
CITAR Journal, Volume 11, No. 2 · Special Issue: xCoAx 2019

 9

Computational Visualization for Critical
Thinking

Catherine Griffiths
Media Arts + Practice, School of Cinematic Arts,
University of Southern California, Los Angeles, USA

griffitc@usc.edu

ABSTRACT

This paper looks at several historical precedents
for how computational systems and ideas have
been visualized, both as a means of access to
and engagement with a broader audience, and to
develop a more tangible language to address
abstraction. Such precedents share a subversive
ground in using a visual language to provoke
ways of engaging with complex ideas. The author
proposes two approaches to visualizing
algorithmic systems for the emerging context of
algorithmic ethics in society, looking at
prototypical algorithms in computer vision and
machine learning systems, to think through the
meaning created by algorithmic structure and
process. The aim is to use visual design to
provoke different kinds of thinking and criticality
to address algorithms in their increasingly more
politicized role today. The two proposed
approaches are developed from an arts research
perspective to support critical thinking and arts
knowledge through creative coding and
interactive design.

KEYWORDS

Visualization; Computation; Precedent Studies;
Ethics; Critical Technologies; Machine Learning;
Computer Vision; Surveillance.

1 | INTRODUCTION

Today computational systems have become
significantly more abstract, complex, opaque,
powerful, pervasive, influential, and opportunistic.
They are no longer simply tools to make things
faster, or easier, or more efficient. They are
becoming part of the fabric of our social and
political lives, autonomously bypassing
governance and political debate, as the traditional
forums of decision-making and social change.
Humans are becoming increasingly incapable of
comprehending computation in its speed, scale,
and structure, and consequently, to engage with
it and make choices about how we want to live
with it. Visualization can be a method of making
computation more human, less abstract and
opaque. We need to graphically show structure,
animate temporality, diagram scale, and

metaphorize context. We need to develop visual
tools that incite new ways to think about
algorithms as socio-political drivers. There are
historical precedents for visualizing computation
that are relevant to our contemporary algorithmic
era, in the way that they specifically challenge
perspectives on knowledge and engagement.
These precedents will be explored, before
presenting two different approaches.

2 | COMPUTATION AS TACIT POWER AND
AESTHETIC ANALOGY

Algocracy is a concept put forward by A. Aneesh
in his research into the virtualization of labor
practices. The encroaching role of algorithms in
society today presents an opportune moment to
readdress the notion of algocracy. Aneesh
defines it as “algocracy - rule of the algorithm, or
rule of code” (2006), which he presents as a new
type of power that is created through the way that
algorithms are embedded in software. This form
of power does not require monitoring through
traditional surveillance systems, hierarchies, and
forms of government, but instead governance
and surveillance take place through the design of
the algorithm and the way it tacitly shapes
behaviors and asserts authority, without public
awareness. If we consider the exapnding role that
algorithms play in society, that their design can
be a form of tacit governance, what opportunities
are there to develop computational visualization
tools that invite critical thinking around this shift in
power by a broader non-technical audience?

Visualizing computation focuses on process, both
temporally and spatially, in which data is parsed,
forked, and on which decisions are executed. It is
about thinking through and visualizing how the
computational process works in real time, to expose
or interpret a cause or pattern or resulting artefact.
In data visualization, a designer or analyst begins
with a static data set but does not question how the
data came to exist, or how the algorithm that parses
and mathematically restructures the data functions
or arrives at its decisions. The prominent data artist
Jer Thorp, has more recently talked about the
importance of “not look[ing] just at the data, but at
the entire system that the data is a part of,” in order
to “more deeply understand (and critique) the data

CITAR Journal, Volume 11, No. 2 · Special Issue: xCoAx 2019

 10

machinery that ubiquitously affects our day-to-day
lives” (Thorp, 2017). Computational visualization
seeks to understand how the algorithm executes
and why it produces the results it does, whether this
is a conventional sorting algorithm, or a machine
learning algorithm with significant social and
political implications. In this way, it is possible to
access and visualize the processes that underlie
the computational systems that increasingly drive
key functions in our society.

