
A Concept for a Trustworthy

Integration of Smartphones in Business

Environments

Joerg Vieweg

Vollständiger Abdruck der von der Fakultät für Informatik der Universität der

Bundeswehr München zur Erlangung des akademischen Grades eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation.

Promotionsausschuss:

Vorsitzender: Prof. Dr. Peter Hertling

1. Berichterstatter: Prof. Dr. Gabi Dreo Rodosek

2. Berichterstatter: Prof. Dr. Udo Helmbrecht

1. Prüfer: Prof. Dr.-Ing. Mark Minas

2. Prüfer: Prof. Dr.-Ing. Helmut Mayer

Tag der Prüfung: 25.07.2013

Neubiberg, August 2013

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions . 4

1.3 Outline of the Thesis . 5

2 Scenarios and Requirements 9

2.1 Reference Infrastructure . 9

2.1.1 Zone Topology . 10

2.1.2 Infrastructure Components . 11

2.1.3 Endpoints . 13

2.2 Scenarios . 14

2.2.1 Scenario I: Trustworthy Data Collection for Smartphones 14

2.2.2 Scenario II: Trust-based Policy Enforcement 16

2.2.3 Scenario III: Context-related Service Provisioning 17

2.2.4 Scenario IV: Secure Evidence . 18

2.3 Requirements . 20

3 State of the Art 25

3.1 Research-based Approaches . 25

3.1.1 Intrusion Detection . 26

3.1.2 Trust-enhanced Intrusion Detection Systems 33

3.1.3 Trust Management and Means of Deriving Trust 38

3.1.4 Summary . 46

3.2 Technology-based Approaches . 48

3.2.1 Trust Definition and Trusted Computing 50

3.2.2 Root of Trust . 50

iii

Contents

3.2.3 Trusted Network Connect . 54

3.2.4 Summary . 75

3.3 Assessment . 76

4 A Concept for Trustworthy Smartphone Integration 85

4.1 Generic Model . 86

4.1.1 Role and Operational Model . 86

4.1.2 Operational Flow . 90

4.1.3 CADS-specific Feature handling . 92

4.1.4 Model Summary . 97

4.2 Trust Model . 101

4.2.1 Definition of Trust . 102

4.2.2 Security Properties . 103

4.2.3 Trust Calculation . 112

4.2.4 Phase Extension . 115

4.2.5 Feature Handling on the Provider 118

4.2.6 Snapshots . 120

4.3 Data Model . 124

4.3.1 Security Property Layer . 124

4.3.2 Phase and Snapshot Layer . 126

4.3.3 Feature Layer . 128

4.3.4 Provider State Machine . 129

4.3.5 Policy Encapsulation . 141

4.4 Domain-specific Extension - TCADS . 142

4.4.1 Case I . 142

4.4.2 Case II . 143

4.4.3 TCADS Features . 144

4.4.4 Direct and Indirect Trust . 145

4.5 Assessment . 146

5 Implementation 151

5.1 IF-MAP Revisited . 152

5.1.1 Data Model . 153

iv

Contents

5.1.2 Communication in Detail . 159

5.1.3 Trust Model . 163

5.2 Trustworthiness of IF-MAP . 166

5.3 IF-MAP Mapping of TCADS . 167

5.3.1 TCADS Revisited . 167

5.3.2 Abstract Role Mapping . 168

5.4 Trust Extension in IF-MAP . 170

5.4.1 Trust Tokens . 171

5.4.2 Extended Data Model . 174

5.4.3 Extended Communication Model 176

5.4.4 MAPS Security . 177

5.5 Implementation based on IF-MAP . 179

5.5.1 TrustService . 179

5.5.2 Combining MAPS and TrustService 186

5.5.3 Correlation Engine Enhancements 191

5.6 Evaluation . 193

5.6.1 Security Property Definition . 194

5.6.2 Trusted MAP Server . 200

5.6.3 TCADS Environment . 223

5.7 Summary . 238

6 Conclusion and Future Work 241

6.1 Conclusion . 241

6.2 Future Work . 246

7 Appendix 249

7.1 Publications and Contributions . 249

7.2 Trusted Platform . 250

7.2.1 Chain of Trust . 252

7.3 Detailed Architecture of TNC . 253

7.4 System State Sealed Authentication Certificate 258

7.4.1 Overview . 258

7.4.2 Initialisation Phase . 259

v

Contents

7.5 Client Side Policy . 261

7.6 Interoperable Remote Attestation in VPN Environments 265

7.7 Permission-based Attestation . 265

7.8 On Remote Attestation for Google Chrome OS 268

7.9 MAP Server Performance Analysis . 273

vi

Abstract

Smartphones are commonly used within business environments nowadays. They provide sophis-
ticated communicational means which go far beyond simple telephone capabilities. Email access
and particular apps on the device are examples of their versatile abilities. While these features
allow them to be used in a very flexible way, e.g. in di↵erent infrastructures, they impose new
threats to their surrounding infrastructure. For example, if used in an environment which allows
the installation of custom apps, malicious software may be placed on the device. In order to
mitigate these threats, a detailed awareness combined with the possibility to enforce certain
constraints on such devices need to be established. In detail, it is necessary to include such de-
vices into a decision making process which decides about the policy compliance of such devices.
The policy used in this process defines the rules which apply to the particular infrastructure,
e.g. if custom apps are allowed or if a specific software version may not be allowed. However,
even when relying on this process, there is one limitation as it does not include a trust-based
evaluation. This leads to the problem that a malicious smartphone might compromise the infor-
mation used for the decision making process which should determine the policy compliance of
this device. This renders the overall approach ine↵ective as the decision wether a device is policy
compliant or not may be false. Given that, the thesis presented here provides means to evaluate
the trustworthiness of such information to allow a trustworthy decision making about the policy
compliance. It therefore introduces two things: (1) a generic trust model for such environments
and (2) a domain-specific extension called Trustworthy Context-related Signature and Anomaly
Detection system for Smartphones (TCADS). The trust model (1) allows to specify, to calculate
and to evaluate trust for the information used by the decision making process. More in detail,
the trust founding process of (1) is done by introducing so-called security properties which allow
to rate the trustworthiness of certain aspects. The trust model does not limit these aspects
to a particular type. That is, device-specific aspects like the number of installed apps or the
current version of the operating system may be used as well as device independent aspects like
communicational parameters. The security properties defined in (1) are then used to calculate
an overall trust level, which provides an evaluable representation of trust for the information
used by the decision making process. The domain-specific extension (2) uses the trust model
and provides a deployable trust-aware decision making solution for smartphone environments.
The resulting system, TCADS, allows not only to consider trust within the decisions about the
policy compliance but also enables to base the decisions solely on the trust itself. Besides the
theoretical specification of the trust model (1) and the domain-specific extension (2), a proof of
concept implementation is given. This implementation leverages both, the abilities of the generic
trust model (1) as well as the abilities of the TCADS system (2), thus providing a deployable
set of programs. Using this proof of concept implementation, an assessment shows the benefits
of the proposed concept and its practical relevance. A conclusion and an outlook to future work
extending this approach is given at the end of this thesis.

vii

viii

Zusammenfassung

Smartphones sind in heutigen Unternehmensnetzen mittlerweile nicht mehr wegzudenken. Über
einfache Telefonie-basierte Fähigkeiten hinaus bieten sie Eigenschaften wie zum Beispiel Email-
Zugri↵ oder hohe Anpassbarkeit auf Basis von Apps. Obwohl diese Funktionalitäten eine viel-
seitige Nutzung solcher Smartphones erlauben, stellen sie gleichzeitig eine neuartige Bedro-
hung für die umgebende Infrastruktur dar. Erlaubt eine spezifische Umgebung beispielsweise
die Installation von eigenen Apps auf dem Smartphone, so ist es über diesen Weg möglich,
Schadprogramme auf dem Gerät zu platzieren. Um diesen Bedrohungen entgegenzuwirken, ist
es zum einen nötig Smartphones in der jeweiligen Umgebung zu erkennen und zum anderen,
Richtlinien auf den jeweiligen Geräten durchsetzen zu können. Die durchzusetzenden Richtlin-
ien legen fest, welche Einschränkungen für die jeweilige Umgebung gelten, z.B. die Erlaubnis
zur Installation von eigenen Apps oder die Benutzung einer bestimmten Softwareversion. Aber
auch wenn eine entsprechende Lösung zur Einbeziehung von Smartphones in die Infrastruk-
tur verwendet wird, bleibt ein Problem ungelöst: die Betrachtung der Vertrauenswürdigkeit
von durch das Smartphone bereitgestellten Informationen. Diese Einschränkung führt zu dem
Problem, dass ein entsprechend kompromittiertes Smartphone die Informationen, welche zur
Entscheidungsfindung über die Richtlinienkonformität des Gerätes verwendet werden, in einer
Art undWeise ändert, welche den gesamten Entscheidungsprozess ine�zient und somit wirkungs-
los macht. Die hier vorliegende Arbeit stellt daher einen neuen Ansatz vor um einen ver-
trauenswürdigen Entscheidungsprozess zur Regelkonformität des Gerätes zu ermöglichen. Im
Detail werden dazu zwei Ansätze vorgestellt: (1) Ein generisches Modell für Vertrauensürdigkeit
sowie eine (2) domänenspezifische Abbildung dieses Modells, welches als Trustworthy Context-
related Signature and Anomaly Detection system for Smartphones (TCADS) bezeichnet wird.
Das Modell für Vertrauenswürdigkeit (1) erlaubt die Definition, Berechnung und Auswertung von
Vetrauenswürdigkeit für Informationen welche im Entscheidungsprozess verwendet werden.Im
Detail basiert die Vertrauenswürdigkeitsbestimmung auf Grundfaktoren für Vertrauen, den so-
genannten Sicherheitseigenschaften. Diese Eigenschaften bewerten die Vertrauenswürdigkeit an-
hand von bestimmten Aspekten die entweder Gerätespezifisch und Geräteunabhängig sein können.
Basierend auf dieser Bewertung wird dann eine Gesamtvertrauenswürdigkeit, der sogenannte
Trust Level berechnet. Dieser Trust Level erlaubt die Berücksichtigung der Vertrauenswürdigkeit
bei der Entscheidungsfindung. Teil (2) der Lösung stellt, basierend auf dem Modell der Ver-
trauenswürdigkeit, ein System zur vertrauensbasierten Entscheidungsfindung in Smartphone
Umgebungen bereit. Mit diesem System, TCADS, ist es nicht nur möglich, Entscheidungen auf
ihre Korrektheit bezüglich der Vertrauenswürdigkeit zu prüfen, sondern auch Entscheidungen
komplett auf Basis der Vertrauenswürdigkeit zu fällen. Neben dem allgemeingültigen Modell
(1) und dem daraus resultierenden domänenspezifischen System (2), stellt die Arbeit außerdem
einen Tragfähigkeitsnachweis in Form einer Referenzimplementierung bereit. Diese Implemen-
tierung nutzt sowohl Fähigkeiten des Modells der Vertrauenswürdigkeit (1) als auch des TCADS
Systems (2) und stellt ein nutzbares Set von Programmen bereit. Eine Evaluierung basierend
auf diesem Tragfähigkeitsnachweis zeigt die Vorteile und die Praktikabilität der vorgestellten
Ansätze. Abschließend findet sich eine Zusammenfassung der Arbeit sowie ein Ausblick auf
weitereführende Fragestellungen.

ix

x

1 Introduction

Contents

1.1 Motivation . 1

1.2 Research Questions . 4

1.3 Outline of the Thesis . 5

This chapter gives an introduction to the thesis. First, the motivation is explained

outlining the problems which arise when integrating smartphones into a business infras-

tructure. Based on these findings, the second part presents the research questions which

are addressed within this thesis. Finally, the outline of the thesis including a short overview

of each chapter is given.

1.1 Motivation

Smartphones are commonly used nowadays, not only within the private sector but also

in business infrastructures (cf. [1]). Due to this and the special properties of such phones,

like the app-centric architecture and their versatile usage profile, providers of such infras-

tructures need to pay attention to them. In particular, the threats which are imposed by

such devices are di↵erent to other threats in such infrastructures [2]. Taken the current

situation concerning smartphones, there is a huge amount of di↵erent types of threats for

such devices [3]. It starts with the operating system of the device itself, like the Android

operating system [4], that has become the most popular mobile OS with a current market

share of about 68 percent [5, 6], being itself vulnerable to certain attacks. For example,

particular Android OS versions have been vulnerable to an attack which could be trig-

gered by special data sent to Android’s volume manager allowing to gain root access [7].

This provides a way to perform a privilege escalation attack (cf. [8]). Another example,

which came up during the time of writing this thesis is an insu�ciently protected memory

1

1 Introduction

access on some of Samsung’s Android-based phones. It allows an attacker to gain root

access out of an app by accessing the memory [9]. A detailed analysis about the prob-

lems with Android’s OS can be found in [10, 11]. In addition, even higher level parts of

the OS might provide a possibility for attackers to compromise the device and use it for

their purposes. Android uses so-called permissions to limit the rights that a program (i.e.

an app) has on the system. A flaw of this system presented in [12] can be used to gain

additional rights with a consequence that a program may behave in an unexpected way.

Even if mitigating the threats which are caused by the operating system itself, there are

additional problems which need to be taken into account when dealing with smartphones.

Their specialised architecture, which condenses most functionality in apps, introduces an-

other group of threats: the so-called malapps. Malapps allow an attacker to use the smart-

phone for their purposes without the legitimate user of the smartphone having knowledge

about this. For example, Schlegel et al. [13] present a malapp called soundcomber. This

malapp acts unnoticed on the phone and allows to record the sound from the phone’s

microphone. While this may be not critical at first view, it can be used to mount so-called

sensor sni�ng attacks (cf. [14]). If carried out in the appropriate environment, e.g. during

a business meeting where a company’s internal planning is discussed, this could have a

rather critical impact. The presented types of attacks are not only common to Android-

based devices but can also be found for other device types. Given the iOS operating

system used on Apple’s devices like the iPhone or the iPad, the iSAM approach explained

in [15] provides a combined attack by first jailbreaking (i.e. removing the manufacturers

restrictions, cf. [16]) the device and afterwards by installing a malapp. More examples

for malware, not only for Android and iOS but also for Symbian-based devices are given

in [17]. These examples show two things: (1) the compromise of smartphone devices is

not limited to a particular type (i.e. OS or manufacturer) and (2) with the smartphone’s

platforms developing further, the threats develop as well. Moreover, when integrating such

devices into network-based infrastructures, these devices have to be managed as well. In

particular, smartphones render a special class of devices and must be treated in a proper

way if including them into a network-based environment. Current approaches provide a

way of performing a network-based management along with an intrusion detection for

this class of devices. That is, a decision making about the smartphone’s compliance with

the network’s policy is performed. This is done by collecting certain kind of informa-

tion (i.e. properties, cf. [2]) from such devices, like the installed apps or their operating

2

1.1 Motivation

system. In addition, information provided by the other components within the network

is also used. Examples for these kind of information sources may be the intrusion de-

tection systems or components like the DHCP server or the DNS server. By using the

combination of the smartphone and network-based information, an overall view of the

network is provided. This view does include the smartphones as well as the other network

components. Approaches like the CADS system [2, 18, 19] provide this view. Besides the

network-based view, complex policies can usually be defined. These policies are used for

handling smartphone devices within the infrastructure. Handling refers to a range of ac-

tions which can be taken after making a decision about the device’s compliance to such

policies. These actions range from a simple monitoring of a smartphone to a complex

enforcement including a whole set of components. Furthermore, approaches are based on

collecting information from a set of components, not only from the smartphones but also

from components within the infrastructure. For example, if a phone uses a certain service

of the network, these services provide information about the usage. The service usage may

be monitored, and if the usage exceeds certain limits or other constraints, like the physical

access location of the smartphone, an action is triggered. Although this provides a holis-

tic, policy-based decision making process, another problem is identified. The information

collected from the particular sources is not distinguished in terms of trustworthiness. The

assumption of the system is, that every collected information is true and trustworthy.

This may be appropriate for certain scenarios. However, it is a limited view when con-

sidering the problems above, as the information is provided by di↵erent sources like the

smartphones itself or the infrastructure. If one of these sources is compromised, it may

provide false information. This false information would afterwards being used within a

decision making process. The compromise of such a source may be either intentionally or

unintentionally. An attack which was successfully carried out is only one example for an

intended compromise. An unintentional compromise could be due to a misconfiguration

of the system. Given the smartphones itself, they are commonly more threatened than

the infrastructure-based components which are statically residing at one place and do not

o↵er the same versatility as the smartphones. For example, the malapps which have been

mentioned above, may be enhanced to compromise the information collection process on

the smartphone. This becomes even more critical, when considering approaches like bring

your own device (BYOD, cf. [20]), which allows employees to use their own equipment, in

particular their own smartphone, within the company’s infrastructure. Due to the fact,

3

1 Introduction

that this employee uses that device for multiple tasks, including personal ones where se-

curity considerations are not enforced (i.e, security considerations may play a minor role)

there is a rather high chance of the device becoming compromised. Furthermore, devices

used by employees which are provided by the company get usually administered by the

company’s IT support. This is not the case when allowing a BYOD strategy. Given all

that, it is necessary to di↵erentiate between the trustworthiness of the data independently

from where this data was collected. In case of BYOD, it needs to be distinguished between

data collected at devices which are administered by the company and employee-owned de-

vices. This would improve the decision making process that is based on these information

essentially. At first, it would be more reliable against attacks which aim on providing false

information leading to a false decision, thus addressing issues like false positive and false

negative rates. Furthermore, the measured trust itself can be interpreted as data which

influences the decision making process for a more versatile system.

1.2 Research Questions

There are three research questions which are addressed in this thesis:

1. Which data and characteristics can be used to derive trust?

2. How can trust be defined and calculated?

3. How is it possible to use trust in the decision making process?

The first question deals with the problems of analysing the basis (e.g. data, characteristics

of smartphones, environment) for the calculation of trust. More precisely, if a device

is compromised, certain characteristics of this device indicate this. For example, if a

smartphone is compromised by a malapp, the running processes would indicate this. In

this case, the processes represent a characteristic of the device. Such characteristics can be

used as factors, influencing the device’s trustworthiness. By providing several of these fine

grained low level trust factors which do not only address the component (i.e. the device)

but also the communication channel of this device, an adequate basis is given. This is

done in detail in section 4.2.2. Due to the fact, that there are several trust deriving factors

provided and not only one, answering this part leads to the second research question.

4

1.3 Outline of the Thesis

This second question deals with the problem of the trust definition and calculation. The

basic definition of trust is given in section 4.2.1. A more refined version of this definition,

which includes the findings for answering the first research question is given in 4.2.3. If

trust can be derived, which is done by answering the first question, there must be a way

to calculate trust. This is necessary to combine the single characteristics addressed in the

first question into a usable trust value. Section 4.2.3 explains the process that is used

to answer this question. As a result, a trust level describing the trustworthiness of data

is provided. Furthermore, as it is likely that trust is not based on only one single factor

(i.e. characteristics of the device) but on a varying set of factors, answering this question

provides a way of combining these factors into an evaluable trust measurement.

Although addressing the first two questions allows to derive and calculate trust, there

is no method of actually using this trust evaluation within a decision making process.

Answering the third question provides this method of using trust in the decision mak-

ing process. In detail, a way is given to express a domain-specific trust measurement

which can be included into the scenario’s decision making process. Sections 4.3 and 4.4

answer this question by giving a generic data representation of the trust model and a

domain-specific extension. The domain-specific extension combines all previous results

into an actually usable system, which allows a trust-aware decision making. Furthermore,

necessary components are introduced and explained within these sections.

By answering all three questions, it is possible to collect data and evaluate this data in

terms of their trustworthiness, particularly in relevant scenarios.

1.3 Outline of the Thesis

The thesis is organised as shown in figure 1.1. Chapter 1 emphasises the general situa-

tion when using and managing smartphones in business environments. Chapter 2 deals

with the particular use cases: First of all, the reference infrastructure, which defines the

basic environment, is introduced. Based on this reference infrastructure, four particular

scenarios are analysed: the first deals with general trustworthiness of collected informa-

tion, the second deals with expressing policy-based decisions, the third shows a way to

provide tailored services and finally, the fourth shows a forensic-based approach. Sum-

marising this, the chapter is finished with the identification of the overall requirements

that need to be fulfilled in order to solve the problems described. The current state of

5

1 Introduction

Figure 1.1: Outline of the thesis. Chapters are shown dashed with the appropriate sections
(rectangles) inside them. Arrows depict the common thread and the usage of
particular results from previous chapters and sections.

6

1.3 Outline of the Thesis

the art in research and technology is analysed in chapter 3. The relevant related work

is categorised and analysed in terms of the fulfilment of the requirements stated in the

previous chapter. The chapter is finished with a conclusion of the requirements and their

fulfilment by the related work as well as the technological-based approaches. Based on

these findings, a generic trust model and a domain-specific extension of this model is

developed in chapter 4. The trust model introduces a trust evaluation system. In detail,

it combines basic (i.e. low level) trust factors to high level trust values which allow to

evaluate data in terms of their trustworthiness. The low level trust factors, so-called secu-

rity properties, are assigned to each relevant component within the network environment.

In addition, not only to the component itself but also to the communication channels

between the components. If a component provides data for the decision making process,

the security properties are combined into a single trust level for the collected data. This

trust level can be evaluated (i.e., concrete values can be assigned to it). The evaluation is

used within the domain-specific extension which provides a trust-aware decision making

system. Chapter 5 describes an implementation of the domain-specific extension by the

use of IF-MAP and provides a proof of concept by this. Furthermore, an evaluation of the

proof of concept implementation is given in this chapter. It is based on a particular inves-

tigation of performance e↵ects and on the results of tests with a defined set of test cases

summarising the scenarios, thus also showing the practical usage of the overall approach

(i.e., of the generic trust model as the domain-specific extension leverages this model).

Finally, chapter 6 summarises all parts including a final assessment of the approach and

gives an outlook to future work.

7

8

2 Scenarios and Requirements

Contents

2.1 Reference Infrastructure . 9

2.1.1 Zone Topology . 10

2.1.2 Infrastructure Components . 11

2.1.3 Endpoints . 13

2.2 Scenarios . 14

2.2.1 Scenario I: Trustworthy Data Collection for Smartphones . . . 14

2.2.2 Scenario II: Trust-based Policy Enforcement 16

2.2.3 Scenario III: Context-related Service Provisioning 17

2.2.4 Scenario IV: Secure Evidence 18

2.3 Requirements . 20

This chapter introduces the reference infrastructure and the relevant scenarios upon

this infrastructure. All scenarios are based on the ESUKOM [21] research project which

deals with smartphone security in business infrastructures. Due to this, these scenarios

represent real world use cases and point out current problems in this research field. By

analysing these scenarios relevant requirements are identified.

2.1 Reference Infrastructure

The following section describes the infrastructure that is common to all scenarios. The

components which are used to form the basic environment are widely adopted. They are

therefore commonly found within company (i.e. business) networks. Figure 2.1 depicts the

9

2 Scenarios and Requirements

overall layout and the components that are part of the infrastructure. More details are

given in the following.

Figure 2.1: Reference Infrastructure (cf. [2]).

2.1.1 Zone Topology

The topology of the network is divided into two separated zones, the public and the in-

ternal zone. The public zone describes the logical area, which is located outside of the

company’s network and therefore also outside of the company’s administrative influence.

There may be arbitrary devices in this section which can be connected to the network

by two di↵erent means. The first connection possibility is the direct connection using a

wireless technology, for example by leveraging the 802.11 [22] standard. The term direct

connection refers to a direct, logical network connection without any intermediary com-

ponents in between. The second option which may also be used for connection purposes is

the indirect connection. This is the case if the device connects to another network which

is connected to the Internet and tunnels trough both networks. For example, this is the

10

2.1 Reference Infrastructure

case, if a Virtual Private Network (VPN) is used. The infrastructure distinguishes between

these two types of connection means: local access is used if a direct connection is meant

and remote access if using an Internet-based connection.

In detail, a more fine grained version of the topology is actually used. It is formed by

placing another zone in between the public and the internal zone. This zone, commonly

referred to as demilitarised zone (DMZ), consists primarily of components which are

used to separate the internal and the public zone from each other, e.g. firewall systems.

Furthermore, this zone provides the possibility to place components which should be

accessible from outside the network without the need to allow a direct connection to the

internal zone. A VPN gateway or a proxy server are examples for such kind of components.

For simplicity issues, this kind of zone is interpreted as part of the internal zone within

this thesis.

There are two types of components which can be found within the zones: infrastructure-

based components and endpoints. Infrastructure-based components are required in order

to provide the basic function of the network along with services the infrastructure should

provide while endpoints are user controlled devices which make use of the infrastructure

and the services.

2.1.2 Infrastructure Components

The basic infrastructure used by the scenarios consists of the following infrastructure-

based components. These components provides either a service to endpoints or control

certain aspects, like access decisions, of the network.

Access Point An access point enables the use of wireless connection methods for the

direct connection to the network. It is used by endpoints to gain access to the

network.

Firewall A firewall models the perimeter between the public and the internal zone. It

controls the inbound as well as the outbound network tra�c and is able to block

certain types of communication on demand. Access to a particular service requested

by endpoints is also controlled by this device. That is, if a component recognises

an unauthorised service access, the firewall may block this access for the specific

device.

11

2 Scenarios and Requirements

Intrusion Detection/Prevention System An IDS/IPS system monitors the internal zone

of the network and provides information about intrusions into this network. In this

infrastructure, the network’s tra�c along with the state of the platforms is mon-

itored. That is, there are sensors on each component of the infrastructure which

collect data about this particular component. This data is then used by the IDS,

combined with the tra�c analysis, for signature and anomaly detection means. The

overall behaviour is controlled by a policy which defines the necessary parts, like

signatures and anomalies. When the system detects a violation of this policy, it

reacts and triggers certain events like a rule change on the firewall. Due to this

behaviour, the IDS can be considered as decision making component of the network

as it decides about the fulfilment of a certain policy.

Vulnerability Scanner This system is responsible for monitoring particular platforms.

I.e., it scans a device and checks for certain properties. The discovered properties of

the particular platform may then be used as input for the IDS or to generate alert

messages.

Network Access Control System A Network Access Control system works in conjunc-

tion with the firewall to allow or disallow the overall access to the private zone. It

therefore takes properties of the device which wants to access the network (i.e. a

smartphone) and verifies them against a policy. Furthermore, a user based access

decision can be made: the user of the device which wants to gain access needs to

authenticate herself in order to be given access privileges. The access decisions as

well as the information collected by the NAC system can be used by other compo-

nents, for example the IDS, in order to allow a more sophisticated decision making

process.

Remote Access System A Remote Access System provides means to indirectly connect

to the network. This can be done for instance by using a Virtual Private Network

Server as Remote Access System. It allows the smartphone to connect through the

internet to the infrastructure.

AAA An AAA (Authentication, Authorisation and Accounting) system provides a back-

end within the infrastructure holding all user and system-specific credential infor-

mation. That is, if another infrastructural component needs user-specific account

12

2.1 Reference Infrastructure

data, it can request these data from this component. This component commonly

works together with the NAC system in order to share user-specific data.

DHCP and DNS A DHCP system is responsible for managing the addresses used in the

infrastructure while the DNS manages name queries. The DHCP provides address-

specific information and the DNS provides information about name queries and

record changes.

All of these infrastructure-based components, excluding the IDS, itself are monitored.

This is done by using appropriate sensors on the particular platforms. These sensors

communicate with the IDS and allow to detect intrusion and react on events within the

network.

2.1.3 Endpoints

Within this infrastructure, only one type of endpoints is in the focus: smartphones. In a

real world environment, there would also be other types, like laptops or special devices

like terminals. More precisely, smartphones connect to the public zone of the network

either directly or indirectly. A direct connection is established if the user of the phone

connects (usually using a wireless network-based connection) at the company’s location to

the infrastructure. An indirect connection is used if the smartphone is used anywhere else.

This indirect connection may then either happen by leveraging the VPN service or via

the cellular network. If the smartphone is successfully connected, they can use services

provided by the network. These services are not explicitly introduced by the reference

infrastructure as they may be of an arbitrary type. Examples for such services are an

email service or a business suite providing calendars and reminders.

As with the infrastructure-based components, endpoints which are connected to the

infrastructure are also monitored by the appropriate sensors. That is, the IDS is aware

about the actual endpoints and their state. This is being used to enforce policies on this

kind of devices.

13

2 Scenarios and Requirements

2.2 Scenarios

There are four relevant scenarios for this thesis which are based on the ESUKOM [21]

research project. The aim of the ESUKOM project was to develop a solution for inte-

grating smartphones into business and company networks. Due to this, all four scenarios

are based on real world use cases provided by the companies which participated within

the ESUKOM project. Each of the scenario expresses one or more demands an actual

company provided to the ESUKOM project. Furthermore, all scenarios are based on the

reference infrastructure which was also agreed upon within the ESUKOM project. Both,

the reference infrastructure and the relevant scenarios are results of the requirement anal-

ysis within the ESUKOM project. In particular, the first scenario deals with collecting

data from a smartphone in a trustworthy manner. The second scenario emphasises the

need for a policy-based decision making process which includes trust measures. The third

scenario shows the use case of providing certain services of the infrastructure based on

trust and the fourth scenario shows the special case of a forensic evidence collection.

2.2.1 Scenario I: Trustworthy Data Collection for Smartphones

By using smartphones within a company’s infrastructure, they need to be included into

the network’s policy. That is, smartphones are supposed to be controllable on the same

level as other infrastructural components are. To do so, the reference infrastructure’s IDS

can be used. This is possible, as it allows to evaluate certain properties of the smartphone

against the network’s policy, i.e. it is acting as a decision making component. This is

done by collecting data that describes the smartphone and evaluating this data using the

IDS. In detail, the describing data is collected by an amount of sensors located either

on the smartphone directly or somewhere on a component within the infrastructure. If

the smartphone changes certain states which are measured, the sensors will provide the

appropriate data describing this change, allowing the IDS to always operate on the last

measured state concerning the smartphone. As already stated, the sensors may be located

on the smartphone as well as on other devices. Due to the devices being used and deployed

in di↵erent ways, their security level is highly varying. The smartphone itself may be

exposed to more threats in terms of compromise than an infrastructure component like

the DHCP server as it is more likely that the smartphone is being exploited due to its

14

2.2 Scenarios

usage profile. As the sensors are located on the device, their security level is also highly

varying. Furthermore, this level is not only variable in terms of the device the sensor is

placed on but also in terms of time. A device may be compromised at one point and

starting to act malicious. This malicious behaviour may also apply for the sensor itself,

resulting in false measurements. To counter this, the IDS must be able to receive the

data from the sensors in a trustworthy manner. This would allow the IDS to distinguish

between the trustworthiness of such describing data. Decisions which are made by the

IDS would therefore be based on this trustworthiness, thus the IDS treats describing data

in accordance to their trustworthiness. This allows to use arbitrary sensory sources as

the IDS can decide on its own about the trustworthiness of the data collected by these

sensors.

Example Use Case

Given a smartphone which is used in arbitrary situations and for unspecified tasks. The

user of the smartphone, which is also an employee of the company, installs certain apps on

the device, which may be either malicious or unwanted. A malicious app could for example

start to send a high amount of SMS and thus generates a lot of costs for the user or the

company. Besides an app being specifically malicious, there may also be apps installed

on the device which are considered unwanted from the company’s infrastructure point

of view. That is, if the the smartphone is taken into the infrastructure of the company

the user is working for, the infrastructure needs to react. An example for such an app

would be a program allowing to stream a live feed of the smartphone’s camera into the

internet. This may be critical under certain conditions, for example if the smartphone is

located within a classified meeting situation. To detect the apps currently present on the

smartphone, data are collected on the smartphone. This data is then used by the IDS to

simply perform a signature-based matching of the installed apps against a blacklist the

company holds. If a malicious or unwanted app is detected, the user of the smartphone is

informed and the smartphone’s access to the infrastructure is denied. In this case, the IDS

needs to verify the trustworthiness of the collected data. This is necessary to prevent false

positives as well as false negatives. A false positive would happen if the IDS denies the

smartphone’s access although no particular app is present on the phone. The other case,

a false negative where no enforcement actions are taken, is even more critical: the IDS

15

2 Scenarios and Requirements

does not detect the app which is actually present on the device. To prevent this, the IDS

needs to take care about the trustworthiness of the data collected. Thus it is able to rate

the data and improve their detection rate. Furthermore, if the sensor on the smartphone

itself is compromised, the IDS detects this as well and takes further actions.

2.2.2 Scenario II: Trust-based Policy Enforcement

As already stated in the first scenario (2.2.1), by using smartphones in the context of a

company’s environment, they have to be integrated in the policy as well. The IDS system

used within the reference infrastructure is being controlled by a policy which defines

reactions to certain events. In detail, the policy that is used for the IDS holds information

about the contextual parts, like time or location, and signature and anomaly parts. These

building blocks define the reaction to certain types of data and their measured values.

As the last scenario showed, data should be collectable in a trustworthy manner. That is,

the IDS can distinguish between data in terms of its trustworthiness. Given this and the

policy situation just described, there is a need for controlling trust related aspects within

this policy. Due to this, the policy must be able to hold trust related elements in addition

to the parts mentioned above. Having this, if the IDS handles a certain amount of data,

it also checks this data’s trustworthiness as it is defined in the policy. This may be on

the one side by evaluating the trustworthiness in a contextual mean, thus the IDS simply

processes only trustworthy data. On the other side, the IDS must also be able to use the

data’s trustworthiness within their policy for signature and anomaly detection. Having

this, the party which is responsible for defining the policy is able to define arbitrary

trust-related cases within the policy. Without this, there is no way of directly using the

possibility of a trustworthy data collection.

Example Use Case

If a smartphone tries to access the private zone of the network, its state is monitored

by the appropriate sensor residing on the device. This sensor collects the appropriate

data from the smartphone and provides it to the IDS. The IDS holds a policy, which

defines certain conditions where the smartphone should be isolated from network access.

Besides conditions that are based on actual data values, like the detection of malicious

apps on the device, there are also conditions which are based on the trustworthiness of

16

2.2 Scenarios

the data which are collected from the smartphone. If the smartphone now starts to act

weird, i.e. sends implausible data, in terms of the data collected, the IDS recognises this

and lowers the trustworthiness of the smartphone. At a certain point, this results in a

situation where one of the trust-based policy rules matches. As written above, this rule

implies, that the smartphone needs to be investigated further and therefore being isolated

in terms of network access.

2.2.3 Scenario III: Context-related Service Provisioning

With the smartphone being able to access the services provided by the network and

the components located within the private zone, there is a need to distinguish between

di↵erent contexts the smartphone can have. That given, there need to be an authorisa-

tion process which is based on the smartphones state as well as on the context of the

smartphone. The reference infrastructure does also provide means to realise this. The au-

thorisation is first done by evaluating certain data of the smartphones, such like apps or

the smartphone’s operation system. This first step belongs to the last mentioned scenario,

as it is simply a more detailed version of the policy-based enforcement. The second step,

which operates on the smartphone’s context, forms this scenario, which is di↵erent from

the scenario above. There are three types of contextual parameters which are going to be

used to authorise the smartphone in terms of service access. In this case, authorisation

refers to providing the service access-based on the contextual parameters of the smart-

phone. The three types applicable are time related context, location related context and

trust related context. As the name clearly expresses, time related describes the time the

service access was measured by a sensor. This sensor may be either on the service or on

the smartphone. If a service should only be accessed to a certain time, this context is

evaluated. Furthermore, to allow a real provisioning, a service request may be answered

di↵erently depending on the time of the request. The second type, location, allows to base

access decisions and the response behaviour upon the device’s location. Equally to the

time, a service might only be accessed if the device is located appropriately. The last type,

allow to base the service access onto the trustworthiness of the collected data. That is,

the service should only answer requests, if the device is in a trusted shape. Furthermore,

there may be di↵erent reactions of the service-based on di↵erent states of trustworthiness.

17

2 Scenarios and Requirements

From the technical perspective, the IDS is able to correlate directly on the contextual pa-

rameters and base decisions on this correlation.

Example Use Case

When accessing a service by a smartphone, the smartphone must be connected to the

network. Due to this, there should be already a certain amount of collected data from

the smartphone. To judge about the smartphone’s trustworthiness, the IDS is used to

evaluate these collected data. If there are data with values di↵ering from the expected

values, the IDS lowers the trustworthiness of the smartphone. If the smartphone is now

actually accessing the service, the service uses the infrastructure mechanisms and requests

an access decision from the IDS (i.e. from the logical point of view, the IDS may also deny

access based on its policy). As the trustworthiness of the smartphone was lowered due to

the suspicious data collected by the sensor on the device, the IDS can correlate on the

trust context of the access request. If the context is below a predefined value inside the

policy, the IDS denies the smartphone the access to the service. The same way can be

used to check if the request was made within a valid time, e.g. the company’s working

hours or from the right location, like a location somewhere on the company’s property.

2.2.4 Scenario IV: Secure Evidence

Secure evidence describes the scenario, where it is necessary to generate a proof of an

action or incident (cf. [23, 24]). Usually, such a proof is usable at a legal court. This type

of scenario is not bound to a special type of incident or action. This means, each time an

operation is done within the network, a proof could be generated. While there are a lot of

actions where no proof will be needed, such as an allowed access to a resource or a service

provided by the network, there are also critical operations. Those critical operations are

usually some kind of an incident. Examples are a network-based attack, resulting in data

theft or a denial of service attack. Such incidents usually result in legal actions to be taken,

which require a proof of the incident. The so-called Evidence Generator (EG) is a special

component which extends the reference infrastructure and resides inside the network’s

private zone. The EG takes responsibility for generating the required proof of an action.

As the EG is also part of the network it may be involved in an incident. However, as

the EG is defined as trustworthy, this special case needs to be treated separately and is

18

2.2 Scenarios

therefore out of scope for this particular scenario. As defined above, to fulfil the needs

when incorporating a smartphone into a company’s network, the reference infrastructure

with the IDS and its sensors is used. Due to this, the EG connects to the IDS, retrieving the

collected data on the IDS and generating the required proof. In detail, the EG takes current

sensor values as well as historic values and bundles them together into the appropriate

proof. The proof consist therefore of the current state of the network as well as the changes

which leaded to this state. The EG provides further operations, which use the proof. As

explained, it is responsible for requesting and retrieving the proof of an action or an

incident. Besides that, it verifies the authenticity and integrity of the proof as well as

attesting the integrity state of an endpoint within the network at the time the proof was

generated. Furthermore, it secures the non-repudiation of the proof itself as well as of the

attested integrity states and, in some cases, secures the confidentiality of the proof and

the integrity states. Considering this, there are several points which need to be addressed

in order to achieve a court-proof evidence generation. As the EG is solely responsible for

providing verified and proven data and the methodology of collecting the information is

unique to each incident or action, the proof provided by the EG must be considered as

true. That is, the evidence generation needs to be done in a trustworthy manner, i.e. the

trustworthiness of the collected data needs to be taken into account. Besides that, the

proof provided by the EG needs to be stored. This process has to ensure, that the proof is

not altered while handling it and that the trustworthiness of the EG can be determined.

If the EG is not treated as trustworthy, the proof is unusable.

Example Use Case

If the IDS detects a severe breach of its policy, i.e. a huge amount of signature and anomaly

conditions have been triggered, it may instruct the EG to create a forensic snapshot of the

current state of the infrastructure. The EG then starts to generate the proof by accessing

the IDS and retrieves a current set of collected data from it. To get a most accurate picture

of the situation, the EG would also request all historic information available. By receiving

this information, it can then create the actual proof. In addition to the data collected

by the IDS using the appropriate sensors, there may be more information included, like

attestation information of particular devices within the infrastructure. After the proof is

created, it is provided for further usage.

19

2 Scenarios and Requirements

2.3 Requirements

Based on the scenarios described above, six most relevant requirements are derived that

are addressed in this thesis:

R1: Trust specification, calculation and evaluation This requirement describes the abil-

ity to specify, to derive and calculate trust for collected data. It is mainly derived

from scenario 2.2.1 which demands a mechanism that allows the IDS (i.e., the deci-

sion making system) to evaluate the collected data in terms of their trustworthiness.

To do so, it is (1) necessary to specify trust, i.e. derive trust and (2) to use the de-

rived trust within an overall calculation which provides a trust measure per data.

Given the reference infrastructure, to fulfil this requirement, there needs to be a

trust evaluation method (3) for each chunk of data collected and handled by the

IDS. In order to provide this, a trust derivation technique must be defined which

does not only include the components handling the data (e.g. the smartphones) but

also the communication of the data throughout the system. This technique addresses

(1), thus providing a basic measure of trust. Based on this derivation, a calculation

approach can be defined which eventually provides an evaluable trust value for each

chunk of collected data and therefore addresses (2). Besides this, the component

which carries out the decisions made by the IDS needs also to be aware of the trust-

worthiness of this decision. This is necessary to address (3), thus allowing the IDS a

trust-based decision making process in the infrastructure. In addition to the directly

expressed demand in the first scenario, all other scenarios require a solution as well.

This is due to the problem, that every piece of data which is being used for decision

making may be untrustworthy. In detail, if the data is untrustworthy and there is

no way of recognising this, potential unwanted results may be the case.

R2: Trust history The IDS within the reference infrastructure allows to store the actual

collected data and their current sensor values. They are updated each time a new

measurement value is received from a sensor. In its current shape, the IDS does not

store the old (i.e. updated) values of the sensors as it operates event triggered. Addi-

tionally, as there is currently no trust-based evaluation done by the IDS, trust values

are also not stored. Scenario 2.2.4 showed the situation, where the infrastructure’s

current state is pictured. Furthermore, it also included historic data values along

20

2.3 Requirements

with their trust state within this picture. Due to this, there is a demand for a storage,

i.e. a history, which stores the old values. In addition to this, the trustworthiness of

the data is changing from time to time and from update to update. Due to this, the

history must not only include the data values but also their trustworthiness at the

time this value was currently valid. Besides scenario 2.2.4, this history mechanism

is also required by scenario 2.2.2. This is due to the correlation of trust values which

is only possible if not only the actual trustworthiness is known but instead a history

of the trustworthiness. To fulfil this requirement, there needs to be a way to provide

both, a data storage and based on this, a history of trustworthiness.

R3: Trust-based correlation The IDS, which is provided by the reference infrastructure

for the task of deriving decisions, is based on collected sensor data. More in detail,

it uses the value of the data which expresses a measurement value from the sensor.

Scenario 2.2.2 as well as 2.2.3 demand the possibility to not only use the data’s

value (i.e. the sensor’s measurement) but also the trustworthiness of this data for

correlation purposes. To derive a decision which is based both on the data’s value as

well as on the data’s trustworthiness, there needs to be a mechanism to allow a direct

correlation on the trustworthiness. That is, the IDS is able to not only include the

data’s trustworthiness into its decision making process, which would be possible by

fulfilling R1, but to solely base the decision upon the data’s trustworthiness instead

of the actual measurement value. Given the previous requirement which demands

a storage of data and their trustworthiness, it is possible to reason upon the trend

of the trustworthiness. This allows for more sophisticated tasks, like a trust-based

enforcement of devices.

