on the metallic surface S12. Then, the expressions for the
matrix elements in the diagonal partition Z (11) are the
same as the expressions in (A7), (A10), (A13), and
(A16), which are derived for the coated dielectric object.
On the other hand, the off-diagonal partition Z (12)

becomes a rectangular matrix with two subpartitions, i.e.,

Z
ð12Þ ¼ Z

ð12;11Þ

Z
ð12;21Þ

� �
N�ND

; ðA19Þ

where the matrix elements Zmn
(12,11) and Zm0n

(12,21) for m, n
= 1, 2,. . ., ND and m0 = 1, 2,. . ., N12 are calculated as in
(A8) and (A17). The off-diagonal partition Z (21) also
becomes a rectangular matrix, i.e.,

Z
ð21Þ ¼ Z

ð21;11Þ
Z
ð21;12Þ

h i
ND�N

; ðA20Þ

where the subpartitions Zmn
(21,11) and Zmn0

(21,12) for m, n =
1, 2,. . ., ND, and n0 = 1, 2,. . ., N12 are calculated as in
(A9) and (A15). The diagonal partition Z (22) is an
ND � ND matrix with elements Zmn

(22) = Zmn
(11) for m, n =

1, 2,. . ., ND. Finally, the elements of the RHS vector are
calculated as in (A4) and (A5) for m = 1, 2,. . ., ND.
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Ylä-Oijala, P., M. Taskinen, and S. Järvenpää (2005a), Surface
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