The use of aesthetics and analogy are explored
as opportunities to bring the history of art to bear
on computation. Paul Fishwick points out that
artists have long been inspired by the
advancements of science, however, the
acknowledgement has not been reciprocal. When
science looks to art, it tends to do so in a
reductive, formal way, focusing solely on classical
notions of beauty. For example, when referring to
the elegance of a mathematical solution, “the
mathematician’s aesthetics involves concepts
such as invariance, symmetry, parsimony,
proportion, and harmony,” (Fishwick, 2006, p.9)
denying the full array of thinking in art.
Computation has so far failed to take into account
the evolution and innovations in aesthetics from
the Enlightenment to the present. Art history’s
movements and genres, including experiments in
subversion, multi-perspectivism, reflexivity,
pluralism, and subjectivity, make clear that
aesthetics are not just a tool to further facilitate
the sciences, but capable of bringing insights of
their own. Science has traditionally enforced
visual minimalism in the name of abstraction, but
as Fishwick argues “representation need not
compromise the goal of abstraction” (Fishwick,
2006 p.255). He offers an example of how a finite
state machine can be visualized in 3D using a city
nightscape as a metaphor in which streetlight
illuminated walkways and human agents
represent state changes. Fishwick argues for
catalyzing art, using analogy to strengthen the
feeling of immersion, relatability, and envisioning.

Analogy is a mode that Barbara Maria Stafford,
likewise, discusses as an opportunity to bind the
computational new mind with the combinatorial
old mind. She offers analogy as “a nonalgorithmic
technique for binding our perceptual system to
our cognitive system, expressed in terms of
similarities and antitheses” (Stafford, 1999,
p.176). Richard Wettel explores such ideas in his
doctoral dissertation titled Software Systems as
Cities, in which he uses a metaphor of urbanism
to “allow the interpretation of new data
representations by analogy.” (Wettel, 2010, p.iii)
He developed a tool called CodeCity to think
through algorithmic structure as analogous to the
structure of a city, such a metaphoric tactic can
shift between visualizing an algorithm and
reverse engineering the metaphor back into code.

Figure 1 | CodeCity by Richard Wettel

Packages are represented as neighborhoods,
classes as buildings, and architectural program,
such as skyscraper, residential house, or parking
lot, is mapped to width, length, and height of
buildings, over which communication relations
are charted. Wettel refers to the inhabitable
quality of the visual metaphor as being essential
to the method.

3 | HISTORICAL PRECEDENTS FOR
VISUALIZING COMPUTATION AS OBJECTS-
TO-THINK-WITH

The implementation of turtle graphics into the
Logo programming language is an entry point to
thinking about how visualization has fostered
access, comprehension, and exploration of
advanced ideas in mathematics, computation,
and decentralized thinking, for people who do not
have a training in science. Such ideas are often
abstract, counter-intuitive, and difficult to
comprehend, especially in times of increasing
computational obscurantism. The visual tactic
behind the turtle graphic, offered an embodied
approach to dealing with abstraction, supported a
model of learning through design and exploration
rather than based off existing knowledge, and
connected these visual computational learning
models to social and political changes in the
world at the time, in the hope of developing
different ways of thinking.

Logo was an educational programming language
co-developed in 1967 by Wally Feurzeig, Seymour
Papert, and Cynthia Solomon, to empower
children to engage with computational language.
Papert wrote about the intentions and legacy of
Logo in his book Mindstorms: Children, Computers
and Powerful Ideas. Logo’s most prominent
feature is known as the turtle. The idea was to
teach the fundamentals of mathematics by
learning how to navigate a turtle icon (in fact a
small green triangle) across the computer screen
to create shapes, using commands such as
‘FORWARD 100’ and ‘RIGHT 90’ to move and
change the direction of the turtle, and ‘PENUP’ and
‘PENDOWN’ to make the turtle draw a line behind
it. The idea was to imagine one’s own body moving
and turning in space to think through the abstract
concept of shape. For Papert this was another

CITAR Journal, Volume 11, No. 2 · Special Issue: xCoAx 2019

 11

means for children to learn “a language for talking
about shapes and fluxes of shapes, about
velocities and rates of change, about processes
and procedures. They are learning to speak
mathematics and acquiring a new image of
themselves as mathematicians” (Papert, 1993,
p.3). Papert sought to overcome the cultural
unease around engaging with mathematics. He
saw this disengagement as stemming from lack of
access, social esteem, and a cultural atmosphere.