R4: Extending policies with trust This requirement addresses the problem of using the

IDS’ policy for trust-based decision making. In short, fulfilling this requirement al-

lows to extend policies with trust. Besides the first and the last scenario, all other

scenarios demand an integration of the trustworthiness into the policies which are

used by the IDS. Without this trust extension, there is no possibility of addressing

the trustworthiness from the policy’s point of view (i.e. using trust within a spe-

cific rule). Given the second scenario, the policy-based enforcement which should

be based on trustworthiness, there must be a way of expressing the conditions and

rules which lead to the described enforcement. Furthermore, providing specific ser-

21

2 Scenarios and Requirements

vices for di↵erent trustworthiness cases of the collected data is also required. Due

to that, without an appropriate policy integration there may be only a static defini-

tion of cases which results in a system that cannot be configured appropriately. To

solve this limitation, there needs to be an appropriate mechanism to integrate the

trustworthiness into one ore more policies. In addition, there must be also a way to

include trustworthiness into the already existing policy structures of the IDS. This

aims to extend the IDS’ policy in a way to fully support the trustworthiness of the

collected sensor data.

R5: Extensibility in terms of used data and trust calculation methods Scenario 2.2.1

describes the situation where the IDS uses data from arbitrary sensory sources. As

described in the first requirement, the IDS should be able to judge about the trust-

worthiness of these data. Given those two points, it is necessary to support arbitrary

sensors and thus arbitrary mechanisms the trustworthiness is based upon. In detail,

the measurement which is used to derive trust for a chunk of data must not be limited

to a particular type. If the measurement is limited, there is no possibility of using

new sensors within the system as no trustworthiness could be derived. Furthermore,

the calculation process itself must not be limited to a certain type or algorithm.

Without this flexible calculation, there is no way of using new trust measurement

methods as there would be no algorithm supporting these new methods. Given these

two points, it is required, that arbitrary sources may be used to derive trust and

that these trust derivation is flexible in terms of the calculation method used. This

allows also to exchange the calculation method based on the actual domain.

R6: Ability of seamless integration To actually use the system which is described in

the scenario, there is the need to provide it in a most integrable way. That is, it

is required that the system is able to be integrated into existing infrastructures.

Without fulfilling this requirement, it is not possible to deploy the system within a

working environment. When developing a solution for the previous requirements, it

must therefore be taken care of this last requirement. By fulfilling this requirement,

the system can be deployed within an already existing infrastructure in a less intru-

sive manner, i.e. only a minimum of existing components need to be customised in

order to support the whole system.

22

2.3 Requirements

Those six requirements need to be addressed in order to support the presented scenarios.

The following chapter presents the relevant related work which has already been done

and which may be used to fulfil certain parts of the requirements. Furthermore, it is

distinguished between research-based approaches and technological-based approaches. All

approaches are compared against the requirements above.

23

24

3 State of the Art

Contents

3.1 Research-based Approaches . 25

3.1.1 Intrusion Detection . 26

3.1.2 Trust-enhanced Intrusion Detection Systems 33

3.1.3 Trust Management and Means of Deriving Trust 38

3.1.4 Summary . 46

3.2 Technology-based Approaches 48

3.2.1 Trust Definition and Trusted Computing 50

3.2.2 Root of Trust . 50

3.2.3 Trusted Network Connect . 54

3.2.4 Summary . 75

3.3 Assessment . 76

This chapter evaluates work which has already been done against the identified require-

ments. First, it gives an overview of the research centric work by summarising the most

important research contributions. Second, technologies that provide certain kinds of mech-

anisms to fulfil the requirements are described. Summarising both parts, the assessment

compares the research contributions as well as the technologies against the requirements

and identifies the gap.

3.1 Research-based Approaches

First of all, research-based approaches are presented and discussed. The approaches itself

are categorised within three particular types, thus the evaluation starts with more generic

approaches and finishes with approaches that address specific problems.

25

3 State of the Art

3.1.1 Intrusion Detection

Taking the reference infrastructure and the scenarios which operate upon this infras-

tructure, approaches for intrusion detection are analysed. Based on this analysis, further

relevant categories, in particular work which has been done in the field of di↵erent in-

trusion detection types and trust-based approaches, are analysed. A basic definition and

di↵erent types of intrusion detection systems and their working principles can be found

in [25, 26, 27, 28, 29]. Given the categorisation of intrusion detection made within these

publications, there is one approach which can be characterised as a network-based intru-

sion detection system (cf. [30]) that is tailored for use in smartphone-enabled networks

and infrastructures. Due to its capability of handling smartphones and the combination

of several di↵erent research fields, this approach is analysed first.

CADS

CADS abbreviates Context related Anomaly and Signature Detection for smartphones

and is described in [18, 19, 2]. It allows to collect so-called Features, which represent a

particular property and their measured value of a device. In detail, the Feature consists

of the following relevant elements.

• A Feature id allows to uniquely identify the Feature. Note that two Features may

have the same id if they measure the same property for the same device. This would

be the case, if for example the Feature that has been measured first will be updated

with a new value that represents this measurement.

• The value of the Feature (Feature value) contains the actual measurement value.

E.g., if the Feature holds the IP address of a device, this IP address would be stored

as measured value within this field.

• In addition to this two fields, there is another field which addresses the Feature’s

context. Most important, the time stamp of the measurement is stored as a time

context in this field. Besides time-related entries, the Feature could also contain

another context types, like the location. The CADS approach does not limit this

field to a certain type of context.

26

3.1 Research-based Approaches

As already stated, the Feature expresses a certain property of the measured device. While

it describes one particular device, the collection may not only be done by and on the

device itself but by arbitrary devices which are located in the same network.

Architecture The architecture of CADS (figure 3.1) is formed by four components:

the Feature Collector, the Feature Provider, the Feature Consumer and the Correlation

Engine. A detailed explanation of the components is given in the following.

Figure 3.1: CADS architecture as defined in [2].

Feature Collector The Feature Collector is responsible for collecting (measuring) and

aggregating the required Features. There may be an arbitrary amount of Feature

Collectors on di↵erent platforms and devices in the network.

Feature Provider The collected Features are sent to the Feature Provider which stores

them. Furthermore, a component may not only request storage of Features but also

the request to retrieve a certain Feature and the request to delete a no longer used

Feature. The architecture demands that there is only one central Feature Provider

as part of the network.

Correlation Engine A Correlation Engine is responsible for accessing the Features and

correlating them to apply anomaly and signature detection algorithms. This is done

27

3 State of the Art

by evaluating a defined policy and the appropriate Features. Prior to its actual

use in the environment, there may be a training phase. This training phase allows

the Correlation Engine to learn the necessary reference values used for anomaly

detection means. The CADS approach does not define the actual method used to

perform this training phase and allows to use arbitrary methods.

Feature Consumer Decisions made by the Correlation Engine are propagated to the Fea-

ture Consumer. Propagate refers to the process of sending the decisions as Features

to the Feature Provider followed by the Feature Consumer accessing these decisions

on the Provider. The Correlation Engine therefore uses Features to store decisions

(i.e. decisions are stored as value of the Feature). These Features are received by

the Feature Consumer (after they where transmitted to the Feature Provider) and

used to trigger and process further actions.

Based on this, a general communication flow within the CADS system can be expressed:

• The Feature Collector sends the Feature to the Feature Provider. The Feature in-

cludes measured values, which are used to describe aspects of the smartphone. For

example, the installed apps on the smartphone may be expressed by a Feature. After

the Feature is received on the side of the Feature Provider, it is then stored within

the Feature Provider’s database, thus keeping it ready for further usage.

• At any time, the Feature is then further transmitted to the Correlation Engine.

That is, the stored Feature is retrieved from the Feature Provider’s database and

then send to the Correlation Engine. Given the example from above, the stored app

measurement would be given to the Correlation Engine which then evaluates the

Feature against its policy.

• After the Correlation Engine has finished processing of this Feature, it may create

another one which is then transmitted back to the Feature Provider. The Feature

Provider takes this Feature and stores it again within its local database. For ex-

ample, the Correlation Engine would make an enforcement decision based on the

app Feature explained above. This enforcement decision would be provided as new

Feature to the Feature Provider.

28

3.1 Research-based Approaches

• A Feature Consumer can then use this Feature for further actions. That is, the

Feature Provider retrieves the stored Feature out of its local database and sends

it to the Feature Consumer. Within the named example, the enforcement decision

would be provided to an appropriate Feature Consumer, e.g. a firewall. This firewall

would then perform the enforcement.

Figure 3.2: Example Flow given by [19].

After the optional training phase, the processing of the Feature starts with the Feature

Collector on the smartphone. In this example case (Figure 3.2), a sensor activation is

measured. The sensor may be the smartphone’s microphone or the camera within this ex-

ample. The Feature Collector takes this Feature and transmits it to the Feature Provider,

which provides the Feature further to the Correlation Engine. The Correlation Engine is

then able to check the Feature’s value against its policy and optional against the learned

reference values. As the condition for raising an alert is not fulfilled yet, the Correlation

Engine does not react on the Feature in this example. This changes when the second

Feature Collector which is located on the IDS within the network measures an increase

of the smartphone’s tra�c. This measured Feature is provided to the Correlation Engine

again by using the Feature Provider. Having both Features, the sensor activation as well

as the increase of tra�c, the Correlation Engine now raises an alert as both Feature values

together violate the policy in this example. This alert is given to the Feature Provider,

which sends it to the firewall system. The firewall, which acts as a Feature Consumer, uses

the Feature and isolates the smartphone, thus e↵ectively disabling the network access for

29

3 State of the Art

the smartphone. This simple example shows how the infrastructure and the appropriate

CADS components are used.

Summarising this, CADS is capable of performing both, misuse and anomaly detection.

Misuse detection characterises the ability to detect static properties of an entity, i.e.

unwanted configuration like installed apps that are malicious for smartphones. Misuse

detection in the field of intrusion detection has been widely researched, details can be

found in [31, 32, 33]. In contrast to static properties of a system, anomaly detection is

used to recognise behavioural-based actions. That is, CADS is able to detect changes

in the way a particular smartphone devices behaves e.g., a sudden increase of tra�c

which may be a hint for a data exfiltration taking place. As with misuse detection, the

technique of anomaly detection is also one basic ability of intrusion detection systems

and has been researched intensively. More information about detailed mechanisms can be

found in [34, 35, 36]. The architecture of the CADS system can be interpreted as a special

version of a hierarchical intrusion detection system (cf. [37, 38]) due to the Correlation

Engine as decision making component operates on high level information. The sensors, i.e.

the Feature Collectors, abstract particular measurements and decide on their own when to

publish a high level alert to the Correlation Engine. Due to this, CADS cannot be seen as

a conservative acting centralised intrusion detection system. In addition, although CADS

is being considered as a distributed intrusion detection system it is not considered to be

peer to peer based with isolated nodes as the final decision making is centralised. Node

and peer to peer based intrusion detection relies on a consensus of several nodes which

form a decision together (cf. [39, 40]). Comparing the approach against the requirements,

it is clearly to see that CADS does not provide a solution to fulfil R1. However, as CADS

provides a Feature-based storage, correlation mechanisms and a policy, R2 to R4 can be

considered as partially fulfilled. The last two requirements (R5 and R6) have also been

considered when developing CADS, thus R5 is partially fulfilled as trust is missing but

R6 is completely fulfilled.

Other approaches

Besides the categorisation of centralised or distributed approaches, intrusion detection can

also be categorised into host-based, network-based and hybrid approaches approaches.

[25, 26, 27, 28, 29, 30]. Host-based intrusion detection systems are used to monitor a

30

3.1 Research-based Approaches

single platform (i.e. a host), usually by measuring certain aspects of the platform. In

contrast to this, network-based intrusion detection system use a network-based monitoring

approach, for example by analysing the tra�c within this network. Both types provide

di↵erent measures to detect certain properties, like malware or ongoing attacks. A hybrid

approach combines both types into a single system, e.g. by using sensors to monitor the

tra�c and host-based techniques to monitor a system’s state. However, as the scenarios

require collection and correlation of data, the categorisation used for this chapter is based

on the system being either centralised or distributed. Both categories may consist of a

host-based, a network-based or a hybrid approach. That is, the categorisation used here

can be considered orthogonal to the system-based classification.

In [41] Bidou et al. describe an architectural model based upon the concept of having a

centralised component which evaluates data to detect network intrusion or other threats.

Furthermore, the authors propose an implementation of the centralised component which

is commonly called security operation centre (SOC), thus calling their implementation

SOCBox. It consist of several sub-systems, in particular a module to gather data from

arbitrary sources, an integrated correlation engine as well as several databases (e.g. a

vulnerability database). The overall architecture is able to gather event-based data from

sources like host-based intrusion detection systems and evaluate it against database en-

tries or perform correlation tasks upon the data. Given that, requirements R2 to R4 are

addressed to some extent. While this approach is usable in terms of detecting intrusions or

threats, there are two potential problems. As the SOCBox acts as a centralised component

it may likely be a single point of failure. This first issue is also identified by the authors

and resolved in an improved version of the architecture (see below). Another problem is

the lack of trustworthiness in the data sources. There is no possibility for the SOCBox

to distinguish the received data between valuable or invaluable in terms of trust, thus R1

cannot be fulfilled by this approach. As the approach is rather static, it provides a limited

extensibility (R5) and is di�cult to integrate (R6).

Ganame et al. propose an improved version of the architecture described above, solving

the problem of isolated intrusion detection systems. They describe the overall idea in [42],

which is based on gathering network relevant information to recognise attacks. Further-

more the authors distinguish between wide networks and smaller network segments, thus

inventing certain layers of detection within their approach. The lowest layer is formed

by localised detection engines, collecting data from one isolated network segment. The

31

3 State of the Art

result of this detection is then distributed one layer upwards to a so-called global anal-

yser, which has a broader view of the overall network. The authors call this architecture

a distributed security operation centre (dsoc) which is an improvement of their previous

approach which uses a centralised operation centre (cf. [41]). Although this improvement

o↵ers a solution to the single point of failure problem, proposed by the authors in [41],

and allows for more extensibility (R5) it still has some possible drawbacks. Like other ap-

proaches, which may be either centralised or distributed, there is no process of verifying

the trustworthiness of the collected information (R1). That is, the local detection as well

as the global detection engine have no possibility to select received information by means

of their trustworthiness. This could possible result within a situation where a rogue data

collector publishes malicious information, thus triggering unwanted actions.

A good example for countering threats of data exfiltration from inside the network is

presented by Ramachandran et al. [43]. The approach presented by the authors is based on

collection information about the networks standard behaviour, learning this behaviour and

deriving a behavioural model out of the learned information. This allows to detect unusual

behaviour and raising alerts. More in detail, the authors aim is to prevent data exfiltration

out of the network by profiling each host within the network. To learn a hosts profile, data

is collected by using SNMP-based data exchange and calculation based on kernel density

estimation and correlation coe�cients (R2 and R3). Although the authors show that their

approach might be promising, there are still some open questions regarding this approach.

Besides others like scalability and applicability (R5 and R6) the main question refers to

the trustworthiness of the collected data. While the model itself is sound, it is rather

limited in terms of verifying the data sources trustworthiness, and thus the data itself. In

particular, this might be a problem when trying to use a behaviour-based model to detect

certain kinds of insider attacks. Comparing this against the requirements, particularly

against R1, the approach o↵ers no solution for trust-based reasoning.

More work has been done in the area of correlating data in order to perform a de-

tection of anomalies or misuse. In [44] Cullingford shows an approach, where multiple

detection engines work together. Aim of this approach is to minimise the false alarm

rate. Although the approach performs well in the scenarios described, the author does not

include the problem of sensors being untrustworthy. Furthermore, by combining several

decision making systems to gain a high level decision, the problem becomes even more

critical.

32

3.1 Research-based Approaches

3.1.2 Trust-enhanced Intrusion Detection Systems

This section summarises work which has been done in the field of intrusion detections

systems that incorporate a trust evaluation.

Zhou et al. give an in-depth overview of the current concepts of intrusion detection

systems in [45]. The summary is given on the background of large scale attacks which aim

on multiple networks but is also applicable for single network IDS concepts. The authors

distinguish between the already mentioned three general types of intrusion detection sys-

tems: a centralised approach, the hierarchical approach and a fully distributed approach.

The centralised approach is based on a single component gathering information by their

sensors in one single point. Furthermore, the sensors provide raw data without any form

of pre-correlation and selection. The hierarchical approach extends this idea by giving the

sensors the ability to filter data and aggregate data. This allows to form a hierarchy of

sensors as well as correlation components which ends on the highest level in one single

component. The CADS system introduced in the previous section can be assigned to this

group of approaches as it has a high level centralised decision making component but is

not based on raw data. The third group of approaches, which is currently widely discussed

in the field of intrusion detection is fully decentralised. That is, all of the sensors perform

a special kind of decision making which consists of some kind of negotiation between the

sensors, which is not based on one single centralised component. The authors also sum-

marise the benefits of each approach as well as the disadvantages. Although they address

problems like developing a single point of failure or the pre-selection of data, there is no

detailed view onto the problem of the sensor’s trustworthiness (R1). Other approaches in

the field of intrusion detection include this issue as a problem and try to develop solutions

for it. In addition, Leckie et al. have also deployed some of the proposed concepts for

di↵erent tasks. In [46] the authors describe an intrusion detection system working in a

collaborative manner based on a peer to peer infrastructure for the detection of phishing

domains.

Cuppens et al. introduce the CRIM intrusion detection system in [47]. The authors

point out, that low level alerts may not be usable to determine if an intrusion is taking

place. Thus, the false alarm rate of such systems that use conventional low level alarms

are rather high. Due to this, the CRIM system combines alerts to a higher level. This is

done by several modules. The first module, the alert base receives alerts and stores them,

33

3 State of the Art

thus providing a data storage (R2). The alerts are received by the particular intrusion

detection components sending their results using the IDMEF [48] message format in order

to exchange the low level results. The second module, the alert clustering, takes the

alerts and clusters them into appropriate groups, thus e↵ectively generating higher level

alerts. Those groups, i.e. clusters, are then merged by the next module. The result of this

alert merging module are so-called global alerts which can now be used by a correlation

engine (R3). This correlation engine, represented by the module called alert correlation,

produces so-called candidate plans which are checked in the last module against the

original intention. If the match is successful, a reaction may occur. The authors have

tested their approach and could prove, that the use of this system significantly reduces

the false alarm rate for the attacks investigated. Additionally, the approach is being

presented as integrable and extensible in terms of data sources (R5 and R6). However, as

trust is not being considered explicitly, the basic requirement R1 cannot be fulfilled.

In [49] Janakiraman et al. propose early, that scalable and reliable network intrusion

detections mechanisms are needed. In detail, the authors focus on the distributed col-

lection of data in conjunction with a distributed processing of this collected data, thus

addressing requirement R2 and R3 without the trust consideration. This negates the iden-

tified problems of single point of failure architectures. Besides that, Indra, an intrusion

detection tool developed by the authors using a peer to peer (p2p) approach for intrusion

detection is presented. Indra allows to share information between peers, thus allowing

to identify attacks which are carried out on several machines independently. Within the

Indra approach, the authors identify several di�culties. One of those di�culties reflects

the problem of information trustworthiness between peers. That is, as Indra is peer to

peer based and has no central trust authority which would be able to evaluate the infor-

mation in terms of their trustworthiness, a decentralised trust approach (cf. [50]) needs

to be applied. As an example for such a decentralised approach, the authors suggest the

so-called web of trust approach used within PGP [51]. Although this is an early approach,

it already shows the need for trust considerations between data collectors (R1).

Keromytis et al. present another collaborative approach, called SABER, in [52]. Besides

other, the SABER architecture is based on intrusion and anomaly detection components

and a high level coordination infrastructure. The intrusion and anomaly detection system

work by using two methods. The first one is a so-called surveillance detection. It monitors

the network tra�c and evaluates it against known bad indications, thus performing a mis-

34

3.1 Research-based Approaches

use detection based on signatures. The second method, which is used to detect anomalies,

is based on training of normal behaviour. That is, after the behaviour has been learned,

abnormal behaviour (like tra�c) creates an alert (cf. [53] for misuse and anomaly detec-

tion methods). SABER uses a publish/subscribe system to inform its components about

events happening in the network or decisions made by the high level control instance. Fur-

thermore, an event-based correlation system is used on the side of the high level control

instance. This allows to quickly react on multiple events, like a DoS attack. The authors

have tested their work in several scenarios, with an overall good outcome. While SABER

may be used as a general framework to build up collaborative system to prevent attacks,

there is one important point missing. The authors do not address the point of attacking

the SABER system itself. I.e. there is no way to determine if a SABER’s component

might be compromised in any form. That is, R1 is not fulfilled by the approach. Further-

more, the system operates on events, thus there is no dedicated storage for collected data

(R2). However, SABER provides an event-based correlation (R3) and is designed to be

extensible (R6) in terms of sources.

As the problems of using data resources which may not be trustworthy were identified, a

lot of work has been published within this area. One of the earlier approaches is presented

by Duma et al. in [54]. The authors point out, that collaborative intrusion detection system

approaches sound promising with limitations due to their trust issues, thus emphasising

R1. That is, although there are promising approaches, they all make strong assumptions

about the trustworthiness of their data sources. This results in a situation, where a data

source might provide false information (intentionally or unintentionally) which leads to a

reaction which was not intended. As the authors have analysed several general approaches

which are not limited to collaborative working intrusion detection systems but nearly all

collaborative working systems which collect information of data sources, the problem of

trustworthiness of data is also not limited to intrusion detection approaches. To circumvent

this problem, the authors suggest a trust management system, which pre-assigns trust

values to all peers and recalculates them based on trustworthiness given by other peers.

That is, they provide a solution for R1. However, they are only using pre-assigned values

which only allow to calculate an initial trust value. If the situation changes, the proposed

system is unable to react on this change. Due to this, R1 must be considered as only

partial fulfilled. As they propose a collaborative approach, R2 and R3 are also fulfilled to

some extent. Extensibility and integrability are not considered by their approach.

35

3 State of the Art

In [55], Fung et al. present an approach to incorporate a trust management system into

a collaborative working intrusion detection system which can be seen as an improvement

of the approach of Duma [54] et al. It is based on communicating test messages between

peers, which actually are host-based intrusion detection systems working together (cf.

[56]), and reasoning based on the answers of this message about a peers trustworthiness.

A more refined version of this framework, also presented by Fung et al. is shown in [57].

Within this paper, the authors propose an approach for a trust-based framework within a

collaborative working intrusion detection system. Furthermore, the aim of the framework

is a peer to peer based intrusion detection architecture, such as Indra [49]. However, the

authors do not address trust issues within its intrusion detection system which relies on a

single headed control instance. That is, the approach presented by the authors focuses on

the trustworthiness of distributed nodes, which represent host-based intrusion detection

systems and which are communicating via a peer to peer layer. To reason about a nodes

trustworthiness, the requesting node sends a so-called test message to the node which is

under investigation. With the test message being a request to rank an alert, the node

which is to be investigated answers with a so-called severity. Furthermore, the node to be

investigated is not able to distinguish between a real alert ranking request and the test

message. As the requesting nodes knows the real severity of the alert, it can judge about

the trustworthiness of the other node by verifying the received answer. This process is

randomly but periodically often performed. Robustness studies made by the authors show

an positive impact by using their model. Another version of the approach is presented

in [58]. Like the previously explained version, the approach is also based on the trust

definition of a Bayesian network (cf. section 3.1.3 and [59]). In di↵erence to the previous

versions of their approach, the authors propose a dirichlet-based distribution (cf. [60])

model to evaluate the test message exchange between particular nodes. Although this

improves the alarm rates, as the paper clearly shows, the problems of founding trust on

test message exchange, which has been described in detail above, remains the same. Due

to this, R1 can be considered partially fulfilled with the limitation that trust is only being

derived by the test message procedure which makes the approach di�cult to control (R4)

and inextensible (R5).

Another research field where intrusion detection plays an important role can be found

in the area of cloud computing. In [61] Joshi et al. present an approach for carrying

out an actual intrusion detection within these kind of environments. Their approach is

36

3.1 Research-based Approaches

based on the use of the services and resource the cloud provides to determine about

intrusion detection. Furthermore, they do not only provide detection mechanisms but

also prevention methods. Although the approach itself might be promising, the authors

only deal in a very limited manner about the problem of deriving trust. That is, as they

make use of inter-domain cloud providers, there must be a mechanism to put trust on

these di↵erent domains, thus assigning trust onto the service providers. The authors do

not propose a particular solution but emphasise, that this problem need to be dealt with.

Intrusion detection is also important in the already mentioned area of wireless ad hoc

networks. Due to this, there has also been a lot of work on establishing e�cient ways of

performing intrusion detection in such environments. [62] gives an overview about recent

research results. The approaches which have been developed, can be divided into two

general groups: approaches that deal with trust and approaches which imply their sensors

to be trustworthy, thus not explicitly addressing trust. Particular early approaches of the

second group which can be characterised as building blocks of these research area can

be found in [63, 64, 65, 66]. A selection of more sophisticated approaches are described

in [67, 68, 69, 70]. The first group, which incorporates the measurement of the sensors

used, has also been worked on. Some of the approaches introduced are explained in the

following.

The first approach belonging to this group, called TIDS, is presented by Deb and Chaki

in [71]. Trust is derived from special messages exchanged between the nodes being part of

the network. In detail, each node is able to calculate a trust measurement for each of its

neighbouring node. If the trust derived becomes low in terms of a specified threshold, the

intrusion detection system can react to this event (R3). Furthermore, the trust calculation

is not only used for intrusion detection purposes but also to determine a safe route for

messaging through the network. As the number of potential nodes is not limited but only

nodes may be integrated, R6 can be considered fulfilled partially. The approach presents

a reasonable but not extensible method for deriving and calculating trust. However, the

evaluation method is rather limited as it statically defined to only evaluate it for determine

the route. Thus, R1 is partially fulfilled by the approach while R5 cannot be fulfilled.

Yeom and Park propose the idea to use a special kind of agents to allow an e�cient

intrusion detection within the field of mobile ad hoc networks. Their paper [72] uses the

approach of modelling the intrusion detection system based on the human immunological

system. That is, they introduce the named special mobile agents which act like a human

37

3 State of the Art

blood cell. The agent is therefore able to distinguish between actions which are considered

to belong to the normal behaviour of the system and actions which are uncommon, thus

being considered as intrusion. The di↵erences of these two types of actions are based on

the humans blood cell ability to distinguish between “self” and “non-self”. Although the

approach is promising in terms of a distributed intrusion detection, there is no way to

verify integrity of such an agent (R1). This may be critical, even more as the authors aim

to address mobile ad hoc networks which are highly dynamic, if one of the agents becomes

compromised in an arbitrary manner. Due to the properties of a mobile ad hoc network,

the approach is designed with integrability and extensibility (R5 and R6) in mind.

3.1.3 Trust Management and Means of Deriving Trust

A very early approach which aims more in the direction of social trust is introduced by

Aberer and Despotovic in [73]. Although the discussion in this paper emphasises on peer

to peer networks and their trust issues with unknown participants, the findings made

are relevant. This is due to newer intrusion detection approaches commonly are working

as peer to peer systems. The authors point out, that it is necessary to judge about a

participants trustworthiness in order to perform more sophisticated tasks than simple file

transfer. They therefore develop a concept to base the trustworthiness of a participant,

i.e. of a node, on their behaviour. In detail, the behaviour is analysed thus forming a

reputation of this node. This reputation can be computationally be expressed and taken

for further decisions about this node, like communication with it. While the approach

has been already refined, the paper shows clearly, that there is a need for deriving the

trustworthiness of a node in such environments. That is, requirement R1 can be considered

as fulfilled to some extent. A storage for data is not directly mentioned within the paper

although the IDS bases decisions on that data (R2). Using the peer to peer approach,

more nodes may be used, thus providing a good integrability (R6). However, R5, is only

fulfilled in a very limited form due to the problem of only using a node’s behaviour as

trust derivation technique.

While not directly related to distributed environments but also on social interactions

between agents, Miu et al. show the problem of deriving trust in [74] from a rather non

technical point of view. It is made clear, that for example trust is not directly deriv-

able from reputation. This is due to reputation being eventually mutual in the described

38

3.1 Research-based Approaches

scenario. Furthermore, the authors propose their own model which clearly shows the dif-

ference between trust and reputation, the definition of reputation, the definition of trust

as value which is valid between two parties and the calculation approach for determining

the actual trust. As already explained, the scenario of the others is rather non techni-

cal. Despite this, the concepts described are also to some extent applicable to technical

environments.

Mobile ad hoc networks often require a secure routing of messages transmitted within

those networks. That is due to that problem that nodes connecting to these networks may

be untrustworthy and thus could compromise the message. In [75] Liu et al. propose a

dynamic trust model which allows for a secure routing of such messages in mobile ad hoc

networks. The authors assign a so-called trust level to each node. This trust level indicates

the trustworthiness of the node and allows to select the most trustworthy path through

the nodes a message should take (R1). More in detail, the trust level can take six di↵erent

values, ranging from untrustworthy to very trustworthy. The trust level is calculated using

a special algorithm, based on the input of an intrusion detection system each node must

possess. The authors assume, that the IDS located on each node is possible to detect

attacks which aim to change the integrity of the messages transmitted throughout the

network. Furthermore, they also assume that the IDS on each node can detect other

kinds of attacks of nodes within their radio range. Based on these findings, the trust

level of the neighbouring nodes can be calculated and thus a secure path can be selected.

Although this approach is promising, there are two general problems which need to be

addressed: the distinction of the di↵erent trust level values needs to be mapped for each

particular environment (R5) and furthermore, it must be ensured that the IDS on the

node is able to successfully detect all relevant attacks (R6). In addition, work related to

the proposed idea can also be found in [76].

Another approach is presented by Azzedin et al. in [77]. The aim of the authors is to

develop a trust model for grid computing environments (R6) allowing to define so-called

secure and trustworthy domains. To achieve this, the authors distinguish trust into so-

called identity and behaviour trust. Identity trust expresses the confidentiality about the

authenticity of an entity, thus is more technical-based. Behaviour trust is based on the

reputation of an entity and requires more sophisticated means to be measured. Further-

more, the authors propose the use of a trust level for entities. Like in other approaches,

this trust level may take pre defined values of a limited set expressing the di↵erent stages

39

3 State of the Art

of the entity’s trustworthiness. Besides the trust level, the authors also introduce the con-

cept of direct and reputation-based (indirect) trust. Direct trust can be expressed if two

entities are directly connecting while reputation-based trust is used if there is no direct

connection between the two entities. To actual calculate the trust levels for an entity, the

authors propose a mechanism with several intermediate stages, like a required trust level

for each of the components being part of the calculation. With using this mechanism, the

paper deploys an e↵ective way to calculate the direct and reputation trust (R1) within

grid environments. The part of the identity trust is being considered well known, thus

the authors do not propose special means to determine this kind of trust. This can be

considered as a limitation, e.g. if the identity trust calculation is being compromised in

any way, the overall trust level may be false. Furthermore, no extension possibilities are

discussed by the authors, thus the approach is limited to the proposed mechanism (R5).

Another area where the term trust was introduced in is described by Blaze et al. in [78].

The authors show the drawbacks of authorisation models which are identity-based. That

is, instead of performing an authorisation based on the lookup of a certain identity and

handling some kind of an access control list, the authors propose to use a trust engine.

This trust engine is unaware of the actual identity but is able to derive trust (commonly

policy-based) for the component the authorisation decision is about. Another early paper

founding the area of trust management was published by nearly the same authors as [79].

Although both papers are not directly related to the requirement R1, they clearly show

the need for deriving trust and provide very first approaches on how to do so.

In [80] Thomas et al. picture the problem of using identity related information for

decision making in the area of federated identity management. As the concept proposes,

identities are used to allow for a high scalability in terms of the described federated

environments. The authors point out, that within this context, several distinguished trust

domains can be defined for the service providers used in these federated environments.

These service providers have to rely on identity-based authorisation information, which

may be untrustworthy due to the fact that they are not necessarily calculated from the

context of the service provider’s domain but from the local domain where the access is

originated from. That is, the service provider is unable to judge about the trustworthiness

of the authentication process as it is not part of its local domain. To counter this, the

authors propose to use a so-called level of trust (R1) which measures the strength of the

authentication process and attaches it to the authorisation information (R2). Although

40

3.1 Research-based Approaches

this idea is not directly transferable into the specific environment presented above, the idea

of measuring an authentication process in terms of its trustworthiness sounds promising

at all.

Authorisation and authentication in open environments is also treated by Bhargava et

al. in [81]. The authors work out, that relying only on specific credentials like passwords to

perform these tasks may not be su�cient. This is due to the lack of credentials implying

trustworthiness, in the authors specific scenario for a certain user. To avoid this problem,

they propose the use of evidence (i.e. credentials) and trust to perform authentication

and authorisation. To do this, the paper describes an enhanced role-based access control

scheme, which incorporates a users trust. This trust is based on the behaviour of the user

and may vary. That is, the approach provides another behaviour-based model which can

be utilised to address R1. Due to the fact, that only behaviour-based trust is incorporated,

R1 must be considered only partially fulfilled. Furthermore, the approach itself is limited

to this technique, i.e. there is no extension possible (R5).

The distinction between trust, that is based on an identity and trust which is behaviour-

based is also pointed out by Papalilo and Freisleben in [82]. Their work aims on estab-

lishing trust mechanisms in grid like environments by the use of bayesian networks. The

basic idea of using bayesian networks for trust derivation was already developed in [83].

In detail, the authors define a network, which defines the relationship between identity

trust, behavioural trust and their combinations, simply called trust (R1). However, with a

focus on grid properties. Furthermore, they introduce methods to derive behavioural trust

for an entity by basing it upon measurable features like service quality and processing

speed, which is to some extent controllable (R4). Given these parts, the authors propose a

method for dynamically calculating trust. This allows to determine the trust of an entity

in a fine grained and flexible way, thus allowing to use the approach in di↵erent particular

grid-related scenarios (R5 and R6).

The use of Bayesian networks to describe trust is also used in [59] by Hailes et al. The

approach introduces a trust framework based on a bayesian formalisation. Furthermore,

the formalisation made does not only distinguish between trustworthy and untrustworthy

but defines a level of trust which may be arbitrary but discrete. The authors derive the

overall level of trust based on the direct trust as well as on recommendation trust. In detail,

the trust derivation uses several sub stages, that are stored (R2), forming an altogether

value (R1). Besides the calculation itself, the framework is also capable of evolving trust.

41

3 State of the Art

The framework is tested again by routing messages through several nodes in a network,

with some of the nodes acting maliciously. Due to this, no direct controllability is given

by the approach (R4). Additionally, the trust derivation (R1) is also limited, which is a

result of the missing bootstrapping procedure. In detail, the authors do not yet present a

method for defining initial trust values.

Another framework which can be used for trust management in distributed environ-

ments is introduced by Sun et al. in [84]. The approach used by the authors consists of

several stages. The first stage, consisting of the basic definition of trust introduces the

authors interpretation of the term trust in computer networks. Based on this definition,

the authors introduce their basic propagation axioms, thus forming the system their man-

agement framework should be developed in. Given these two parts, the authors analyse

several attacks mounted on distributed environments, in particular in the area of routing

tra�c through arbitrary nodes. Using the findings made, the authors are then able to

define their trust management system. It consists of five building blocks which handle

the trust calculation (R1), the trust storage (R2), the trust process as well as the detec-

tion of malicious nodes (R3 partially). The actual trust derivation used is based on the

HADOF approach presented in [85]. That is, the authors rely on a technique, where a

node can determine if packets are dropped by another node. While the approach with

its trust management itself can be considered rather promising, the authors limit their

actual trust derivation by the use of HADOF (R1 and R5). While the authors proof their

approach to be e↵ective in the area of node-based ad hoc networks, it is unclear if the

approach is working in other distributed environments (R6). Due to the limitation of the

actual trust derivation (R5), this needs to be investigated further, although the authors

propose their approach to be usable in arbitrary distributed environments.

Complex trust management plays also an important role in the area of wireless sen-

sor networks. In [86] Bao et al. present an approach to leverage a trust-based intrusion

detection system in such an environment. The trust derivation is based on two factors:

so-called social trust as well as quality of service. Social trust is derived from a nodes

honesty in terms of trust [87, 88, 89]. That is, factors like false self reporting and abnor-

mal trust recommendations from nodes are used for derivation purposes. The quality of

service based trust derivation uses technical measurements, like the energy consumption

of a node. Based on this, the authors deploy a trust management system providing a

hierarchical, trust-based intrusion detection mechanism. Furthermore, the authors add

42

3.1 Research-based Approaches

a probability mechanism to minimise the false alarm rate. While experiments made by

the authors show the approach to be promising, there are still some open question. The

authors themselves propose to intensify the research in the area of trust derivation, like

including more techniques for measuring social trust.

Wang et al. propose the IDMTM, abbreviated for intrusion detection mechanism based

on the trust model. Their paper [89] introduces the IDMTM system allowing an intrusion

detection in the area of ad hoc networks. The idea of the IDMTM system is based on

two parts: the usage of a so-called evidence chain and the measurement of so-called trust

fluctuations (R1). The evidence chain combines several evidence of malicious behaviour

for a certain node, thus it acts as basic policy (R4). That is, the evidence chain holds well

known malicious node behaviour, e.g. particular types of attacks which may be carried

out by a node. It can be seen as a prototype of a node combining all possible malicious

behaviour into one single instance. By taking nodes and matching their behaviour against

this chain, malicious nodes may be detected. This is done by defining a threshold which

indicates the point, where enough parts of the chain are matched, so the node is treated as

malicious. Furthermore, a node’s trust fluctuation is used. Trust fluctuation expresses the

change of a node’s trust level. If this change is greater than a pre defined threshold (e.g.

the trust level’s standard deviation), the node is also being considered untrustworthy thus

being malicious. Combining these two approaches, the IDMTM system is introduced. Un-

fortunately the approach is only usable in node-based environments (R6) and provides no

extension of the trust fluctuation mechanism (R5). By using a simulated environment, the

authors prove their approach to be promising in terms of detection and, more importantly,

in terms of the reduction of false alarms.

Wireless networks may also be used in ad hoc vehicular applications, where they are

realised as multicast networks. Chang et al. propose the use of a Markov chain-based trust

model to determine a node’s trustworthiness in [90]. The goal of the work is to provide a

reliable authentication method which can be used for node authentication in this type of

network. The authors propose to calculate a so-called trust value for a node. This trust

value is based on the previously determined trust manner of the node. This trust manner

is derived from the previous operations a node has performed, e.g. joining or leaving a

multicast group in a trustworthy manner. Using this, each neighbouring node can derive

trust, thus forming the Markov chain-based model (R1). The node with the highest trust

value is then being selected as certification authority used for the actual authentication

43

3 State of the Art

process. While the authentication itself is rather out of scope for this work, the derivation

of trust must be taken into account. The authors not only propose to calculate the trust

values for each node but also to distribute this values for successful selection of a certifi-

cation authority. Although each node is aware of the calculated trust, the building blocks

used for the derivation process are only fixed behaviour-based measurements (R5). The

authors have proven their approach to be promising in the described scenario but also

realise that more work is necessary to use it in other, more general environments (R5).

In [91] Ma et al. propose the synthesize trust degree evaluation model (STDEM) for use

in dynamic distributed environments. Aim of the model is the derivation of a trust level for

a participating component in such environments (R1). The solution given by the authors

is based upon two di↵erent trust derivations and their appropriate combination. First,

a direct trust degree is calculated. This degree is based on means of direct measurable

actions, thus comes from a neighbouring component. Second, the indirect trust degree is

calculated. It is mainly based on the reputation of the component and is being propagated

by recommendations from third parties. The combination of both parts is performed by

a so-called synthesization, which then forms the synthesize trust degree. Part of this

calculation is a previously attenuation of the trust degrees which takes time dependent

trust into account. Simulations made by the authors show, that the approach is useful,

but only within their defined scenario (R6). Furthermore, the trust calculation is fixed,

thus R5 cannot be fulfilled.

Another way of deriving trust is presented by Sadeghi and Stüble in [92]. Their paper

aims to overcome the limitations of the attestation mechanism proposed by the Trusted

Computing Group (TCG). That is, the TCG’s approach (cf. [93, 94, 95, 96]) is based upon

verifying a parties trustworthiness based on certain measurements taken on that party’s

platform. To do this, relevant specifications of the platform are compared against desired

specifications. This introduces the problem, that each particular configuration must be

known in order to provide a reference value for the measurements. Practically, this is

rather di�cult due to the nearly unlimited amount of di↵erent platform configurations.

The paper introduces therefore the idea of basing this measurement on properties. Instead

of the actual system-specific measurements, properties express only a certain feature.

This allows to abstract particular features, e.g. a trusted boot process (cf. [97]) can be

abstracted into a property expressing security of a platform. This allows to define a

more general attestation method, which derives a platform’s trustworthiness, that is no

44

3.1 Research-based Approaches

longer based on the specific configuration of that platform (R1, R5, R6). The definition

of the properties itself is outsourced to a third party. This third party is considered to be

trustworthy and therefore responsible for providing the correct properties, which limits

the fulfilment of R5. There has been more work following this, mostly in the area of using

properties for secure boot applications with available platform configurations and in the

area of providing e↵ective protocols. This work can be found in [98, 99, 100]. While the

trust derivation itself is very promising, at least in the field of using the approach for

attestation there needs to be more work done. This is mostly due to the use of a third

party as property provider. Furthermore, as this approach belongs into the field of Trusted

Computing, a more detailed analysis can be found in section 3.2.

As already stated, grid computing also demands a management of trustworthiness for

the resources provided. Vijayakumar et al. show another approach on how to derive trust

in [101]. The authors goal is to provide a measurement of the trustworthiness of a grid’s

resource provider. In detail, the approach presented calculates a so-called trust factor for a

resource (R1). This trust factor is the combination of so-called security factors and security

attributes. Both parts are combined using a particular function and form the overall trust

factor. Although not written in the paper, security factors can be seen as expression for

the direct trust while security attributes express the indirect trust. In this case, indirect

trust is derived from reputation properties, like the authenticity of a provider. The security

factors, thus the direct trust, is formed by a set of characteristics which may be valid for a

service provider. For example, the set contains entries like intrusion detection capabilities

or anti-virus capabilities. All the entries within this set are weighted in terms of their

impact on the trust calculation. This allows to express di↵erences in terms of trust for

the characteristics. While located in another field, this approach does also base the trust

derivation on some kind of properties, like Sadeghi’s approach [92]. Although this approach

does limit the capabilities which may be used for deriving trust, the idea itself sounds

rather promising. An extended version of the approach can be found in [102].

There has been more work done in the area of trust management and trust derivation.

The approaches presented in [103, 104, 105] all rely on a particular combination of direct

and indirect trust. While direct trust may or may not be addressed, indirect trust is always

derived using a reputation system. Taking all these result, a summary can be given.

45

3 State of the Art

3.1.4 Summary

The first approach presented, CADS, allows a holistic decision making process for smart-

phone enabled environments [2]. Above all, it was developed to address the special prop-

erties of smartphones which are included within a network, thus it provides outstanding

integration and extension capabilities (R5 and R6). Due to this, it is well suited enough

to be used as basic environment. CADS provides capabilities, for example the architec-

ture consisting of Feature Collector, Feature Provider, Correlation Engine and Feature

Consumer which is very useful for solving the problems given by the scenarios. More in

detail, the concept of using a Feature Provider already allows to store the collected sensor

data (i.e. the Features) on a centralised place. This can be considered as a good basis

for the complete fulfilment of R2. Besides this, the Correlation Engine and the related

policy provide also a sophisticated basis for R3 and R4. Although it does not provide any

trust related mechanisms, its smartphone centric approach makes it well usable as basic

environment.

Summarising the first group, intrusion detection approaches in general, it is easy to see

that research has decreased in this area. This is due to the fact, that special environments,

like wireless sensor networks or ad hoc networks need special, thus tailored treatment. In

terms of the requirements stated in section 2, it can be summarised, that none of the

presented approaches o↵ers an out of the box capability to fulfil them completely. Besides

the requirements which demand and easy integration and extension (R5 and R6) and a

policy-based rule definition (R4), none of the other requirements may be fulfilled even

by customising the presented approaches. While the latter ones define their sensors to

be inherently trustworthy, thus negotiating the problem stated in R1, which may be

acceptable in their own scenario, the earlier approaches do not even mention or define the

problem of trustworthiness. Looking back at the latter approaches, some of them recognise

the problem and emphasise that there needs to be more work in order to address it in a

more general way. However, as there is not applicable solution, it comes clear that there

is really an issue when collecting measurements from sensors and basing decision upon

this collected information.

The second group which has been evaluated provides tailored intrusion detection ap-

proaches for particular environments. That is, in di↵erence to the first group, the solutions

proposed are only usable in the specific scenario. This scenario is always given by either

46

3.1 Research-based Approaches

a mobile and wireless ad hoc network, some kind of sensor network or grid and cloud

computing environments. Due to this, there are several di↵erent intrusion detection types

in this group. Starting by centralised approaches and hierarchical approaches, the range

ends by fully decentralised, peer to peer based approaches. In terms of trustworthiness

(R1), there are two distinct subgroups identifiable in this group. The first group does

not actively research the problem of their sensors trustworthiness, which is mostly due to

the scenario the solution is proposed for does not directly demand this. This subgroup

is rather small as most of the approaches at least include the trustworthiness problem

in their consideration. Due to this, the second subgroup includes some approaches which

demand the addressing of the trust problem. One example for this are all approaches pre-

sented for mobile ad hoc networks. Due to the scenario of nodes which are randomly part

of the network, trustworthiness of these nodes must be addressed. Most of the solutions

made for this node-specific trustworthiness aim into the direction of a secure routing of

messages in such a network.

Taking the third group, which is about deriving the actual trust measurement, also into

account, it can be stated that there are two distinct types of trust. The first type, called

direct trust is formed by specific properties of an entity. For example, if considering a node

in an ad hoc network, this could be the battery consumption of this node where a high or

abnormal consumption indicates a lower trustworthiness. That is, direct trust is also re-

ferred to a direct measurable value derived from a property of the system. In di↵erence to

this, indirect trust expresses trust measurements which have not been made on the entity

itself but are proposed from another system. In detail, a common term used for this is

the reputation of a system. If this reputation is high, i.e. other systems have successfully

operated with this system, the indirect trust of this system can be considered higher.

Furthermore, indirect trust is usually, but must not be exclusively, behaviour-based as it

maps the actions of a certain system into a measurable value used for trust calculation.

Combining these two trust types, an overall measurement for an entity’s trustworthiness

can be expressed. The combination of particular trust indicators, which may even be

more fine grained than just indirect and direct, is also widely researched. The tailored

solutions evaluated here allow for an e↵ective combination and expression of trust, thus

providing particular solutions to R1. While this is necessary in the approaches scenarios,

the calculation methods are always static. That is, none of the approaches presented is

able to change the calculation method in order to address a di↵erent situation. Providing

47

3 State of the Art

a widely usable solution based on these approaches is rather impossible due to this. Ad-

ditionally, the methods used to derive trustworthiness are also very scenario centric, thus

static. They are always based on a limited set of system properties, which is usually not

enhanceable, some kind of test message exchanged or a reputation measurement received

from a third party. This idea of using system properties is rather straightforward and

sounds overall promising. Unfortunately, most of the approaches limit the set of usable

properties and thus making it impossible to apply the solution to arbitrary scenarios. The

same limitation can bee seen for the test message exchange. It is useful in a very limited

manner as this exchange might be compromised. If it becomes compromised, the whole

trust derivation is unusable. The third approach, using reputation information seems to

be promising as long as the methods used on the third party generating this reputation

are clearly defined. This is missing in some approaches. Given this, requirement R5 and

in some cases R6 are not fulfillable by the approaches of this group.

A summarised view on the requirements is given at the end of this chapter. Besides that,

the other overall group of approaches, the technological-based approaches is presented

next. It is based on the Trusted Computing initiative and founds trustworthiness on high

level properties of a system. Although these approaches aim not directly for intrusion

detection and decision making, the idea of using abstracted properties for trust derivation

is rather interesting. Due to this, the following sections evaluate the abilities Trusted

Computing is able to provide.

3.2 Technology-based Approaches

This section presents approaches which are based on one ore more technological specifi-

cations. In di↵erence to the research-based approaches, these specifications are industry

driven to provide best practices for companies. All of the approaches presented here be-

long to the overall field of Trusted Computing (cf. [106] and [107]). Trusted Computing

can be considered as approach which provides means to base the security of a system on a

hardware-based root of trust. That is, the use of trusted computing technologies allows to

verify a system’s integrity. This verification can be done in addition to a user’s verification,

which may for example be done by performing an authentication of the user. Although

the user might behave as expected, trustworthiness can only be derived if the system itself

is also to be considered trustworthy, which is applied by providing a mechanism to allow

48

3.2 Technology-based Approaches

a system verification. There are two overall groups of specifications analysed here: (1)

Specifications that are based on the concept of a Root of Trust and Trusted Platforms as

well as (2) specifications that are based on Trusted Network Connect. Group (1) gives a

definition of trust and provides means to derive and specify trust of a component. That is,

it must be considered here as it presents approaches, which are valuable for the fulfilment

of R1 and R2. Group (2) combines the approaches of group (1) with a standardised proto-

col layer. This protocol layer aims on providing a very high level of platform independence

and interoperability. Due to this, it must be considered as it may provide a solution to

fulfil R5 and R6. Furthermore, the proof of concept implementation of the already pre-

sented CADS approach, which was considered valuable, is based on the second group to

achieve this high level of interoperability. Besides the analysis of the specifications itself,

research-based extensions to the specifications are also analysed here as they may provide

a more detailed (i.e., improved against the specifications itself) basis for the fulfilment of

R1, R2, R5 and R6.

Trusted Computing itself is composed of several specifications which are created and

maintained by the TCG. The TCG describes itself in [107] as a non profit organisation

which is based on a membership principle of industry acting corporations and research

institutions. That is, corporations and institutions can become a part of the TCG and

take responsibility for parts of the specification process. The amount of actual members

is steadily growing since the founding of the group under its previous name Trusted

Computing Platform Alliance (TCPA). Furthermore, the TCG is divided into several sub

groups which deal with a special field of interest, for example an infrastructure group or a

trusted network connect group. Each of these sub groups maintains a particular set of the

overall specifications. The specification process itself can be considered to be semi open to

the public. This means, that there is first an internal, closed phase where the specification

is only available for members to evaluate it, followed by a public review phase where the

group accepts comments from all audiences. Based on these two steps, a specification

becomes published after successful review of both parts.

As trusted computing aims on providing means to place trust on a system, the definition

of trust itself needs to be analysed again. This is done in the following section.

49

3 State of the Art

3.2.1 Trust Definition and Trusted Computing

As written in the previous section, there is no consensus about the term trust and its actual

meaning. However, in order to fulfil R1, a clear definition is necessary. Nearly all of the

approaches presented above have their own definition. Particular di↵erent definitions can

be found in [108, 91, 54]. When evaluating all these definitions which are di↵erent in terms

of their e↵ective results, there is nevertheless one similarity. All found at least a part of

the term trustworthiness on the expected behaviour of a component or system. That is, if

a system behaves the way it was expected, it is considered to be trustworthy. The Trusted

Computing Group uses this basic definition for their own, stating in [109] that trust “is

the expectation that a device will behave in a particular manner for a specific purpose”.

That given, the device can be considered trustworthy if it behaves as expected. Comparing

this definition with the approaches presented above it is clear that the term behavioural

trust needs to be clarified. Behavioural trust is mainly based upon the interactions of

a system between another system. Given the TCG’s definition of trust, this foundation

of behavioural trust cannot be considered as being complete. This is due to the fact,

that the TCG’s definition bases the overall trustworthiness of the system on an expected

behaviour of this system. This must not be mixed up with the behavioural term used

in the approaches above. Instead of measuring the system’s interactions and using them

for trust derivation, the TCG’s definition describes the trustworthy situation of a system

based on the behaviour. In detail, a system may be considered trustworthy if it fulfils

certain requirements and acts like expected due to this. For the remainder of this chapter,

the TCG’s view on trust is used: A system is considered trustworthy if it does certain

actions like it is supposed to. There is no derivation of trust by di↵erent behaviour like in

the approaches presented above. To enforce and measure this expected behaviour, trusted

computing uses a special trust anchor. The following section introduces this trust anchor

and explains the concepts which are used to inherit actual trust.

3.2.2 Root of Trust

The trust anchor used in trusted computing is formed by the so-called root of trust (cf.

[110]) whereon all trustworthiness for a system is based up on, thus building a foundation

for fulfilling R1. As already stated, trusted computing relies on a hardware root of trust.

This hardware root of trust is given by the so-called Trusted Platform Module (TPM)

50

3.2 Technology-based Approaches

(cf. [93, 94, 95]) and the components related to the TPM. The TPM itself is a special

hardware component residing in a more or less protected way on the system’s physical

representation, usually the mainboard. It is a necessary component to fulfil the TCG’s

requirements for a so-called Trusted Platform. The term Trusted Platform is summarised

later in this chapter. First, a detailed view upon the TPM is given, in particular about

the features which provide the derivation of trust (R1).

Trusted Platform Module

The Trusted Platform Module is realised as a microchip providing the necessary functions

to form a trusted platform. Its internal architecture is depicted in figure 3.3. The TPM can

Figure 3.3: TPM architecture defined by [93].

be interpreted as a special kind of cryptographic processor (i.e. a co-processor) which is

statically bound to the hardware. Although the TPM tries not to counter hardware-based

attacks, e.g. accessing the platform in physical means and removing the entries stored

in memory by cooling down this memory (cf. [111, 112]), it provides minimal tamper

resistance. This means, that it should be practically hard to remove the TPM from its

corresponding hardware or compromise it using a hardware-based attack.

51

3 State of the Art

To verify a platform’s integrity a so-called integrity measurement takes place. The result

of this measurement is securely stored using the TPM. This is done by utilising the so-

called Platform Configuration Registers (PCRs). PCRs can be seen as a special kind of

memory, holding a size of 20 bytes (i.e. a SHA-1 hash). These 20 byte values may be

measurements of certain system configurations, like a configuration file or a boot image.

The term measuring refers to performing a SHA-1 hash operation with the object to

be measured. The PCRs are initialised with well known values when the system starts

up and may only be changed by the use of a special operation. This operation, called

extend() takes a new value and inserts them into the appropriate PCR. The insert

process is not just changing the PCR’s entry but invoking an algorithm which takes the

stored value, concatenates it with the new value and finally hashes the resulting value

into the PCR: PCR
new

= SHA1(PCR
old

+ digest
new

) [113]. This makes it impossible to

simply put arbitrary and desired values into a PCR due to the use of a hash function

and the concatenation with the already stored value. To successfully manipulate this

process, it would be necessary to already change the first value stored within the PCR.

This is rather hard to achieve, as the first measurement performed is invoked by another

special component. This component, commonly referred to as Core Root of Trust for

Measurement (CRTM) is represented by the first program code that is being executed

when the system starts. It is responsible for performing the first particular measurement,

usually the system’s BIOS. The CRTM is placed on some hardware component on the

system (likely on the CPU), it is usually not part of the TPM itself, thus forming the

second part of the root of trust.

After measurements have taken place in the way described, they can be accessed by a

third party. This is done by another function provided by the TPM, the so-called quote

operation. Invoking quote() with the appropriate PCR(s) to be quoted, instructs the

TPM to provide the value stored in the PCR. It is not only provided as plain value but

is signed using the TPM’s key hierarchy. The TPM possesses several keys which may be

used for di↵erent tasks. There is a so-called Endorsement Key, which is unique for each

TPM, thus making it possible to derive that a message signed with this key comes from

a valid TPM. As this implies privacy issues, i.e. always using the same key, there is a

set of derived keys, the so-called Attestation Identity Keys (AIKs). By using this keys, it

is possible to verify if a message signed with one of them comes from a valid TPM but

not from which particular TPM. These keys are used to sign the message generated when

52

3.2 Technology-based Approaches

invoking the quote operation. That is, the PCR value is simply signed with one of these

AIKs so that the verifier can prove this value to be originating from a TPM.

Using this measurement and storing ability, the TPM has another capability which

has to be considered for the fulfilment of R1. This capability, which is called sealing,

allows to bind certain information onto a particular state of the system. That is, sealing

takes informations and encrypts them using the stored PCR values, thus making them

inaccessible as long as the system does not reach that particular state. In detail, when

the system starts up, the PCR stores certain measurements, like the state of the system’s

BIOS and the state of the boot image used. If some of the measured components change,

their measurement value does also change. This implies another PCR value than the

one which the information has been sealed to. It is therefore impossible to unseal the

data without the use of unchanged components. While this mechanism might be used to

securely store information on the system, which can only be accessed if the system is not

compromised, i.e. in a well known state, it provides an even more useful application. It

can be used to only boot the system up, if all measured value are as expected. That is,

it is possible to define a particular state the system must have to properly boot up. If

combining this with a X.509 certificate (as the proof of the system itself), this can be used

to remotely verify, that the system is within an expected state. Due to this, trust may be

derived from this information. The process of verifying this state is known as attestation

and will be explained more in detail in section 3.2.3.

Summarising this, the root of trust in trusted computing-based systems is not only

formed by a single component but by several components and certain values. That is,

there are on one side hardware-based parts while there are also software-based parts. The

hardware-based parts consist above all of the TPM itself. It holds the abilities to handle

the results from measurements in a secure and trustworthy way, thus in a way that there

is no lost in trustworthiness when storing measurements. Besides that, all other hardware

components must be considered also as parts for a root of trust. This is due to the fact,

that hardware-based components cannot be measured by the TPM appropriately. If one of

these components implements malicious functions which are not exposed but used secretly,

there is no way of recognising this. In addition to the hardware, the measurement itself can

be considered as one part which forms the root of trust. In detail, the pre defined values

which are used as reference when comparing the measurements are either interpreted as

trustworthy or untrustworthy values. Untrustworthy values are stored as reference while

53

3 State of the Art

every other value is being interpreted as trustworthy. Taking these two parts, is can be

concluded that a trusted system will act as expected, and is therefore being trustworthy,

if it complies with its hardware parts and the measurements taken. If the second part,

the measurements are not the way they were expected, the process of measuring itself

is still being trustworthy. This allows to securely identify systems which do not comply

to a particular expected state. Furthermore, this allows to derive the actual properties

which need to be taken into account if a system wants to be evaluated in terms of its

trustworthiness, thus providing a particular solution for R1.

Given these building blocks, in particular the TPM, a so-called Trusted Platform can

be defined. A detailed explanation of a Trusted Platform and the concept if a Chain of

Trust is given in 7.2.

3.2.3 Trusted Network Connect

Another one of the TCG’s specification is the so-called Trusted Network Connect (TNC)

specification. It provides a standardised mechanism to use the techniques presented above,

like an attestation of a device within a network. From the requirements point of view,

leveraging certain capabilities of TNC may be well suited to fulfil R5 and R6. This is the

case as one of the primary goals of TNC is to provide a high level of interoperability.

TNC itself can be seen as an improved version of traditional network access control

(NAC) approaches. NAC approaches allow to limit the access a client gets when it ac-

cesses the network. This is done by leveraging approaches like the IEEE 802.1X [114]

which provides a port-based access control. Furthermore, the access decision is usually

based up on a policy defining which client can access which service. In oder to distin-

guish between di↵erent clients, an user authentication is usually performed. In case of

the 802.1X protocol, the extensible authentication protocol (EAP, [115]) is responsible for

performing the actual authentication. In addition to this, there are three roles defined:

the so-called supplicant, an authenticator as well as an authentication server. The term

may be slightly di↵erent for another actual NAC implementation, although the role itself

is the same. The client, which requests access to the network takes the role of the suppli-

cant. A switch is commonly used as port-based access device, thus taking the role of the

authenticator. The third component, often depicted by an AAA server takes the role of

the authentication server. If the supplicant now requests access to the network, it commu-

54

3.2 Technology-based Approaches

nicates this request to the authentication server. This is done through the authenticator,

which only allows this kind of tra�c from the supplicant. Practically, the protocol used

for this kind of communication is EAP-based from the supplicant to the authenticator

and RADIUS [116] based from the authenticator to the authentication server. In detail,

the EAP messages are encapsulated into the RADIUS protocol appropriately. As already

mentioned, a user authentication is commonly carried out within this process. That is,

the authentication server first checks the user’s credentials and based on the result of this

check and the network’s policy makes a decision. This decision is then communicated to

the authenticator and consists of the information (a) whether the supplicant is allowed

to access the network and if it is allowed (b) which kind of access is granted. The au-

thenticator carries out the decision appropriately, thus connecting the supplicant to the

network or denying access.

As easy to see, the access decision made by the authentication server is solely based

on the user of the supplicant, not on the supplicant’s properties itself. This may be a

problem, if the access decision should also be based on particular features of the suppli-

cant. For example, security related features like the supplicants patch level or certain anti

virus countermeasures may be one of the aspects which form a decision. To allow for a

check of those, some NAC approaches allow to measure the supplicant’s system. That

is, these approaches are able to determine the system’s integrity and base decisions on

this integrity. A commonly used concept to achieve this, is to use an agent on the suppli-

cant which is responsible for performing the measurements and to communicate them to

the authentication server. A problem arises when compromising this agent: it may send

false measurements of the system, thus making the measurements useless as they are not

trustworthy (cf. [117, 118]). Due to this, there is the general question about trusting the

measurements done on the supplicants side. Trusted Network Connect now provides a way

of putting trust in the received measurements by leveraging the capabilities of a trusted

platform. TNC can therefore to some extent be seen as an enhanced NAC approach.

TNC provides the following capabilities, which are a mixture of common NAC abilities

and exclusively trusted computing-based solutions.

Platform Authentication A Platform Authentication ensures two things: (1) the authen-

ticity of the platform itself and (2) the integrity of the platform. Authenticity of the

platforms means, that the platform which is communicating with the networks is

55

3 State of the Art

exactly that platform which was expected to do this. The second point, the in-

tegrity (2) is measured on the platform and evaluated on the server’s side. If it is

as expected and the authenticity (1) was ensured, the overall process is considered

successful. While the integrity may also be considered in an insecure way by other

NAC approaches, the platform’s authenticity is introduced by TNC.

Endpoint Policy Compliance The authorisation process for a particular platform is based

on the integrity measurements done on that platform and a policy. This policy spec-

ifies the di↵erent cases in which a platform may or may not get access. For example,

the policy could hold information about the operating system or the platform’s

patch level.

Access Policy In addition to platform-specific decision making, the user of the platform

should also be taken into account. This may be done by using standard approaches

(i.e. 802.1X) to perform an additional user authentication.

Assessment, Isolation and Remediation If the platform is not allowed to access the

network due to not complying with the network’s policy, the platform is to be

isolated. Isolation can be distinguished into two cases. The first case denies every

access to the network, thus e↵ectively interrupting all communication possibilities

between the network and the platform. In the second case, the platform is placed

within a special quarantine network segment. Within this segment, the platform

has the possibility to solve the integrity related problems which lead to its access

denial. This is for example done by providing access to particular update servers

allowing to platform to update certain applications or the OS. After resolving has

taken place, the so-called remediation can be carried out. Remediation allows to

re-assess the platform’s properties again and if the platform is now policy compliant

(i.e. the platform authentication is successful), access can be granted.

Architecture

The TCG provides an architecture which allows to realise the features explained above.

The most overall version of this architecture is depicted in figure 3.4. The architecture

consists of two conceptual parts. The left side, which provides the functions like platform

authentication which was explained in section 3.2.3 and the right side which contains

56

3.2 Technology-based Approaches

Figure 3.4: Overall TNC architecture [96].

IF-MAP specific extensions. This section first deals with the left side, while the right

side is explained later in section 3.2.3. A more detailed version of the left side is shown

in figure 3.5. The remainder of this section is based on this architectural version. The

Network Access
Requestor

(NAR)
Policy Enforcement

Point
(PEP)

Network Access
Authority

(NAA)

TNC Client
(TNCC)

TNC Server
(TNCS)

Integrity Measurement
Collectors

(IMCs)

Integrity Measurement
Verifiers
(IMVs)

Access Requestor
(AR)

Policy Enforcement Point
(PEP)

Policy Decision Point
(PDP)

802.1X Supplicant, VPN Client Switch, VPN Gateway AAA Server (Radius)

IF-M

IF-IMC IF-IMV

IF-TNCCS

IF-PEP
IF-TPlatform Trust Service

(PTS)

TPM

TSS

IF-PTS

Figure 3.5: Detailed TNC architecture without IF-MAP [119].

architecture consists of logical entities, denoted by blocks and standardised interfaces,

denoted by the prefix IF. Communication either via a network or by processes are shown

by lines, in some cases with arrows indicating the flow of the communication. There are

three components defined by the architecture, which map the roles that were explained

for general NAC approaches. They are realised as vertical sections in the architecture.

57

3 State of the Art

The Access Requestor (AR) takes the role of the supplicant, thus requesting to access

the network. It is usually an endpoint device like a laptop or a smartphone. The Policy

Enforcement Point (PEP) is responsible for providing or denying this requested access. It

therefore acts as the authenticator. Commonly, a switch which is capable of performing

port-based access control is used as component for this. The third component, which is the

Policy Enforcement Point (PDP) is responsible for evaluating the AR’s measurement and

comparing it against a policy, thus making a decision about whether the AR should gain

access or not. It is therefore in the role of the authentication server. The three components

and their communicational patterns are divided horizontally into three di↵erent layers.

Beginning with the lowest layer, the so-called Network Access Layer, via the Integrity

Evaluation Layer and ending on top in the Integrity Measurement Layer.

A detailed explanation of the TNC architecture is given in 7.3.

Policies

Three di↵erent logical policies can be identified, whereas logical refers to the policies

being di↵erent in their means while they may be physical located within one file. The

three types are the IMV policies, the TNCS policy and the NAA policy. The IMV policies

control the evaluation of the particular measurement values. They are only valid for the

appropriate IMV and there may be more than one of them, each for every IMV. These

kind of policies control for example which patch level of the system is valid. The second

type, the TNCS policy controls the decision making of the TNCS. This is necessary as

the TNCS receives a suggestion from each IMV, thus it may receive an arbitrary high

amount of di↵erent suggestions. The TNCS policy controls which kind of decision is made

based upon the several suggestions, thus it e↵ectively controls the weighting of all di↵erent

aspects measured. By the use of this policy and the suggestions, the TNCS can perform

a decision making process. Although this decision is the final action from the TNC’s

concept point of view, the Network Access Authority has the overall decision. To control

the behaviour of the NAA, another policy is used. This NAA policy holds aspects like the

di↵erent users and di↵erent groups which may be treated di↵erently. All of these policies

are needed in order to define allowed states for a client.

In addition to these PDP-specific policies, there may be a fourth kind of policy. As

the AR is located on the client device, there is one problem in terms of privacy: the

58

3.2 Technology-based Approaches

measurements which are performed may contain arbitrary data about the client. This

leads to a situation, where the user of the client has to trust the infrastructure about

not collecting the user’s information. As smartphones may contain sensitive information,

which the user don’t want to share, it is necessary to provide a way to at least inform

the user about what is collected and give her the choice to decide. Although this is not

directly addressed in the TNC specifications itself, there is some research-based work

which provides a solution for this and allows a wider use of TNC.

Bente et al. introduce a concept called client side policy in [120]. It allows the user of

an Access Requestor to be actively part of the TNC handshake by accepting or denying a

measurement request. This is done by defining a so-called client side policy (cf. figure 7.5

and listing 7.1 for an example), which is based on the IF-M specification [121] and allows

to define which attributes may be measured or not. In addition, the concept also limits

the measurement abilities to the defined attributes. This limits the server in requesting

arbitrary things from the client. In detail, the policy is placed by enhancing the architec-

ture of TNC, shown in figure 3.6 and thus also extending the message flow (see figure 7.6).

As it easy to see, the Access Requestor is enhanced by a Policy Manager (PM), which

Figure 3.6: Extended TNC architecture [120].

handles the necessary policy interruptions. As long as the TNCS accesses properties and

attributes that are defined as allowed, the whole process is the same as in standard TNC.

59

3 State of the Art

If the TNCS wants to access arbitrary, undefined properties or disallowed attributes this

is denied and an empty message is returned to the TNCS. Although this approach ensures

the privacy to some extent, it depends on the TNCS’s policy used on the PDP. That is, if

one of the attributes which has been denied by the client is considered highly valuable, the

PDP certainly won’t allow access without it. Nevertheless, the approach allows to deploy

the TNC architecture in fields that demand privacy considerations, as already stated like

in smartphone enhanced environments.

Remote Attestation

Going back to the features trusted computing provides, remote attestation is the most

valuable one in terms of deriving trust (R1). Given all the techniques and concepts from

the previous sections, like the root of trust or TNC as communicational framework, remote

attestation can be explained in the following. Furthermore, there are several research

approaches which allow for more sophisticated attestation approaches. Some of them are

also shown and evaluated.

Remote attestation describes the actual process of receiving integrity related informa-

tion from the client which describe the platform’s state and which can be considered

trustworthy under some circumstances. As already stated this is done by measuring the

platform’s properties and extending them into the TPM’s PCR(s) e↵ectively building a

measurement chain. When verifying the measurements, the final value is retrieved from

the TPM. This is done by performing a quote operation for the appropriate PCR(s).

Within this quote operation the values are signed by the TPM with a key, allowing it to

verify the validity of the TPM. This is necessary as the TPM is one of the root of trusts for

a trusted platform. The key which is used to sign the quoted values are one of the already

described AIKs. The connection of this AIK is given due to the AIK being derived from

the TPM’s EK and by establishing a relationship of the AIK and EK. This is done by an

external party, a so-called privacy CA, which signs the AIK and attests that it belongs to

a valid TPM. Also this process is rather straightforward, it demands that the privacy CA

acts trustworthy. This is necessary as if the privacy CA provides its information to the

verifiers of the signed PCR values, the verifiers would be able to uniquely identify the plat-

form each time an interaction with this platform takes place. To circumvent this problem,

Brickell et al. propose the so-called direct anonymous attestation approach (DAA) in [122]

60

3.2 Technology-based Approaches

and [123]. The DAA introduces a tailored protocol, which allows to derive the validity of

an AIK without the use of a privacy CA. It is a rather complex protocol but allows to

avoid the privacy limitations if using the privacy CA approach. Independently of using

the DAA or privacy CA approach, the verifier is able to reconstruct the measurement

chain. This is due to the platform not only sending the quoted values of the PCRs but

also a log, the so-called stored measurement log (SML), which includes all information

about the measurement steps that were carried out on the platform. Given the quoted

PCR values and the SML, the verifier can rebuild the measurement chain on its own and,

if everything is as expected, by performing each measurement step described in the SML

on its own should come up with the same value that was received from the platform. The

SML itself is not secured at all as this is not necessary. If there are di↵erences between

the SML and the actual measurement chain, e.g. in case the SML was compromised, the

verifier won’t reach the final value, thus it recognises that something is not as expected.

The process of measuring each component of the platform based on hashing of the

executables of this component is the TCG’s proposed standard approach for attestation.

It is called binary attestation, and relies conceptual solely on the measurement of binaries

on the systems. This imposes some questions, with some of them already being mentioned.

The main problem of binary attestation is the scalability of this approach (cf. [124, 125]).

To get a complete picture of the system, every component (i.e. every binary) needs to

be measured. Given an actual system with a common operating system like a Linux-

or Windows-based one, there is a rather high amount of components which need to be

measured. Even if it would be possible to measure all components in a reasonable way, for

example in a reasonable amount of time as hashing takes some time per file, the approach

does still not scale very well. This is due to the fact, that each time the system reboots

things are changed on the platform. Even without the user doing something, like storing

new programs or files, the system also changes. In particular, every time the system

updates itself, the changes are even of higher impact. This leads to a situation, where

each reboot would require new reference values, which is practically very ine�cient. To

counter this, the system can be divided in several distinct compartments [126, 127, 128].

One of these compartments may be interpreted as security critical and be set to a read

only state which prevents changes to it, even when rebooting. Although this idea provides

some more usability, the problem of changing system configurations through updates and

the high amount of possible system configurations remains.

61

3 State of the Art

To perform an actual remote attestation, the TNC framework may be used. TNC

provides a full set of methods to perform a remote attestation in a interoperable manner

(R1, R5 and R6). There are no problems if performing this while the client (i.e. the

AR) is directly connected to the network, not using some kind of VPN approach. If the

access is provided through a VPN tunnel, the TNC framework proposes several means

to allow for an attestation. First of all, the VPN gateway takes over the role of the

Policy Enforcement Point, thus being responsible for enforcing the access to the network.

Furthermore, the approach strongly relies on the VPN being established using IPSec [129].

This is due to the fact, that the TNC handshake is proposed as being part of the Internet

Key Exchange performed within the IPSec negotiation phase. In detail, TNC demands

version 2 of the Internet Key Exchange Protocol (IKEv2, [130]) as only this version if

capable of encapsulating the appropriate TNC-specific packets. This can be seen as a

limitation, as there are several other technologies for establishing VPN connections (e.g.

[131]). Addressing this limitation, there are approaches which allow to perform a remote

attestation in VPN environments.

Schulz et al. propose an approach in [132, 133] which also extends the IKEv2 protocol

in order to support a remote attestation. The aim of this work is rather in the area of sim-

plicity and e�ciency to support arbitrary attestation approaches. In detail, the approach

negotiates the exact version of which kind of attestation is carried out in the phase of ne-

gotiating the IPSec’s security association. The attestation negotiation is therefore done by

introducing a new structure which allows to communicate about the attestation method.

The actual attestation process is done after the IKEv2 part is nearly finished. In this

phase, attestation data is communicated between the parties and a final connection is

only established if this phase is successful. The approach itself does not rely on TNC, but

provides e↵ectively the same functionality with the improvement of supporting arbitrary

attestation techniques. As with the TNC approach, the VPN implementation itself has

to be changed in order to support the IKEv2 and attestation data enhancements, which

renders this method only interoperable in a very limited way.

Besides this approach, Baiardi and Sgandurra propose another approach in [134]. Al-

though their work is mainly about performing a remote attestation within a so-called

overlay network, they do also rely on a VPN environment. In di↵erence to the previous

approaches, this environment is based on OpenVPN [131].In order to perform a remote

attestation, the authors enhance OpenVPN itself. In detail, a particular plug in is im-

62

3.2 Technology-based Approaches

plemented adding remote attestation to the OpenVPN components. Comparing this to

Schulz’s approach mentioned above, the concepts are similar to a certain extent. Both ap-

proaches use the possibility to customise and extend the VPN components. Besides that,

the approach of Baiardi et al. only allows for a conventional binary-based attestation.

Another common point for both approaches is that they do not aim at interoperability

as both require changes to the software components providing the VPN environment.

Another approach based on TNC aims to provide this interoperability.

In [135] Bente et al. propose an idea to perform a TNC-based attestation without the

need to change components responsible for the VPN connection. It is based on the second

version of the IF-T [136] protocol, which provides a method for communicating TNC

messages using an already existing ip-based connection. In detail, a TLS secured tunnel is

established which allows to perform a remote attestation. This is done by allowing the AR

in its initial state to communicate with only the PDP. A packet filter is used to enforce this

communication and operates on the VPN gateway so no other communication is possible

for the AR. After the handshake is finished, the filter may open up the network. Although

software is unchanged if using this approaches, some special components are added to

the architecture (figure 7.7 for details). There needs to be the packet filter, which acts as

Policy Enforcement Point and to provide real interoperability a so-called PEPd1 which

provides IF-PEP functionality. Figure 3.7 depicts the changed flow of messages. The steps

which are carried out by using this approach are as follows.

1. First of all, the VPN connection is established. This is done in a regular way, i.e.

without any TNC or attestation-specific means. Due to this, there are no changes

to the VPN software necessary. The VPN tunnel is established after this step.

2. Next, the TNC handshake starts. The necessary components on the AR perform

the required measurements and the results are communicated via the IF-T protocol

through the established VPN tunnel.

3. The PDP receives these results, as the packet filter allows the AR to communicate

with the PDP. It does not allow any other communication at this time. The PDP

can therefore perform the evaluation of the received results.

1The d indicating this as a daemon component.

63

3 State of the Art

Figure 3.7: Changed message flow for VPN [135].

4. If the evaluation was successful, the PDP sends the enforcement instruction back

to the PEP. The PEPd is now responsible for receiving this message, as the packet

filter is usually not able to understand IF-PEP protocol-based messages.

5. Due to this, the PEPd is also responsible for triggering a rule change of the packet

filter. This rule change intends to allow network access for the AR.

6. The actual process of changing the rules is then performed by the packet filter itself.

In detail, it simply updates the rule set in order to allow the network access.

7. Finally, the access recommendation is communicated to the AR. Although this step

is depicted last, it may happen in parallel to the previous steps, as soon as the PDP

has sent the access recommendation to the PEPd. Finishing this, the AR gets access

to the network.

The approach provides also means to isolate an AR if necessary. This is done by instruct-

ing the packet filter with a specialised rule set which only allows access to a particular

isolation network. Furthermore, the approach not only provides interoperability due to

it’s straightforward integration but also support for arbitrary attestation methods. Such

other methods are shown in the following.

64

3.2 Technology-based Approaches

As already stated, binary-based attestation has several drawbacks which are mainly

based on the poor scalability of the approach. Furthermore, there are also environments

which provide other, more tailored, means to attest the integrity. The approach of an

attestation based on properties rather than on binaries presented by Sadeghi et al. in [92]

was already explained in section 3.1.3. The idea of this approach is to define a platform’s

properties, like security relevant properties, and use a third part to translate the binary

measurements into property-based measurements, thus e↵ectively attesting the proper-

ties. The problem within this approach is the use of a third party which maps actual

configurations to properties. As with the privacy CA-based approach, this introduces pri-

vacy related problems, as the trusted third part might spread identifiable information.

In [137] Chen et al. introduce a protocol which solves this problem. This is done by us-

ing specialised signatures types, which allow to map configurations on properties without

the use of a third party. Using this refined version, property-based attestation provides

a promising way of deriving trust without the scalability problems introduced by plain

binary attestation. Some more views at property-based attestation are given in [138].

Another approach using properties is presented in [139]. It does not define properties in

the same way as the property-based attestation approach does, as it aims on dynamically

measuring a platform’s state. Thus, properties are defined as constraints a program2

must fulfil in order to be considered trustworthy. These constraints are based on pre

defined behaviour profiles programs possess when executed. At runtime, these properties

are measured, thus providing a dynamic version of the remote attestation approach.

Moving forward from trusted computing-based approaches, another attestation ap-

proach aiming at embedded devices is introduced in [140]. This approach, called SoftWare-

based Attestation for Embedded Devices (SWATT) is being able to verify the memory

contents of a device from an external party. This is done by providing a special verification

algorithm to the embedded device, which is able to generate memory-based checksums.

If an external party needs to verify memory contents, it sends a challenge to the device.

The device then calculates a checksum in a well defined manner, including some time

critical constraints, and responds to the verifier. Like in the TCG’s approach, the verifier

is able to do the same with the reference memory content and can therefore proof the

answer correct. If the answer is unexpected or the calculation time di↵ers, the device’s

memory is interpreted as compromised. In di↵erence to the TCG’s attestation, SWATT

2I.e., an executable and its instantiation at runtime.

65

3 State of the Art

only uses a software-based root of trust (cf. [141]). This is possible for this area as an

embedded device has a defined architecture, as well as defined components and software.

While not directly addressing the field of problems the TCG’s approach aims for, this

approach can be used to attest embedded devices and thus provides a possibility to derive

trust for such devices. An improvement of the pseudorandom memory traversal concept

SWATT is based on is given in [142]. In this paper, the authors propose to use a SWATT

like approach to determine the trustworthiness of a node in a sensor network. It is done

by taking an amount of distributed nodes to determine the integrity state of another

node. Results of simulations show, that the approach allows not only to detect one single

compromised node but also works for more than one node.

Going back to the core attestation scheme proposed by the TCG, there is another

approach which tries to circumvent the problems of both, the TCG’s binary approach

and the property-based approach. This approach, called behaviour-based attestation, is

presented by Li et al. in [143]. It is based on two conceptual parts: a trustworthy boot-

strapping of the system to initialise the necessary components and second the monitoring

of the system’s behaviour. The authors propose to use the techniques introduced in [144]

to achieve a secure bootstrapping procedure. They do not propose other, in particular

new means for this area. The second part, the behaviour monitoring is based on a policy.

This policy defines expected behaviour on the verifiers side. On the client’s side a special

module is responsible for monitoring the behaviour and measuring it appropriately. This

module is secured by the bootstrapping of step one. The actual attestation is based on

the measurements of the behaviour which are communicated to the verifier. The verifier

is able to rebuild this behaviour and can compare it against the policy which defines

expected behaviour, thus trustworthy behaviour. Although behaviour can be considered

a rather good indicator for the trustworthiness, it is unfortunately not the only one (cf.

direct vs. indirect trust). Due this, the authors approach is only able to record and attest

the results of untrustworthy actions. It is not able, unlike the other approaches, to com-

pare a certain state of the system. Nevertheless, there might be applications, where this

kind of trustworthiness may be considered enough in order to derive trust.

Naumann et al. propose another behavioural-based attestation approach in [145]. In dif-

ference to the approach presented above, it is based on the low level binary measurements

which are mapped to a behavioural policy. That is, a pre defined behavioural model is used

to describe a policy. This policy is used as a reference for future attestations. Given the

66

3.2 Technology-based Approaches

platform of the client, a framework introduced by the authors is used to abstract low level

binary measurements in a high level behavioural form. That is, the behavioural model

of the actual platform is derived by a defined set of binary and property-based measure-

ments which allow to map a specific configuration to a specific behavioural pattern. This

pattern is used to perform the actual attestation. Based on the pre defined behavioural

model, the pattern is matched against the policy. The policy is capable of defining ex-

pected behaviour as well as unexpected behaviour. This allows to include all platform

relevant properties, which e↵ectively reduce the problems of the approach presented prior

to this one.

Another approach which uses the behaviour of a certain piece of code as attestation

base is introduced by Haldar et al. in [146]. It is called semantic attestation and uses a

special architecture, which includes a trustworthy virtual machine running on the plat-

form. Programs which are intended to run on the platform are loaded into this virtual

machine. A policy on the verifiers side defines which behaviour is considered trustworthy.

The program runs within the virtual machine, which makes it possible to monitor it’s

behaviour in a sandbox like environment. The behaviour defined in the policy is then

evaluated against the behaviour that was monitored in the virtual machine. This process

renders the actual attestation, as the verifier decides based on the monitoring results.

The approach demands for a secure virtual machine environment as the verifier puts trust

into the observations made by the virtual machine. Due to this, it is also necessary to

enable a secure bootstrapping of the client. Furthermore, although the approach might

be used for arbitrary types of programs, the authors describe it explicitly for the use of

java executables running in a trusted java virtual machine.

Given the area of mobile security, Naumann proposes an approach to perform a remote

attestation for the Android platform in [147]. It is based on the usage of the Integrity

Measurement Architecture [148] in order to start a Chain of Trust from the kernel level.

However, the authors do not rely on existing open source software that provides the

necessary functions. Instead, they implemented a mini TPM emulator as well as a mini

TSS with a rather limited functionality. Furthermore, the paper proposes two attesta-

tion methods: so-called application level attestation and so-called class level attestation.

Application level attestation measures installed apps prior to their execution. A problem

arises as the established chain of trust cannot be considered complete. This is due to the

fact, that the approach does not measure the Android Java framework constituting of

67

3 State of the Art

a set of core libraries. To overcome this limitation, class level attestation is used in the

overall approach. In detail, each single Java class is measured after it is loaded but before

it is executed, thus fixing the otherwise broken chain of trust. While it can be considered

as a complete attestation scheme, the approach solely relies on standard binary attesta-

tion, thus not covering the specific permission model of the Android platform and thus

only partially fulfilling R1. Furthermore, the class level attestation approach increases

the number of taken measurements linear to the number of the app’s Java classes, which

makes the poor scalability of binary attestation even worse. This poor scalability directly

a↵ects the fulfilment of R6 as it is di�cult to integrate within an arbitrary amount of

devices. Furthermore, R5 must also be considered not fulfilled as the approach does only

rely on the binary-based attestation mechanism.

An approach which includes the special properties of the Android platform is presented

by Bente et al. in [149]. The authors propose an attestation scheme which relies on the

permissions given to the apps installed on that platform. That is, as permissions control

the behaviour of the apps by limiting their access rights, this approach can be seen as a

very special kind of a behavioural-based attestation. The approach is not only based on

simple evaluation of permissions given to apps but also on complex conjunctions of them

(see figure 7.8 and 7.9 for examples). Furthermore, the approach relies on a custom rom,

which allows to attest the Android platform’s basic systems, such like the kernel and the

virtual Java environment. This is done by leveraging the IMA [148] system which performs

a binary measurement of all static components, up to the application layer. At the point of

the application layer, the permissions for each installed app are attested (R1). That is, the

verifier receives two parts: a proof of the basic system based on a binary measurement and

the measured permissions for each app. A policy defines which permission combinations

are trustworthy. More information, in particular about the detailed message flow and the

performance of the approach can be found in section 7.7.

Bente et al. propose another approach for a Google Chrome (cf. [150]) based environ-

ment in [151]. It can, to some extent, be seen as another version of the permission-based

approach presented above. However, it aims on performing a remote attestation for the

Chrome OS platform, which has some features allowing also to base the attestation upon

the installed apps. In detail, Chrome OS provides a well defined basic system, including

the kernel and everything up to the Chrome browser. This basic system is secured in-

herently by a specialised version of a trusted boot. That is, the Chrome platform verifies

68

3.2 Technology-based Approaches

the integrity state of the system and only boots the system if its state is as expected.