“It is about an end to the culture that makes
science and technology alien to the vast
majority of people. Many cultural barriers
impede children from making scientific
knowledge their own. (...) Many children who
grow up in cities are surrounded by the
artifacts of science but have good reason to
see them as belonging to “the others” (…)
Most branches of the most sophisticated
modern culture of Europe and the United
States are so deeply “mathophobic” that
many privileged children are as effectively (if
more gently) kept from appropriating science
as their own.” (Papert, 1993, p.4)

To overcome this, Papert projects an
empowering vision of how when a child programs
a computer, they are given access to and
intimacy with some of the most powerful ideas in
technology and the deepest ideas in science and
mathematics. Papert understood that computers
can support the development of new ways of
thinking and learning, and should not be seen to
simply instruct and deliver information, but to
revitalize education, so that children learn
through exploration, experimentation, and
expressing themselves. Influenced by the
psychologist and child development pioneer,
Jean Piaget, Papert followed the model of
childhood learning in which children are “builders
of their own intellectual structures” (Papert, 1993,
p.7), which led to the concept of the turtle as “a
constructed computational object-to-think-with”
(Papert, 1993, p.11), emanating from his own
experience of playing with toys gears as a child
and how the sense of embodiment supported his
engagement with abstract concepts.

Figure 2 | Drawing shapes by navigating a turtle in Logo

Harold Abelson and Andrea diSessa advanced
Papert’s work beyond childhood learning, to
consider how the practice of turtle graphics could
support the exploration of advanced geometry at
the undergraduate level. In their book Turtle
Geometry, they claim that it is rare for a student
to have the chance to approach mathematics by
doing it rather than only learning about it through
the rote revision of proofs and theorems. In this
sense, turtle geometry, as the approach became
known, is about giving students an experiential
access and agency to advanced mathematical
concepts “to dissolve the barriers to the
production of knowledge” (1981, p.xiii). Turtle
geometry offers an alternative framework for
learning about mathematics, in contrast to the
traditional framework of coordinate geometry
conceived by René Descartes in the 17th century.

“Descartes’ marriage of algebra and
geometry is one of the fundamental insights
in the development of mathematics.
Nevertheless, these kinds of coordinate
systems — Cartesian, polar, or what have
you — are not the only ways to relate
numbers to geometry. (…) We shall refer to
the geometry of FORWARD and RIGHT as
turtle geometry.” (Abelson and DiSessa,
1981, p.11)

The affordances of turtle geometry are laid out as:
intrinsic rather than extrinsic, whereby the turtle
(and in turn our thinking) does not rely on an
external reference system such as the traditional
x and y axes; local rather than global, meaning
that we calculate geometry based on local
information such as position and heading, rather
than in the context of a wider system such as the
center and edge of an environment; the
construction of procedures rather than equations,
where procedures are simple, readily modified,
and called iteratively, enabling uncomplicated
mathematical exploration that is not possible in
traditional algebraic formalism; dynamic rather
than static; and prioritizing the computer science
concept of ‘state’ where movements and
procedures are state-change operators. These
affordances support an embodied approach to
dealing with abstraction, by breaking it down into
simple repeatable behaviors that people can
relate to through existing knowledge of their own
bodies in space and motion. The turtle is at the
heart of a model of learning through exploration
and practice, over instructional teaching and
existing knowledge. Abelson and diSessa
showed how students could explore complex
ideas including artificial intelligence, the
simulation of sight and smell, biological systems
of animal behaviors, game theory, and even
Einstein’s Theory of General Relativity, all
through the embodied navigation of a single turtle
icon and simple procedural instructions.