Apps provide application level functionality and are run inside the Chrome browser’s

sandboxed environment. Due to this, the approach provides two things: first it attests

that the measurements made are originated from a valid Chrome platform and second,

measurement results of the apps installed inside the browser. Proving the platform to

be a Chrome device is enough, as the trusted boot ensures the system’s integrity. If the

proof can be given, it must have been a valid booted Chrome system answering the proof

request. This puts the root of trust to some extent on the side of Google as the approach

relies on their trusted boot. The actual measurements are taken from the applications in-

stalled on that platform, thus residing in the Chrome browsers sandbox. They are based

on several properties, for example the manifest defining such an app or the actual binaries.

More details of the approach are shown in section 7.8. Using this approach, an e↵ective

remote attestation can be performed for Chrome OS-based systems. In di↵erence to the

TCG’s binary attestation, the approach is able to measure at a higher level by using the

properties of the particular apps.

Given all these di↵erent approaches, it can be concluded that there are a lot of possi-

bilities of deriving the actual trustworthiness of a device, thus providing basic methods

for fulfilling R1. Furthermore, it is noticeable that there are well suited approaches for

most of the relevant device classes, in particular for Android-based smartphones. These

approaches can be used in order to fulfil parts of the requirements. Besides that, it is also

clearly to see that none of the approach provides an all together solution which is able

to fulfil all requirements, in particular R2 and R3 are not considered at all. This is due

to the specific scenarios the approaches are intended for in addition to their fundamental

research-based characteristics.

IF-MAP

As written in section 3.2.3, TNC consist of two conceptual parts. Figure 3.4 depicts both

parts, with the concept responsible for providing attestation possibilities shown on the

left side of the figure. The other part, which consists of the specification for the so-called

Metadata Access Point (MAP) concept forms the right side of the figure. The standardised

interfaces (IF-MAP) are mainly specified in [152] by the TCG.

69

3 State of the Art

IF-MAP can be seen as a special version of a content-based publish subscribe sys-

tem (cf. [153]). That is, there are entities which provide information to an authority and

other entities which subscribe to this authority based on a specific content and consume

the appropriate information. More in detail, there are two logical components defined in

IF-MAP. The first one, which is called MAP Client (MAPC), is responsible for (a) pub-

lishing information and on the other side for (b) consuming information. There may be

an arbitrary amount of such MAPCs in an IF-MAP enabled network. The second compo-

nent, the so-called MAP Server (MAPS) is the central authority responsible for receiving

published information from the MAPCs and handling the appropriate subscriptions for

other MAPCs. Examples for MAPCs are flow controllers of the network or simple clients

providing logging information. Using the provided information, the MAPS creates and

maintains an internal graph structure depicting the information and to some extent their

relationship. The graph is based on so-called identifiers and so-called metadata. Identifiers

are nodes which represent some kind of a key element making a set of information identi-

fiable while metadata are data which describes this key element. A device identifier may

for example possess certain capability metadata expressing certain abilities of the device.

An example graph is depicted in figure 3.8, the grey elements represent identifier while

the green and red elements show metadata. Furthermore, green depicts infrastructure

related metadata while red shows smartphone metadata. The example itself shows a pos-

sible graph for an environment consisting of the CADS system, one or more smartphones,

infrastructural components like a DHCP server and a TNC-based PDP (e.g. [154]).

The basic specification of IF-MAP does not define which metadata should be used. It

only defines the abstract relationship between identifiers and their metadata. The par-

ticular metadata is either specified in addition (cf. [155, 156]) to the basic specification

or must be specified in a vendor-specific way for the particular environment. That is, in

order to actually use IF-MAP, all MAPCs and MAPSs must be able to understand the

data exchanged. Interoperability can be achieved if the standardised metadata is being

used as each of the components may not be from the same vendor but all must implement

the standard specifications.

The CADS approach which was explained in section 3.1.1 is also, from the implementa-

tions point of view, based on the IF-MAP standard. The concept of the implementation

consists of two parts: the mapping of the appropriate components like the Feature Collec-

tor to the IF-MAP roles as well as the definition of appropriate metadata. Both is given in

70

3.2 Technology-based Approaches

Figure 3.8: Example graph.

detail by Bente in [2]. The CADS architecture is formed by four logical components: the

Feature Collector responsible for measuring Features, the Feature Provider which han-

dles the storage of the Features, the Correlation Engine which evaluates Features and the

Feature Consumers which somehow process Features. Each of these four components are

mapped to the explained IF-MAP roles of MAPC and MAPS. Figure 3.9 depicts this par-

ticular mapping of the IF-MAP roles within the CADS implementation. As it is easy to

see, the Feature Collector, the Correlation Engine and the Feature Consumer are mapped

as MAPCs. The only component being a MAPS is represented by the Feature Provider.

This is rather straightforward, as the Feature Provider is responsible for collecting and

providing Features from and to all other components. Furthermore, CADS demands that

there is only one Feature Provider and one Correlation Engine. This corresponds at least

for the Feature Provider with the IF-MAP approach, as there is usually also only one

single MAPS. In addition to this, there may be an arbitrary amount of Feature Collectors

and Feature Consumers, which is also as supposed as they act as MAPCs.

IF-MAP defines the communicational means only for exchanging data in a publish sub-

scribe based manner. The semantics of the data itself is defined in additional specifications

or must be self (i.e. vendor-specific) defined. In case of the CADS system, the IF-MAP

provided specifications were insu�cient to handle the requirements the CADS system de-

71

3 State of the Art

Figure 3.9: IF-MAP mapped CADS architecture [2].

mands (cf. [2]). Due to this, CADS uses its own vocabulary of metadata, which is strongly

based on the Feature concept of CADS. This vocabulary is mainly based on Features and

Categories. While Features, as already explained, encapsulate measurement values in con-

junction with contextual information, Categories are used to structure Features. In detail,

for each smartphone which is measured, a Feature tree, consisting of Features in its leafs

and Categories in its branches is constructed. This Feature tree is stored on the Feature

Provider, i.e. on the MAPS besides the standard IF-MAP graph, thus being an extension

to the standard graph. Figure 3.10 depicts such an example graph which results from the

use of the CADS system in an IF-MAP environment. The graph consists of two logical

areas: the upper area which represents standard IF-MAP elements and the lower which

is CADS-specific. The standard IF-MAP part in the upper area is constructed through

the use of other IF-MAP based components. Such components can be for example an IF-

MAP enabled flow controller or a sensor capable of publishing IF-MAP metadata. CADS

components are only able to operate on CADS-specific data (lower area), as they only

encapsulate the necessary information, like contextual information for the Features. This

means, to use standard metadata, a special MAPC would be required in order to trans-

late these standard metadata in the CADS-specific Feature format. An easier approach

to do this, is to simply extend the appropriate MAPC with the functionality to directly

72

3.2 Technology-based Approaches

Figure 3.10: IF-MAP example graph with CADS elements [2].

publish Feature-based metadata. Although CADS can only operate on its own elements,

the Correlation Engine is capable of publishing back standard metadata under some cir-

cumstances. Due to this, CADS may also act as a decision engine providing decisions for

standard IF-MAP enabled components. Furthermore, the graph being created by the use

of the CADS components is only usable by components which are able to understand

the Feature-based semantic. This is only given for logical components which are either a

73

3 State of the Art

Correlation Engine or a Feature Consumer. That is, if another component is intended to

be included in the CADS graph, with the term included referring to the ability to use the

Feature-based metadata, it needs to be either defined as Correlation Engine or as Feature

Consumer, whereas Feature Consumer is more likely.

Given that, the communicational flow created by the CADS component can be shown in

a more revised version. Figure 3.11 depicts this flow with the steps being explained in the

following. The components which are involved are two Feature Collectors (FCol-1/2), the

Feature Provider (FP), the Correlation Engine (CE) and one Feature Consumer (FCon).

FCol-1

5

4

3

1

2

measure(F-1)

7

9

66

88

FCol-2 FP CE FCon-1

request(store,{F-1})

response(OK)

measure(F-2)

request(store,{F-2})

response(OK)
request(retrieve, F-1, F-2)

evaluatePolicy({F-1},{F-2})
response({F-1},{F-2})

request(store,{F-CE})

response(OK)

request(retrieve, F-CE)

response({F-CE})

process({F-CE})

Figure 3.11: CADS communication flow [2].

1. The first Feature Collector starts by measuring a certain property of the device and

creates a Feature for this measurement.

2. After that, the Feature Collector request storage for this Feature on the Feature

Provider. In detail, this is done by publishing this Feature as IF-MAP metadata

and providing it to the MAPS which includes it in the CADS-specific sub graph.

3. The second Feature Collector continues by measuring another Feature.

74

3.2 Technology-based Approaches

4. This Feature Collector also requests the Feature Provider to store the previously

measured Feature. As with the first Feature Collector, this is done leveraging IF-

MAP and performing a publish into the appropriate sub graph on the MAPS.

5. The Correlation Engine retrieves both stored Features from the Feature Provider.

Seen from IF-MAP this is done due to the use of a subscription from the Correlation

Engine for CADS-specific metadata. That is, each time CADS metadata (Features)

are published by a Feature Collector, the Correlation Engine is triggered and is

provided with the Features from the MAPS.

6. Using this data, the Correlation Engine is now able to evaluate the Features against

the policy. This policy defines actions based on certain measurement values and their

combination, additionally including contextual information. Based on this evalua-

tion, a new Feature which expresses the Correlation Engine’s decision is created.

7. This decision holding Feature is then again stored (i.e. published to and stored) by

the Feature Provider.

8. A Feature Consumer, which has an appropriate subscription for this kind of Feature-

based decision metadata is now able to retrieve this decision.

9. Using this received Feature for an arbitrary purpose, the final step is finished.

As these steps and the CADS mapped architecture shows, IF-MAP provides a rather

straightforward way of using the CADS concept. By providing the necessary mapping

for the appropriate components and the definition of the Feature-based metadata format,

the IF-MAP based implementation approach can be easily extended. This can be used to

fulfil R5 and R6 when providing a proof of concept implementation.

3.2.4 Summary

Trusted Computing provides two basic abilities: the trust derivation approaches and the

framework-based approaches which are conceptional as well as implementation centric.

The trust derivation is given by the concept of a trusted platform possessing several

capabilities which allow to put trust into this platform. Furthermore, trust is not only

derived from software but founded by several hardware-based parts forming a rather

75

3 State of the Art

strong root of trust. Besides the TCG standardised approaches, there has been some

work in this area, not only for the root of trust itself but also in the area of attestation.

This work shows several promising aspects, which may be leveraged in order to establish

a mechanism for evaluating trust, thus fulfilling R1. Unfortunately, neither the TCG’s

standardised approach nor the research-based approaches provide a way to perform a

trust evaluation in the reference environment out of the box. Furthermore, none of the

approaches fulfils the other trust-related requirements R2 and R3. A policy (R4) is given

and explained by some of the approaches. However, all of the approaches tailor their policy

for the selected use case.

The framework-based approaches provided by Trusted Computing are used to allow

for a high level of interoperability, thus aiming in the direction of R5 and R6. Although

not directly related to the trust-based requirements, it is rather promising as it allows to

implement systems which can be integrated into existing architectures. This is due to the

fact, that the new component simply needs to implement this standard as well if the envi-

ronment the component should be included is based on the standardised approach. While

not directly useful for the conceptual approach, this benefit needs to be considered when

actually building and implementing the system. In detail, the current implementation of

the CADS system is based on such a standard and therefore provides a solution R6.

3.3 Assessment

Based on the findings made for the related work in both parts: research- and the technology-

based approaches, this section summarises the most important points for each of the re-

quirements stated in section 2. First of all, an overview table shows both, research- and

technology-related approaches and their particular fulfilment of the requirements. Based

on this, a detailed discussion of each requirement summarises the chapter.

The following table (3.1) summarises the fulfilment of the requirements for the most

important approaches shown in the previous sections. The approach is either named or

referenced by the authors who proposed it. Approaches are aggregated into one single

entry if there are more than one version of it, i.e. the entry summarises all features of the

particular versions of this approach. The TCG-based approaches are categorised by either

they are TNC-related or not. A — indicates a non fulfilled requirement, a O indicates a

partly fulfilment and a + a complete requirement fulfilment. It is clearly to see, that there

76

3.3 Assessment

are a lot of useful approaches which address some of the requirements. However, there is

no approach which is able to fulfil all of the requirements.

Approach T
ru
st

ev
al
u
at
io
n
(R

1)

T
ru
st

h
is
to
ry

(R
2)

T
ru
st

co
rr
el
at
io
n
(R

3)

P
ol
ic
y
ex
te
n
si
on

(R
4)

E
xt
en
si
b
il
it
y
(R

5)

In
te
gr
ab

il
it
y
(R

6)

CADS [2] — O O O O +
TIDS [71] O — O O — O
SABER [52] — — O O O O
Yeom et al.[72] — — — — O +
Sun et al. [84] O O — O — O
HADOF [85] O O O — — —
Bhargava et al. [81] O — — — — O
Hailes et al. [59] O + — — O —
SOCBox [41] — O O O O —
DSOC[42] — O O O O —
Duma et al.[54] O O O — — —
CRIM [47] — O O O O —
Zhou et al.[45] — O O O — —
Papalilo et al. [82] O — — O — —
Bao et al. [86] O O — O — O
Fung et al.[58] O O — — — —
Liu et al. [75] O — O — — —
Chang et al. [90] O O — O — O
Azzedin et al. [77] O O — O — —
STDEM [91] O O — — — O
Ramachandran et al.[43] — O O — — —
PBA [92] + — — O O O
Vijayakumar et al. [101] + — — O — O
IDMTM [89] O — — O — O
TCG’s Trusted Platform + O — — O —
TCG’s Trusted Network Connect — — — O O +

Table 3.1: Fulfilment of the requirements (R1-R6) by the most important approaches pre-
sented in this chapter.

77

3 State of the Art

In general, it can be easily recognised, that the CADS approach already provides means

to include smartphones within a company’s infrastructure. Besides that, it also fulfils some

of the requirements partially or provides a very good basis for their solution. Although it

does not incorporate trust, it provides a powerful decision making system and was designed

with reusability and integrability already in mind. Furthermore, it can be summarised that

there is no single approach fulfilling all of the requirements in a satisfying way. Given this,

it is necessary to develop an own approach which is capable of fulfilling the requirements.

A detailed assessment against the requirements is given in the following. It does not only

emphasise the problems with the shown approaches but does also present aspects which

may be used in the own approach which needs to be developed.

R1: Trust specification, calculation and evaluation In order to fulfil this requirement,

an approach must be able to allow a specification, a derivation and a calculation of

trust as well as provide an evaluation method for this trust. Given the approaches

presented in this chapter, it can be summarised that one group does not address this

problem while the other group provides means to evaluate the trustworthiness of

components. As the first group does not address this problem, because their infor-

mation collecting components are treated inherently trustworthy, it cannot provide

a solution to fulfil this requirement. The second group cares about trustworthiness

of their sensory components. This is mostly demanded by the scenarios of the single

approaches. However, they do not directly address the trustworthiness of the col-

lected data but the trustworthiness of the components collecting this data. Given

this requirement, it is necessary to address trustworthiness for the collected data and

not only the component as this kind of view does not address the communicational

part which is responsible for exchanging the collected data. Besides that, there are

some reasonable approaches about deriving trustworthiness for a component. They

may be included as part of an overall solution. The TCG-based approaches o↵er

the same benefits: a reliable method for deriving trust for a certain component (i.e.

a system being part of a network). Furthermore, the trust derivation is based on

a hardware secured root of trust, which can be considered very reliable. However,

as with the other approaches, the communication channel itself is not taken into

account. While the trust derivation in form of a remote attestation itself is secured

by signing means, which is necessary to provide the proof for a valid TPM, a mea-

78

3.3 Assessment

surement of a sensor of such a system is not directly addressed. As it is the same

for the research-based approaches, a rather useful method for deriving system and

component-based trust is given while there is no way to cover the whole data ex-

change process. Given all these points, it can be summarised, that while there are

promising approaches to allow for a component-based trust evaluation, there is no

approach combining both component and communication-based trust. Due to this,

a solution to fulfil this requirement allowing an e↵ective trust evaluation may be

based on some of the approaches but must incorporate more sophisticated means in

order to completely fulfil this requirement.

R2: Trust history To fulfil this requirement, an approach needs to be able to (1) keep a

history of the collected data (i.e. the measurements taken by the particular sensors)

and (2) a history of the trust assigned to this values. Nearly all of the research centric

approaches presented in section 3.1.3 do not provide a direct method to fulfil this

requirement. While some of them are able to keep track of updates of measurement

values (1), thus e↵ectively allowing to establish a history, they do not allow to keep

track of the change in trust. This is due to two limitations: either the approach does

not incorporate trust or trust is only derived for the currently stored measurement

values. However, as table 3.1 and the particular explanations show, there are two

approaches which provide a basic history function including trust. Unfortunately,

these two approaches lack in fulfilling other requirements, in particular they are

either not integrable or not extensible. The approaches presented by the Trusted

Computing concept and the related research ideas do also not address this. This

is because both ideas do not aim at recording measurement values but more on

attesting a particular state of a system at a certain time, without keeping track of

the state change of that system. Summarising this, to fulfil this requirement, the

solution must be able to support both: the trivial case of keeping track of data

changes (i.e. new measurement values) as well as the more sophisticated case of

keeping track of this data’s trust changes.

R3: Trust-based correlation To allow the decision making component provided by the

IDS in the reference infrastructure a sophisticated process of decision making, the

IDS itself need to be able to directly use the trustworthiness for their calculation.

That is, the IDS should not only be able to distinguish between trustworthy and

79

3 State of the Art

untrustworthy sensor data but also being able to use the actual value of trustworthi-

ness for their decision making process. Given the research-based approaches, there

are some which support this kind of correlation. In detail, approaches used for in-

trusion detection in distributed networks that depend on trustworthiness of their

nodes (e.g. in sensor networks), the nodes trustworthiness is indeed used to derive

intrusion detection decisions. These approaches therefore calculate a node’s trust-

worthiness and correlate upon this trustworthiness. This provides a way of fulfilling

this requirement. However, all of these approaches have several constraints, like the

particular environments or the very limited trust derivation. Due to this, they can

render a promising base for building a solution fulfilling this requirement. Besides

that, the TCG-based approach provides no way of correlating values directly. This

is due to the fact, that their main goal is to provide a mean to judge about the in-

tegrity state of a particular platform. As they do not provide a correlation method,

they cannot be used as a solution to fulfil this requirement. However, it can be sum-

marised that there are approaches which allow to provide means for a trust-based

correlation. They need to be tailored into an overall solution.

R4: Extending policies with trust This requirement summarises the possibility to actu-

ally use the trust related functions in a policy-based way. That is, by fulfilling this

requirement, it is possible to define arbitrary trust related constraints within one

or more policies. As the reference infrastructure used by the scenarios already pro-

vides a policy which controls the details of its decision making process (i.e. the IDS’

policy), it must be possible to also address the trust issues within this policy or at

least in some way to influence the decision making process. Most of the approaches

presented in the related work section support such a policy in a more or less e↵ective

form. However, this policy is always tailored for the specific scenario given in that

approach. There is no generalised version to be found in the approaches. Although

that means that there must be a particular new solution to fulfil this requirement,

the ideas which are described in the approaches may be used. Given the TCG-based

approaches it is a rather similar situation. Although there are means of defining

constraints and expressing rules in a policy defined, they do not directly address

this requirement here. This is not only due to the particular scenario of the Trusted

Computing approach but also due to the properties which should be expressible in

80

3.3 Assessment

that policy. As the TCG approach does not aim onto the part of decision making

but only on attesting the trustworthiness of a platform, it is not su�cient to simply

use the TCG’s policy approach. The same limitation a↵ects the attestation-based

approaches: most of them use somehow a policy, but this policy is insu�cient for

expressing a trust-based reaction. It is therefore necessary to define a rather tailored

policy which incorporates the trust-specific functions.

R5: Extensibility in terms of used data and trust calculation methods As sensors

should be placed on arbitrary systems in the network which can have arbitrary prop-

erties, the trust derivation must be very flexible. That is, it must be able to define it

also in an arbitrary way to be able to use sensors from di↵erent, unlimited in terms

of their type, systems. Due to this, the method used for calculation must also not

be defined statically. Without this, it would be impossible to switch from one trust

deriving method to another, as the algorithm responsible for actually calculating

the trustworthiness would be unable to work on the changed method. Due to this,

it is necessary to provide means for using flexible data sources to derive trust and

to be flexible in terms of the actual trust calculation. Taking these requirements

and evaluating it against the research-based approaches, it is very clearly to see,

that most of the approaches are rather limited in terms of extensibility. Although

some are designed with extensibility in mind, they miss the trust consideration, thus

only providing extensibility in terms of the data of sensors. The approaches which

keep trust in mind allow for adding a limited set of means of deriving trust, in

particular through adding reputation trust. Due to this, there is no approach which

is able to define the trust derivation factors in an arbitrary way. This limitation

is even stronger when evaluating the calculation methods used by the approaches.

Nearly all approaches stick to one single algorithm, which may be rather complex

but not interchangeable. This leads to the fact, that some approaches come in three

or more versions which di↵er just by small changes in the calculation algorithm.

To circumvent this, a flexible and freely definition of this algorithm is necessary,

also if considering the e↵ectiveness of such an algorithm. As research results show,

most algorithms are improved over time. Given the attestation-based approaches,

most of them are very freely in their definition of trust deriving sources. This is

due to the fact, that the attestation approach is not bound to a particular set of

81

3 State of the Art

properties but rather on measuring everything valuable on the platform. Due to

this, the properties used for deriving the trustworthiness of this platform may be

defined by combining components that should be measured. This really allows for

the use of arbitrary system properties. Due to this, the TCG-based approaches,

mainly the attestation approaches, provide a good building block to construct a

solution that fulfils this requirement, although they lack the definition of an actual

trust calculation algorithm.

R6: Ability of seamless integration To allow an integration into an existing infrastruc-

ture, in particular into the reference infrastructure, this requirement must be ful-

filled. Looking first at the research approaches, nearly none of them aims to provide

a integrable solution. This is due to the fact, as they aim on a particular problem for

a particular environment, which is very common for this kind of contribution. All

of these approaches would need to be tailored and generalised in a rather complex

manner in order to make them integrable. Given the TCG approaches, this is a little

bit di↵erent. Due to the TCG approaches addressing the requirement of interoper-

ability, especially when evaluating the framework-based approaches provided by the

TNC specification, they are integrable by design.3 As the current CADS implemen-

tation is already based upon a TCG defined specification, it can be summarised

that these specifications fulfil the requirement of a seamless integration to a high

level. Due to this, the TCG’s approach provide a good technological building block

in order to fulfil this requirement.

Given the evaluation and table 3.1, it is clearly to see that there is no approach known

which fulfils all requirements in a satisfying manner. However, there are some concepts,

which provide a good start and seem very promising for the inclusion into an overall con-

cept. In particular, the Trusted Computing-based approaches provide reasonable mecha-

nisms in terms of trust specification and derivation (R1) as they introduce the concept

of remote attestation which allows to measure a platform’s state, thus providing a mean

of trust derivation for this platform. Besides that, approaches like Property-based Attes-

tation ([92], cf. [101]) provide a more refined version of the remote attestation approach,

particularly a more flexible trust derivation (R1), which will be considered within the

concept. Furthermore, the only approach which provides already a smartphone centric

3With the integrability based on the requirements given by the TCG.

82

3.3 Assessment

view combined with a decision making system and a high level of integrability as well

as extensibility is the CADS approach (cf. 3.1). As explained, it was designed to provide

means to transparently use smartphones in business environments, however without the

consideration of trust. While not addressing R1, CADS fulfils R2 to R5 partially as well as

R6 completely. Due to this, CADS provides some basic concepts which can be considered

very helpful in order to completely fulfil all of the requirements named here. Given that,

CADS is chosen as the basis for a domain-specific solution which fulfils the requirements.

This does not imply, that the concept presented in the next chapter is only usable with

the CADS approach. On the contrary, CADS is only one possibility of a domain-specific

mapping. That is, di↵erently to the approaches named in this chapter, the overall concept

aims on fulfilling all requirements. Doing so, the reference infrastructure is enhanced in

a way, that it is able to deal with trust in a sophisticated manner. It is not only able

to evaluate the trustworthiness of collected data binary-based but also to correlate on

this trust keeping track of value changes. Furthermore, it allows to express trust within

its policies and provides the same integrability the CADS system does. A concept which

provides all these possibilities is developed in the following chapter.

83

84

4 A Concept for Trustworthy

Smartphone Integration

Contents

4.1 Generic Model . 86

4.1.1 Role and Operational Model 86

4.1.2 Operational Flow . 90

4.1.3 CADS-specific Feature handling 92

4.1.4 Model Summary . 97

4.2 Trust Model . 101

4.2.1 Definition of Trust . 102

4.2.2 Security Properties . 103

4.2.3 Trust Calculation . 112

4.2.4 Phase Extension . 115

4.2.5 Feature Handling on the Provider 118

4.2.6 Snapshots . 120

4.3 Data Model . 124

4.3.1 Security Property Layer . 124

4.3.2 Phase and Snapshot Layer . 126

4.3.3 Feature Layer . 128

4.3.4 Provider State Machine . 129

4.3.5 Policy Encapsulation . 141

85

4 A Concept for Trustworthy Smartphone Integration

4.4 Domain-specific Extension - TCADS 142

4.4.1 Case I . 142

4.4.2 Case II . 143

4.4.3 TCADS Features . 144

4.4.4 Direct and Indirect Trust . 145

4.5 Assessment . 146

The following chapter o↵ers a solution to the problems shown in the previous chapters.

The solution itself is divided into three parts: (1) the definition of a generic model, (2)

the definition of the trust model relying on the previously defined model and finally (3)

the domain-specific mapping.

4.1 Generic Model

This section defines a generic role model and associated operations which can be carried

out by the roles. Furthermore, a mapping process of the generic elements is given.

4.1.1 Role and Operational Model

The following section describes the generalised model, which allows a decoupling of actual

components and their actions. Figure 4.1 shows the model in detail. As it is easy to see,

Figure 4.1: Generic Model.

the model operates not on particular components but on generic roles. These generic roles

are case-specific assigned to each relevant component. Besides the roles, there are also two

types of generic operations defined. These operations are responsible for the actual part

of working on the data collected. The collected data represents the device’s state, i.e. it is

86

4.1 Generic Model

data from a sensor monitoring the device. It is therefore defined as so-called Feature. The

definition of the term Feature was already given in 3.1.1, based on the definition made in

[2]. The term is used for the remainder of this thesis.

Roles

In order to decouple the components from actions, the model defines three distinct roles:

(1) the sender, (2) the provider and (3) the receiver role. They are explained in detail in

the following.

Sender The role of the sender is mapped to components which are responsible of the

initial creation and propagation of a Feature. In detail the sender performs three actual

tasks.

Feature Creation This is the first sub-step of the overall model. It takes place when a

Feature is initially created, whereas created means measuring a Feature or aggregat-

ing several Features into one. Measuring refers to the process of receiving properties

of a given system and putting them into the appropriate Feature type. Aggregating

refers to the process of using already existing Features, which may have been mea-

sured before, and combining their values into a single one inside a newly created

Feature.

Feature Preparation The preparation sub-step takes place after the Feature was success-

fully created. It is necessary to allow a further processing of the Feature. In detail,

the created Feature will be prepared for the transmission within this step. This

process consists of making the Feature available until the actual transmission step

will be initiated and if the transmission step is about to start creating an actual

transmittable representation of the Feature. This representation, i.e. the message

which will be communicated later, may consist of more than one single Feature.

Feature Transmission The final sub-step the sender is responsible for is the actual trans-

mission of the prepared message consisting of the Feature. To perform this step, the

sender simply selects the provider the message should be transmitted to and per-

forms the task of communicating the message via a network-based connection.

87

4 A Concept for Trustworthy Smartphone Integration

Given these steps, the role of the sender is mapped to each actual component which is

responsible for measuring and collecting Features.

Provider The second role is the role of the Provider. A Provider is responsible for re-

ceiving Features from arbitrary Senders and preparing them for further processing. To

perform this task, the Provider distinguishes it work into three sub-steps.

Receipt of Feature After the Sender has started the Feature transmission, this sub-step

can be performed on the Provider. The transmitted message will be received and

one or more Features which are marshalled within the message can be extracted.

The communication which needs to be carried out in this step is not limited to the

sending and receiving process described above, but can also be carried out in a more

complex way, including an arbitrary amount of communication steps.

Feature Storage and Preparation This step takes responsibility for storing the extracted

Feature in an appropriate way and to reload and prepare the Feature if requested.

Storage is simply performed by putting the Feature into an appropriate container

whilst reloading takes the Feature out of this container. After reloading, the Feature

is prepared into a message equalling the message type that was used by the Sender

in its preparation step.

Feature Transmission The prepared message, which may again consist of several Fea-

tures, can be transmitted to the receiver. This is done in this last sub-step.

Receiver The last role assigned to the component which finally receives the Feature and

uses it is called Receiver. The working process of the receiver is divided into two separate

sub-steps.

Feature Receipt This step equals the receiving sub-step carried out on the Provider.

That is, the Receiver needs to unmarshall the message which was received from the

Provider thus extracting the contained Features. After the Features are extracted,

the Features can be further processed which is done in the next sub-step.

Feature Processing The Receiver uses the Features that were extracted in the last sub-

step to perform arbitrary tasks. The exact process the Features are used to, depends

88

4.1 Generic Model

on the actual Receiver. The model itself does not limit the types of processing which

may be done within this step.

Having these three roles, it is possible to express specific behaviour within one model.

Specific behaviour means, that in one case a Feature may be sent from component A via

component B to its destination which may be component C. Another case with the same

components may be that a Feature flows from C via B to A. Using the generic model, the

role-based flow is always the same independently from the actual components. This allows

to base further definitions upon this model without the need to distinguish between the

particular cases. Although the roles are su�cient to map the case-specific components, the

actual operations which are performed between the components (or in general between

the roles) need to be defined as well.

Operations

Figure 4.1 depicts the roles as well as the operations which are carried out between and by

them. There are two kind of generalised, i.e. abstract, operations: (1) the so-called process

operation and (2) the so-called transmit operation. The properties of these operations are

explained in the following.

Process The process operation is carried out by and on a particular component. It

describes the action of processing a Feature. Processing can be distinguished into the

following types.

• Creation of the Feature itself. This can, as already described, be realised by mea-

suring certain properties and generating a new Feature or by aggregating already

existing Features into a new one.

• Storing a Feature for further actions and retrieving a stored Feature out of a storage

container.

• Using the Feature for arbitrary actions.

Although a generic process operation must be of one of these types, it is important, that it

can only be of one and the same type to a certain point of time. That is, it is not possible

to combine several types into one single process operation. Besides this, it is easy to see,

89

4 A Concept for Trustworthy Smartphone Integration

that these types of the process operation summarise a subset of the role-specific steps

described in section 4.1.1. The missing steps are assigned to the second type of generic

operation.

Transmit The transmit operation defines the communication-based transmission of a

Feature. In contrast to the process operation, two components (i.e. roles) are part of this

operation. It consists of the following steps.

• The preparation of the Feature which is intended to be transmitted. This step

summarises the task of taking one or more Features and marshalling them together

into one, transmittable message. As a precondition of this step, a process operation

may have happened.

• The actual transmission step. Based on an arbitrary communication protocol, the

created message is sent from the first component to the second one.

• The second component receives the message and unmarshalls the appropriate Fea-

tures out of the message. A process operation may happen after this step.

In contrast to the process operation, which is of one actual type, the transmit operation

always consists of this three steps. That is, all three steps in this exact order need to be

carried out.

Combining these process and transmit operations allows to describe the handling pro-

cedure of a Feature within a particular system like CADS in an abstract manner. All

possible cases of the Feature flow can be expressed by using the operations defined. Using

the roles and the operations together, an abstract system can be formulated which is able

to represent the actual system used.

4.1.2 Operational Flow

The generalised flow, which expresses all distinct Feature flow cases, consists of the fol-

lowing steps.

1. The creation or aggregation of the Feature and its additional preparation is the first

step. It is performed within the process
Sender

operation running on the Sender.

90

4.1 Generic Model

2. After the Feature is prepared for the communication process, it will be communi-

cated by the Sender to the Provider. The Provider receives the Feature and prepares

it for further usage. The transmit
Sender

operation is responsible for this task.

3. After successfully receiving the Feature, storing and reloading the Feature on the

Provider is handled within the process
Provider

operation.

4. Finally, the communication between the Provider and the Receiver is performed

within the transmit
Provider

operation. It is responsible for transmitting the Feature

from the Provider to the Receiver.

These steps summarise the flow of operations within the model.

Formal Representation

The representation consist of three di↵erent parts: (1) the roles and (2) operations which

where explained above as well as (3) a formal representation of the Feature. The roles

(1) are simply represented by their appropriate name, thus the Sender is represented as

Sender, the Provider is assigned Provider and the Receiver is represented as Receiver.

As already used, the operations are defined as their abstract version mapped onto a

specific role. That is, the operations (2) are defined as process
Sender

, process
Provider

,

transmit
Sender

, transmit
Provider

. Following the explanation made above, there is no final

process operation running on the Receiver defined. The Feature itself (3) is represented

by a ⇣, following the notion used in [2]. The formal representation assumes, that all oper-

ations are able to work directly upon and with the Feature. This means, that the actual

method used for communication (i.e. the protocol and the protocol data) is not part of

this representation and needs to be addressed when mapping this representation to the

particular case or scenario. Besides this limitation, the flow of operations can now be

expressed in the following manner by using this representation.

process
Sender

⇣�! transmit
Sender

⇣�! process
Provider

⇣�! transmit
Provider

This representation is used later in this thesis to show the particular trust related exten-

sions to the flow. As it is easy to recognise, all operations take only one argument. While

this is fully correct for the process operations as they are working on one component (or on

91

4 A Concept for Trustworthy Smartphone Integration

a role) it is an abbreviation for the transmit operation. The representation of the transmit

operation only takes the sending source as argument. This is possible because the model

defines the destination of the transmit operation uniquely according to the transmission

source.

This formal representation allows to extend the model easily, for example by simply

adding more operations or roles. Furthermore, it is a necessary building block for the

following chapters.

4.1.3 CADS-specific Feature handling

As explained in section 3.3, the CADS approach is well tailored for smartphones and

provides a basic decision making system which can be used in order to provide a domain-

specific extension. To allow this extension, the model presented here must be applicable to

the CADS approach. This means, the CADS system must be expressible using the generic

model. This section provides a mapping to not only show this possibility of mapping but

only to provide a foundation for the domain-specific extension which is addressed later in

this chapter. Furthermore, it can be considered as an example on how to map a particular

system using the generic model.

Within the CADS architecture (section 3.1.1), there are two distinct cases of Feature

handling, thus there are two cases how a Feature may flow through the system. The

first case describes the situation where a Feature Collector is sending data to the Fea-

ture Provider and finally to the Correlation Engine. The second case takes place if the

Correlation Engine is sending a Feature to a specific Feature Consumer.

Case I

The first case describes the situation, where a Feature Collector sends data to the Corre-

lation Engine. This for example could happen, if a Feature Collector located on a smart-

phone measures certain elements of the device and wants to send this measurements to

the Correlation Engine. After the Correlation Engine receives this measurements, it can

perform arbitrary tasks upon this data.

The case itself is divided into several independent steps, which are carried out in a serial

order. That is, the ordering of these steps is always the same.

92

4.1 Generic Model

• The first step is the creation of the Feature on the Feature Collector’s device. This

can be done by simply measuring a certain property of the device using the Feature

Collector or by aggregating other Features which have already been measured. After

finishing this step, the Feature which is to be sent to the Correlation Engine is

prepared for the next step.

• The Feature Collector is now able to send the Feature to the Feature Provider.

In detail, this is done by using an appropriate communication method in order to

transmit the Feature from the Collector to the Feature Provider. Although it is not

defined which type of communication is used as this is a domain-specific property,

it is defined that this step is a logical step. That is, the transmission itself must not

necessarily be performed by using a real network-based communication method but

can also be done by using an inter process-based communication type for example.

As a result of this step, the Feature Provider now possesses the Feature.

• Having the Feature successfully received, the Feature Provider now stores the Fea-

ture until the Correlation Engine requests the Feature for further processing. If it

is requested, the Feature Provider retrieves it from its database and prepares it for

the next step.

• The next step is the transmission of the Feature from the Feature Provider to the

Correlation Engine. This step equals the first transmission step, where the Feature

Collector sends the Feature to the Feature Provider.

• Finally, after the Correlation Engine received the Feature, it can process the Feature

further.

Figure 4.2: CADS Case I.

93

4 A Concept for Trustworthy Smartphone Integration

This process of collecting, preparing and transmitting the Feature is summarised in figure

4.2.

Case II

Beside the situation where one or more Feature Collectors are sending their collected Fea-

tures to the Correlation Engine, there might be the case of sending a Feature originating

from the Correlation Engine. This could for example happen after the Correlation Engine

has evaluated some rules and one of the rules is triggering an enforcement, thus creating

an enforcement Feature which is sent out to a device capable of performing the actual

enforcement.

Details of this case are as follows.

• At first, the Correlation Engine needs to create the appropriate Feature. This can

be done by simply generating a completely new Feature, or by aggregating already

existing Features into another Feature. After the Feature is created, it is being

prepared for the next step.

• The Correlation Engine sends out the Feature to the Feature Provider. Besides a

di↵erent sending source, this step equals the transmission steps of the first case. That

is, after this step has been carried out, the Feature is ready for further processing

on the Feature Provider.

• As the Feature Provider successfully received the Feature, it can be stored and kept

ready for transmission to the next component.

• When the Feature is requested by the Feature Consumer, the Feature Provider can

now send it to the Consumer. As all transmission steps, besides changing sources

and destinations, it is equal to the other transmission steps.

• After the Feature was received by the Feature Consumer, it may be further processed

and used.

The overall flow of these steps is summarised in figure 4.3. As the generic steps which

have to be carried out are equal in both cases, the flow can be generalised.

94

4.1 Generic Model

Figure 4.3: CADS Case II.

Generalised Flow

As stated above, the steps and their associated operations are to some extent equal in both

cases. Due to this, the overall process (i.e. the steps necessary) of Feature creation/pro-

cessing and Feature transmission can be expressed in a more generic way:

• The first step takes responsibility for creating the Feature on the appropriate com-

ponent. This is done by either aggregating already measured Features or by creating

a new Feature. Besides the creation of the Features, this step is also responsible for

taking the Feature in a transmission-ready state.

• The second step describes the transmission process between the first component

and the Feature Provider. That is, after the Feature was created and prepared for

transmission within the first step, it actually gets transmitted within this step.

• As third, the Feature is stored on the Feature Provider and after some time again

prepared for the second transmission to the receiving component.

• Finally, the Feature is sent by the Feature Provider to the receiving component.

In contrast to Case I and II, there is no final step of Feature processing on the receiving

component. This is due to the fact, that (1) a Feature processing may not happen on this

component and (2) that the processing itself is out of scope.

While this generalised flow o↵ers a possibility to express the Feature processing with

one notation, it is not possible to use generalised components. Due to this, it must still

be distinguished between the specific component used at this point. For example, it has

to be distinguished between the Correlation Engine and the Feature Collector as sending

component. As defining a Trust Model would also imply to distinguish between those

95

4 A Concept for Trustworthy Smartphone Integration

components and thus limit the usability and flexibility of the model, a further general-

isation is necessary at this point. This generalisation was already given by the abstract

model above. Due to this, the next section shows how to map this generic model to the

particular CADS cases, thus showing the process of instantiation.

Role and Operation-specific mapping

To allow definitions based on the generic model, the roles and operations need to be

mapped upon the CADS-specific cases.

Mapping roles to components Using the abstract model, the components defined

within the CADS system can be mapped to roles as follows.

• The component Feature Collector always takes the role of a Sender, thus it is not

important which actual case is handled by the Collector.

• As already outlined, the Feature Provider is always in the role of the Provider. Equal

to the Feature Collector’s mapping, this role never changes throughout di↵erent

cases.

• The Correlation Engine cannot be mapped to only one role in a static manner. That

is, the Correlation Engine is either a Receiver or a Sender. It is a Receiver if and

only if it is used within a case I specific scenario. If it used in a case II-specific

scenario, it operates as a Sender.

• The last component, the Feature Consumer, always takes the role of a Receiver.

Like every other component but excluding the Correlation Engine, this assignment

is independent from the actual case.

Having these mappings, definitions describing the CADS system can now be formulated

in a generic manner. As this mapping only reflects the relationship between components

and roles but not their operations, an operation-specific mapping needs to be defined.

Operational Mapping To map the actual CADS cases, the model defines four particular

operations based on the abstract process and transmit operations: two process operations

and two transmit operations. The process operations are bound to the Sender and the

96

4.1 Generic Model

Provider, while transmit is carried out between the Sender and the Provider as well as

between the Provider and the Receiver. They are defined as the following.

• The measurement or creation of a Feature, i.e. the measurement operation which

the actual Feature Collector performs in its role as Sender, is called process
Sender

.

• The operation transmitting the Feature from the Sender to the Provider, which may

be for example the communication between the Feature Collector and the Feature

Provider, is called transmit
Sender

.

• As next, the operation used is the process
Provider

operation, which is performed after

the Feature was received on the Provider. This operation is usually carried out on

the Feature Provider.

• Similar to the first transmission operation, the operation which is used by the Re-

ceiver to retrieve the Feature from the Provider is called transmit
Provider

. This

happens for example, if the Feature Consumer receives a Feature from the Feature

Provider.

By using these operations and including them in the model, thus gathering roles and

their operations, it is possible to express the CADS-specific cases in an abstract manner.

Furthermore, this model may be used to add new cases to the CADS system. Besides

that, it is now possible to express a generalised flow which is based upon the roles as

acting parties and their operations as actions which will be performed.

As easy to see, there is no final process operation defined for the Receiver. Due to this,

the model does not define the final step of Feature processing. This is necessary to allow

arbitrary processing methods to be included within the model to not limit the applicable

cases for the model. It does not define that there is no final process operation allowed but

defines that the operation performed may be arbitrary in any form.

4.1.4 Model Summary

To represent arbitrary cases of Feature flows, the model developed above can be used. It

consists of two generalised parts: an abstract role definition where roles can be mapped

to particular components in a case-specific manner. And, as the second part, two abstract

types of operations: process and transmit. Putting the roles and the operations together,

97

4 A Concept for Trustworthy Smartphone Integration

a generalised flow can be formulated. The developed flow is able to represent particular

specific cases without the need to address the change of the actual components used. That

is, it is possible to develop further extensions in terms of trustworthiness based on this

model without the need to address each case separately. Besides that, the model defines

also a more formal representation.