CITAR Journal, Volume 11, No. 2 · Special Issue: xCoAx 2019

 12

In the 1980s, Mitchel Resnick, a student of Papert
at MIT, extended the turtle concept into another
visual programming environment with a more
overt claim to challenge social thinking. StarLogo,
was a programming language developed to
explore how decentralized thinking and intuition
could be developed through computational
literacy. In Turtles, Termites, and Traffic Jams,
Resnick describes his motivation within the
seeming paradox of complex systems: “How can
a mind emerge from a collection of mindless
parts? It seems clear that no one part is ‘in
charge’ of the mind (or else it too would be a
mind). But how can a mind function so effectively
and creatively without anyone (or anything) in
charge?” (Resnick, 1995, p.xiv). Resnick
designed StarLogo to provide an environment in
which to simulate decentralized systems, learn
about their behaviors, and complexity-from-
simplicity scenarios. Resnick saw this in contrast
to the centralized models and top-down
hierarchies that dominated society’s way of
thinking and learning, and which was just starting
to change. Papert celebrated StarLogo as
“liberating students from the confines of the
centralized mindset” (Papert, 1994, p.x) by
rethinking the computer as not just a technology
for speeding things up and getting things done,
but to aide a different type of thinking.

In StarLogo, the user visually simulates
decentralized phenomena, such as ant colonies,
slime molds, traffic jams, and forest fires, by
programming a large volume of agents, or turtles,
with very simple rules of movement. Such
systems are non-intuitive to the human mind,
which struggles to keep track of a large number
of independent actors, which is where the role of
visual computation becomes important. Where in
Logo, a user navigates a single turtle, in
StarLogo, a user deploys thousands of turtles
simultaneously, that perform as autonomous
agents, directed by simple rules, to simulate
emergent phenomena out of a seemingly
disordered environment. The user creates
‘microworlds’ of complex systems, through
programming very simple rules. For Resnick the
best way to learn about something as
counterintuitive as a decentralized system, is to
design one. Resnick also sought to provide
access visually to other challenging and
obfuscated ideas within computer science.

“During the past decade, many ideas have
influenced the design of computer
programming languages. But two ideas stand
out as especially influential: object-oriented
programming and parallelism. StarLogo
incorporates aspects of both.” (Resnick,
1995, p.41)

Object-oriented programming and parallel
computing were new concepts being developed
by computer science at the time, and Resnick’s
system offered users a way into their unfamiliar
logic. In StarLogo both the environment and the
agents have equal agency, as the environment is
a grid comprised of discrete cells which can
engage with each other and other objects. This
transformation of the traditional role of objects
and people in the environment aims to change
people’s thinking and interactions about the
environment. Computationally, StarLogo is
comprised of an agent system operating on a
cellular-automata-structured environment, and
each individual agent in the system and cell in the
grid has an equal ability to activate and
communicate with each other.

Figure 3 | A termite simulation in StarLogo

StarLogo arose out of a social and political
context in which ideas around decentralization
were developing, not only in computation, but
also in society and politics. Resnick situates his
ideas during the time of the dissolution of the
USSR, corporations restructuring their business
into smaller semi-autonomous businesses away
from top-down hierarchies, and countries
transitioning to more horizontal free market
economies rather than centralized state-
controlled economies. In science and computing,
the Newtonian world view was also being
displaced by the decentralized view of
ecosystems. He also points to other key moments
in history that anticipated the rise of
decentralization, including the publication of
Adam Smith’s The Wealth of Nations in 1776 that
first presented an economic model without the
need for centralized control, and in 1859, the
publication of Charles Darwin’s On the Origin of
Species, brought decentralized thinking to
biology and natural selection.