Giving an example of the instantiation process of the model, the two CADS-specific

cases can be mapped into a generic representation. This allows it to define further mech-

anisms, in particular the trust model, up on the generic model with the e↵ect of the

definition being applicable to the particular specific system which would be CADS in this

example. The case-specific mapping necessary to consider a trust extension of the CADS

system in a more general way is only one area of use for the model. It may also be used

as a representation for other systems which can be mapped. To express another system

by using the model, the applicability of the model needs to be analysed. That is, it is

necessary to define the exact mapping of operations and roles onto the system’s specific

properties. If it is possible to map a system, all developments which are based on the

model may be assignable to the system as well.

To allow the assignment of the model to di↵erent systems, the following section gives

a short guideline on how to map roles and operations onto arbitrary systems.

Instantiating

First of all, the Feature needs to be mapped into the system’s environment. As the Feature

represents the informational unit, with information being defined as data attached with

semantic knowledge (cf. [157, 2]), it has to be instantiated for the type of information

used within the system. An actual example is given later in this section. Second, the

roles have to be appropriately mapped to existing components. This can be done by

categorising the components based on if they are an informational source, an informational

sink or a neutral component in terms of information. Sources of information should be

considered as Senders, while sinks should be considered as Receivers. Neutral components

need to be investigated further, based on the logical way the information flows within

the system. Due to this, it is necessary to analyse this logical flow within the next step.

To do this, like in the CADS system, cases have to be defined expressing the system’s

operations. In theory, it is necessary that all possible cases defined, thus covering the

98

4.1 Generic Model

whole potential of the system. For a practical instantiation, it could be enough if those

cases are defined, which should be expressed in the abstract model. Having those cases

and therefore the logical flow of information, the elements (i.e. components) which are

part of the flow and neither a source nor a sink can be treated as Providers. This should

result in the fully defined mapping of the three roles allowing to take care about the

operational mapping. This is also the direct next step, the mapping of operations. This is

done in two phases: the mapping of the process operations and the mapping of the transmit

operations. The process operations are defined to be carried out by the Sender and the

Provider. Thus, the characteristics of the components which were identified as Sender

and Provider need to be analysed. This analysis is done in terms of their impact on the

information handling. By taking the explanation of the operations made in section 4.1.1

into account, it is clear that the process operation of the sender must express the creation

or aggregation of the information as well as the preparation. On the Provider’s side, storing

and reloading needs to be defined for mapping the process operation. Completing this

step, the process operations should be well defined for the system allowing to address the

transmit operations. This is done in a similar manner, which means that the statements of

section 4.1.1 need to be fulfilled. Transmit must be defined as the logical transmission of

the information between the two components connected to this operation. It is important

to understand, that transmit expresses the logical communication. This means, that if

the communication of the information runs across several components, which do not alter

or access the information but only communicate it, these components will not be given

a specific role. Having defined all the operations, the mapping is completed and may be

verified on the system.

A summarised form of the steps necessary for instantiating the model are given in the

following.

1. Definition of the Feature as informational unit: it has to be defined which informa-

tion is communicated throughout the system.

2. Categorisation of the system’s components into (a) information sources, (b) infor-

mation sinks and (c) neutral components. Components which are type (a) or (b)

will be assigned the Sender and Receiver role appropriately. Components of (c)-type

need to be investigated further.

99

4 A Concept for Trustworthy Smartphone Integration

3. Analysis of the informational flow within the system to isolate cases. As a result,

(c)-type components can be either treated as Providers or treated as irrelevant for

the model to system mapping.

4. Mapping of the process operations based on the model’s definition for this operation

type. Equally, mapping of the transmit operation based on their abstract definition

and the flow which has already been analysed to isolate the cases.

If one ore more of these steps cannot be successfully finished, the system might not be

applicable for an abstract expression based on the above defined model. In this case, there

needs to be checked if the model needs to be extended to cover the system.

Example

A syslog (cf. [158])-based logging system is used as a simple example. The system consists

of three components: the syslog-client (SYC) producing log messages, the syslog server

(SYS) which stores and holds the logging information and a program (EMA) that takes the

syslog messages and generates email-based alerts. Taking this, the system is structured as

SY C�SY S�EMA. To map the abstract model, the first step is the Feature definition. As

the system communicates syslog messages expressing certain system states, the Feature

is being defined as such a syslog message. The next step is the categorisation of the

components into information sources and sinks. As the system’s type of information (i.e.

Features) are syslog messages, it needs to be categorised appropriately: the SYC is a source

while the EMA is a sink. Due to this, the SYC can be considered as Sender while the EMA

can be considered as Receiver. Although the SYS may be considered a sink, it is none

as the final destination is the EMA. As the system has only one relevant case in which

the SYC creates a log message, sends it to the server from where the EMA takes it and

generates an email, the analysis of the flow to isolate cases is rather simple. Furthermore,

as there is only one (c)-type component, the SYS is given the Provider role. The mapping

of the operations can also be done based on the analysis of the single case. Process on the

Sender defines the creation of the syslog message by an arbitrary daemon on the SYC.

Process on the SYS defines the successful receipt (not in terms of communication) and

storage of the message until the EMA accesses the message to generate an alert. Transmit

is defined as using the syslog protocol to communicate the message between the SYC and

the SYS, which is the first transmit operation, and the communication between the SYS

100

4.2 Trust Model

and the EMA, forming the second transmit operation. As it is easy to see, the second

transmit does not actually map network-based communication but logical communication

between the SYS and the EMA. The actual communication could be based on a pipe for

example. Using this mapping, the system can be expressed as

process
SY C

syslog���! transmit
SY C

syslog���! process
SY S

message�����! transmit
SY S

. It is easy to see, that the last transmit operation no longer operates on the syslog protocol

but on the actual message (e.g., text). As explained above, this is due to the EMA using

not syslog to access the message. Concluding the example, by taking this mapping, all

assumptions and extension which are made on the abstract model can be applied for the

syslog system as well.

Given the abstract model, which allows to express the system not longer based on their

specific cases but in a more abstract manner, it is now possible to develop a trust model.

4.2 Trust Model

Using the abstract model defined in the last section, it is not possible to make trust-

based assumptions in such a system. This section develops the second part of the overall

solution: the trust model enhancing the abstract model. To do so, a trust definition is

given first. This definition acts as a building block for all further developments as it

defines uniquely what can be considered trustworthy. After this definition, the source

of trust is introduced. That is, which parts of the model are used as building block to

derive trust fulfilling the trust definition. With having the properties to base the trust up

on, a method for combining these and to actually derive trust in a measurable manner

is developed. Continuing the overall development of the trust model, special properties

are addressed and followed by the definition of the process of trust derivation. As all

these approaches are based on the abstract model, this model is extended in terms of the

Feature flow as well as in terms of the underlying data model. That is, a new data model

which is able to represent the trust model is also developed. Finally, the trust model is

instantiated for the CADS system, also showing the extended CADS-specific cases.

The aim of this section is to introduce an extended version of the abstract model defined

above. This version allows a reasoning about the trustworthiness of Features. It aims to

101

4 A Concept for Trustworthy Smartphone Integration

fulfil the requirements given by the scenarios. The first area that needs to be addressed in

order to develop the trust model is a basic trust definition. This is done in the following

section.

4.2.1 Definition of Trust

To allow a reasoning about trust which is valid throughout the whole system as well

as for each Feature, a trust definition needs to be made. This creates the foundation

not only to allow the reasoning and evaluation itself but also the base to derive and

calculate the trust. There are some definitions of trust already (cf. section 3.1.3, 3.2 and

[59, 85, 87, 88, 89, 92, 101]), which can be used and extended to suite the needs as part

of the approach. All of them are based more or less on the expected behaviour. Given

that, the definition which is used for the trust model presented here is based upon the

TCG’s definition [96] which has already been explained in section 3.2. It is used here, as

the TCG’s definition summarises the aspect of basing trust on expected behaviour into

a consolidated form. It can be considered consolidated, as the TCG itself is driven by

di↵erent stakeholders that agreed upon this definition. Due to this, the definition can

be considered as widely accepted. It is based on the behaviour of components, thus is

only applicable for components and expresses that if a component behaves as expected

it can be considered trustworthy. More in detail, as long as a component does what it

is intended to, it is trustworthy, negligible if the task itself may be considered as being

malicious. By using this definition, it is possible to reason about the trustworthiness of

components. In this case, reasoning describes the process of taking a measurement of the

trustworthiness and evaluating it against an expected value. That is, if a component acts

as it is supposed to, due to the TCG’s trust definition, the reasoning of the component’s

trustworthiness should be positive. As it is easy to see, this definition is only applicable

for component-based systems, as the TCG’s trusted computing environment is. For using

this definition in the approach presented here, it has to be extended. This extension is

done in two steps: the first step is to define what can be reasoned about as components

are not applicable here. The second step is to define what is used as a measurement base

for trustworthiness. While the first definition is given in the following, the second part is

postponed until further elements of the trust model have been developed.

102

4.2 Trust Model

The TCG’s definition reasons about the trustworthiness of components by measuring

their behaviour and comparing it to the expected behaviour. As the approach only defines

roles which can be mapped to actual components when instantiating the model, the trust

could only be defined up on these abstract roles. This is rather di�cult, as the roles

do not imply a unique behaviour of the mapped components. I.e. di↵erently behaving

components might be mapped to the same role making it di�cult to define their behaviour

simple and uniquely. Furthermore, the TCG’s definition aims to isolate the components

as critical actors. That is, a compromised and untrustworthy component has always an

actual influence on the system. Within the approach, this is di↵erent: a component might

be compromised but Features sent out by this component could still be valid under certain

circumstances. This fact shows the main di↵erence in terms of trustworthiness of the two

systems: while the components are the most important part in the TCG’s system, the

Feature is most important here. Due to this, the definition of trustworthiness must be

based on the validity of the Feature itself. It is therefore defined, that the measurement of

trust expresses the integrity of a Feature not of the components or roles. This integrity can

be defined by using more properties of the model. When analysing the formalised flow

process
Sender

⇣�! transmit
Sender

⇣�! process
Provider

⇣�! transmit
Provider

, it is easy to see

that the operations are an important part in the overall Feature creation and transmission

process. Due to this, the basic trust definition can be based on these operations and the

TCG’s behaviour-based definition: as long as the operations act as expected, the integrity

of the Feature which the operations are working on does not change. Based on this, trust

is defined as expected behaviour of the particular operations. Combining this with the

exchanged Features, the following definition is used:

A Feature is considered trustworthy if and only if all operations handling this Feature

perform as expected.

This basic definition would allow a reasoning about trust if there are means to judge

about the operations behaviour in terms of handling the Feature. This is addressed in the

next section.

4.2.2 Security Properties

Besides the definition of the trustworthiness itself, the most important part is the source

for deriving trust. This section introduces special properties allowing this and thus forming

103

4 A Concept for Trustworthy Smartphone Integration

the basic layer of the trust model. Furthermore, the question how trust is derived and

where from it is being derived is addressed.

As already stated, trustworthiness describes a Feature’s integrity and is derived from

the behaviour of the operations which work on this Feature. To reason about the trustwor-

thiness it is therefore necessary to introduce actual means to judge about the operations

behaviour. This judgement must fulfil two criteria: (1) it must be able to express the

overall behaviour of the operation and (2) it must be able to rate the behaviour. This is

necessary to not only distinguish between benign and malicious behaviour but to distin-

guish between di↵erent grades of the particular behaviour.

The solution to fulfil criteria (1) is the introduction of so-called security properties (cf.

[92, 101]). These security properties are given to each operation defined within the model.

That is, there are security properties for process
Sender

, transmit
Sender

, process
Provider

and

transmit
Provider

. A single Security Property (SP) is defined as property characterising the

behaviour of a particular operation. An arbitrary amount of such SP s may be assigned to

a single operation. The properties are not limited and can be defined and used freely, thus

allowing to define them case and instance-specific. When defining them, they have to be

attached to the appropriate operation, meaning that there may be di↵erent properties for

each of the operations. Examples for such security properties are the usage of Transport

Layer Security [159] for the transmit operations or a platform secured by a trusted or

secure boot (cf. 3.2 and [97]) for process operations. Using these properties, expected

behaviour can be expressed for the operations although there is yet no way to classify this

behaviour. To allow this classification and fulfil the second criteria, so-called ratings are

used.

Ratings

Ratings (!) are measurements which allow a scoring of particular security properties.

That is, a rating allows to classify the behaviour expressed by a security property. In

order to provide maximum flexibility, the approach does not define the codomain of the

ratings nor any kind of rating type as this definition must be specifically made for the

domain and the instance the system will be used within. In general, each of the defined

SP is assigned an appropriate !. That is, by using this rating, the SP is weighted in

104

4.2 Trust Model

terms of it’s trustworthiness. Although a codomain is not defined, ratings are allowed to

have negative values, thus allowing to have SP s which express untrustworthy properties.

The relationship of the security properties and their appropriate ratings can be ex-

pressed as SP := !. This means, that each security property must have a rating attached

to it. Using the examples of TLS and tboot given above, these properties could for example

be characterised in the following way: (usingTLS)
transmit

:= 5 and (tbootSuccess)
process

:=

10, with 5 and 10 being the appropriate rating.

Security Property Map

The conceptual component holding all assignments of security property and rating is called

Security Property Map (SPM). It is necessary to allow the usage of dynamic ratings per

SP . Dynamic ratings are another basic building block of the trust model. Currently, the

mapping between a security property and their rating can only be made in static manner.

That is, once the rating is set and the system is running it cannot be changed. As this

is very limiting and prevents changeability of ratings at system runtime, dynamic ratings

and their assignment are introduced. Dynamic ratings are defined as ratings which can be

changed at each time, thus they are changeable when the system is running. This allows to

react on events which have influence on one or more operation’s SP s. If for example, the

transmit operation is secured by TLS, as shown above, the rating could be initially high.

If, at some point an error of the TLS-enabling library is recognised, the rating could be

dynamically lowered to indicate this event. Furthermore, the SPM holds the association

of the SP s to their appropriate operations. Each property defined within is attached to

one or more operation. The TLS property which was given as example, would be attached

to a transmit operation while the trusted boot property could be attached to a process

operation (which was already implicitly done when showing the example).

The actual structure of the SPM is divided into two parts: the static part which defines

the security properties and their operational attachment and the dynamic part holding

the ratings for the properties. Static must not be mixed up with final in this case, it only

expresses that entries made in this section cannot be altered. Although there may be new

entries added, the ones which are already defined can only be deleted. That is, a change of

entries within this section is still possible, but only in the way of deleting the old entry and

adding a new one. This is necessary as this section acts as key for referencing the dynamic

105

4 A Concept for Trustworthy Smartphone Integration

parts. The static part using the example introduced in the section above is defined as

SP
PropertyIndex

: (PropertyName)
operation

:= !
RatingIndex

.

Using the example from above, the static part would expressed like the following.

SP1 : (usesTLS)
transmit

Sender

:= !1

SP2 : (tbootSuccess)
process

Sender

:= !2

...
SP

n

: (PropertName)
operation

:= !
RatingIndex

That is, it simply holds the properties and their associated operations. The rating is

referenced from the dynamic part of the SPM and defined as !
RatingIndex

= RatingV alue,

thus the dynamic part would look like the following when using the examples from above.

Note that entries in the dynamic part might change.

!1 = 5
!2 = 10
...
!
n

= RatingV alue

As it is easy to see, the references used in the static part are simply based on the

index of the rating. That is, if a rating needs to be changed a lookup procedure must be

performed in order to change the correct rating. The lookup is responsible for discovering

the reverse mapping of the rating as the SPM defines a forward reference only. This

means, that there is a direct path from a property to its rating by using the index while

there is no direct path backwards. Due to this, the lookup procedure needs to traverse

the properties the rating is to be changed for and select the correct ratings appropriately.

Security Property Records

By using both, the security property and its dynamic rating per operation, the basis for

calculating the trustworthiness of the Feature handled by these operations is given. Unfor-

tunately, this approach still has some limitations: it only allows to assign one specific prop-

erty and its rating per operation, resulting in only four properties characterising the whole

system. This might be enough for very basic instances but is very limiting. To overcome

this limitations, a further extension encapsulating the SP s need to be introduced. This

106

4.2 Trust Model

extension is called Security Property Record (SPR) and simply represents a set of multi-

ple security properties. In detail, there may be one security property record per operation,

thus resulting in four SPRs. Each SPR itself is unlimited in terms of the amount of secu-

rity properties attached to it. It is simply defined as SPR
operation

= {SP1, SP2, ..., SPn

}.
The SPR does not encapsulate the actual ratings for the security properties as this link

is established by accessing the security property map. This allows to change ratings al-

though the property the ratings is defined for is already part of a SPR. Enhancing this,

the SPR may be re-evaluated at any time and incorporates the rating which is currently

defined for the properties that are part of the record. The assignment and lookup of the

ratings is performed by another (i.e the second besides the SPM) conceptual component.

Security Property Record Manager

The Security Property Record Manager (SPRM) is the conceptual component responsible

for assigning (1) the appropriate property to an operation and (2) the correct rating to

that property at any time it is requested. Furthermore, (3) the SPRM takes care of

changing ratings for SP ’s dynamically.

The assignment of the properties (1) is performed in several sub-steps: first of all, when

an operation is carried out, the SPRM is able to identify the exact type of operation.

That is, it can distinguish between the four operation types defined above. With having

this information, it accesses the SPM in the next step and performs a lookup which

property is assigned to that operation. It then takes the property (or more properties if

there are more defined for this operation) and puts them into the operations SPR, finally

107

4 A Concept for Trustworthy Smartphone Integration

attaching this SPR to the operation. The algorithm used for this task is shown in the

following.

Algorithm 1: SPR construction.
Data: SPM , operation

Result: SPR
operation

type = getOperationType(operation);

accessSPM();

foreach SP : mapSP in SPM do

spType = getSPType(mapSP);

if type matches spType then

addPropertyToSPR(mapSP);

end

end

The second responsibility of the SPRM is the mapping of the appropriate ratings

for an operation’s SPR. As with the forward mapping of the properties to an opera-

tion’s SPR this is also done in several steps. As a precondition, there must be some

kind of request which needs to access the actual ratings of the properties stored within

a security property record. This could be for example an event, where it is necessary to

calculate an actual trustworthiness of the operation. After the request has been made,

the first actual step done by the SPRM is to retrieve the SPR of the operation where

the ratings are requested for. Having this SPR, the SPRM can now perform and in-

verse lookup on the security property map. In particular, for each property stored in the

operation’s SPR, the SPRM searches the appropriate SP entry in the static part of

the SPM . This entry is then used to access the actual rating in the dynamic part of

the SPM . The SPR’s data structure is then expanded with the retrieved ratings, thus

adding the rating for each SP in the SPR. To allow this addition of ratings, the so-called

Rated Security Property Record (RSPR) is used. The format of the RSPR is defined as

RSPR
operation

= {(SP1,!SP1), (SP2,!SP2), ..., (SPn

,!
SP

n

)}. It could equally be expressed

as RSPR
operation

= {(SP,!)1, (SP,!)2, ..., (SP,!)n}. In addition to this, the process of

looking up all ratings of a SPR’s properties and the construction of the appropriate

RSPR must be performed as one single, i.e. atomic, step. This is necessary to prevent

the construction of an invalid RSPR in case of a rating change: if ratings are changed

108

4.2 Trust Model

while the RSPR is constructed, it would hold new (valid) as well as old (invalid) ratings

in a mixed form. The summary of the algorithm is shown below.

Algorithm 2: RSPR construction : getRSPR(SPR
operation

).

Data: SPR
operation

Result: RSPR
operation

receivedRSPRRequest();

foreach SP : opSP in SPR
operation

do

lockSPM();

accessSPM();

foreach SP : mapSP in SPM do

if opSP matches mapSP then

rating = retrieveRatingByIndex(mapSP);

addRatingForToRSPR(rating, opSP);

end

end

unlockSPM();

end

It is easy to see, that the algorithm waits until an actual request is received. Further-

more, it also locks the SPM access exclusively. This is done in order to prevent the

problems with updating certain ratings while simultaneously constructing the RSPR.

The process of changing the ratings in a dynamic fashion (3) is also performed by the

SPRM . To perform the actual rating update based on a certain property, the SPRM

must receive the new rating. It therefore takes the tuple (SP
operation

,!) as input. Besides

the update process, this tuple can also be used to initially set the ratings and/or the

security properties itself. As this process equals the update procedure, it is not explained

additionally but as part of the update algorithm. After the SPRM received this tuple, it

accesses the SPM as soon as possible. That is, if a RSPR construction is performed at

the same time, the SPM is locked until the RSPR has been constructed. In this case, the

SPRM first finishes the construction before starting the update procedure. If it is able to

access the SPM it looks up the property given in the tuple. If existing, the appropriate

rating is changed by navigating to the correct entry via the index. If there is no property

entry, a new one is created in the static part of the SPM . Moreover, the index-based link

109

4 A Concept for Trustworthy Smartphone Integration

between the rating is created and the rating itself is set. The update procedure itself must

run exclusively in order to prevent problems with inconsistent ratings or properties. Due

to this, the algorithm also locks the SPM and the lockSPM() as well as unlockSPM()

functions only return if there is currently no lock on the SPM . The complete update

algorithm is summarised below.

Algorithm 3: Rating and Property update.

Data: SPM
old

, (SP
operation

,!)

Result: SPM
new

lockSPM();

accessSPM();

spFound = false;

foreach SP : mapSP in SPM
old

do

if SP
operation

matches mapSP then

updateRatingByIndex(mapSP, !);

spFound = true;

end

end

if spFound == false then

int idx = addSecurityProperty(SP
operation

);

addRatingByIndex(idx, !);

end

unlockSPM();

While the tuple (property per operation and assigned rating) the SPRM uses for

this update procedure is defined, the process of its construction is not. The construction

must be performed by external components which possess information about how to map

operations and their ratings appropriately. To give an example, this could be done by

performing a remote attestation (section 3.2.3) on the component the rated operation

will be assigned to. In detail, the presented attestation approaches like a permission-

based attestation [149] for an Android-based smartphone, can now be leveraged for this

task. It could also be achieved by using expertise about the components or the overall

system.

110

4.2 Trust Model

Deployment of Conceptual Components

Besides the procedures the SPRM performs on the SPM , the deployment of both com-

ponents needs to be defined. This is necessary as the underlying component (i.e. where

the SPRM and the SPM will be deployed at) need to fulfil certain conditions in terms of

its trustworthiness. In addition, the conceptual deployment itself hast to be based on the

abstract roles defined above. There is no way of defining the deployment based on actual

components as the approach does not specify these components. That is, the SPRM and

the SPM need to be assigned to one of the roles and have to be mapped to the actual

component when instantiating the approach, as well as the role itself . To select a role, it

must be first defined if the SPRM and the SPM can be deployed as one logical compo-

nent. As there is no need for having both components in a standalone manner, they can

be deployed as one single combined (SPRM/SPM) component for simplification reasons.

Furthermore there is only one role, the Provider, which is applicable to hold the combined

components. Besides other which will be explained later, this is due to the fact, that the

Provider is the central role within the approach’s architecture, thus having connections

to both other roles. To actually deploy the combined SPRM/SPM the Provider has to

be trustworthy under any circumstances. That is, if it becomes compromised, the stored

SPM as well as the processing SPRM might be compromised. As they both form the

basis for deriving trust, the overall trust calculation would be compromised. Due to this,

when instantiating the model and implementing it, there need to be special measures to

ensure the integrity of the Provider itself.

Property Summary

The security property approach introduces three main conceptual parts: the properties

(SP) and their set (SPR) itself, the SPM and the SPRM . Security properties are de-

fined as arbitrary characteristics which express the trustworthiness of a certain operation.

To measure this trustworthiness they are determined by ratings expressing the actual

trustworthiness of the property itself. security property records encapsulate an arbitrary

amount of SP s for one operation. If an actual rating is attached, a Rated SPR is gen-

erated. The properties and their ratings, which may change in a dynamic fashion, are

stored within the security property map. The map itself is used by the security property

record manager which takes care of changing the map and creating the SPR as well as

111

4 A Concept for Trustworthy Smartphone Integration

the RSPR. Both the SPM and the SPRM are located on the Provider. Based on these

components, the actual approach for calculating the trust can be introduced.

4.2.3 Trust Calculation

This section introduces the calculation of the actual trust. It therefore introduces the

so-called Trust Level (TL) expressing this calculated trustworthiness. Furthermore, there

are some intermediary steps which have to be carried out in order to calculate the overall

TL. These steps are also explained within this section.

The previous section introduced the abstract role model as

process
Sender

⇣�! transmit
Sender

⇣�! process
Provider

⇣�! transmit
Provider

. Additionally, the

first part of the trust model added security properties encapsulated in a security property

record and weighted in terms of trust by a rating. Therefore it has been defined, that each

of the four operations has a SPR attached to it. This SPR is being used to (1) retrieve the

current ratings for the SP s stored within it (i.e. generating a RSPR) and (2) to calculate

the trustworthiness of this operation. Based on this, the overall trust level which combines

the trustworthiness of all four operations into one measurement can be calculated. This TL

does not express an operation’s trustworthiness but the trustworthiness of the Feature that

was handled by these operations. The first step, the creation of the RSPR is performed

by using the SPRM in the manner shown above. As with the SPRM itself, the trust

calculation is performed as part of the Provider. That is, each time the Provider is in

charge of handling a Feature, the TL for this Feature is being calculated. The calculation

of an operation’s trustworthiness (2) is done by calculating the so-called Security Level

(SL) for this operation.

Security Levels

The SL combines the ratings of an operation’s SPR into a single value. That is, to

evaluate the SPR (i.e. the RSPR) of an operation, a generic rating Function (rF) which

composes an arbitrary amount of ratings together into the SL is used. The function is

defined in the following way.

rF ({!}) = !1 � !2 � ... � !n

112

4.2 Trust Model

In detail, to calculate the SL of an operation, the Provider takes the SPR for this op-

eration and retrieves the assigned rating (using the SPRM) for each SP of the SPR.

These ratings are then composed by using the defined rF to calculate the SL. While the

codomain of the rating itself is not defined, the codomain of the SL is defined as value of

[�1, 1] allowing a scoring (cf. [35]) of the SL values. Using the calculations parts which

are currently defined together, the following expression can be formulated.

SL
operation

= rF

✓
!
SP1 ,!SP2 , ...,!SP

n

◆
with SP 2 SPR

operation

That is, the SL of a certain operation is calculated by combining each rating of the

operation’s security properties using the generic rating Function. Due to the fact that

there are four operations defined by the model, four di↵erent SLs can be calculated. The

algorithm used by the Provider is depicted in the following. It uses the RSPR generated

by the SPRM as input and calculates the appropriate SL.

Algorithm 4: Simple calculation of the SL for an operation :

calculateSL(RSPR
operation

).

Data: RSPR
operation

Result: SL
operation

for i < RSPR
operation

.size do

SL
operation

= ratingFunction(SL
operation

, RSPR
operation

.getRatingByIndex(i));

i++;

end

As a single SL only expresses a trust measurement of a particular operation, there needs

to be another mechanism to combine the SLs of all four operations into a single value.

Besides that, the SL already allows a reasoning about trustworthiness of one operation

which may be useful under certain circumstances. The construct to aggregate the single

SLs into one value is introduced in the next section.

Trust Levels

As already shown, the trust model uses so-called trust levels (TL) to express a Feature’s

trustworthiness. That is, the TL combines the previously calculated SLs into a single

value. In order to explain the calculation, the trust definition made in section 4.2.1 needs to

113

4 A Concept for Trustworthy Smartphone Integration

be applied to the concept of trust levels. It has been defined that the model allows to reason

about a Feature’s trustworthiness by evaluating the trustworthiness of the operations

used to handle this Feature. That is, operations are rated in terms of their expected

result. This is done by defining properties and appropriate ratings for the operations.

Combining these ratings, an overall measurement for the operations trustworthiness can be

calculated (i.e. the SL). As there are four operations carried out when handling a Feature,

the combination of these four SLs build the overall TL. This TL is the overall trust

measurement of the Feature. It is based on the ratings of all operations properties. That

is, the trust level expresses the trustworthiness of a Feature based on the trustworthiness

of the operations that have been used to handle this Features. The term trustworthiness

is defined as the behaviour of an operation in terms of Feature handling. Given this trust

definition of section 4.2.1, a more refined version which is based on this trust level can be

formulated: A Feature is considered trustworthy if and only if its trust level is considered

trustworthy. That is, if the calculated trust level for the Feature lies within a trustworthy

range (this range may vary depending on the particular values used), the Feature itself is

considered trustworthy.

The trust level is defined as composition of all SP s which are assigned to the four

operations and allows a reasoning based on the assigned properties (i.e. their ratings).

Another function, the so-called Trust Function (tF), which expresses this composition is

therefore simply defined as combination of all four SLs.

tF ({SL}) = SL
process

Sender

� SL
transmit

Sender

� SL
process

Provider

� SL
transmit

Provider

The particular method used for the combination itself depends on the actual domain

the model is instantiated for, thus needs to be specified for instantiation. Besides that,

due to the codomain definition of rF ([�1, 1]) the domain of tF is also defined as value of

[�1, 1]. By using tF , the overall trust level for a Feature can be calculated in the following

way:

TL

⇣

=

tF

✓
rF ({!}

process

Sender

)
| {z }

SL

process

Sender

, rF ({!}
transmit

Sender

)
| {z }

SL

transmit

Sender

, rF ({!}
process

Provider

)
| {z }

SL

process

Provider

, rF ({!}
transmitProvider

)
| {z }

SL

transmit

Provider

◆

114

4.2 Trust Model

Summarising this, the overall process of calculating the trust level for a certain Feature

consist of three phases: (1) the assignment of security properties (SP s) and their appro-

priate ratings (!), (2) the calculation of four SLs with one for each operation by using the

rF and (3) finally the calculation of the TL by using the tF and the previous calculated

SLs. This process can be expressed in the following simple manner.

{SPR, {!} rF�! SL}
operation

tF�! TL
⇣

As it easy to see, the first steps are already defined as algorithms shown above. The

missing final algorithm to put all parts together and forming the overall TL is shown

below. It simply takes the four SLs and combines them using the tF into one single TL.

Algorithm 5: Calculation of the final TL for a Feature.
Data: SL

process

Sender

, SL
transmit

Sender

, SL
process

Provider

, SL
transmit

Provider

Result: TL
⇣

TL
⇣

=

trustFunction(SL
process

Sender

, SL
transmit

Sender

, SL
process

Provider

, SL
transmit

Provider

);

Due to the SLs encapsulating most of the previously made calculations, the combination

of them into one single value is rather straightforward. Using the result of this algorithm,

the final TL, a reasoning about a Feature’s trustworthiness can be done. Due to the

Provider being responsible for performing this algorithm and thus calculating the TL
⇣

,

there is one problem: it needs to know the last SPR
transmit

FP

. As this step represents

the feature request of a Receiver, the actual properties of the transmit operation are only

known after the Provider received the request and can determine the SPR by using the

SPRM . This may not be a problem if only one single Receiver is used as the operation

could be predefined but if there are more Receivers, the last SPR is unknown until the

request was received by the Provider. To address this problem, phases are introduced

within the next section.

4.2.4 Phase Extension

To solve the problem stated above, the TL calculation is being divided into two phases

and thus there are two actual types of trust level. The first type, being calculated when a

Feature was processed on the Provider is called Phase 1 Trust Level (TLP1
⇣

). Equally to

that, the second type is called Phase 2 Trust Level (TLP2
⇣

). The previously defined trust

115

4 A Concept for Trustworthy Smartphone Integration

level without a specific phase is still used in an abstract manner where phases are not

relevant. The phases which define either the phase 1 or phase 2 trust level are defined and

explained in the following.

Phase 1

Phase 1 describes the combination of the first three SLs into one single TLP1
⇣

. It therefore

consists of the operations process
Sender

⇣�! transmit
Sender

⇣�! process
Provider

. The phase 1

trust level is due to this simply defined as part of the overall TL, shown in the following.

TLP1
⇣

=

tF

✓
rF ({!}

process

Sender

)| {z }
SL

process

Sender

, rF ({!}
transmit

Sender

)| {z }
SL

transmit

Sender

, rF ({!}
process

Provider

)| {z }
SL

process

Provider

◆

This means, after a Feature was received and processed by the Provider, the TLP1
⇣

is

calculated. It expresses only the trustworthiness of the Feature based on the first three

operations. The algorithm used to calculate it is a limited version of the complete algo-

rithm which was shown above.

Algorithm 6: Calculation of the TLP1
⇣

for a Feature :

calculateP1TL(SL
process

Sender

, SL
transmit

Sender

, SL
process

Provider

).

Data: SL
process

Sender

, SL
transmit

Sender

, SL
process

Provider

Result: TL
⇣

TLP1
⇣

= trustFunction(SL
process

Sender

, SL
transmit

Sender

, SL
process

Provider

);

It is easy to see, that the tF takes only the first three SLs as input, thus only using

the first three SPRs and their properties to calculate the TL.

As already stated, the phase 1 trust level can be calculated each time a Feature was

received and processed by the Provider. The TL is then stored in special structure, which

will be explained later. If the Provider receives a request for the Feature from a Receiver,

it can initiate the procedure to calculate the second phase.

Phase 2

This phase consists of the calculations made in the first phase as well as the trustworthiness

of the last operation (transmit from the Provider to the Receiver). This is due to the fact,

116

4.2 Trust Model

that the SPRM can only determine the final SP s for the transmit
Provider

operation if it

knows the actual Receiver the Feature should be sent to. For example, if there are security

properties expressing a communication channels integrity (e.g. if it is encrypted), the exact

property can only be assigned if the communication channel is known at assignment time.

As with phase 1, the second phase describes the combination of all four SLs into one

single trust level. This trust level is then called phase 2 trust level, short TLP2
⇣

. It consist

of the complete operational flow process
Sender

⇣�! transmit
Sender

⇣�! process
Provider

⇣�!
transmit

Provider

, thus in di↵erence to the TLP1
⇣

it also encapsulates the last operation.

The algorithm used has already been shown as Algorithm 5, this is due to using all

four SPRs again. The only di↵erence is that the algorithm is no longer referred to as

calculateTL(...) but as calculateP2TL(...) where the arguments are all four SLs.

While the phase 1 trust level is globally valid, the TLP2
⇣

is only applicable for the

requesting Receiver. That is due to the TL being calculated exactly for this Receiver as

it takes SP s from the last transmit operation to this Receiver.

Phase-based Flow

The overall flow when handling Features and calculating trustworthiness consist of the

two phases added above. That is the following steps are carried out.

1. Processing of the Feature on the Sender. As already explained this consists of cre-

ating and/or aggregating the Feature and preparing it.

2. Transmission of the Feature to the Provider using a protocol capable of transferring

the Feature appropriately.

3. Processing of the Feature on the Provider, thus storing and retrieving the Feature.

4. Calculation of the phase 1 trust level by the Provider. It uses the SPRM and SPM :

the SP s of the first three operations are taken to calculate the TL. The TL is then

stored and kept ready for further use. Every time the Feature is being re-received

by the Provider, the TL will be recalculated using the last values set in the SPM .

5. If a Receiver wants to access the Feature, the Provider calculates the TLP2
⇣

for

the last transmit operation as it knows the Receiver at this time. It attaches the

calculated TL to the Feature.

117

4 A Concept for Trustworthy Smartphone Integration

6. The Feature and the TLP2
⇣

are transmitted to the Receiver which was requesting

the Feature.

In addition to the Provider being trustworthy as it calculates the TLs, the transmission

of the TLP2
⇣

needs to be secured as well. If it is done via an unsecured channel, the calcu-

lated TL might be compromised. Although the concept does not enforce it, it is strongly

recommended to sign the TLP2
⇣

in order to make sure that the Receiver can determine the

source of the TLP2
⇣

. In contrast to the evaluation of the last transmit operation, signing

the TLP2
⇣

is enough as the Provider is considered trustworthy. Furthermore, it is also

possible to use another communication channel than the last transmit to propagate the

TLP2
⇣

.

4.2.5 Feature Handling on the Provider

As already outlined, the Provider takes care of calculating the trust level of a Feature

on certain occasions. This section defines which occasions it is responsible for. Mainly,

there are three types of handling processes the Provider can perform. The first one is the

creation of a Feature, the second one encapsulates the process of updating an already

created Feature and the last one handles the deletion of a Feature. Figure 4.4 depicts the

life cycle formed by these three types.

Figure 4.4: Feature life cycle on the Provider.

118

4.2 Trust Model

Feature Creation

If the Provider receives a Feature from the Sender it has never received before, it creates

a new entry for this Feature and stores it locally. That is, the term creation refers not

to the process which is done on the Sender but describes the type of process operation

performed by the Provider. In addition, the Provider calculates the TL, first the TLP1
⇣

and if it is requested the TLP2
⇣

. The Feature creation can only be performed as long as

the Feature has not already been created.

Feature Update

If the Provider receives a Feature from the Sender which has already been received it

updates this Feature. It is not important if the Feature is received the second time (thus

the previous handling operation was Feature creation) or n time (previous operation was

update). Besides the update of the Feature, the Feature’s TL is also updated. That is, the

Provider simply performs a recalculation of the TL thus including potentially updated

ratings. This recalculation applies for both types of the TL considering that the TLP2
⇣

is

only recalculated after the Feature was requested by a Receiver.

Feature Deletion

A special kind of handling is the deletion of a Feature. While the other two handling

procedures receive a Feature from the Sender which should be stored, this type receives a

Feature which is flagged for deletion. This indicates, that the Feature should be deleted

what is then done by the Provider. In addition, the TLP1
⇣

for the Feature is also deleted.

The overall algorithm realising these three types of Feature handling by the Provider

is shown in the following. The Sender is only capable of telling the Provider to receive or

119

4 A Concept for Trustworthy Smartphone Integration

delete a Feature, it is not able to express a Feature update. This is due to the fact, that

another Sender may have already sent the same Feature.

Algorithm 7: Feature handling on the Provider.
Data: Sender request type type ,may be either add or delete

Result: Feature processed ⇣
processed

⇣
received

= receiveFeature();

if type == add then

update = false;

foreach ⇣ : storedFeature in ProviderStorage do

if storedFeature == ⇣
received

then

updateFeature(storedFeature, ⇣
received

);

update = true;

end

end

if update == false then

addFeature(⇣
received

);

end

else

deleteFeature(⇣
received

);

end

While the first two types are straightforward, the deletion introduces a problem: there

is no way to indicate the trust level for the Feature deletion. That is, the current model is

unable to express the trustworthiness of the deleted Feature and of the operations used to

delete the Feature. This is problematic as there is now way to recognise if a compromised

component has deleted a Feature indicating this component’s compromise. Due to this,

another conceptual part is needed which is introduced in the following section.

4.2.6 Snapshots

While the current conceptual parts allow to store the TL that is currently valid for a

Feature that is available on the Provider, it does not store TLs for deleted Features as well

as old TLs for updated Features. This leads to the problem shown above and in addition

to the problem of recognising changes of the TL when updating a Feature. To circumvent

120

4.2 Trust Model

this, the trust model uses so-called snapshots. These snapshot preserve the actual state

of a Feature including the Feature itself as well as the Features trust information. The

Trust information includes the aggregated TL as well as the RSPR which consists of the

SP s and their appropriate ratings. That is, the snapshot stores the ratings which where

assigned to the properties at the time the TL was calculated. By using these snapshots,

it is possible to evaluate the change of the TL or its parts (SP , ratings) and to compare

older values against the actual value.

There are three types of snapshots which correspond to the Feature’s handling phases

on the Provider. Due to this, the types are a so-called Create Shot, an Update Shot and a

Delete Shot. These snapshots are always generated when the appropriate handling phase

is carried out. The last snapshot which has been created always represents the current

state. That is, if a Receiver accesses a Feature and its Trust information, the snapshot

that has been created as last (thus being the newest snapshot) is given to render the

Feature’s actual state in terms of trust. This implies, that every time a Feature handling

on the Provider takes place, a snapshots is being created.

Snapshots are only generated for TLP1
⇣

. That is, the trust information stored in the

snapshot does not include the RSPR for the final transmit operation. Due to this, the

TLP2
⇣

is only valid for the most recent snapshot and cannot be applied to older snapshots.

This is necessary, as there is no way to determine the last transmit operation as this de-

termination relies on the properties of the actual Receiver. These properties are unknown

before a Receiver’s actual access request is being received.

Create Shot

The Create shot is generated when a new Feature is received on the Provider. The term

new refers to the Providers view on the Feature and means that the Provider has never

received this Feature before. This snapshot type therefore stores the trust information

which is valid if a Feature is newly created on the Provider. Analysing the overall Feature

life cycle on the Provider, it is clear that there can be only one Create Shot for a Feature.

This is due to the Feature only being created once. If the Feature never gets updated nor

deleted, this type of snapshot remains the most current all the time.

121

4 A Concept for Trustworthy Smartphone Integration

Update Shot

The Update snapshot is created each time a Feature is updated, which occurs if the

Provider receives a Feature again. Due to this, there may be an unlimited amount of

Update Shots, which is contrary to both other types. As with the other type, each Update

Shot stores the Feature’s value and the associated trust information that were valid at the

time of updating. If the Feature is updated but not deleted, the lastly created Updated

Shot expresses the Feature’s current trust state.

Delete Shot

If a Feature is intended to be deleted, a Delete Shot is being created. It consists of the

Feature’s last value prior to its deletion and the trust information of the update which

instructed the deletion. Due to this, the Delete Shot holds information about the SP s of

the operations that where performed to delete the Feature making it possible to evaluate

this deletion. As a Feature can only be deleted once, there is only one Delete Shot. This

Delete Shot forms the final state of the Feature as well of the Feature’s trust information. If

the Feature is updated again, a new Create Shot is generated. This behaviour corresponds

to the Provider’s Feature handling model. This type of snapshot can be used to determine

the state of the Feature prior to its deletion and, more importantly, to recognise which

Sender (including this Sender’s SPR) triggered the deletion of the Feature.

122

4.2 Trust Model

The following algorithm summarises the snapshot extended handling of Features on the

Provider.

Algorithm 8: Snapshot extended Feature handling on the Provider :

handleSnapshot(type, ⇣).

Data: Sender request type type ,may be either add or delete

Feature received ⇣
received

Result: Feature processed ⇣
processed

and the Snapshot

if type == add then

update = false;

foreach ⇣ : storedFeature in ProviderStorage do

if storedFeature == ⇣
received

then

Snapshot = generateUpdateShot(⇣
received

);

updateFeature(storedFeature, ⇣
received

);

update = true;

end

end

if update == false then

Snapshot = generateCreateShot(⇣
received

);

addFeature(⇣
received

);

end

else

Snapshot = generateDeleteShot(⇣
received

);

deleteFeature(⇣
received

);

end

Summary

The actual trust calculation used in the approach consists of three main parts: the defini-

tion of properties and their ratings, the calculation of the trust level and the extension of

this Level into phases and snapshots. The properties, ratings and appropriate components

where already defined in the last section. This section introduced the trust level which is

being calculated in two sub steps: first the calculation of a SL based on the operation’s

RPRS. Second the combination of these SLs into one single trust level. As the SL of

123

4 A Concept for Trustworthy Smartphone Integration

the last transmit operation is only known at certain times, the trust level is divided into

two types. While the TLP1
⇣

expresses the Feature’s trustworthiness only based on the first

three operations, the TLP2
⇣

includes also the fourth operation. Due to this, the TLP1
⇣

is

globally valid for a Feature while the TLP2
⇣

is only valid for a particular Receiver. To

allow reasoning about deletion of a Feature and the change of trust, snapshots are used.