Other visual computational systems likewise offer
insight into how the way we visualize abstraction
can afford divergent ways of thinking. Often, we
think of visualization as the output of a
computational system, however, Stephen
Wolfram’s work on cellular automata, suggests

CITAR Journal, Volume 11, No. 2 · Special Issue: xCoAx 2019

 13

that computation can be embodied in visual form.
In A New Kind of Science, he argues that in order
to understand complex ideas, it is not necessary
to use complex mathematical systems, but
instead simple rules (Wolfram, 2002). From
simple simulations such as John Conway’s Game
of Life, and Chris Langton’s Langton’s ant, we
can understand that algorithms can occupy a
physical space.

Figure 4 | 2D cellular automaton using rule 150

What would otherwise be a mathematical
abstraction, here is a literal representation of
behavior, where geometry and logic generate the
computation. The simulations that have been
developed from more sophisticated versions of
these visual algorithms have led to the simulation
of human behavior or the growth of cities. Like
cellular automata, other algorithms become
meaningful when understood through their visual
representation. In the case of Aristid
Lindenmayer’s L-systems, a formal grammar
which visually articulates a recursive function
over geometry, has a revealing effect as the
shapes that grow out of these generative
procedures resemble forms in nature
(Lindenmayer, 1990). Since their formulation, L-
systems have been developed to simulate
physical processes from bacterial cell growth, to
tree growth and crystal growth. This algorithm
has brought a more diverse audience to
understand multi-scalar computational
processes, popularizing concepts such as
fractals. Without this visual computation, it would
be very difficult to understand the concept of
recursion, such as with the Koch Curve. Like L-
systems, another type of computational grammar
are shape grammars. Invented by George Stiny
and James Gips in the 1970s, shape grammars
combine shapes and transformation rules to
create patterns and subdivide space, leading to
their use as a design tool. Gips writes that “Shape
grammars are intended to form a basis for purely
visual computation. The primitives in shape
grammars are shapes, rather than symbolic”
(Gips, 1999). Shape grammars are a visual way
of writing the rules of an algorithm. They capture
a computational process graphically, of shapes
being added and subtracted in accordance with
spatial relation. When writing an algorithm, one is
designing a shape and its transformation rules.

Also known as ‘computing with shapes’, a shape
grammar is a language generator, albeit one that
works with a visual alphabet. approaches.

4 | CELLULAR AUTOMATA, SURVEILLANCE,
AND CREATIVE CODE

I would like to present two approaches from my
own research into visualizing computation in the
current context of the ethics in algorithms
discourse. The first method presents an approach
to reverse engineer a social issue, in this case
surveillance, back through a particular algorithm,
or core computational concept, in this case a
cellular automaton. There is a line, conceptually
and visually, to be drawn between the core
computational logic of cellular automata, via
image processing techniques, through computer
vision algorithms, and into the gaze of a street
surveillance camera. The approach seeks to
make this argument visually, through a series of
simulations. Contextually, this research begins by
looking at open source algorithms and libraries
and thinking through the social and political
implications of them, addressing algorithms, not
just as cultural artifacts, but at the level of code
syntax. Connecting to the practice of critical code
studies, the work uses the OpenCV library, and
considers its source code as being a cultural text
with the same potential for humanistic
interpretation as other cultural texts.

There is an affinity between cellular automata and
images through the computational grid system of
cellular automata and the pixel array structure of
digital images. A cellular automaton is a system
of simple rules and states, operating on grids of
cells, and from such seeming simplicity, complex
behaviors emerge, leading to further-reaching
possibilities. State is usually represented by black
and white colored cells, which are often
interpreted as alive and dead, whilst a typical rule
set might be: if a live cell has less than two live
neighbors, then it dies (interpreted as isolation); if
a live cell has more than three live neighbors,
then it dies (interpreted as overcrowding); if a
dead cell has three live neighbors, then it comes
alive (interpreted as reproduction); otherwise a
cell stays the same (interpreted as stasis). From
such a seemingly simple computational system,
far-reaching speculations have been developed
in relation to artificial life (Langton, 1986) and the
computational universe (Fredkin 1990).

A Langton’s ant is a version of a cellular automaton
in which only one cell in the grid changes at a time,
so it functions similarly to an autonomous agent.
This agent was applied to a satellite image of a
location in the Amazon known as the ‘Meeting of
the Waters’, which is the confluence of two rivers,
the darker colored water of the Rio Negro and the
sandy colored water of the Amazon River. Due to

CITAR Journal, Volume 11, No. 2 · Special Issue: xCoAx 2019

 14

each river’s different water density, speed, and
temperature, their waters do not mix for several
kilometers and instead run alongside each other
inside the same river channel, demarcated by their
different colors. Several hundred Langton’s ants
were deployed across the structure of the image,
using its data structure to compute across,
generatively repatterning it, and transforming the
landscape and the composition of the river. The
choice of image works analogously, where one’s
understanding of the landscape is terraformed by
the agents. This visualization is presented in two
formats, one which foregrounds the algorithm’s
interpretation of the scene, as a simplified four-
state grayscale image that the agents use to
compute on to determine their state and change
pathway. Another image foregrounds the human
view, as the effects of the generative redesign of
the landscape. The work is presented in this way
to think through the difference between the
simplified data and logic that the algorithm
operates with, and the higher-level image that we
see, and which might hold cultural or social
meaning.

Figure 5 | Langton’s ant

Figure 6 | four-state grayscale image that agents compute on

Figure 7 | Full color or human view shows generative

redesign of landscape

Continuing this mode of visual-critical argument
to connect the logic of cellular automata
computations to our social understanding of
surveillance, the research engaged with image
processing techniques, which are an important
part of a computer vision library of algorithms.
Images need to be heavily processed, broken
down and simplified to be interpretable by an
algorithm. Popular filters such as blur, sharpen,
and edge detection are used and operate with
similar logic to a cellular automaton. When
background subtraction is applied to an image
from a surveillance camera, the image is reduced
in complexity to just two states and two rules, if a
pixel’s RGB value changes between video frames
it is assigned white, and if it remains the same
between frames it is assigned black. In this way,
an algorithm reads motion in a video image, and
the result is a rather sinister image of the
surveillance camera’s gaze, tracking people
walking in urban space. The research works with
a creative coding approach to create a series of
visualizations of the algorithm in action, first of all
isolating motion in the image, and then printing
only that motion. The work uses the image of a
chameleon, because of the nature of the animal
to conceal itself through stillness. By analogy, the
chameleon reveals itself to the algorithm through
movement and camouflages itself from the
algorithm through stillness.

This arts research seeks to move forward from
the tradition of data visualization, to experiment
with ways of visualizing computational process or
models, to open the black-box of algorithms that
are used in socially contentious spaces and think
through their inner workings by means of visual-
critical arguments. From a computer science
perspective, cellular automata systems are
understood as expressions of foundational
computational concepts including state machines
and formal logic, they are also understood as
neutral mathematical concepts, however, from an
arts research perspective, the very foundations of
computation and code can be questioned and
contextualized within a social context.

Figure 8 | OpenCV library example of background subtraction

CITAR Journal, Volume 11, No. 2 · Special Issue: xCoAx 2019

 15

Figure 9 | Isolating and visualizing motion or state changes

Figure 10 | Printing motion or state changes

5 | MACHINE LEARNING, ETHICS, AND
INTERACTION DESIGN

A second approach to building visual-critical
arguments to address the ethics of algorithms
has also been explored. Machine learning
algorithms were investigated because of their
emerging use in ethically sensitive spaces such
as policing and welfare. The incidents of
algorithms arriving at racist or sexist
classifications or being used to determine who
goes to prison and who receives leniency, have
received important attention over the last few
years. The ethical dilemmas that are arising from
the use of machine learning algorithms include
the likelihood of them generating mistakes and of
augmenting biases hidden in data. The
investigative journalism organization, ProPublica,
investigated machine bias in the US justice
system in 2016, pointing to how predictive
systems can encode racial bias when used in
criminal sentencing, and it was from there that
this research began (Angwin, 2016). The
algorithms being used are proprietary, classic
black boxes, and are therefore unavailable to
scrutiny, however when algorithms are tasked
with making potentially life-altering decisions
such as recommending a person be jailed, or
fired from a job, or refused a place in a state-
funded drug rehabilitation program, it becomes a
significant ethical problem.