There are three types of snapshots, each representing one phase of Feature handling on

the Provider.

By using this parts of the trust model, the approach allows to reason about a Feature’s

trustworthiness. Furthermore it allows to build a history in terms of trust change of a

Feature and to distinguish between the trustworthiness of a Feature stored on the Provider

or already placed on the Receiver.

4.3 Data Model

To actually use the parts of the model and their appropriate trust building components,

a data model encapsulating Features and their trust information is needed. Figure 4.5

depicts the overall architecture which is based on the so-called TrustLog. Besides the

TrustLog and the Feature stored in it, it consists of several sub elements mapping the

components of the model. These elements are assigned to three layers which are explained

in the following in a bottom up manner. That is, Layer 1 forms the basic building blocks

while Layer 3 forms the top.

4.3.1 Security Property Layer

The lowest layer consists of the elements mapping the security properties and their ap-

propriate records. It is depicted in figure 4.6.

SecurityProperty

The SecurityProperty element encapsulates one single security property and its rating.

It is not bound to a specific operation, thus the same element may be used for several

operations. The rating itself is actually stored to allow an evaluation of new rating values

(if the rating was changed meanwhile) versus the stored value. The SecurityProperty

element is the most basic part of the data model and does not use other subclasses. When

124

4.3 Data Model

Figure 4.5: Complete TrustLog data model, including all layers. The Feature (marked by
a blue frame), is given by the CADS model (see [2] for more details of the
Feature data model).

the overall TrustLog is created, the Provider generates a SecurityProperty element for

each security property that is part of the Feature’s trust calculation. If more than one

operation uses the same SP , there may be only one SecurityProperty object for this SP

which is being used several times. This is possible as long as the operation references

exactly the same SP .

SecurityPropertyRecord

The SecurityPropertyElement allows to map an operation’s actual SPR into the data

model. That is, for each operation which was part of the Feature handling the TrustLog is

being created for, a SecurityPropertyElement will be produced. The element consists of an

amount of n SecurityProperty elements which represent the SP s that are stored within a

125

4 A Concept for Trustworthy Smartphone Integration

Figure 4.6: Security Property Layer of the TrustLog data model, whereas the coloured
elements depict the appropriate classes of the layer. The relationship between
the classes are given be the arrows which include the appropriate cardinality.

SPR. Because of the data model’s SecurityProperty element actually storing the ratings

besides the SP s, the SecurityPropertyElement maps the RSPR rather than the SPR

only. This is due to the SPR being unable to hold ratings. The SecurityPropertyRecord

is being used by the layer above.

4.3.2 Phase and Snapshot Layer

The second layer maps the conceptual parts of the phases and the snapshots as part of

the data model. It therefore consists of elements which represent the snapshot types and

elements which represent the two di↵erent phases. The layer is depicted in figure 4.7.

Snapshot Elements

There are three snapshot elements mapping the Create Shot, Update Shot and Delete

Shot. They are named equally to the conceptual components: CreateShot, UpdateShot

and DeleteShot and are created according to the algorithm shown above. That is, every

time a new Feature is stored and thus a new TrustLog is created, the first snapshot is

126

4.3 Data Model

Figure 4.7: Phase and Snapshot layer of the data model with the appropriate elements
shown as coloured classes. Cardinality and class relationship is indicated by
the appropriate arrows.

created as CreateShot. Every time an update for an already stored Feature is handled

by the Provider, a new UpdateShot is generated and associated with the appropriate

TrustLog. Finally, if a Feature is going to be deleted, the appropriate DeleteShot is created

and stored.

The Snapshot elements themselves consist of the Feature’s stored value, i.e. not the

whole Feature element but only the value of it. Furthermore a timestamp is stored allow-

ing to track when the snapshot was created. Besides that, three SecurityPropertyRecord

elements are attached to the Snapshot. That is, there are only three as snapshots are

only created for phase one. The SecurityPropertyRecord elements may be di↵erent but

can also be the same if di↵erent Snapshots reference exactly the same SecurityProper-

tyRecord element.

Phase Elements

There are two elements which map the appropriate phases onto the data model, they

are simply called Phase1 and Phase2. Both types consist of the calculated SL with the

127

4 A Concept for Trustworthy Smartphone Integration

di↵erence, that Phase1 holds only three SLs while Phase2 holds four SLs. This is equally

to the amount of operations which are considered by the appropriate phase. Besides the

calculated SLs, the phase elements also hold the SecurityPropertyRecord for each SL.

While Phase2 references four SecurityPropertyRecord elements directly, Phase1 references

Snapshots. There are exactly one CreateShot and one DeleteShot as well as an arbitrary

amount of UpdateShots referenced. The creation of these Snapshots is done according

to the method mentioned in 4.3.2. That is, the SecurityPropertyRecord elements are not

directly referenced by the Phase1 element but indirectly through the Snapshot elements.

Phase2 can reference the SecurityPropertyRecord element directly, as there are no snap-

shots in the phase 2 flow of the model. This is due to the calculation of the TLP2
⇣

only

being valid for on single Receiver as well as being carried out just before the final transmit

operation is performed. The layer 2 elements can now be used in order to create to overall

TrustLog element.

4.3.3 Feature Layer

The upper layer, depicted in figure 4.8, consists only of two elements: the Feature itself

and the TrustLog element which references the Feature. The root used within this data

model is also rendered by the TrustLog, i.e. the Provider stores TrustLog entries for each

Feature it is handling or it has handled.

TustLog

The TrustLog itself consist of the already mentioned reference to the actual Feature and

to the appropriate phase elements. Furthermore, it holds the calculated trust levels, in

detail the TLP1
⇣

as well as the TLP2
⇣

. The trust levels represent the particular valid TL, i.e.

the TLP1
⇣

that is based on the last snapshot and the TLP2
⇣

which was just calculated for a

certain Receiver. They are refreshed each time a TL is recalculated which would be in case

of another Receiver for the TLP2
⇣

and in case of update or delete for the TLP1
⇣

. Besides

this direct storage of the TLs, it references the two phase elements already explained. It is

therefore possible to access every single part of the overall trust calculation by accessing

the TrustLog.

128

4.3 Data Model

Figure 4.8: The Feature layer of the data model shown by coloured elements. Arrows
indicated the relationship between the classes including their cardinality.

Feature

The Feature element itself simply holds the actual Feature and is referenced by the Trust-

Log. It consists of the unique Feature id, the value of the Feature, the type of the Feature

and the appropriate contextual information. It is described in detail in [2].

Summary

The data model introduced in this section allows to store the necessary parts of the

trust model on the Provider. It consists of three di↵erent parts, each one depicting the

appropriate area of the model. The main element of the data model is used as storage

root for Features and their attached trust information on the Provider. That is, for each

Feature handled a TrustLog data structure is created and used for further actions.

4.3.4 Provider State Machine

The previous sections introduced the trust measurement as well as their calculation along

with a data model allowing to adopt the overall concept. As it was already stated in

129

4 A Concept for Trustworthy Smartphone Integration

those sections, the Provider is responsible for performing all necessary steps, thus also

for answering requests from other roles in the model. While the sections introduced the

necessary parts to perform the trust calculation on the Provider, there are still two parts

missing: (1) the types of requests the Provider is able to answer and to handle and (2) the

detailed operations of those requests the Provider has to perform. These missing parts

are introduced within this section and finalise the conceptual model.

Given the trust concept above, it is easy to see, that there are di↵erent type of states in

it. That is, the trust calculation is always separated into several sub steps that need to be

performed. Furthermore these steps need to be performed if a certain type of request is

received by the Provider. Based on this, three di↵erent types of requests can be defined.

Sender Requests The so-called Sender Requests are the request which map the action if

a Sender transmits a new or updated Feature to the Provider. As the name states,

the request is bound to the Sender role and thus can only be triggered by a message

from the Sender.

Receiver Request The other role-specific request type is the so-called Receiver Request.

Inversely to the Sender Request, this type is triggered by the Receiver, namely in the

case when a Receiver needs access to a Feature stored on the Provider. Furthermore,

this type is also bound to the specific role thus can only be triggered by a Receiver.

Reasoning Request The last type, which is di↵erent to the first two types in terms of

the accessing component, is the so-called Reasoning Request. This request is used

to access one or more TrustLogs directly on the Provider. That is, it is not bound

to a specific role but can be triggered by every one. Even more, it can be triggered

by components which have not been directly mapped to roles. The request itself

is needed for an overall trust reasoning of the collected Features. For example, by

using this type it is possible to gain an overview about the trust situation of the

complete environment (given that it is fully integrated).

To handle these types of requests in a defined manner, the Provider uses an internal state

machine. This state machine realises each type of request and encapsulates the necessary

sub steps to fulfil the request. Furthermore, it defines the transitions between the sub steps

and determines also when a request type is finished. This renders the Provider ready to

process another request. The overall state machine is depicted in figure 4.9 and will be

130

4.3 Data Model

explained by each request type in detail in the following sections. By using and adopting

Figure 4.9: Provider State Machine including all relevant paths.

this state machine, the Provider is able to process the request types shown above com-

pletely. Furthermore it is able to perform the Feature handling as it was described in the

abstract model part. To fully use the concepts defined here, it is necessary to implement

this state machine. The general transitions through the states in the Provider can be di-

vided into three parts: (1) the receipt of the appropriate request, (2) the evaluation of the

request itself to gain the request type and (3) finally the actual handling of the request.

Although the general flow is always the same, there are three distinct paths inside the

state machine, one for each request type.

131

4 A Concept for Trustworthy Smartphone Integration

Sender Requests

As already explained, the Sender Request expresses those types of requests which update

or create a Feature on the Provider. They are triggered by components mapped to the

Sender role. As the type does not define if the request itself consist s of an update or

a creation, the Provider needs to determine this. This is partially already handled by

algorithm 8, which decides about the type of snapshot creation and thus needs to know if

the Feature is already known. The path the request is handled within the state machine

is shown in figure 4.10. As depicted, there are six di↵erent states the Provider can have if

Figure 4.10: Sender Request path of the state machine, indicated by coloured elements.

handling this type of request. Two of these states are applicable for every request type: the

state of waiting and the request received state. These states match the above describe part

(1). Within the waiting state, the Provider does not perform any action but waits for an

incoming request. If this request is inbound, the Provider receives it and changes its state

132

4.3 Data Model

into the request received state. At this time, all the data which belong to this request (but

not the Feature) are on the Provider’s side. Based on this information, the Provider decides

about the request’s type and changes into the appropriate path. In this case it steps into

the Sender Request path shown in the figure. With stepping into this path, the Provider

receives the actual Feature and changes it state to Feature Received. When analysing the

defined operations in the model, the state change from Request Type to Feature Received

occurs exactly when the transmit
Sender

operation is finished in this type of request. Due to

the Provider possessing all necessary information to fulfil the request, it can now advance

further. As this request type is only applicable for phase 1, the Provider’s next step is

to receive all necessary RSPRs. This is done by querying the SPRM in a reasonable

way which responds with three RSPRs, that are based on the operations that have been

carried out to handle the Feature up to this point. When the Provider has successfully

gained the appropriate RSPRs, it changes its state into SPR Received. In the next step,

the Provider changes into the state Snapshot Created. It is reached when the Provider

has successfully generated the appropriate snapshot for the Feature it has received. This

may be either a CreateShot, an UpdateShot or a DeleteShot. Having reached this state

and thus created the snapshot, the Provider continues the trust calculation by calculating

the three security levels as well as the Phase1 element storing those SLs. Furthermore, it

creates the overall TrustLog structure which combines all elements into one single entity.

After it has created the TrustLog, it is stored appropriately inside the Provider’s storage

area. The Provider changes its state to Log Stored, thus finishing the request handling. As

the Provider needs to be able to handle further incoming requests, the last step is to wait

and thus changing back into the Waiting state where it was before it starting handling

this request.

Although the Provider calculates the SLs and the Phase1 elements in this type of

request, it is not necessary by all means. That is, the calculation of the SLs as well as

the creation of the phase elements are only done, considering the data model, because the

Provider needs to attach the snapshot anywhere. The abstract flow of this request type

does not enforce the calculation of the SLs. This is due to the fact, that the final trust

level is only calculated when one of the other request types is being handled. In order to

provide always trust levels of highest possible freshness it is unavoidable to calculate the

TL just in time when it is being requested. If a more complex data model is being used,

which is able to support snapshots that are not directly bound to a phase element, it is

133

4 A Concept for Trustworthy Smartphone Integration

possible to store the TrustLog and the snapshots only, without taking care of the SLs

and the phase elements. In this case, the Provider would not request the RSPRs but the

SPRs only to assign them properly.

The following algorithm summarises the handling process for this type of request with-

out considering the drawbacks of the data model. That is, the SLs are not calculated and

the algorithm assumes, that snapshots may be directly attached to the TrustLog. Further-

more, it makes use of algorithm 8 and 1 to create the actual snapshot and determining

the correct type.

Algorithm 9: Handling of Sender Requests : handleSenderRequest(type).

Data: type type of the request (add or delete)

Result: Stored TrustLog for the Feature received in the request

⇣
received

= receiveFeature();

Snapshot = handleSnapshot(type, ⇣
received

);

update = false;

foreach ⇣ : storedFeature in ProviderStorage do

if storedFeature == ⇣
received

then

TrustLog = getTrustLogByFeatureId(⇣
received

);

updateTrustLog(⇣
received

, Snapshot);

update = true;

end

end

if update == false then

createTrustLogByFeature(⇣
received

);

updateTrustLog(⇣
received

, Snapshot);

end

As already shown, after the Provider has finished handling the request, it enters the

Waiting state again and is ready to process another request.

Receiver Requests

The second request type the Provider handles is the so-called Receiver Request. It is

triggered by a Receiver which requires to access, thus receives, a Feature from the Provider.

The path which is used within the state machine is shown in figure 4.11. The main parts of

134

4.3 Data Model

this request type are the receiving of the request itself, the retrieval of the stored TrustLog

out of the Provider’s storage and finally the calculation of both trust level types and the

providing of the Feature and the TLs to the Receiver. Starting in the Waiting state again,

Figure 4.11: Receiver Request path of the state machine depicted as coloured elements.

the Provider first receives the request including its type and enters the Request Received

state. It then has to decide, based on the type, which path it takes, as by receiving this

request type it enters the Feature request branch. That is, the first two states as well

as the decision transition are the same as for the other request types. With entering the

appropriate branch, the Provider enters the state Feature Request Received by actually

receiving the Feature id from the Receiver. To reach the next state Log Retrieved, the

Provider accesses its storage and retrieves the appropriate TrustLog structure for the

Feature id received in the request. If there is no TrustLog existing for the Feature id

given, the Provider responds with an empty message to the Receiver, thus indicating that

135

4 A Concept for Trustworthy Smartphone Integration

the request Feature was not found. For the ease of understanding, this part is not directly

shown in the state machine’s figure but should be taken into account when implementing

the Provider’s logic. Given that the TrustLog could be retrieved, the Provider is now in

the state Log Retrieved. It can now proceed further by starting the actual trust calculation

based on the TrustLog’s elements. The first step is to calculate the three security levels

for phase one. This is done by taking the last snapshot stored in the TrustLog and thus

getting the stored SPR for each operation. Those three SPRs are then used to retrieve

the three RSPRs, which include the actual rating of the SP s by querying the SPRM .

The SPRM accesses the SPM and retrieves the currently valid ratings as already shown

above. Using these ratings, the SL for each of the three operations can be computed and

additionally stored in the appropriate phase element of the TrustLog. Finishing this step,

the Provider enters the state P1 SLs Calculated. This state is not only used exclusively

by this type of request but also by the reasoning request type. Due to this, the Provider

re-checks the request type to proceed into the correct branch: In case of this request type

it needs to proceed with the phase 2 calculation. This is done by retrieving the SPR

and based on this building the RSPR for the final transmit operation. It is possible to

get these values at this time, as the Provider knows which Receiver requires to access

the Feature by simply checking which Receiver was the source of the request. Based on

this information, the SPRM is able to determine the correct security properties for this

operation and thus attaching the correct ratings into the RSPR. After this has been

done, the Provider is in the P2 SPR Retrieved state from where it continues by adding

the SPR just retrieved into the phase 2 element. Finishing this, the Provider is in the P2

SPR Added state which indicates that all necessary information for the next few steps

are available. This makes it possible to start the actual calculation process. As it has

already calculated the appropriate SLs for phase one, it only needs to calculate the last

SL for phase two. It therefore takes the RSPR gained in the last step and performs the

SL calculation, finishing it by putting the SL into the correct phase element as part of

the TrustLog. By doing so, it reaches the state P2 SL calculated where it holds all four

SLs in their appropriate phase elements. It is now able to process to the next state by

calculating the final TLP2
⇣

. This is done using the appropriate function to combine the SLs

into one single value. This value is then written into the TrustLog. After this has been

carried out, the Provider enters the P2 TL Calculated state which represents the final

state of this request’s calculation part. The only step remaining is the actual providing of

136

4.3 Data Model

the TrustLog. This is done in the next step: the Provider transmits the TrustLog (and the

attached Feature) to the requesting Receiver, thus entering the state Data Provided. This

finishes the handling of this request type. As already explained in the first request type,

the Provider enters the state Waiting again in order to continue with further requests. The

algorithm to handle this request type is shown in the following. It combines the already

shown algorithm 2 and algorithm 4.

Algorithm 10: Handling of Receiver Requests : handleReceiverRequest(FeatureId).

Data: FeatureId identifying the requested Feature

Result: Transmitted TrustLog including the Feature for the id

TrustLog = getTrustLogByFeatureId(FeatureId);

Snapshot = getLastSnapshot(TrustLog);

SPR[3] = getAllSPRs(Snapshot);

RSPR1 = getRSPR(SPR[0]);

RSPR2 = getRSPR(SPR[1]);

RSPR3 = getRSPR(SPR[2]);

SL1 = calculateSL(RSPR1);

SL2 = calculateSL(RSPR2);

SL3 = calculateSL(RSPR3);

RSPR4 = getFinalTransmitRSPR();

SL4 = calculateSL(RSPR4);

calculateP2TL(SL1, SL2, SL3, SL4);

The algorithm itself consists mainly of calls to already defined functions, thus it com-

bines the parts shown above into one.

Reasoning

The last request type the Provider is able to handle is the so-called reasoning request.

The branch inside the state machine is shown in figure 4.12.

Aim of this type is to provide a possibility to retrieve the TLP1
⇣

for each Feature stored

on the Provider. This allows to perform a trust-based reasoning on top of the trust values

of all known Feature which could be for example used to gain an overall impression of

the environments trust situation. The reasoning request branch of the Provider’s state

machine consists of two main parts: the retrieval of the appropriate TrustLogs and the

137

4 A Concept for Trustworthy Smartphone Integration

Figure 4.12: Reasoning path inside the state machine (shown as coloured elements).

calculation of all necessary TLP1
⇣

. In detail, the reasoning request itself consists of a list of

Feature ids or nothing but the request itself. If the request is received without any Feature

id, it indicates that the Provide should answer with all trust levels for all Features it has

stored at this time. The handling process of this request type begins as usual with the

Provider receiving the request itself and thus entering the state Request Received from

the former state Waiting. It then decides about the request type, which is in this case a

reasoning request and enters the appropriate branch by reaching the state P1 TL Request

Received. If there are Feature ids given, it retrieves only these TrustLogs or if there are no

ids given it retrieves all stored TrustLogs to continue. The next part equals the phase one

SL calculation part of the receiver request type with only one di↵erence: it is done multiple

time. That is, the calculation of the appropriate SLs is done for each Feature id received or

for each Feature stored on the Provider. After this was finished, the Provider is in the P1

138

4.3 Data Model

SLs Calculated state. This is the same state it reaches when handling a receiver request,

thus the Provider has to check the request type again for further proceeding. In this case,

the type indicates, that a reasoning is requested and thus the TLP1
⇣

for each Feature given

is required. Due to this, the Provider takes the calculated SLs for each TrustLog (i.e for

each Feature) and combines them by using the tF () into the TLP1
⇣

. As a result of this, the

Provider reaches the state P1 TL Calculated where it holds a list of all calculated TLP1
⇣

s.

To finish this request type, the Provider needs to transmit the calculated trust levels to

the requesting component. The particular method for transmission is not defined within

this model although the model demands that the channel used for transmission must be

secured to avoid compromise of the calculated values. This could be done for example

by signing the trust levels appropriately. After the transmission is finished, the Provider

enters the state Data Provided which renders the final stage for this request type. As with

the other request types, in order to be able to handle further requests, the Provider waits

again and thus finishes in the state Waiting.

The algorithm used for this request type is shown in algorithm 11. It makes use of

the SL calculation (algorithm 4) as wells as the P1 trust level calculation (algorithm

6). For simplicity purposes, the retrieval of the RSPRs for each SL and their connected

operations are encapsulated into getSL3ByFeatureId(id). The detailed algorithm used

to perform these intermediary steps are shown in the algorithm below.

As described above, the algorithm decides if it should process all stored Features or

only a limited list and then calculates all necessary parts. Based on these parts, the trust

level is calculated and stored into another list which is then sent to the component which

was requesting the reasoning.

Summary

The state machine of the Provider is responsible for the correct handling of the request

types supported. There are three of these types: the Sender Request, the Receiver Request

and the Reasoning Request. The Sender Request is triggered by a component possessing

the Sender’s role and consist of the sub types add or delete. Add indicates, that the sender

wants to update or add a new Feature to the Provider’s storage. The Provider takes the

Feature in this case and stores it along with the Feature’s attached security properties.

In case of a delete subtype, the Provider tags the appropriate Feature as deleted in its

139

4 A Concept for Trustworthy Smartphone Integration

Algorithm 11: Handling of Reasoning Requests : handleReasoningRe-
quest(FeatureId).

Data: Feature id list fids
Result: Transmitted list of P1 TLs
if fids.size > 0 then

P1TL[fids.size];
for i = 0; i < fids.size; i++ do

SL[3] = getSL3ByFeatureId(id);
P1TL[i] = calculateP1TL(SL[0], SL[0], SL[0]);

end

else
P1TL[ProviderStorage.FeatureCount]; i = 0;
foreach ⇣ : storedFeature in ProviderStorage do

id = storedFeature.getId();
SL[3] = getSL3ByFeatureId(id);
P1TL[i] = calculateP1TL(SL[0], SL[0], SL[0]);

end

end

storage. The second type, the Receiver Request, is triggered by a Receiver which wants

to access (i.e. retrieve) a Feature. It tells the Provider therefore the Feature id. Based

on this id, the Provider retrieves the Feature out of its storage and calculates the trust

level (phase 2) for this Feature. The calculation is based on the currently valid rating

values of the attached properties. After the TL has been calculated the Feature including

its Trust properties is sent to the requesting Receiver. The third type of requests is the

Reasoning Request. It used to retrieve an arbitrary amount of phase one trust levels from

the Provider. This list can be used for further tasks, e.g. for evaluating the overall security

situation of the environment. If the Provider receives this type of request, it calculates

the appropriate TL (phase one) for each Feature requested or for all Features stored.

It then transmits these calculated trust levels to the requesting component. These three

request types map the necessary functions given in the model to the Provider and allow

to actually use the trust model.

140

4.3 Data Model

4.3.5 Policy Encapsulation

Although all required parts of the trust model are now defined, there is one additional

point that needs to be addressed: the integration of a policy. Section 4.2.2 defines a part

of this policy already which needs to be extended in order to encapsulate all necessary

information and make it available to the Provider. That is, there needs to be a policy

which is used by the Provider and holds all relevant information in a domain-specific way.

This section therefore defines the abstract policy for the Provider, which is then mapped

into the environment.

The policy consists of three parts, whereas two of these parts are already defined by the

SPM . Furthermore, the policy holds another section, abbreviated FS, which encapsulates

the necessary functions as well as auxiliary definitions needed for these functions (e.g.,

domain of the values, value constraints, ...). That is, the policy is defined as the SPM

part and the functional part. The SPM part is divided into the already explained static

and dynamic part. The static part holds the security properties while the dynamic part

holds the ratings for these properties. Although the SPM may also be referenced rather

than directly included, a complete policy is defined as the following.

Policy :=

SPM

8
<

:
{SP

PropertyIndex

: (PropertyName)
operation

:= !
RatingIndex

},

{!
RatingIndex

= RatingV alue},

FS

8
>>><

>>>:

(rF ({!}) = !1 � !2 � ... � !n

),

(tF ({SL}) = SL
process

Sender

� SL
transmit

Sender

� SL
process

Provider

� SL
transmit

Provider

),

{auxiliary definitions}

The domain-specific policy may use a certain policy language which allows to express the

elements defined above. This section does not determine this specific language as there

may be di↵erent languages in di↵erent environment. If instantiating the overall model for

a specific environment, the language needs to be determined appropriately.

141

4 A Concept for Trustworthy Smartphone Integration

4.4 Domain-specific Extension - TCADS

The remaining part of the overall concept is the domain-specific mapping of the previously

introduced approaches, thus building up TCADS [18]. TCADS abbreviates Trustworthy

Context related Anomaly and Signature Detection for smartphones. First of all, the cases

which have been explained in section 4.1.3 are extended in terms of the ability to measure

trustworthiness. This is done by mapping the conceptual parts to the two CADS-specific

cases. That is, while the role model described in 4.1 abstracted the CADS-specific cases to

one single general representation, this section takes this representation as well as the trust

model based on this representation and maps it back on the specific cases, thus making

it specific again.

4.4.1 Case I

As already described, the first case summarises the process where a Feature Collector

sends a Feature to the Correlation Engine. The trust extended architecture is depicted in

figure 4.13. It is based on the architecture that was used without trust.

Figure 4.13: Case I in TCADS.

As shown in figure 4.13, there are defined operations that are carried out in the order

given within the abstract model. That is, the Feature Collector first processes the Feature,

then transmits it to the Feature Provider where it is processed again. Finally the Feature

is transmitted to the Correlation Engine and used further. Due to this, the roles which

142

4.4 Domain-specific Extension - TCADS

where given to the components are the Sender for the Feature Collector, the Provider

role for the Feature Provider and the Receiver role was assigned to the Correlation En-

gine. Each operation that is used to handle the Feature is extended by an appropriate

security property record which is then being used to calculate the Feature’s trust level.

Furthermore, the architecture contains both defined phases. The first phase runs until the

Feature Provider finishes the processing of the Feature while the second phase includes

the final transmit operation from the Feature Provider to the Correlation Engine. The

Feature Provider also holds the Policy used for the trust-specific parts (SPM , functions).

4.4.2 Case II

The second case expresses the situation where the Correlation Engine sends a Feature to

the Feature Consumer (via the Feature Provider), for example an enforcement decision

which should be processed by a firewall component. The extended version is depicted in

figure 4.14.

Figure 4.14: Case II in TCADS.

Equally to the extension of the first case, there are now components which possess the

role of the Sender (Correlation Engine), the Provider role (Feature Provider) and the

Receiver role (Feature consumer). The appropriate phases are also mapped, thus phase

143

4 A Concept for Trustworthy Smartphone Integration

one summarises all operations but the last transmit while phase two includes this last

transmit. Each of the operation is extended by a particular SPR being used to calculate

the TL. As in the first case, the Policy is located on the Feature Provider again.

Besides the mapping of the cases itself, the TCADS architecture provides the following

additions by using the trust model.

4.4.3 TCADS Features

Given the Correlation Engine with the CADS architecture, there is the already described

problem of determining if a Feature is trustworthy. That is, the CE cannot distinguish

between Features which are correct (in terms of their encapsulated data) and thus useful

and Features that may not be useful due to providing false data. Using the trust extension

(the complete TCADS system), the Correlation Engine is now able to make a decision

in terms of a Feature’s trustworthiness. To do this, the CE simply uses the calculated

trust level of the Feature and the attached snapshots. In addition to the decision of an

existing Feature’s trustworthiness, the CE can determine if a deletion of a Feature has

been trustworthy as well. If, for example, the CE receives two Features which measure

the same issue but with di↵erent actual measurement values, the CE would use the one

with a higher trust level. In particular, this for example may happen if one of the Feature

Collectors has been compromised. The trust extension provides a way of recognising this.

Besides using a Feature’s trust level directly, the CE can now be used to influence

the trust calculation itself. This is done by defining rules which operate on certain trust-

specific properties, for example on a SP ’s rating. In detail, if the CE recognises that a

Feature Collector provides implausible values (i.e. Features), it can lower the rating of

certain SP s which characterises this Collectors process operation. To do so, the Corre-

lation Engine may use a special Feature type to directly communicate with the Feature

Provider and calling the SPRM to change these ratings. This change will then happen

but only if the trust level of the CE’s Feature is high enough. If the ratings could be suc-

cessfully changed, the Feature Provider would recalculate the Feature’s trustworthiness.

This method allows to create a cascading system between the Correlation Engine and the

Feature Provider, being able to make decisions in multiple communication rounds (CE to

FP, FP to CE, CE to FP).

144

4.4 Domain-specific Extension - TCADS

Another addition which may be used by the Correlation Engine is the direct correlation

of trust values. That is, instead of using a Feature’s value for correlation purposes, the

CE can now make use of the Feature’s trust level. E.g. the CE could monitor a certain

Feature’s TL and base a trend analysis on this level. If the trend becomes too negative,

further investigations could be triggered by the CE. Besides using one trust level only, the

CE could use a reasoning request and monitor all calculated TLP1
⇣

for the environment.

This allows for a large scale monitoring.

4.4.4 Direct and Indirect Trust

Going back to the concept of direct and indirect trust which was presented in section 3.1.3,

both types of trust derivation can be found in the TCADS system. The concept of using

security properties for a basic trust foundation allows for having particular properties that

can express either direct trust or indirect trust. Direct trust is usually inherited by specific

properties of an operation, like the used algorithm or the used security layer for that

particular operation. Indirect trust, usually a representation of a system’s reputation, can

also be expressed via the construct of a security property. In di↵erence to the direct trust

expressing SP s, which are set by the use of the SPRM deriving the actual ratings from

particular properties like a remote attestation, the indirect trust expressing SP s are rated

by external1 components. In detail, the TCADS system is able to express indirect trust by

the use of a cascading relationship between the Provider and the Correlation Engine. If the

Correlation Engine recognises certain Feature Collectors as untrustworthy, it can report

this back to the Feature Provider. The Feature Provider uses this information and changes

the appropriate rating of the corresponding SP . In fact, this is the process of changing an

operation’s trustworthiness by a particular reputation given for this operation from a third

component. Due to this, providing special SP which are based on such cascades allow for

an easy use of indirect trust. Besides using the Correlation Engine for this task, another

external component may be leveraged to report reputation of a certain component. This

is then mapped back to a particular operation carried our on or by this component.

1This can be also done by leveraging the SPRM ’s capabilities but is triggered from outside.

145

4 A Concept for Trustworthy Smartphone Integration

4.5 Assessment

This chapter introduced three parts forming the trust model and by using this model,

the domain-specific TCADS system. The first part, the generic model, introduced roles

and operations. Roles are later used to map all CADS-specific cases into one architectural

layout while operations express the abstract handling of the Features in the CADS system.

Roles as well as the operations allow the abstract and generic definition of the trust model.

This is done in the second conceptual part which introduced a reasonable definition of

trust. So called security properties and their evaluational parts, the ratings, are then

used to derive the actual trust measurement. This is done by calculating security levels

for each operation that is part of the Feature handling process. These security levels are

finally combined to one single value which is called trust level. To address the di↵erent

stages of the Feature handling, the trust level is divided into a phase one and phase

two part. Phase one represents all operations until the Feature is stored on the Provider

while phase two adds the transmission to the Receiver. Based on this, a trust level for

each phase can be calculated. The calculation itself is done on the Provider’s side. The

trust model defines a state machine therefore, which encapsulates all request types that

the Provider can handle. The third conceptual part takes the trust model and maps the

concept back to the particular TCADS cases, thus enhancing the architecture and giving

a domain-specific system to actually deploy. Finally, the additional features that can be

used on the Correlation Engine’s side and benefits of the extension were shown.

To conclude this chapter, a detailed summary of the fulfilment of the requirements is

given in the following. It is shown, which particular part of the concept can be used for

certain requirements.

R1: Trust specification, calculation and evaluation Fulfilment of this requirement al-

lows to distinguish between Features in terms of their trustworthiness. Using the

approach presented here, this is done by defining security properties and calculat-

ing a trust level based on these properties for each Feature. The security property

approach allows to specify and derive trust for a particular operation. The trust

level provides trust calculation and evaluation. There are two sub types of this trust

level: phase 1 and phase 2. The phase 1 trust level allows to generally evaluate the

Feature based on the handling of the Feature until stored and kept ready on the

Provider. Phase 2 allows the final Receiver to evaluate the Feature, but this time

146

4.5 Assessment

also including the last handling on the Provider. Furthermore, the evaluation ap-

proach is based on a holistic foundation, as it includes all handling operations for a

particular Feature, thus allowing to express di↵erent parts for the overall trustwor-

thiness. The domain-specific extension, TCADS, provides an evaluation method for

a Feature’s trustworthiness by introducing a trust-aware decision making system for

the use in smartphone environments. Based on TCADS, an actual evaluation of a

Feature’s trustworthiness is possible for the named scenarios. Given these points, in

particular the trust level concept of the generic trust model and its domain-specific

usage, this requirement can be considered completely fulfilled.

R2: Trust history To provide a method for keeping track of Feature changes and in ad-

dition to that to changes of a Feature’s trustworthiness, a history function must

be provided in order to fulfil this requirement. The approach presented here does

this with the so-called snapshots. Each time a change of the Feature is made on the

Provider, a particular snapshot for this change is allocated. Furthermore, not only

for value-based Feature updates but also for trust changes, which might happen if

a rating of a particular security property is changed, a new snapshot is created.

This allows to overcome the problems of losing track of the Feature’s life cycle as

well as losing the Feature if it is to be deleted. The snapshots are maintained on

the Provider’s side. Due to this, the last transmit operation between the Provider

and the Receiver is not included within the snapshots stored on the Provider. If it

is necessary to keep track of this part as well, the snapshot must be implemented

additionally on the Receiver, which is also possible by using the snapshot defini-

tion provided above. Summarising this, it is possible to create a very sophisticated

history mechanism by using the snapshot concept, thus this requirement is also

fulfilled.

R3: Trust-based correlation In order to use the trust calculation and history features, it

must be possible to not only recognise a Feature’s trustworthiness but also to corre-

late on this trustworthiness. This is provided by the extension of the Feature-based

data model. In detail, the Feature structure is embedded into the so-called Trust-

Log. The TrustLog encapsulates not only the Feature itself, including all relevant

information like the Feature’s value or the contextual information, it also encapsu-

lates all trust related parts, like the trust level and the snapshots. Given that, the

147

4 A Concept for Trustworthy Smartphone Integration

decision making system is able to access the trust-based values and include them

into its correlation process. In particular, the domain-specific TCADS system uses

a Correlation Engine which is able to access the TrustLog data structure. This is

not only possible in an exclusive way, i.e. either correlating on a Feature’s value or

its trust, but it is possible in a mixed way. This allows to combine the trust level

along with trust changes and the standard Feature properties like value and context.

Considering this sophisticated mechanism, the requirement of providing a way to

correlate trust-based can be seen as fulfilled by using the data model of the generic

trust model and its usage within the TCADS system.

R4: Extending policies with trust To express trust related conditions it must be pos-

sible to include them into a particular policy. The concept presented allows this

in two ways. The first way is given by the generic trust model, which defines the

appropriate policy structures that are used for the trust-related parts. That is, the

Provider’s policy is used for trust-based reactions. This policy defines the building

blocks, like the relevant security properties and their ratings, for particular opera-

tions. As these operations form the overall handling procedure and hence provide

the parts for the overall trust calculation, the policy can be used to express reac-

tions on trust. Although this gives a generic method for a policy inclusion, it does

not provide a directly usable domain-specific method. This usable method is given

by the second way which is the ability to express trust-based conditions within the

standard policy used by the Correlation Engine. This is due to the trust enhanc-

ing data model, which allows to express trust as another contextual value for the

Feature. Furthermore, as the Correlation Engine can act directly upon a Feature’s

trust, it is possible to base decisions upon this trust. Those decisions can be ex-

pressed within the Correlation Engine’s policy. Given these two ways, it is possible

to express arbitrary trust-based reactions for a particular domain, thus fulfilling this

requirement.

R5: Extensibility in terms of used data and trust calculation methods As the generic

trust model should be usable for particular di↵erent environments and domains, each

with its own potential set of devices and trust sources, it is required to allow for a

very flexible usage of data and trust sources. Furthermore, with di↵erent sources, the

method of calculating the trustworthiness needs also to be very flexible. This is done

148

4.5 Assessment

by (1) using security properties for trust derivation and (2) by using freely definable

functions in combination with intermediary steps for the task of trust calculation.

The security properties (1) can be defined freely. By adding ratings to them, which

are the actual atomic trust measurement, it is even possible to weight trustworthi-

ness, not only by strong or weak but also by untrustworthy and trustworthy. That

is, the property concept allows also to express negative trust. Using these proper-

ties and in particular their ratings, a trust level can be calculated. This is done (2)

by providing a two step calculation approach. First, the security level of a certain

operation is calculated in detail based on the properties. Second, all security levels

are combined into the overall trust level valid for each operation being part of the

Feature handling process and thus expressing the Feature’s trustworthiness. Both

functions used, the one for establishing the security level as well as the one used for

combing the overall trust level, are freely definable. Given that and the property

concept, it allows to tailor the trust model for the scenario it is used in. Such a tai-

loring is done within the domain-specific TCADS mapping which presents an usable

way of deploying the trust model within smartphone environments. Furthermore,

the two-step approach used for calculation allows to see every single part of the

calculation, starting by the properties and their ratings via the security levels and

ending at the phase 1 and 2 trust level. Due to this, it is not only possible to define

relevant properties freely for one scenario, but also to use di↵erent definitions within

one scenario, making the approach very flexible and thus fulfilling this requirement.

R6: Ability of seamless integration To actually use the generic trust model, it is re-

quired to provide a maximum of integrability. This is necessary in order to support

a wide field of particular environments with their own infrastructure and compo-

nents. The specified role model which introduced generic roles along with generic

operations to picture an environment on a very abstract level can be used to achieve

this requirement. In detail, not only roles and operations are defined but also a pro-

cess to adopt this model to a particular scenario. It shows how to map the relevant

functions into the environment. For the environment given here, the TCADS sys-

tem represents this domain-specific mapping providing a good integrability on the

conceptual level. However, the concept does not define the actual implementation

used to provide the TCADS system. Due to that, the requirement can be considered

149

4 A Concept for Trustworthy Smartphone Integration

fulfilled only on a conceptual level as the complete fulfilment of this requirement

depends on the implementation used.

Given this summary, it is easy to see that most of the requirements are addressed in

a satisfying manner. The integration requirement needs to be assessed on a particular

implementation which is done later in this thesis.

In addition to the assessment of the requirements, a short review of the research ques-

tions can be given. The first question “Which data and characteristics can be used to

derive trust?” can be answered with the security properties. That is, security properties

along with their ratings are used for the task of trust derivation. The second question

“How can trust be defined and calculated?” is answered by the trust level. In detail, trust

is expressed by calculating a trust level for a Feature whereas the calculation is based

on several steps beginning with the combination of the security properties. “How is it

possible to use trust in the decision making process?” can be answered with the provided

TrustLog and the policies used. I.e., the trustworthiness and all its parts including history

information is provided within the TrustLog for a Feature. Furthermore, this TrustLog

can be addressed within a policy to base decisions up on it. These three answers provide a

satisfying conceptual solution for the overall problem. To go more into the technical part,

a proof of concept implementation is provided within the next chapter.

150

5 Implementation

Contents

5.1 IF-MAP Revisited . 152

5.1.1 Data Model . 153

5.1.2 Communication in Detail . 159

5.1.3 Trust Model . 163

5.2 Trustworthiness of IF-MAP . 166

5.3 IF-MAP Mapping of TCADS 167

5.3.1 TCADS Revisited . 167

5.3.2 Abstract Role Mapping . 168

5.4 Trust Extension in IF-MAP . 170

5.4.1 Trust Tokens . 171

5.4.2 Extended Data Model . 174

5.4.3 Extended Communication Model 176

5.4.4 MAPS Security . 177

5.5 Implementation based on IF-MAP 179

5.5.1 TrustService . 179

5.5.2 Combining MAPS and TrustService 186

5.5.3 Correlation Engine Enhancements 191

5.6 Evaluation . 193

5.6.1 Security Property Definition . 194

5.6.2 Trusted MAP Server . 200

5.6.3 TCADS Environment . 223

151

5 Implementation

5.7 Summary . 238

The previous chapter introduced the overall approach of a trust enhanced method for

decision making in a particular smartphone-enabled environment. This overall approach

was used for a domain-specific mapping which forms the TCADS system. This chapter

introduces a proof of concept implementation for this approach, in particular a proof of

concept implementation of the TCADS system. It is partly based on the already existing

proof of concept implementation of the CADS system which is explained in [2]. Due to the

CADS implementation relying on the IF-MAP protocol, IF-MAP is also used for the proof

of concept presented here. The chapter itself consists of three main parts: a detailed view

on the IF-MAP protocol, including a summary of trust relevant properties of IF-MAP,

the introduction of the overall approach for implementing the TCADS system in IF-MAP

by injecting trust and finally the actual technical implementation.

5.1 IF-MAP Revisited

As already explained in section 3.2.3, the TCG’s IF-MAP protocol (cf. [152]) provides

a content-based publish subscribe approach to share network-specific data among all IF-

MAP enabled components. It is based on so-called MAP Clients (MAPC), which can

either collect and publish data or subscribe to certain data thus receiving them. Besides

the MAPCs the so-called MAP Server (MAPS) provides the central database for the

shared data. That is, it receives the data from a MAPC by this MAPC publishing the

data to the MAPS and provides data to another MAPC by sending them data. Sending

is realised with a subscription model, thus the particular MAPC must subscribe to data

in order to receive information on changes to those data. Using IF-MAP allows for an

interoperable exchange of arbitrary data within a network.

From a technical point of view, IF-MAP is entirely based on existing technologies

and protocols. The secure hypertext transfer protocol (https, [160]) is used by IF-MAP

for realising the basic communication. This communication is provided in a secure way

as it relies on the https protocol. Furthermore, TLS [159] is used within this context,

which allows to utilise all capabilities TLS o↵ers. Layered on this, the SOAP protocol (cf.