From an interdisciplinary design research
perspective, a framework to critically study
algorithms needs to provide access to algorithms
for observation, to promote literacy, enable
reflection, and formulate a critical and ethical

position in the discourse. An interactive
visualization tool was developed to visualize a
simple machine learning algorithm, a decision
tree classifier, to think through some of these
ideas and pose further questions. Classifiers
were generated using Python’s scikit-learn library
and then rebuilt in Unity, a game engine, to drive
an interactive visualization in real-time. In its
current state, the application works mainly with
synthetic data, as a way to temporarily isolate the
meaning in data, to think about the meaning of
structure and process in the algorithm instead.
From a design perspective, a combination of
tactics from interaction design, generative
design, and to some extent critical code studies,
have been employed. A decision tree classifier
was used because it is one of the simplest types
of machine learning that is already somewhat
graphic.

Figure 11 | Software interface for Visualizing Algorithms, an
application to visualize, simulate, and interact with a simple

machine learning classifier.

Figure 12 | The algorithm mapped out spatially showing all
possible pathways. Gravity and spring physics simulate an

organic aesthetic.

Figure 13 | Visualizations of a decision tree, a simple

machine learning generated classifier with four prediction
classes.

CITAR Journal, Volume 11, No. 2 · Special Issue: xCoAx 2019

 16

Figure 14 | Tree structure of the algorithm showing two

prediction classes and mistakes in classification.

The design tactics employed begin by mapping
out the algorithm spatially, to look at its possibility
space, at all of the various paths through the
algorithm, and decisions that are made before
arriving at a prediction. Then data is simulated
through the algorithm, showing decisions being
made in real time as the algorithm executes. The
simulation of time is a tactic taken from some
computer games, in which time can be scaled to
see individual decisions being made at a slower,
human scale of perception, through to a higher,
emergent scale in which patterns of decisions can
be seen forming. At this point, the visualization
can point to mistakes in prediction, where the
algorithm mis-classifies data. A user can also
hover over each data point and reverse engineer
the path it took through the algorithm, perhaps to
see at which point it made a wrong decision and
took a wrong path. The system also visualizes
particular features of the data, through the
physical proportions between the data points.
The most popular and least popular pathways
through the algorithm’s network are also
visualized. The prototype was built procedurally
so that any classifier of the same type can be
loaded and visualized, with the user interface
supporting its structural self-organization, and
aiding analysis.

In developing an interactive design tool such as
this, the questions that come up include: to what
extent visualization is an a-linguistic tool to re-
engage with decision-making in prediction
systems and provoke questions, where we are at
risk of losing our connection to decision-making?
Could visual tools be used by key workers in the
field, who are expected to work with the results of
these algorithms but so far are precluded for
understanding their logic? To what extent
interaction design, generative design, and critical
code studies combine as an effective method to
visualize an ethical position in algorithms? What
does it mean to learn, in machine learning, and is
the anthropomorphism of AI a productive
analogy? The tool uses synthetic data, therefore
artificially removing the social meaning from the
data temporarily. As the research develops, the
intention is to explore the concept of bias

augmentation, which speculates that where there
is a small bias in a dataset, this can become
amplified through the iterative algorithmic
process. Where most people today argue that
bias is in the data, because the data is a reflection
of bias in society, there is also speculation that
the algorithm in its structure and process, can
play its own role to augment bias. That is
something to explore further, hence the focus on
structure and process over data so far.

6 | CONCLUSION

This research looks back at historical precedents
for how computational systems and ideas have
been visualized as a means of access and
engagement with a broader audience or to
develop a more tangible language to address
abstraction. The examples described, including
the influential legacy of turtle graphics, leading to
StarLogo’s visual programming environment,
which sought to explore decentralized thinking,
and Wolfram’s in depth study of cellular
automata, share a drive to provoke new kinds of
thinking, criticality, and imagining that can also
offer opportunities to address algorithms in their
increasingly more politicized role today. Two
research projects propose methods to address
contemporary algorithms in a socio-political
context, ultimately proposing to move toward a
perspective that positions algorithms as part of a
political language. In the creative coding
community, emerging from software studies, we
are told that code is now a comprehensive
language for creative and authorial expression.
Can code also be a language of critique to probe
its own social and political latencies?

REFERENCES

Abelson, H., & diSessa, A. A. (1981). Turtle
Geometry: The computer as a medium for
exploring mathematics, Cambridge,
Massachusetts: MIT Press

Aneesh, A. (2006). Virtual Migration: The
programming of globalization, Durham:
Duke University Press

Angwin, J. Larson, Jeff., Mattu, Surya., &
Kirchner, Lauren. (2016). Machine Bias.
ProPublica, May 23, 2016. Retrieved from
https://www.propublica.org/article/machine-
bias-risk-assessments-in-criminal-
sentencing

Fishwick, P, A. (2006). Aesthetic Computing,
Cambridge, Massachusetts: MIT Press

Fredkin, E. (1990) Digital Mechanics: An
information process based on reversible
universal cellular automata, Physica D,
45(1-3), 245-270.

https://doi.org/10.1016/0167-2789(90)90186-S
Gips, J. (1999). Computer Implementation of

Shape Grammars, The NSF/MIT Workshop

CITAR Journal, Volume 11, No. 2 · Special Issue: xCoAx 2019

 17

on Shape Computation, Cambridge,
Massachusetts

Langton, C. G. (1986). Studying artificial life with
cellular automata. Physica D, 22(1-3) 120-
149. https://doi.org/10.1016/0167-
2789(86)90237-X

Lindenmayer, A., & Prusinkiewicz, P. (1990). The
Algorithmic Beauty of Plants, New York:
Springer Verlag

Papert, S. (1993). Mindstorms: Children,
computers and powerful ideas (2nd ed.), New
York: Basic Books

Papert, S. (1994). Foreword. Mitchel Resnick,
Turtles, Termites and Traffic Jams:
Explorations in massively parallel
microworlds (p.x). Cambridge,
Massachusetts: MIT Press

Resnick, M. (1994). Turtles, Termites and Traffic
Jams: Explorations in massively parallel
microworlds, Cambridge, Massachusetts:
MIT Press

Stafford, B. M. (1999). Visual Analogy:
Consciousness as the art of connecting,
Cambridge, Massachusetts: MIT Press

Thorp, J. (2017). You Say Data, I Say System.
Hacker Noon. July 13, 2017. Retrieved from
https://hackernoon.com/you-say-data-i-say-
system-54e84aa7a421

Wettle, R. (2010). Software Systems as Cities
(Doctoral dissertation). University of Lugano,
Switzerland

Wolfram, S. (2002). A New Kind of Science,
Wolfram Media, Inc.

BIOGRAPHICAL INFORMATION

Catherine Griffiths is a media artist and
researcher exploring algorithmic aesthetics and
critical code in the context of machine learning
ethics. She is currently a PhD candidate in the
Interdisciplinary Media Arts + Practice division of
USC School of Cinematic Arts in Los Angeles. By
creating simulations, interactive experiences, and
software applications, her practice-based
research attempts to make palpable invisible
computational forces that shape power and social
dynamics. Drawing on the legacy of generative
art, the recent rise in artificial intelligence, and
critical theory, she seeks to contribute to an
emerging arts knowledge. She has a BA in Fine
Art from the University of the Arts London and a
MArch in Architectural Design from The Bartlett,
University College London. www.isohale.com