[161, 162]) is used to allow an interoperable communication between the MAPCs and the

152

5.1 IF-MAP Revisited

MAPS. SOAP itself relies on exchanging XML-based (cf. [163]) messages and thus the

IF-MAP specific data is defined within an appropriate XML schema (cf. [164, 165]).

5.1.1 Data Model

The data model used by IF-MAP consists of the following three elements.

• Identifiers which are used for identification purposes,

• Links which connect identifiers and metadata to each other as well as

• Metadata which consist of descriptive data.

By the use of these elements a graph is formed. Figure 5.1 depicts a typical graph, con-

sisting of all elements and two distinct sub graphs. The example is based on sharing

network security related information. Within this figure, identifiers are depicted as ovals,

Figure 5.1: Example MAP graph (cf. [166]). Identifiers are shown as rectangles, ovals
depict metadata and lines express the links between the particular elements.

metadata is depicted by rectangles and links are depicted as connective lines between the

other elements. Details about each type of element is given in the following.

Identifiers

This type of element expresses information which are able to uniquely identify entities

of a network. Such entities may be either devices and their interactions or users. In case

of devices, they may for example be identified by their MAC address and in case of user

153

5 Implementation

related information, the user may be identified by her username. Identifiers cannot be

created or deleted, they implicitly exist at each time and are only visible within the MAP

graph as long as they have connections via links or metadata to other elements of the

graph. IF-MAP specifies five di↵erent types of such identifiers [152] which are given in

the following.

access-request This type of identifier represents a physical request to access a network

made by a device. It is characterised by a unique id which allows it to be identified.

Access requests are usually handled by Network Access-based components, for ex-

ample a Policy Decision Point from the TNC architecture. If an Access Requestor

would try to access a network, the PDP would publish the appropriate data and at-

tach it on to the access-request identifier. The XML-based specification is as follows

[152].

<xsd : complexType name=”AccessRequestType”>

<xsd : a t t r i b u t e name=” admin i s t ra t ive�domain” type=”xsd : s t r i n g ”/>

<xsd : a t t r i b u t e name=”name” type=”xsd : s t r i n g ” use=” requ i r ed ”/>

</xsd : complexType>

Listing 5.1: IF-MAP XML schema for access-request identifier.

device A device identifier is used in order to depict a physical or virtual device within

the MAP graph. IF-MAP knows two types of devices: devices which gain access

and devices which may provide access or services. Given the example case of the

access-request from above, there may be either a device for the PDP attached to

the access-request as well as a device for the AR. The XML-based specification is

as follows [152].

<xsd : complexType name=”DeviceType”>

<xsd : cho ice>

<xsd : element name=”aik�name” type=”xsd : s t r i n g ”/>

<xsd : element name=”name” type=”xsd : s t r i n g ”/>

</xsd : cho ice>

</xsd : complexType>

Listing 5.2: IF-MAP XML schema for device identifier.

154

5.1 IF-MAP Revisited

identity An user is identified using this type. In detail there are several sub types of

this identifier which allow to express several information used for this identification

purpose. Examples for such sub types are the username, the email address or even a

DNS name. Furthermore, a so-called other type definition can be made. This allows

to define own sub types for this kind of identifier. Given the CADS implementation

in its current version, this other type definition is used to express the category-based

graph structure. The XML-based specification is as follows [152].

<xsd : complexType name=” Ident ityType ”>

<xsd : a t t r i b u t e name=” admin i s t ra t ive�domain” type=”xsd : s t r i n g ”/>

<xsd : a t t r i b u t e name=”name” type=”xsd : s t r i n g ” use=” requ i r ed ”/>

<xsd : a t t r i b u t e name=” type” use=” requ i r ed ”>

<xsd : simpleType>

<xsd : r e s t r i c t i o n base=”xsd : s t r i n g ”>

<xsd : enumeration value=”aik�name”/>

<xsd : enumeration value=” d i s t i ngu i sh ed�name”/>

<xsd : enumeration value=”dns�name”/>

<xsd : enumeration value=”email�address ”/>

<xsd : enumeration value=” kerberos�p r i n c i p a l ”/>

<xsd : enumeration value=”username”/>

<xsd : enumeration value=” s ip�u r i ”/>

<xsd : enumeration value=” t e l�u r i ”/>

<xsd : enumeration value=”hip�h i t ”/>

<xsd : enumeration value=” other ”/>

</xsd : r e s t r i c t i o n >

</xsd : simpleType>

</xsd : a t t r i bu t e>

<xsd : a t t r i b u t e name=”other�type�d e f i n i t i o n ” type=”xsd : s t r i n g ”/>

</xsd : complexType>

Listing 5.3: IF-MAP XML schema for identity identifier.

ip-address This identifier expresses the ip address for a certain device. This ip address

may be either of the type IPv4 or IPv6. The XML schema [152] is specified as shown.

<xsd : complexType name=”IPAddressType”>

<xsd : a t t r i b u t e name=” admin i s t ra t ive�domain” type=”xsd : s t r i n g ”/>

<xsd : a t t r i b u t e name=”value ” type=”xsd : s t r i n g ” use=” requ i r ed ”/>

<xsd : a t t r i b u t e name=” type”>

155

5 Implementation

<xsd : simpleType>

<xsd : r e s t r i c t i o n base=”xsd : s t r i n g ”>

<xsd : enumeration value=”IPv4”/>

<xsd : enumeration value=”IPv6”/>

</xsd : r e s t r i c t i o n >

</xsd : simpleType>

</xsd : a t t r i bu t e>

</xsd : complexType>

Listing 5.4: IF-MAP XML schema for ip-address identifier.

mac-address As with the ip address, the same applies for this identifier which simply ex-

presses a device’s mac address. The schema defined in [152] specifies it the following

way.

<xsd : complexType name=”MACAddressType”>

<xsd : a t t r i b u t e name=” admin i s t ra t ive�domain” type=”xsd : s t r i n g ”/>

<xsd : a t t r i b u t e name=”value ” type=”xsd : s t r i n g ” use=” requ i r ed ”/>

</xsd : complexType>

Listing 5.5: IF-MAP XML schema for mac-address identifier.

Given these identifiers, IF-MAP allows to widely define roots for identifying certain en-

tities. Furthermore, the latest version of the IF-MAP specification allows even to define

own identifiers, which are then called extended identifiers. This allows for a more versatile

use of IF-MAP as one is able to define an environment tailored identifier for arbitrary

purposes. The base definition [152] for such identifiers are shown in the following.

<xsd : complexType name=” Id en t i f i e rType ”>

<xsd : a t t r i b u t e name=” admin i s t ra t ive�domain” type=”xsd : s t r i n g ” use=”

requ i r ed ”/>

</xsd : complexType>

Listing 5.6: IF-MAP XML schema for extended identifiers.

Links and Metadata

To establish a relationship between two di↵erent identifiers, a link is used. Links are always

given by the particular metadata attached to them. That is, if no metadata is attached,

156

5.1 IF-MAP Revisited

the link is no longer valid and is thus being deleted. Furthermore, metadata may not only

be attached to a link between two identifiers but also directly to only one identifier. In

the first case, the metadata expresses information about the relationship between the two

identifiers connected while in the second case information about a single identifier are

expressed. The basic schema of attributes that metadata must include is specified by the

TCG as following [152].

<xsd : attr ibuteGroup name=”metadataAttr ibutes ”>

<xsd : a t t r i b u t e name=”ifmap�pub l i sher�id ”/>

<xsd : a t t r i b u t e name=”ifmap�timestamp” type=”xsd : dateTime”/>

<xsd : anyAttr ibute/>

</xsd : attr ibuteGroup>

Listing 5.7: IF-MAP XML schema for metadata.

The TCG allows to either use pre-defined metadata, for example in the area of network

security or, due to the basic specification, provides a way to define an own set of metadata.

Both types must be based on the attributes shown above and thus consist of so-called

operational attributes. Three of these attributes are defined within the basic schema shown

in 5.7. The remaining two must be defined within the appropriate metadata schema.

Namely, the operational attributes are the ifmap-publisher-id, ifmap-timestamp, ifmap-

cardinality, lifetime and anyAtttribute.

ifmap-publisher-id This attribute is used in order to uniquely identify a publishing MAP

Client. When an MAPC initially connects to the MAPS by publishing metadata, this

metadata is assigned with this id. Future metadata published is then also assigned

with this id, which is never changing for this MAPC. The id itself is responsible for

the assignment process and in detail also for the uniqueness of the id itself.

ifmap-timestamp The ifmap-timestamp is assigned when a MAPC publishes metadata

on a MAPS. That is, when the server places this metadata within its graph, the

time of this operations is assigned to this metadata. Only the server is able to set

this type of attribute.

ifmap-cardinality This attribute defines if an instance of a particular metadata can be

assigned only one time or multiple times to a link or to a identifier. This means,

if this attribute is set to singleValue, then only one metadata of this type can be

157

5 Implementation

assigned at the same time. If it is set to multiValue, an arbitrary amount may

be assigned at the same time. This behaviour is specified in [152] as follows, thus

extending the basic metadata attribute group specification.

<xsd : attr ibuteGroup name=” s ing l eVa lueMetadataAttr ibutes ”>

<xsd : attr ibuteGroup r e f=”metadataAttr ibutes ”/>

<xsd : a t t r i b u t e name=”ifmap�c a r d i n a l i t y ” use=” requ i r ed ”>

<xsd : simpleType>

<xsd : r e s t r i c t i o n base=”xsd : s t r i n g ”>

<xsd : enumeration value=” s ing l eVa lue ”/>

</xsd : r e s t r i c t i o n >

</xsd : simpleType>

</xsd : a t t r i bu t e>

</xsd : attr ibuteGroup>

<xsd : attr ibuteGroup name=”mult iValueMetadataAttr ibutes ”>

<xsd : attr ibuteGroup r e f=”metadataAttr ibutes ”/>

<xsd : a t t r i b u t e name=”ifmap�c a r d i n a l i t y ” use=” requ i r ed ”>

<xsd : simpleType>

<xsd : r e s t r i c t i o n base=”xsd : s t r i n g ”>

<xsd : enumeration value=”mult iValue ”/>

</xsd : r e s t r i c t i o n >

</xsd : simpleType>

</xsd : a t t r i bu t e>

</xsd : attr ibuteGroup>

Listing 5.8: IF-MAP XML schema defining single and multi value metadata.

lifetime This attribute determines how long particular metadata exists on the MAP

Server. It may be either set to session or forever. Session lifetime indicates, that

this metadata is to be deleted at the time the session of the publishing MAP Client

is being terminated. That is, if that particular client disconnects from the server,

the server deletes all metadata from this client which is set to session lifetime. In

di↵erence to that, the metadata won’t be deleted if the lifetime is set to forever. In

this case the metadata will never be deleted by the server. The value itself is set

by the MAP Client and if no value is given, the server assumes session as default

behaviour.

158

5.1 IF-MAP Revisited

anyAttribute To allow for an extension of the metadata attribute group, the specification

allows to assign more attributes via the anyAttribute construct. This allows to

extend metadata by own attributes while still being conform to the specification.

Although it is possible to freely define own attributes by the use of this it is not

intended by the TCG. Due to this, it needs to be evaluated if there are other ways

to do this while staying conform to the specification. Nevertheless it is possible to

use this attribute for other purposes.

These three basic constructs, identifiers, links and metadata stored in an appropriate

graph on the server, form the basic data model of the IF-MAP protocol. The actual ex-

change of messages building up instances of this data types are explained in the following.

5.1.2 Communication in Detail

The underlying communication model used by the IF-MAP protocols defines three parts:

• two di↵erent channels used to exchange data,

• operations which are carried out through these channels and

• the handling of IF-MAP sessions.

IF-MAP Channels

The start of each communication is always given by the MAP Client as the server responds

only to requests and commands from the client. In detail, the client may use both types

of channels to communicate with the server. It first establishes a so-called synchronous

send receive channel (SSRC). Using this SSRC, all commands which can be immediately

processed by the server are exchanged, e.g. the publication of metadata from the client.

There is one operation, poll, which returns metadata to the MAPC. This poll operation

might block the communication channel as it waits for changed metadata. Due to this, a

second channel is required. This channel, called asynchronous receive channel (ARC), is

also established by the client and exclusively used for polling.

159

5 Implementation

Session Handling

As IF-MAP is a stateful protocol relying on the two communication channels, a session

handling is provided. This session handling is controlled by the following commands and

their appropriate operations.

newSession This operation is initially carried out and provides a session id for a MAPC.

Due to this, the operation itself does not require a session id to be sent. The gener-

ated session id is given back to the client which uses it for all future communication

with the server.

renewSession A MAPC’s session id is treated as valid as long as the MAPC has an

active channel to the MAPS. In order to allow the client to change the https-based

connection without losing its session, the renewSession command can be used. If

the session is not refreshed within a specific amount of time and there is no active

channel to the client, the server terminates this session and thus the session id

becomes invalid.

endSession To actively terminate a session from the client, the endSession command

can be used. If the server receives this command, all metadata published by this

particular client which has its lifetime set to session is deleted. Furthermore, the

session id is considered invalid from this time.

By using these three commands, the client and server are able to handle their session in

a satisfying way.

Operations

Within an established session, there are operations to actually exchange data between

MAPCs and MAPS. There are five types of operations defined by IF-MAP which are

explained in the following.

Publish The publish operation allows a MAPC to change metadata on the server. There

are three sub types of this operation which define the actual meaning of the term changing

metadata. Due to this, the particular operation may be either a publish-update, a publish-

notify or a publish-delete.

160

5.1 IF-MAP Revisited

update Adds or updates particular metadata on the server. In detail, if the metadata

included in this operation does not exist on the server, it is initially added. If it is

already existing and is of the cardinality type single value it is updated with a new

one. If the cardinality is set to multiValue, another metadata is simply added.

notify Metadata provided by this operation is not stored within the server’s graph. In-

stead, it is directly forwarded to all clients having a subscription for this kind of

metadata.

delete Simply allows to delete particular metadata on the server.

One single publish operation may consist of an unlimited amount of combinations of all

three sub types.

Search The search operation provides a way to retrieve metadata and identifiers con-

nected by this metadata from the MAPS. The client needs to provide one identifier as root

for the search operation. Based on this root all connected links, metadata and identifiers

are put together into a searchResult. This searchResult e↵ectively provides a sub graph

of the overall graph stored on the server. To limit the e↵ect of the search process, there

are some parameters which define filter like conditions.

identifier As already written, this parameter defines the initial root which is used to start

the search at.

match-links This option provides a method to filter the result of a search by the links

that are traversed. That is, if there is a value given for this option, only links and

their appropriate data are traversed if they match the given value.

max-depth Specifies the deepness of the search operation. As the map graph may become

rather big over time, going into an unlimited deepness may result in a rather bloated

answer. To overcome this, the max-depth specifies the amount of identifiers that

should be traversed, beginning by the root.

max-size Another way of limiting the search result is the setting of this parameter. It

specifies a maximum in terms of size the result can reach and instructs the search

operation to stop at this point.

161

5 Implementation

result-filter This parameter provides another option for filtering the search result. The

value set for this parameter defines which entries of the result should be dropped

and thus excluded from the search result.

terminal-identifier-type If reaching the identifier set in this parameter, the search oper-

ation is terminated and the result is returned.

These options allow for a highly customisable search operation.

Subscribe This operation is used by the MAP Client in order to select metadata on

the MAP Server the client wants to be informed about. That is, each time the metadata

changes on the server, usually by a previously done publish operation, the MAPC which

has an active subscription for this data will be informed about the changes and the content

of the change. Furthermore, there are two sub types of a subscription: a subscribe update

operation as well as a subscribe delete operation. The subscribe update is used to add

or change a subscription while delete is used by a client in order to delete an active

subscription on the server.

Poll After a subscription has been established by the client on the server, the client

can carry out the poll operation. This is done via the ARC as poll only returns if there

is currently an actual poll result and otherwise blocks. If there is a poll result which is

provided through the ARC, it consists of the name of the subscription that triggered

this particular result. Thus, one client may di↵erentiate between subscriptions on a single

server. The poll result itself contains only changes of the data, thus omitting parts of

the returned graph which were not changed. A poll result consist of one of the same sub

types like a search result or a general search result. That is, a general result, simply called

searchResult, is returned the first time the appropriate subscription matches. In this case,

no partial elements of the returned graph are omitted. Furthermore, this type is only given

once at the first time of a matching subscription to the client. The next time parts of the

subscription are changed by a conventional publish, the client receives an updateResult.

If something is deleted, a deleteResult is used. If the publish was done through a publish-

notify operation, the poll returns a notifyResult, indicating the particular di↵erent publish

causing the update.

162

5.1 IF-MAP Revisited

PurgePublisher This last operation allows a MAP Client to order the server to purge all

previously published metadata from this client. To do so, the client provides the correct

publisher-id which is used by the server to identify the metadata that should be deleted.

While this operation is not used for ending a session, as the endSession command takes

care about deleting metadata with session lifetime, it is used if the client unexpectedly

terminates. It allows the client to clean up all its metadata on the server to provide a new

starting point.

Given this communication model, a deeper look into the trust model behind the IF-

MAP protocol can be done.

5.1.3 Trust Model

Based on the analysis of the propagated trust model made in [166], there are two parts

of this model: the IF-MAP protocol itself as well as the security of IF-MAP enabled

components, in particular the server. IF-MAP proposes the idea of allowing to share

network related data between arbitrary systems to not only gain an overall picture about

that network but also to support a decision making. Given that, IF-MAP systems may

be rather threatened. This is due to the fact, that an attacker is able to influence certain

aspects, like the decision making, in order to gain an advantage. To limit this, the TCG

proposes the named trust model with its two parts.

Protocol Trust Model

As stated in [166] and [152], the IF-MAP protocol itself must fulfil three requirements in

order to be considered secure. These three requirements are:

• a mutual authentication of the communicating parties, thus an authentication of

the clients and the server;

• the use of an integrity preserving protocol for data exchange;

• the support of encrypted data exchange along with the security against replay-based

attacks.

A strong availability is not explicitly required, although the specification points to it as a

possible improvement.

163

5 Implementation

To fulfil these requirements, TLS is used. TLS provides strong and established means

to authenticate the communicating parties, to encrypt data and to check the integrity

of the exchanged data by the use of particular message authentication code mechanisms

(cf. [167]). To ensure the MAP Servers authenticity, IF-MAP relies on an appropriate

certificate of the server. That is, the client must only establish a connection with a server

if the certificate presented by the server is considered to be valid. Additionally, IF-MAP

provides two possibilities for authenticating the client: as so-called basic authentication

and a certificate-based authentication. The basic authentication is a simple exchange of a

username and password combination. This credential combination is then matched against

a set of users the server holds. If the user is known and the credentials are correct, access

is granted. As with the certificate-based authentication, the same procedure the client

uses to authenticate the server is used. Thus, the client must possess a valid certificate

which is being presented to the server in order to gain access. All these authentication

mechanisms are based on the TLS protocol which provides well established means and

can be considered as a secure way of doing this.

Trust Model for IF-MAP enabled Systems

The second part of the trust model is given by the requirements for the actual IF-MAP

enabled systems. That is, this part aims to reduce the threats imposed on IF-MAP enabled

systems and platforms. Given the analysis in [166] there are the following general points

which are applicable for both, MAP Servers and MAP Clients.

• A hardened operating system should be used. Furthermore, the OS should be main-

tained actively.

• Physical access to the appropriate systems should be limited, thus only individuals

which are allowed to access certain systems should gain physical access.

• A trusted platform should be used, thus allowing to perform a remote attestation

of the system prior to accessing the network.

• In terms of providing forensic information for the case of an incident, a sophisticated

logging approach should be used. This logging approach should keep track of all

relevant events taking place on the particular system.

164

5.1 IF-MAP Revisited

Besides these general points, there are some specific advises for either MAP Clients and

MAP Servers.

MAP Clients

The specification advises the following points to increase a MAP Client’s security.

• The MAP Server should provide a more sophisticated access control scheme than

allowing full access if a MAP Client was successfully authenticated. That is, the

server should allow to distinguish between read only access and read write access.

This gives the ability to grant MAP Clients only the lowest rights necessary and if

the client tries to perform operations which are not allowed within its current rights,

access should be denied.

• Improving this basic access control scheme, the TCG advises to optionally use a

scheme which allows to set each allowed operation individually for each particular

MAP Client. Extending this, an administrative interface for this scheme should be

established, allowing the administrator to be informed about a MAP Client trying

to use not permitted operations.

• Honeypot like metadata can be provided by a MAP Server to recognise MAP Clients

that may be compromised.

MAP Servers

The TCG advises certain points addressing the servers.

• The network access to the server should be (a) limited by a firewall and (b) moni-

tored by an intrusion detection approach.

• A host-based system monitoring should be used.

• The server should not rely on basic authentication but only on the certificate-based

method.

• An established ARC and an SSRC which are supposed to belong to the same client

should be verified for this. That is, the server should be able to recognise the hi-

jacking of certain communication channels by a rogue client.

165

5 Implementation

• Maximum size of the search result should be limited to prevent denial of service

attacks. Denial of service may happen if the server is unable to process the search

in a reasonable time (i.e. due to the result growing bigger than the server’s RAM).

• The last advise is carried out by MAPCs but it aims at recognising a rogue MAPS,

thus this point also addresses server related security. MAP Clients should be (a)

able to recognise behaviour of the MAP Server that is considered abnormal and (b)

should check the validity of the received data. How this can be achieved in detail is

not given by the specification.

Given that, the trust model defined by the TCG only addresses the communication itself

and the participating system’s security. There is no explicit trust model for the data being

exchanged. A detailed view on this point is given in the following.

5.2 Trustworthiness of IF-MAP

As shown in the previous section, IF-MAP does provide communication security, i.e.

published and subscribed data is transferred securely between the appropriate parties.

IF-MAP also makes certain advises about the hardening of the systems participating as

MAPCs and MAPSs, for example by the use of trusted computing-based technologies.

However, IF-MAP does not provide mechanisms to reason about the trustworthiness of

the (meta)data itself but states (cf, [152]) that this trustworthiness is explicitly out of

scope. Furthermore, the network overview created by IF-MAP is also defined as one

possible state the network could be within, not necessarily the actual state. Due to these

reasons, there are several enhancements necessary. Given the trust definitions made in this

thesis (section 4.2.1), which states A Feature is considered trustworthy if and only if all

operations handling this Feature perform as expected., a technical version of this definition

can be made in order to use IF-MAP as the basic communication layer. This definition

[166] simply states from a technical perspective, that trustworthiness is based upon the

integrity of metadata. This integrity might be compromised either on the MAPC or on the

MAPS but also on the communication channel used to transmit this metadata. That is,

the metadata can be considered trustworthy if the IF-MAP based operations that handle

this metadata behave as expected. Using this definition and the findings about IF-MAP’s

trust model, the particular concept for the implementation can be introduced.

166

5.3 IF-MAP Mapping of TCADS

5.3 IF-MAP Mapping of TCADS

This section describes the approach which is used to map the TCADS system to IF-MAP.

In particular, the implementation is based on the CADS’ implementation described in

[2]. Due to this, this section only provides the trust-specific part of the implementation’s

concept. First of all, a recap of the TCADS system in terms of the trust extension is given.

5.3.1 TCADS Revisited

Section 4 introduces the overall trust model and the domain-specific TCADS system.

These approaches consist of several parts, in particular of an abstract model defining

the roles and their associated operations. Based on these roles and operations, trust en-

hancing components are added. Figure 5.2 depicts the combined model elements. As the

Figure 5.2: Summarised abstract trust model (cf. [166]).

figure shows, there are three roles: a Sender which creates Features, a Provider that is

responsible for storing the Features and making them available and the Receiver which

uses the Features. There are two operations, processing a Feature as well as transmitting a

Feature. Furthermore, the Provider o↵ers a special Reasoning interface and uses a compo-

nent called security property record manager (SPRM). This SPRM relies on the security

property map, which provides the conjunction of the basic trust derivation factors and

their attachment to the appropriate operations. These factors used for trust derivation

are represented by the security properties (SP), which are valid for a particular type of

167

5 Implementation

operation. Combining these SPs and their appropriate ratings, an intermediate security

level (SL) can be calculated. There is one SL for each operation which has been part of

the overall Feature handling process. Given that, the final trust level of a Feature can be

calculated by combining these SLs into one value. Based on these key abilities, a mapping

to IF-MAP is described in the following sections.

First of all, the instantiation process (4.1.4) describes roles that need to be mapped onto

the appropriate components of the particular architecture. This is done in the following.

5.3.2 Abstract Role Mapping

IF-MAP is based on two di↵erent components, the MAPC as well as the MAPS. As there

are three roles defined by the trust extension of TCADS, the following detailed mapping

is used.

• Sender Role: The role which provides Features to the Provider is mapped to the

component MAP Client. That is, operations carried out on and by the MAP Clients

are either of the type process or transmit. Transmit is mapped to the actual publish

operation of the metadata from the MAPC to the MAPS. All other Feature and

metadata relevant operations, like measuring properties of the client’s platform are

mapped to the process operation.

• Provider Role: As the Map Server receives metadata from a publishing MAP

Client and provides this metadata via a pollResult to another client requesting this

data, it is mapped to the Provider role. Furthermore, with the incoming publishing

operation already mapped, the outgoing pollResult based on an active subscription

is mapped to the transmit operation started by the Provider. All other handling of

metadata on the MAPS is mapped to the process operation.

• Receiver Role: Due to the previous mapping, the Receiver Role is also mapped

to MAP Clients. The MAP Server provides metadata to those MAP Clients by

handling their subscription and transmitting changed metadata to the appropriate

clients.

Besides the particular role-based mapping, there are two more conceptual components

which need to be addressed in order to completely specify the mapping. The first compo-

nent is the SPRM, which is responsible for retrieving the actual security properties and

168

5.3 IF-MAP Mapping of TCADS

their ratings out of the second component, the security property map. These two com-

ponents may be either placed on the MAP Server itself or on a particular MAP Client.

There are several advantages and disadvantages for both ways, as pointed out in [166].

Placing the components on a MAP Client would allow for a rather resource keeping strat-

egy. Due to the fact that the SPRM may have to handle sophisticated tasks in order to

assign the correct security properties, it requires some system resources. Placing it on a

separate MAPC allows to assign all of the client’s resources for this specific task. However,

according to [166], this is the only actual benefit of this approach. In detail there are three

particular problems if using a MAP Client as SPRM:

• A special MAP Client to MAP Server interface is required.

• Unavailability of the calculating MAPC.

• Limited MAPC security.

First of all, the MAP Client requires a special interface to the MAP Server. Although

IF-MAP provides some means to exchange required data, those means do not fully allow

to exchange all data from the MAPS to this MAPC. In detail the MAPC would need

a starting identifier and, which makes it rather complex, it must be able to access all

sub graphs stored on the MAPS. This is practically very hard to achieve, as the starting

identifier needs to be pre defined.

The second problem concerns the availability of the MAPC as without it there is no

trust level calculation possible. Although a MAPS may also be unavailable, the situation

would result in metadata as well as the trust levels are not available. Relying only on a

MAPC would result in the weird situation in case of the MAPC being unavailable that

metadata is available but without a trust level.

The third disadvantage is about the MAPC’s security itself. With providing an extra

interface, this interface may be compromised. Furthermore, there are two critical com-

ponents by using this approach: the MAPS and this MAPC. Even more critical, the

connection between the MAPS and this MAPC may be interrupted resulting again in the

situation with no trust levels available.

Given these points, the MAPS should be the place of choice. Emphasising this, besides

the increasing resource requirements, the following benefits can be found. First of all,

the MAPS receives all metadata that is exchanged due to its centralised position and

169

5 Implementation

function. Given that, all metadata exchanged is extended with trust if the SPRM is

placed on the MAPS. Furthermore, the MAPS is the only component which is able to see

most of the operations carried out to handle metadata. Although it cannot directly gain

information about the processing of a sending MAPC, all other operations are within the

MAPS’s visibility. It is therefore rather easy to derive the security property attachment to

the appropriate operations. Finally, the MAPS must be trusted under all circumstances.

Due to this, placing the SPRM on it does not create a new instance which must be

trusted in addition. Given all these benefits of placing the SPRM on the MAPS, the

MAPS is responsible for carrying out the trust calculation including all necessary parts.

Figure 5.3 depicts the situation after the appropriate mapping of the abstract roles to IF-

Figure 5.3: Mapping of Roles to IF-MAP entities [166].

MAP components. Furthermore, the IF-MAP defined operations are also included, thus

transmit is carried out by either publish, the returning poll or a search operation. Using

this mapping, the actual trust extension for the IF-MAP protocol can be introduced.

5.4 Trust Extension in IF-MAP

The overall trust extension used to apply the relevant conceptual parts of TCADS to

IF-MAP is depicted in figure 5.4. It consists of two relevant layers: the extension layer

itself and the interface layer. The extension layer consists of

• the Security Property Map (SPM) realising component,

• the Security Property Record Manager (SPRM) component and

170

5.4 Trust Extension in IF-MAP

Figure 5.4: Trust extension of IF-MAP[166]: Trust layer consisting of relevant components
and their exposed interfaces. In particular, the security property map (SPM),
the security property record manager (SPRM) which request an appropriate
rating from the SPM and the Trust Token Manager (TTMgr) which request
a Rated security property record (RSPR).

• the Trust Token Manager (TTMgr, [166]).

The interface layer provides the accessible interfaces to each of these components. Each

part is described later in this section. Prior to this, the mapping of the trust level into the

domain of IF-MAP is introduced. This mapped trust level is defined as a so-called Trust

Token (TT).

5.4.1 Trust Tokens

Section 4.2.3 and 4.2.4 introduce the trust level concept. In short, a trust level expresses

the overall trustworthiness of a Feature based on the security properties of the operations

used to handle this Feature throughout the system. Furthermore, it is distinguished be-

tween a phase 1-specific trust level (TLP1
⇣

) and a phase 2-specific trust level (TLP2
⇣

). A

TLP1
⇣

expresses the trustworthiness of the Feature for the first three operations, thus for

the Feature residing on the Provider. The TLP2
⇣

enhances this by adding the last trans-

mission operation to the trust calculation. As the current IF-MAP version provides no

capability of expressing such a trust level, a method for doing so must be introduced. It

is therefore necessary to extend IF-MAP, allowing to incorporate trust into the metadata

171

5 Implementation

environment. IF-MAP creates a graph out of published metadata reflecting a network’s

state. To do this, IF-MAP clients publish arbitrary information in a specification compli-

ant way. This metadata is collected by the MAPS and is stored within a graph. Besides

adding metadata about certain network relevant properties and other things, this concept

allows also to add metadata representing the trust level of other published metadata. In

order to realise this, IF-MAP needs to be extended with a special metadata type. This

type, called Trust Token (TT) is defined in a XML Schema as trustTokenType metadata

in the following way.

<xsd : complexType name=”trustTokenType”>

<xsd : sequence>

<xsd : element name=” trus t� l e v e l ” type=”xsd : i n t e g e r ” />

<xsd : element name=”mapc�id ” type=”xsd : s t r i n g ” />

<xsd : element name=”spr�process�sender ” type=”spRecordType” />

<xsd : element name=”spr�transmit�sender�prov ide r ” type=”spRecordType” />

<xsd : element name=”spr�process�prov ide r ” type=”spRecordType” />

<xsd : element name=”spr�transmit�provider�r e c e i v e r ” type=”spRecordType” />

</xsd : sequence>

</xsd : complexType>

<xsd : complexType name=”spRecordType”>

<xsd : sequence>

<xsd : element name=” se cu r i t y� l e v e l ” type=”xsd : i n t e g e r ” minOccurs=”1”

maxOccurs=”1” />

<xsd : element name=” se cu r i t y�property ” minOccurs=”0” maxOccurs=”unbounded”

type=”xsd : s t r i n g ” />

</xsd : sequence>

</xsd : complexType>

Listing 5.9: TrustToken XML schema.

It consist of all necessary elements to map the results of the trust calculation {SPR, {!} rF�!
SL}

operation

tF�! TL
⇣

introduced in this thesis, also including the intermediary results and

steps. It consist of the following parts.

• trust-level: This element encapsulates the overall calculated trust level. It can

express either a TLP1
⇣

or a TLP2
⇣

, according to the generation of the Trust Token

itself.

172

5.4 Trust Extension in IF-MAP

• mapc-id: A relationship between the MAP Client and the published metadata the

Trust Token is valid for is established through the use of this element. In detail,

the appropriate publisher id of the MAPC is stored here. In case of a delete type

operation, the id of the deleting client is used for storage.

• spr-operation: Each of these four elements represent the security property record

generated for a particular operation. Based on the entries made in these fields,

the RSPR can be obtained. As the syntax of the four elements is the same, all of

them rely on the spRecordType which encapsulates each of the security properties

assigned and the calculated overall security level for this particular operation. Given

that this record is entirely filled with values, it can be considered as RSPR.

SPRM and SPM

The SPRM is responsible for providing the appropriate security properties along with

their ratings. The SPM provides a way of holding these properties and the ratings in a

dynamic fashion. Although the conceptual part defines the SPRM as solely responsible for

managing the properties and everything connected to them, the implementation provides

also a logical SPM component which handles the actual SPM policy. Given that, there

are two interfaces: the SPM interface for updating ratings and the SPRM interface to as-

sign the actual property to an operation. The SPRM uses the SPM internally to retrieve

the appropriate rating for a property assigned. The actual task of measuring an opera-

tion to determine which property is valid for this operation, is outsourced to the MAP

Server. Due to this, there are some constraints for the properties that are usable within

this implementation. The particular definition of the properties and the used function to

calculate the security level for an operation is shown later in this section.

Trust Token Manager

The Trust Token Manager is responsible for building up the final phase 1 Trust Token

(P1TT) as well as the final phase 2 Trust Token (P2TT). To calculate them, it uses the

preparation done on the SPRM’s side. In detail, the security levels are used to form the

Trust Tokens which are then provided through the TTMgr’s interface.

The data model provided within the conceptual part of this thesis for storing the Trust-

specific data (i.e. the TrustLog data structure) is applied to allow to store the P1TT as

173

5 Implementation

well as the P2TT. Furthermore, the P1TT is directly stored within the MAPS graph

structure building up the provided data model. The P2TT is provided using enhanced

communicational means. Furthermore, the function to calculate the TTs is also maintained

and used by the TTMgr. This is necessary as the TTMgr is responsible for the calculation

task, thus it is the only component which can use this function. As the P2TT is eventually

communicated to the appropriate MAPC, the TTMgr is also responsible for providing it

in a way it can be used for this communication task.

Based up on these components and their provided interfaces, the data model of IF-MAP

can be extended with trust.

5.4.2 Extended Data Model

The P1TT needs to be calculated and stored within the MAPS graph. It is used to

calculate the P2TT if a client requests the appropriate metadata. To store a particular

Trust Token within the map graph, the trustTokenType introduced above is used. Based

on this, the actual structure used to represent the TT within the MAP graph can be

developed. This structure is called Trust-Token-Metadata (TTM) and specified in the

following form [166].

<xsd : element name=” trus t�token�metadata” type=”trustTokenMetadataType” />

<xsd : complexType name=”trustTokenMetadataType”>

<xsd : complexContent>

<xsd : ex t ens i on base=”trustTokenType”>

<xsd : attr ibuteGroup r e f=” ifmap : mult iValueMetadataAttr ibutes ” />

</xsd : extens ion>

</xsd : complexContent>

</xsd : complexType>

Listing 5.10: Trust-Token-Metadata XML schema.

To establish the relationship between the particular metadata stored in the graph and

the TTM, a self defined operational attribute is used. This attribute enhances metadata

by using the anyAttribute extension mechanism. It is called Trust-Token-ID (TTID) and

holds a unique string referencing the particular TTM, which is using the same id. Figure

5.5 depicts the structure which results by using this approach. The MAP Server is re-

sponsible for generating the appropriate TTM. Due to this, there are some constraints for

174

5.4 Trust Extension in IF-MAP

Figure 5.5: Ttrust Token Metadata as defined in [166].

setting the operational attributes of the TTM. First of all, the publisher-id must be set to

the MAPS itself. This is necessary to allow all parties, in particular MAPCs, to recognise

that the TTM is managed by the MAPS. As written in [166], this id should be set when

starting the MAPS and must not be changed at any time the MAPS is running. The

lifetime attribute is set to forever which is only done to mark the TTM for readability. As

the TTM is bound to the MAPS itself, it implicitly has a lifetime of forever as there is no

real session attached to it. To allow for more than one TTM in case of multiple metadata

between identifiers, the cardinality must be set to multiValue.

Feature Base Snapshots

The introduced concept demands the use of a history providing function within the trust

extension. This history is used to keep track of value changes as well as of trust changes.

The implementation does not place this history on the MAPS, but uses the abilities the

CADS system already provides. Detailed in [2], the Correlation Engine responsible for

decision making uses a so-called Feature Base to internally manage the Features received

from the MAP Server. This Feature Base already possesses the means to build up a history

for Feature values. Due to their sequential storage of all Feature updates it can be used to

provide the history function. In detail, the sequential storage is not based on overwriting

an existing Feature but on using a linked list where the newest Feature is simply placed

in front. The history function is provided by utilising the enhanced data model, which

175

5 Implementation

encapsulates the Feature into the TrustLog data model. The Feature Base is extended

to use the TrustLog instead of the Feature, thus also including the trust updates in its

storage model. The detailed data model used for this implementation is shown later in

this chapter.

5.4.3 Extended Communication Model

In order to provide the P2TT for a particular MAPC, the communication model of IF-

MAP has to be enhanced. The first operation which is performed consists mainly of

the procedure to establish a valid session between the MAPC and the MAPS. As there

is no particular metadata exchanged, no enhancements are necessary. Besides this, the

operation itself might be used in order to assign security properties, similar to the type

of the authentication used. Operations which terminate the communication between the

MAPS and the MAPC, like an intended endSession or an unintended communication

interruption, don’t need to be enhanced either. The MAPS has only to take care about

the correct deletion of the appropriate metadata, which belongs to the client the session

has ended for. Furthermore, TT-specific data may be deleted too if there is no other client

linked to it. As written above, keeping track of such changes, in particular of the deletion,

is done on the Correlation Engine’s side by utilising the Feature Base. Due to this, the

MAPS enhancement can be kept rather simple.

In particular, operations which need to be enhanced are

• purgePublisher,

• publish-update,

• publish-delete,

• search and poll.

Details to each operation are given in the following.

The first operation which influences the TT calculation is purgePublisher. It is used

by a client to indicate a cleanup of its metadata which can be used as a fresh staring

point for republishing. Due to this cleanup, all associated TTs have to be recalculated if a

purgePublisher is triggered. If old data is not reconstructed by a following publish of the

176

5.4 Trust Extension in IF-MAP

same MAP Client, the associated TTs have to be deleted after some time, in particular

after they have been provided to all subscribers.

If a MAP Client performs a publish-update operation, all Trust Tokens (phase 1) have to

be updated as well. In particular, the stored TTM within the MAP graph is updated with

the newly calculated result. After this process is done, the Correlation Engine is notified

about this change to allow a complete picture of the appropriate trust and value changes.

Furthermore, active subscriptions will be handled after the complete trust calculation is

finished. This is necessary to avoid states where a TTM is outdated. Finally, the MAPC

cannot publish TT itself, the server must prevent this and reply with an appropriate error.

In case of a publish-delete from a MAP Client, the metadata and their associated TTs

need to be deleted from the MAP graph. Given other subscriptions to this metadata,

the subscribers need to be informed about the deletion. In particular, the TT has to

be recalculated in order to represent the trustworthiness of the delete operation itself.

Furthermore, the Feature Base of the Correlation Engine receives this delete operation

and can keep track of the deleted metadata. Therefore, it stores the last valid version of

the metadata, along with the delete operation’s trustworthiness.

Doing a search on the MAP Server, a MAP Client receives not only the searchResult

itself but also the appropriate P2TT attached to this search. That is, the MAP Server

calculates the P2TT based on the P1TT as soon as it receives the request for the search

operation as it is able to determine the appropriate security properties for this client (i.e.

by using the SPRM which can evaluate the communication between the MAPS and the

requesting MAPC). Equally to the search operation, a pollResult is also attached with

the appropriate P2TT valid for the polling client.

5.4.4 MAPS Security

Based on the enhancements for the IF-MAP protocol made above, the security situation

of the MAP Server has to be considered again. The discussion of the security of the

MAPS consists of two parts: First, the communication part including the publish and

subscribe operations. And second, the security of the MAPS itself. As the communication

is inherently secured by using appropriate methods (e.g. TLS) defined within the MAP

specification, there is no need to investigate this part again. Contrary to this, the security

of the MAPS itself need to be treated again as the specification does only give minor hints

177

5 Implementation

on how to treat this issue. This is due to the fact, that the MAPS is not intended to hold

the actual state of the network with real data. The specification defines, that it holds a

state which may reflect the networks state. Furthermore, the MAPS is not intended to

be used as a source for decision making but solely as an information database. As the

concept presented above moves the MAPS into an active role, these drawbacks need to

be addressed explicitly.

To use the MAPS for the described kind of decision making source, it has to meet the

following requirements:

• The database the MAPS holds must be changeable in a defined way only, i.e. by

using data received via IF-MAP operations. Unauthorised access to this database

must be prevented.

• As the MAPS itself creates the Trust information and publishes those into the

MAP graph, it is important that this process runs in a defined way. A possible

compromising of this process results in invalid TTs, thus breaking the whole concept.

As said above, a MAPC must not be allowed to publish trust related information

itself.

One approach which provides a reasonable security is the use of a trusted boot as

described by Trusted Computing. To perform a trusted boot, the first step is to define

an integrity state of the platform the MAPS runs on. This state should be clear and

trustworthy, thus the system should not be compromised in any form. Additional features

may be defined, such as the systems patch level or software packets. If this state is defined,

a Trusted Platform the MAPS system has to be to use trusted boot, can be configured in

a way, that it only boots up completely if the current system state matches the predefined

one. This means, the MAPS can only start if its integrity state is as expected. This does

in particular not help against zero day issues, such as software problems, but it minimises

the risk of a compromise. Another variant of this approach can be used to derive trust

for MAPCs. A detailed description of this approach can be found in 7.4.

Based on this concept, the actual implementation is described in the next section,

including the used software.

178

5.5 Implementation based on IF-MAP

5.5 Implementation based on IF-MAP

The implementation of the enhanced MAP Server is based on the irond server developed

and maintained by [168]. It is a TCG certified IF-MAP 2.0 capable MAPS written in

Java. Furthermore, the snapshot-based enhancements provided by extending the Correla-

tion Engine’s data model are implemented by using the CADS reference implementation.

This reference implementation consist mainly of the Correlation Engine, which was also

developed by the Trust@FHH research group. The particular implementation of it is called

irondetect [168] and is also written in Java. Enhancing both subsystems allows to provide

a reference implementation for the TCADS system. Due to both systems being written

in Java, all implementation parts of this work are also written in Java.

Going back to the MAP Server, the trust extending components are implemented in

a stand alone manner first. In order to actually use them within the irond, a interface

connecting both parts is developed as next. The trust extending components are given by

the already introduced TrustService.

5.5.1 TrustService

Internally, the TrustService is realised by three di↵erent classes forming the domain model.

This domain model is depicted in figure 5.6. As the figure shows, there is a class repre-

Figure 5.6: TrustService domain model [166].

senting the security property, the security property record and the final Trust Token. The

SecurityProperty class simply encapsulates the name of the property represented by this

element, the current rating retrieved by the SPRM and a description giving element. The

SecurityPropertyRecord class references n actual SP s, which are used to calculate the

179

5 Implementation

security level of the record. The security level is stored within this class. Four of these

SecurityPropertyRecord objects are referenced by the TrustToken class, due to the four

defined operations. Furthermore, the TrustToken class holds the particular trust level

value, the id of the MAPC and a timestamp indicating the time of calculation of the

particular trust level. Given theses domain classes, the actual service can be described.

This is done in the following.

As described within [166], aim of the TrustService-based implementation is to decouple

the trust extension from that particular MAP Server. The actual measurement of the

security properties is not part of the service itself and must be provided by the SPRM-

based component. The overall class structure is depicted in figure 5.7.

Figure 5.7: TrustService class model [166].

180

5.5 Implementation based on IF-MAP

It consist of several classes providing the necessary methods and attributes for the

TrustService implementation. The main interface is provided by the class TrustService

itself.

TrustService Interface

This interface allows to store measured security properties and to generate (i.e. to calcu-

late) the P1TT as well as the P2TT. It provides the following methods in order to realise

this.

addSpForMapc() This method allows to store a measured SP . It is usually triggered by

the irond MAP Server and allows to identify the SP by a particular key. This key may

be given as one of three types: the ClientIdentifier, as a ChannelIdentifier or

as SessionID. The identifier-based keys allow to use either a MAP Client’s username

or the ip/port combination as method for identifying a certain property.

addSpForMaps() To store a property measured for the MAP Server itself, i.e. the irond

server, this method is provided. As this property can only be set for exactly one

server, where the TrustService is running on, no key must be given.

getP1TT() Provides a P1 TrustToken by the use of a Session- or Publisher-ID to the

MAP Server.

getP2TTM() Allows the MAP Server to retrieve the overall P2 Trust Token. A Session-

ID, the already calculated P1TT as well as an id for the metadata is required to do

this. The method returns the particular P2TT-specific metadata.

removeAllSprOfMapc() Requires a Session-ID in order to delete all measured security

properties of a particular MAPC.

reloadSpFile() To allow for dynamic ratings, the policy containing these ratings (i.e. the

SPM’s implementation) can be reloaded at every time. This is done by triggering

this method.

TrustServiceImpl Class

The class provides an actual implementation of the TrustService interface. In order to

fulfil its task, it makes use of the SprManager, SpRepository and TrustTokenManager.

181

5 Implementation

The TrustServiceImpl is in particular responsible for delegating the appropriate method-

based requests to one of these classes. The maintenance of the particular security property

records is done by the SprManager. In detail, this class is responsible for receiving the

particular SP from the SPRM and the calculation of the corresponding security level. The

SpRepository, which can be seen as logical part of the SPRM provides the particular

access to the assigned security properties. Given both classes, the TrustTokenMananger

can create the P1TT as well as the P2TT. In detail, the assigned trust level for both

Trust Tokens is being calculated by using the given SPRs and their connected SPs. The

irond implementation allows to map the accepted keys (that is the ClientIdentifier,

ChannelIdentifier and Session-ID) by the use of its SessionRepository class. Inter-

nally, irond uses the ClientIdentifier to map all known MAP Clients to sessions and

channels. Due to this, the two other key types are mapped back to a ClientIdentifier

key by using the database of the irond. Given this, the measured security properties are

stored as references of a certain ClientIdentifier. While the mapping outsourced to the

irond itself provides a straightforward access, there is one problem: if an endSession opera-

tion is triggered, the irond server deletes the appropriate mapping instantly. This results in

a situation, where the TrustService would be unable to resolve the key using the irond’s in-

ternal mapping database. In order to provide a solution to this problem, the TrustService

holds another ClientIdentifier-based mapping on its own. The particular TrustSer-

viceImpl allows therefore to use the method mapSessionIdToClientIdentifier(). The

SprManager is able to trigger the key resolving when performing removeAllSprOfMapc().

SpRepository

This class provides the interface to the security properties, and in particular to the assigned

ratings. The locally stored policy, representing the SPM to some extent, is loaded instantly

when starting up the implementation. A HashMap-based runtime storage is used to cache

the entries of the policy: the SP as key and the rating as its value. To allow the ratings to

be changed in a dynamic fashion, the reloadSpFile() method is provided. This method

triggers a reloading and re-caching of the stored policy, thus a reloading of the appropriate

properties and their ratings. In order to update a rating, the method must be triggered

actively. That is, the current implementation does not monitor the SPM on its own and

demands an interaction in order to begin the reloading process.

182

5.5 Implementation based on IF-MAP

SprManager

The assignment of the particular security properties to the operations, thus to the SPRs

are managed by this class. Due to each MAP Client possessing two potential SP sets, one

for the process operation on the client itself and one for the transmission between the

client and the server, the SprManager holds two references to the SprRepository class.

This references encapsulate the particular security property record per operation for a

client. Contrary to that, only one direct reference to the SecurityPropertyRecord instance

is required for the MAP Server itself. This is due to the already mentioned fact of the

MAP Server only being one instance and only holding one set of operational properties.

To resolve a particular propertyName, the SpRepository is used in order to provide the

actual security property. The propertyName itself is provided via the already described

addSpForMapc() and addSpForMaps() methods. Using the SlFunction class, the actual

security level can be calculated for a security property record. In case of carrying out

one of the get methods (getSprOfMapc(), getSprOfMaps()), the SL is being calculated

implicitly. The particular function used of calculating the SL is not completely defined

but being provided by the means of a strategy patterns-based class. This class, RealSl-

Function, inherits from the SlFunction class and implements the specific method used for

the calculation.

TrustTokenManager

Given the security property records by using the Session-ID of the particular MAP Client

encapsulated within the SprManager, the TrustTokenManager is able to provide the P1TT

as well as the P2TT. To calculate the particular trust level included within the TT, the

TlFunction class is used. Equally to the SlFunction class and the used strategy pattern,

the actual method used to calculate the trust level is given within the RealTlFunction

class. Providing the P2TT, the TrustTokenFactory is used. This class uses another factory-

based class: the MetadataFactory which is able to create an instance of the Metadata class.

This instances is used by the irond to represent metadata within its graph structure, thus

providing the methods to create search and pollResults answering P2TT requests. Besides

that, the main responsibility of this class is to answer requests for either a P1TT or a

P2TT.

183

5 Implementation

getP1TT() The overall procedure which is carried out by triggering this method is de-

picted in figure 5.8. The first step in order to receive a P1TT is to access the as-

signed SPRs. As the P1TT represents a phase 1 trust level, three SPRs are needed

for calculating the TL: the SPR of the client’s process operation, the SPR for the

transmission between the client and the server as well as the process SPR of the

MAPS. Having retrieved these three SPRs, the TrustTokenManager is able to in-

stantiate the particular TrustToken. This TrustToken represents a p1tt which is

being communicated to the requesting client. Given the view from the TrustService,

a client is rendered by a party requesting this p1tt. In case of the implementation

described here, the irond represents such a client.

Figure 5.8: P1TT request [166].

getP2TTM() In order to provide the P2TT, this method is used by the irond (i.e a

particular component of the irond). The P1TT which was previously instantiated is

used for this task. This is due to the P1TT holding the particular parts which form

the final trust level (phase 2 trust level), in detail the first three security levels. As

there might be changes to these security levels, a recalculation is triggered as first.

The task of recalculation is done by the SprManager class. Using this recalculated

values, the p2tt can be created. As there is one SPR missing, the next step is formed

by retrieving the SPR for the last operation: the final transmit between the server

184

5.5 Implementation based on IF-MAP

and the receiving client. Given this SPR, the appropriate security level for this set of

security properties can be calculated. By finishing this, there are four security levels

available which are finally used to calculate the overall (i.e. phase 2) trust level. This

trust level is encapsulated as metadata by the use of the createTtmMetadata()and

provided to the requesting client (as already stated, the irond server). Theses steps

are depicted in figure 5.9.

Figure 5.9: P2TT request [166].

Besides these parts, which bundle the main functionality of the TrustService there are

some more classes which are used to realise the required auxiliary functions.

TrustTokenIdGenerator

This class takes responsibility for providing unique and non repeating ids for establishing

the link between the TrustTokens and the metadata they belong to. To fulfil the require-

ments of uniqueness, the instantiation process is realised by utilising a Singleton pattern.

That is, there must be only one instance existing at the same time. This instance takes

care of managing the ids, so that no id is used twice. Internally, a long type-based attribute

is used for this task. This attribute is simply increased each time an id is requested.

185

5 Implementation

OperationType

This enumeration maps the appropriate operations to constant-based string values. The

mapping is used to assign the security properties to the operations. Because of this there

is a mapping for the process operation on the MAP Client (PROCESS_MAPC), a mapping

for the process operation on the MAP Server (PROCESS_MAPS) and a mapping for the

transmission between the MAP Client and the MAP Server (TRANSMIT_MAPC_MAPS). Due

to the implementation creating the P2TT only on request, there is no particular mapping

for the final operation.

TrustConstStrings

This class holds all other constant strings used within the implementation. Furthermore,

external components accessing parts of the implementation can use it in order to operate

on the same attributes.

To use this TrustService in combination with the irond implementation, a strategy for

implementing it, based on the particular irond components, is required. This combination

is explained in the following section.

5.5.2 Combining MAPS and TrustService

Details of the irond implementation are given in [168] including the architectural layers

of the server. Summarising this, there are two of these layers: the communication layer

as well as the data model. The communication layer is responsible for managing the au-

thentication of MAP Clients, the handling of the sessions and the authorisation of the

MAP Clients. These tasks are not limited to one client at a time but are implemented in

a highly parallel manner. The particular storage of the graph and the process required to

realise this handling is encapsulated within the data layer. The interface between those

two layers is given by accessing data model specific methods through a call from the com-

munication layer. Based on this, the interface between the TrustService and the remaining

irond components must be realised on both layers (cf. [166]). The overall model the im-

plementation is based on, is depicted in figure 5.10. As it easy to see, the TrustService is

being called from both layers of the irond and therefore acts passively.

186

5.5 Implementation based on IF-MAP

Figure 5.10: TrustService extended layer model of irond [166].

The TrustService is being initialised within the irond’s initialisation process. That is,

at the same time the irond server starts its internal components, the TrustService is

instantiated. Besides that, a customised signal handler was added to the irond. This

signal handler waits for the SIGHUP signal which can be given to the irond from outside.

Receiving this signal, the irond calls the already mentioned method to reload the policy

file holding the security properties as well as their ratings. This mechanism is used to

dynamically update the ratings at runtime of the server. As already stated, the policy file

itself is not being monitored actively, thus the only method to instruct an update is to

use the appropriate signal.

Communication Layer Enhancements

To provide the appropriate security properties, the communication layer of the irond needs

to be enhanced. The process of measuring the SPs is divided into two parts: the measure-

ment of the MAP Client’s SP and the measurement of the server’s SP. Figure 5.11 depicts

the enhanced communication layer, including the TrustService interface. To measure the

appropriate security properties which can be derived from the connection between the

server and the client, the ChannelAuth class as well as the ChannelAcceptor class are able

to call methods from the TrustService. Both classes determine the type of the connection

which is either a certificate-based or a simple authentication-based connection. Using this

187

5 Implementation

Figure 5.11: TrustService extended communication layer [166].

information, they are able to assign appropriate security properties which represent these

di↵erent connection types and bind them to the correct ClientIdentifier. The partic-

Figure 5.12: Basic auth SP measurement [166].

ular steps when measuring the communication channel are depicted in figure 5.12. After

the ChannelAcceptor received a connection request for a simple authentication-based

connection, it instantiates a BasicChannelAuth object (bca) including the TrustService

188

5.5 Implementation based on IF-MAP

reference. Following this, the ChannelThread authenticates the clients using the provided

bca instance. This is done by calling the authenticate() method. After this step, the

derived security properties are assigned by the use of the TrustService interface.

The derivation of appropriate security properties for the MAP Server itself, thus the SP

for the MAPS’s process operation is rather straightforward. In detail, the only e↵ective

way of providing a measurement for the server itself is the use of a TPM sealed certificate.

As stated above, this certificate allows to verify that the server was booted up into a pre

defined state. Using this certificate and some signing methods, a MAP Client is able to

verify this state of the MAPS. Given that, the SP for the process operation on the MAPS

are derived using this method.

Data Model Enhancements

In order to store the P1TT metadata structure within the irond’s graph, certain enhance-

ments to the data model are necessary. As already written, the reference between the

metadata and their Trust Token is established through the TrustTokenID (TTID). Both,

the metadata as well as the P1TT use the same TTID to indicate that the P1TT belongs

to exactly this metadata. As depicted in figure 5.13, the connection between the P1TT

Figure 5.13: Enhanced data model [166].

and the metadata itself is being managed by allowing the class responsible for handling the

metadata to get or set an appropriate TTID. In detail, metadata managed by the irond is

being encapsulated within a W3cXmlMetadata object. This object holds the XML-based

representation of IF-MAP complying metadata. To link this metadata to a P1TT the

189

5 Implementation

class is enhanced with a TTID member holding the appropriate TTID. To actually store

metadata within the graph structure, the class MetadataHolderImpl is being used. This

class is enhanced by Trust Token-specific methods and a member referencing the ap-

propriate Trust Token. That is, the class not only provides the metadata storing means

but also binds the appropriate Trust Token to this metadata in the data model. Further-

more, there are four classes, ClientService, SubscriptionService, SearchService and

PublishService which are responsible for the operation-based handling. Using the en-

hancements explained above, the overall procedures when performing an IF-MAP based

operation can be explained following the responsibilities of these classes.

ClientService

This class is responsible for the overall session handling between the MAP Client and the

server. It therefore provides three methods, which all have been enhanced. Details are

given in the following.

newSession() This method is responsible for establishing a new session for a requesting

client. It is directly called when a MAP Client carries out the newSession IF-MAP

operation. Using the trust extension, it is also responsible for initialising the mapping

between the Session-ID and the ClientIdentifier used.

endSession() Calling the endSession IF-MAP operation on the MAPS by a client triggers

this method. It is responsible for cleaning up the session itself as well as attached

metadata. In addition to that, all assigned security properties of the ending MAP

Client are removed by calling the appropriate method of the trust extension.

purgePublisher() Responsible for performing the purgePublisher IF-MAP operation, this

method takes care of a recalculation of the Trust Tokens when called.

PublishService

All types of the IF-MAP publish operation are handled by this class. In detail, the class

consist of three particular private methods, which handle the update, delete and notify

publish operations. The only one of these three types which is rather di↵erent in terms

of trust-specific handling is the delete method. It simply calls the TrustService interface

to obtain a particular P1TT for the client deleting the metadata. This P1TT is attached

190

5.5 Implementation based on IF-MAP

to the metadata which is to be deleted. As for the publish update and notify operations,

the first step is also to obtain a particular P1TT. After this, it is checked if any of

the metadata which is to be published contains a Trust Token already. In detail, the

namespaces of the metadata is checked against the trust-specific names and if a match is

found, which indicates that a client tries to publish a Trust Token, the process is stopped

with an AccessDeniedError. If there is no Trust Token included, the metadata is extended

with the particular connection to the previously created Trust Token. In order to store the

resulting metadata elements within the MAP graph, a TTID is generated and inserted

into the metadata itself.

SearchService

IF-MAP based search operations are handled by this class. As a searchResult is generated

by this class which is given back to the requesting client, some changes are necessary. When

the searchResult is actually generated, all P1TTs for the entries stored within this result

are retrieved. These P1TTs are then converted into P2TTs. This is done by using the

MAP Clients identifier which requested the search- . Finally these P2TTs are added to

the result itself and communicated to the requesting client.

SubscriptionService

In order to provide a pollResult to a client which has a particular subscription, this class

is used. Furthermore, the initial searchResult is also provided by this class. Equally to

the SearchService, this class takes P1TTs for each metadata within its result set and

generates the appropriate P2TT for it as it is aware about the requesting client. This

combined result is then provided to the client.

As explained above, all four services have been enhanced in order to provide trust-

specific means. A detailed explanation which includes the particular single steps is given

in [166].

5.5.3 Correlation Engine Enhancements

As already stated, the snapshot-specific enhancements allowing to build up a history for

the Feature values as well as their trust level are done on the Correlation Engine’s side. Due

191

5 Implementation

to the reason, that the CE provides an internal mechanism already, referred to as Feature

Base, which stores all Feature-specific changes, only minor changes to the underlying

Feature data model are required. These changes do not only allow to store trust related

information but also to include the introduction of the trust level as a special context

type.

Figure 5.14 depicts the enhanced Feature data model. As it is easy to see, the TrustLog

as well as an enhanced Context Parameter is included. The TrustLog includes fields to

Figure 5.14: TrustLog enhanced Feature model.

store the appropriate ratings of the particular SPs within the security property records

(i.e. the RPSRs) for each operation. Within this implementation, basic integer values are

used for this purpose. This fine grained storage allows the Feature Base to keep track

of every single change which appears on the side of the security properties and their

ratings. Furthermore, the Trust Token Id is stored. When parsing the Feature out of the

received answer from the MAP Server, the connected Trust Token is parsed as well. To

allow for a reasoning between di↵erent Trust Tokens and their appropriate links to actual

metadata, this TTID is used and thus stored. In addition to these rather fine grained

trust-specific parts, the overall trust level for the Feature is stored as well. Although the

192

5.6 Evaluation

expected trust level would be a phase 2-based version for the Correlation Engine, phase 1

is used here. This is due to the fact, that the more important changes are included in the

phase 1 version and the communication channel between the MAPS and the CE should

be considered secure within this implementation. However, the Correlation Engine is still

able to operate on the phase two version by combining the appropriate stored SPR field

on its own. The stored trust level provides a more convenient way of accessing the value.

Furthermore, the ContextParamType enumeration is extended by the TRUSTLEVEL

type. This allows the Correlation Engine to use the trust level of a Feature as a context

parameter within its policy. In detail, when constructing a Feature for its use, the TrustLog

not only stores the trust-specific information but also enables to access the phase 1 trust

level field to be accessed as special context parameter. This is done by simply adding it

to the already existing context set of the Feature.

Given all that, the Feature Base is able to provide a history of all the changes made to

these elements. Thus it stores the changes of the Feature’s value along with the change of

the trust level including particular SPR changes and the change of the trust level context

type. Finally, as the enhanced MAPS provides deleting information for Features, it is also

able to keep track of deleted Features and their corresponding values.

5.6 Evaluation

Given the implementation of the TCADS approach from the previous sections, this section

provides an evaluation of not only the implementation but the overall concept. This is

done in two steps: first the trust enabled MAP Server is evaluated in terms of performance

and isolated test cases and second an overall test case including all components of the

TCADS system is carried out. The case used for the second part is given by the ESUKOM

project and provides a real world like application to the system. To operate on a defined

basis, the used security properties are defined in the next section. These properties will

be used throughout the whole evaluation.

193

5 Implementation

5.6.1 Security Property Definition

In order to provide a basis for the following evaluation, the security properties that are

used for determining the trust levels of the communicated Features are introduced includ-

ing their initial ratings and functions for calculating security levels and trust levels.

There are six distinct properties defined for the evaluation scenario. They are explained

in detail in the following with the appropriate ratings given to each property are explained

afterwards.

Android-based smartphone This property expresses the processing of a Feature on an

Android-based smartphone. That is, this property is assigned to each process oper-

ation which is carried out on such a smartphone. Due to the fact, that the scenario

used for the evaluation only uses Android-based smartphones, this property allows

to globally distinguish between smartphone-based Feature processing and other sys-

tems carrying out process operation for Features. More in detail, the assignment

of this property is done by evaluating the basic authentication properties of the

MAP-based communication. As the TCADS system relies on a special agent in or-

der to collect smartphone-specific data, the authentication credentials of this client

are known to the MAP Server. Using the SPRM component, these credentials are

transformed into the appropriate property.

User Account Each time a MAP Client of the TCADS system is about to publish Fea-

tures, it needs to perform an authentication to provide its identity against the MAP

Server. This authentication and the derived identity of the MAP Client can be used

to assign a security property to the process operation of this client. The identity

of the particular MAP Client is derived by the identity of the user that is assigned

to this MAP Client. As with the Android-based smartphone property, the identity

is used to distinguish between di↵erent levels of trustworthiness of the client. This

is used to distinguish between internal clients and external clients. Internal clients

are Feature processing systems which are considered as more trustworthy as they

are controlled by the domains administrator. External clients, like laptops which

can be moved around, are not that trustworthy due to their usage profile and the

lower level of control the administrator has. The internal clients are likely placed on

infrastructure components like routers. Reflecting these di↵erent client types, the

rating of the property di↵ers according to each type.

194

5.6 Evaluation

Communication Channel Type This property allows to distinguish between cleartext

and encrypted communication. The SPRM component residing on the MAP Server

evaluates each communication channel which is established between a MAP Client

and the MAP Server. If the channel type that is used does not provide communica-

tion security by the use of TLS, a property expressing this is assigned. As default,

the evaluation provided here should not communicate without the use of TLS en-

crypted channels. Due to this, no property is assigned if the channel is encrypted

but only if there is no encryption or the certificate used to establish the connec-

tion is expired or invalid. Thus this property indicates negative trust and the rating

needs to express this. As the name indicates, this property is assigned to transmit

operations, indi↵erently which particular type of transmit operation is used.

OpenVAS-based Vulnerability Level In order to provide an external measurement of a

system’s vulnerability, an OpenVAS [169] enabled platform is used. This system

performs regularly scans of all other systems being part of the network including

the connected smartphones. The results of these scans, which are also based on CVE

vulnerabilities (cf. [170] for a CVE overview), are given back to the SPRM on the

MAPS as input. A default property indicating the scan result is attached to each

process operation of the client. Using the detailed result of the scan, the rating of

this property is changed. That is, the more vulnerabilities found, the lower the rating

becomes. Furthermore, the amount of the rating’s de- and increase is connected to

the type of vulnerability found. OpenVAS distinguishes between several severity

levels. These levels are used for the rating changes as well. More details on this are

given later in this section when the actual rating values are defined.

Attestation Level As explained in section 7.4, a special type of certificate can be used to

provide a measurement of a system’s state. This certificate is only accessible to the

client if the state of the platform the client is placed on is as expected. The certificate

is sealed to this particular state, thus it is encrypted using the measurement of the

clients platform which are performed by a TPM. Storing these measurements within

the TPM’s PCRs an encryption key can be derived by the TPM and the PCR values.

If the PCR values change due to a change of the system’s state, the key can no longer

be derived, resulting in the system being unable to access the certificate. Given that,

as long as the MAP Client is able to present this certificate to the MAP Server, the

195

5 Implementation

client’s platform is to be considered within the expected state. Using this, a security

property indicating this can be assigned to the client’s process operation. The rating

of this property is usually indicating a high level of trustworthiness as the system’s

desired state is usually considered trustworthy. However, this property may also be

used to determine untrustworthy states under certain circumstances.

Trust Level Trend This property is based on previously calculated trust level values for

Features of a certain Feature Collector (i.e. MAP Client). It is used to characterise

the process operation of that Feature Collector. Unlike the other properties de-

scribed, it aggregates trust measurements to a higher level as it uses the already

existing trust level as input value. In detail, not a single trust level value is used but

the trend of this trust level. If this trend decreases lower than a particular value, the

rating of this property is changed appropriately. Given that, this property amplifies

the trend of the trust level itself. The calculation used for this property is done on

the Correlation Engine’s side as it is necessary to use the history of the trust level

values for deriving a trend.

Correlation Engine Alerts The previous explained property already uses the Correlation

Engine to assign a particular property to the process operation of a MAP Client.

This can be used in a more versatile way by assigning a general security property

which is solely controlled by the Correlation Engine. This method is provided by

the use of this property and a rating set by the Correlation Engine. It allows to

create a cascade between the MAP Server’s trust level calculation and the Corre-

lation Engine. In detail, if the Correlation Engine is able to determine unexpected

behaviour of a MAP Client, it can lower the rating of this client’s property on the

MAP Server thus influencing the trust level for all Features published by this cline.

This method allows for a fine grained gearing between the Correlation Engine and

the MAP Server in terms of trust calculation and unleashes a high potential of

functionality for the TCADS system.

In order to assign appropriate ratings to these properties, the particular values used need

to be defined for the evaluation environment. Based on these definitions, the initial rating

values and their meaning can be introduced.

196

5.6 Evaluation

Ratings

The ratings used within the evaluation are numerical-based values indicating the trust-

worthiness of a certain property. Furthermore, they are represented by signed integer

values whereas negative values indicate rather untrustworthy values while positive num-

bers represent trustworthy values. Given that, the initial rating values can be assigned to

the above defined properties that are used throughout the evaluation.

• The Android-based smartphone property is statically assigned a -5 as rating. This

indicates the lower trustworthiness of Android-based devices. As written above, this

property is used to tag Features received from a smartphone.

• As the User Account property also indicates which MAP Client’s process operation

was used to create the Feature, the initial rating depends on the type of client. If

it is an infrastructure-based component which is under the administrator’s control,

a value of 5 is assigned. This indicates a higher level of trustworthiness which is

derived from the direct control of that component. If it is another component, a

neutral 0 is assigned. However, due to their usage profile, smartphones receive an

additional negative rating.

• If the communication channel used is not as expected, the Communication Channel

property is assigned indicating a problem with that channel. Due to this, a -10 is

assigned to this property in a static manner. Due to the high negative value, if this

property is assigned it has a rather high impact on the overall calculation.

• The OpenVAS property is rated according to the findings of the OpenVAS system.

If there are no findings but only informational hints, a 5 is assigned. This value

indicates a rather good shape of the system. If there are warning level findings, a -1

is assigned in order to indicate minor problems. OpenVAS can also scan for critical

problems. If there is one of those problems found on the system, a -10 is assigned

which indicates a rather severe problem on the platform.

• The attestation level property is assigned if a client is able to present the sealed

certificate or if a client is unable to do so although it should. In the first case, where

the client is able to represent the certificate which indicates that the client’s platform

is within the expected state, a 10 is assigned. This is due to the fact, that the state

197

5 Implementation

of the system is well defined and considered to be very trustworthy. If it is unable

to present the certificate, a -5 is assigned as the system may be untrustworthy.

• The rating used for the Trend property is not statically defined. If the trend increases

or decreases, this rating may be changed accordingly in small steps. However, ini-

tially it is set to 0.

• The same situation like for the trend’s rating applies to the Correlation Engine’s

alert properties. A static rating is not defined as the Correlation Engine decides on

its own how big the impact factor to the trust calculation should be.

With these basic definitions of the used ratings, the functions which are utilised for cal-

culating the security and the trust level can be defined in the following. Additionally, the

interpretation of the calculated values is given.

Functions

The overall process of calculating a Feature’s trust level is defined as {SPR, {!} rF�!
SL}

operation

tF�! TL
⇣

. Due to this, there are two functions that need to be defined, the

rF which combines a RSPR’s rating into a security level and a tF which combines these

security levels into a single trust level for the Feature. The basic rF function is therefore

defined as mean over all ratings given, with n being the number of ratings stored within

the RSPR.

x =

P
n

i=1 !i

n

As the result must be within a range of [�1, 1] in order to be conform to the presented

approach and provide a scoreable value, the values of this calculation are clamped into

an interval of [�100, 100]. That is, every value within this range is mapped into the

appropriate [�1, 1] range while values below and above this range are interpreted as -1

and 1 respectively. The combined rF is therefore defined as follows.

SL =

8
>>><

>>>:

1 , x > 100

x ,�100 x 100

�1 , x < �100

198

5.6 Evaluation

To get an actual trust level for a Feature, the calculated SLs need to be combined by

using the tF . As there are two types of trust level, a phase 1 type and a phase 2 type,

there are also two subtypes of the tF defined here. This is necessary in order to be able

to calculate usable TLP1
⇣

values. The tF
Phase1 which is being used to calculate the trust

level on the Feature Provider is based on adding the calculated SL values. The result of

this addition is multiplied by a static factor ↵
P1 which is set to 1

3 , thus clamping the final

TLP1
⇣

into an interval of [�1, 1] again.

TLP1
⇣

= ↵
P1(SLprocessSender

+ SL
transmitSender

+ SL
processProvider

)

To calculate the TLP2
⇣

, an extended version of this tF
Phase1 is used (i.e. tF

Phase2) which

simply adds the fourth SL value to the addition. Using the previously calculated TLP1
⇣

and another scaling factor ↵
P2, which is set to 1

4 , it is defined as the following.

TLP2
⇣

= ↵
P2

TLP1

⇣

↵
P1

+ SL
transmitProvider

!

The interpretation of both trust level types is the same due to the scaling factor mapping

both values into the same interval. That is, the trust level of a Feature is interpreted as

follows.

• A value of 1 is treated as completely trustworthy. This value is only possible if every

single SL reaches the highest possible trustworthiness.

• If the value is between 0.5 and 1 (0.5 TL < 1), the Feature is considered to be

overall trustworthy. To achieve this kind of result, most of the SLs need to have

high values without any critical finding.

• The range between -0.5 and 0.5 (�0.5 < TL < 0.5) is interpreted as neutral judge-

ment of the Feature’s trustworthiness. That is, the actual interpretation of the value

depends on the particular case.

• If the value is lower than or equal to -0.5 (TL �0.5), the Feature is considered

untrustworthy to a high level. This value can only be reached if there are critical

findings or most of the single SL values are very low.

199

5 Implementation

• If the TL calculation returns a -1, the Feature is completely untrustworthy as this

value is only reached if all of the SL values are set to minimum.

Based on this interpretation along with the defined security properties and the required

functions to calculate the trust level, the evaluation can be carried out. This is done in

two steps: the MAP Server is evaluated isolated within the first step while the overall

TCADS system is used in the second step. The next section starts with the evaluation of

the enhanced MAP Server.

5.6.2 Trusted MAP Server

The MAP Server is tested in two di↵erent ways. First a performance evaluation is carried

out and second the actual Trust Token generation is tested. The performance evaluation

allows to judge about the approach’s usability within a practical scenario. More in detail,

a Trust Token needs to be generated for every metadata stored within the MAP Server’s

graph. The impact of this additional elements as well as the required processing power to

generate them is tested by evaluating the extended irond against a non extended version.

Using the extended version again, the second part evaluates the correct generation of the

Trust Tokens for a specific case.

Test environment

To operate on a well defined base for testing, a test environment is introduced here.

It consist of the irond in both versions and some auxiliary components which provide

required data. Figure 5.15 depicts the test environment and the used implementations.

The irond MAP Server shown in this figure refers to both versions, the trust extended

and the default implementation, as both versions are compared to each other. Besides the

MAP Server itself, the following components and their actual implementations are used.

DHCP Server This server system is provided by the use of the ISC DHCP server im-

plementation [171] in conjunction with the irondhcp MAP Client which operates

as Feature Collector. The irondhcp client simply parses the appropriate lease file

generated by the DHCP component and publishes these results as Features to the

MAP Server.

200

5.6 Evaluation

Figure 5.15: Test environment (cf. [166]).

Smartphone Two particular types of smartphones were used within this test environ-

ment: a Samsung Galaxy S III (see [172] for more details of the device) and a

Samsung Galaxy Nexus device [173]. Both devices were extended by the DECOIT

IF-MAP Client acting as a Feature Collector and providing the necessary data from

the smartphones.

Policy Decision Point As the Feature tree created by Feature Collectors requires a root

element represented by an appropriate access request of the smartphone, a Policy

Decision Point publishing this access request is required. Within this test envi-

ronment, the TNC@FHH TNC implementation [154] was used for this task. This

implementation provides two means of building up this access request information.

The first way is to use the actual server component, which is rather complex as

this requires a full TNC setup. This was only done for testing purposes and not

during the actual evaluation. During this phase, the second way which is given by

a special IF-MAP enabled script client was used. This script client simulates the

appropriate request and publishes it accordingly. This provides an easy and flexible

way of testing the smartphones as Access Requestors.

Firewall To gain more information and have a Feature Consumer ready, an iptables fire-

wall [174] was used. This firewall system also used an IF-MAP enabled client in

order to publish (i.e. acting as a Feature Collector) and subscribe (i.e. acting as a

Feature Consumer) to information.

201

5 Implementation

Using the security properties defined above, the following particular assignment was used

while evaluating the MAP Server.

• The DHCP Server uses an expired certificate for establishing the communication

channel. This results in the assignment of the communication channel property to

the transmit operation between the DHCP Server and the irond.

• The smartphones are both assigned the smartphone property which indicates the

special device class.

• The PDP uses a TPM sealed certificate for the authentication. Thus the appropriate

property is assigned which indicates the expected state of this system.

• A basic authentication is carried out between the firewall and the irond. Due to

this, the basic auth property tagging the firewall system as an infrastructure-based

component is assigned.

By assigning these properties, Trust Tokens holding the correct values (ratings as well as

trust levels) should be generated by the MAP Server. This is checked in the second step

after the performance of the creation process itself was analysed.

Performance Evaluation

The performance evaluation done here is based on the plain performance evaluation for the

irond IF-MAP Server described in [175]. Besides the irond components itself, there are four

performance evaluation clients used. These clients are simple C programs which perform

a defined flow of IF-MAP operations on the particular server. They are implemented as

simple MAP Clients using the libifmap2c (cf. [176]) library which provides easy means of

implementing C-based MAP Clients. The particular clients used are

• perf-pulsing-star-ext,

• perf-pulsing-star-int,

• perf-complete-graph and

• perf-rand-graph.

All of them are described shortly in the following.

202

5.6 Evaluation

Test Client perf-pulsing-star-ext This small client records the time1 needed to perform

all requests sent to the server. In detail, the client establishes an active subscription for

its own published metadata on the server. It starts to publish metadata and following

this, polls for changes using the active subscription. Due to this, the time recorded is

the time between starting the publish operation and receiving the poll result. Thus this

time represents the amount of time the MAP Server needs to process the publish request,

include the published data within its graph and provide a pollResult. Given the extended

irond server, there should be more time needed as more things are to be stored within

the MAP Server’s graph and prepared for the pollResult.

The method used to publish data consist of establishing links between certain identifiers

by the use of publishing metadata on that link. In detail, this test client starts by a ROOT

identifier which has N child identifiers. The links on the same depth level are created

using a single publish request. Furthermore, the client does not only establish the tree

like structure but also deletes it according to the used parameters. Deletion is performed

the same way as the publish update: by simply deleting all links at the same depth within

one step. The parameters used for this are at the one side the N value which specifies how

many identifiers are attached to the ROOT identifier. On the other side, there is the D

value which is used to specify the depth of the graph that should be created. Listing 5.11

shows the algorithm which stands behind this testing program. Given all that, an example

run of the program is shown in figure 5.16. It is easy to recognise, that each single step of

the client only operates on the same depth in the graph for both actions, the update and

the deletion of metadata. If the max depth defined by D is reached, the established graph

is deconstructed in single steps. Important about this kind of testing client is the single

stepped operations and the creation of the links between depth increasing identifiers.

Test Client perf-pulsing-star-int Using the same subscription and publish mechanism

like the perf-pulsing-star-ext program, this test client is nearly similar to that one

but di↵ers within the link creation. The time is again recorded for all requests allowing

to compare di↵erent MAP Servers to each other. Listing 5.12 shows the algorithm behind

the client in a pseudo code form. The di↵erence between this test client and the external

client is given by the creation and the removal of the links between the identifiers. While

the external variant attaches and removes links step by step on to the deepest identifier,

1Wall time is used for this client as well as for the other testing clients.

203

5 Implementation

D, N // depth and root ch i l d r en
ROOT // root i d e n t i f i e r
i d en t s [D] [N] // a l l i d e n t i f i e r s , array as in C
preq // pub l i sh r eque s t

sub s c r i b e update for ROOT

// bu i l d i ng the t r e e
for d in (0 . . . D � 1) do
for i in (0 . . . N � 1) do
i f (d == 0) then
add update (ROOT, id en t s [d] [i]) to preq

else then
add update (i d en t s [d � 1] [i] , i d en t s [d] [i]) to preq

end i f
end for
send preq to se rver , r e s e t preq
p o l l s e r v e r

end for

// removing the t r e e
for d in (0 . . . D � 1) do
for i in (0 . . . N � 1) do
i f (d == (D � 1)) then
add d e l e t e (ROOT, i d en t s [D � d � 1] [i]) to preq

else then
add d e l e t e (i d en t s [D � d � 1] [i] , i d en t s [D � d � 2] [i]) to preq

end i f
end for
send preq to se rver , r e s e t preq
p o l l s e r v e r

end for

Listing 5.11: perf-pulsing-star-ext pseudo-code [175].

204

5.6 Evaluation

ROOT

ID0-0

ID0-1

ID0-2

ID1-0

ID1-1

ID1-2

(a)

ROOT

ID0-0

ID0-1

ID0-2

ID1-0

ID1-1

ID1-2

(b)

ROOT

ID0-0

ID0-1

ID0-2

ID1-0

ID1-1

ID1-2

(c)

ROOT

ID0-0

ID0-1

ID0-2

ID1-0

ID1-1

ID1-2

(d)

ROOT

ID0-0

ID0-1

ID0-2

ID1-0

ID1-1

ID1-2

(e)

ROOT

ID0-0

ID0-1

ID0-2

ID1-0

ID1-1

ID1-2

(f)

Figure 5.16: Example run of perf-pulsing-star-ext with N = 3, D = 2 [175].

205

5 Implementation

D, N // depth and root ch i l d r en
ROOT // root i d e n t i f i e r
i d en t s [D] [N] // a l l i d e n t i f i e r s , array as in C
preq // pub l i sh r eque s t

sub s c r i b e update for ROOT

// bu i l d i ng the t r e e
for d in (0 . . . D � 1) do

for i in (0 . . . N � 1) do
i f (d != 0) then

add d e l e t e (ROOT, i d en t s [d � 1] [i]) to preq
add update (i d en t s [d] [i] , i d en t s [d� 1] [1]) to preq

end i f
add update (ROOT, i d en t s [d] [i]) to preq

end for
send preq to se rver , r e s e t preq
p o l l s e r v e r

end for

// removing the t r e e
for d in (0 . . . D � 1) do

for i in (0 . . . N � 1) do
i f (d != (D � 1)) then

add d e l e t e (ROOT, i d en t s [D � d � 1] [i])
add update (ROOT, id en t s [D � d � 2] [i])

end i f
add d e l e t e (ROOT, i d en t s [D � d � 1] [i]) to preq

end for
send preq to se rver , r e s e t preq
p o l l s e r v e r

end for

Listing 5.12: perf-pulsing-star-int pseudo-code [175].

206

5.6 Evaluation

this internal client attaches new links to the ROOT identifier. In addition to that, the

previously created links which are also added to the ROOT node only, will be removed

and new links are attached to the currently handled identifiers. Figure 5.17 depicts the

graph created and deleted by using this test client. More in detail, the external client

ROOT

ID0-0
ID0-1

ID0-2

ID1-0

ID1-1

ID1-2

(a)

ROOT

ID0-0
ID0-1

ID0-2

ID1-0

ID1-1

ID1-2

(b)

ROOT

ID0-0
ID0-1

ID0-2

ID1-0

ID1-1

ID1-2

(c)

ROOT

ID0-0
ID0-1

ID0-2

ID1-0

ID1-1

ID1-2

(d)

ROOT

ID0-0
ID0-1

ID0-2

ID1-0

ID1-1

ID1-2

(e)

ROOT

ID0-0
ID0-1

ID0-2

ID1-0

ID1-1

ID1-2

(f)

Figure 5.17: Example run of perf-pulsing-star-int with N = 3, D = 2 [175].

never used a mix of update and delete elements within the same publish request. This

internal variant relies on this mixing and increases the amount of work the MAP Server

has to do within one step. The two remaining test clients di↵er in their methods used to

stress the MAP Server.

Test Client perf-complete-graph This test client creates a complete graph, i.e. a graph

where each identifier is connected through a link to each others identifiers. In di↵erence

to the first two star-based test clients, this client creates one subscription per identifier

published. This subscription is set to a maximum depth of number of identifiers minus

207

5 Implementation

one, so that each subscription basically returns the whole graph. Listing 5.13 shows the

basic algorithm that is carried out when using this test client. Due to the fact, that the

original version of this client was not applicable with the irond-trust MAPS, the version

depicted in 7.9 was used. This version uses another variant of checking the count of the

returned metadata and takes the Trust Tokens into account which e↵ectively doubles

the metadata returned. Contrary to the previously explained clients, this client steps

N // number o f i d e n t i f i e r s
i d en t s [N] // a l l i d e n t i f i e r s , array as in C
preq // pub l i sh r eque s t
s r eq // sub s c r i b e r eque s t

// c r e a t e s ub s c r i p t i o n s
for i in (0 . . . N � 1) do

add update s ub s c r i p t i o n for i d ent [i] to s r eq
end for
send s req to s e r v e r

// bu i l d i ng the graph
for i in (0 . . . N � 1) do

for j in (i + 1 . . . N � 1) do
add update (ident [i] , i d ent [j]) to preq
send preq to se rver , r e s e t preq
p o l l s e r v e r

end for
end for

Listing 5.13: perf-complete-graph pseudo-code [175].

forward by performing multiple publish requests. That is, each connection step consists of

severe sub steps rendered by appropriate publish requests. Within these requests, the links

between the identifiers are established. The graph which is created by this client including

the appropriate construction steps are shown in figure 5.18. Although a complete graph

is created when running this client, no deletion of this graph is made when the client has

finished, thus it records the creation step times only.

This type of client was originally developed to evaluate the performance of the irond

server’s data model. This is due to the fact, that there is a high amount of internal work

to do in order to connect the identifiers to each other from the data models point of view.

Furthermore, it is not only stressing the server to build the links to each other but also

to maintain these relationships. Using this test client on the trust extended irond should

208

5.6 Evaluation

ID0 ID1

ID2

ID3

ID4ID5

(a)

ID0 ID1

ID2

ID3

ID4ID5

(b)

ID0 ID1

ID2

ID3

ID4ID5

(c)

ID0 ID1

ID2

ID3

ID4ID5

(d)

ID0 ID1

ID2

ID3

ID4ID5

(e)

ID0 ID1

ID2

ID3

ID4ID5

(f)

Figure 5.18: Example run of perf-complete-graph with N = 6 [175].

209

5 Implementation

uncover possible performance related problems, when combining Trust Token Metadata

with such complex graph structures.

Test Client perf-rand-graph The last of the used test clients operates similar to the

previously introduced complete graph variant. The algorithm carried out by this test

client is depicted in listing 5.14. Instead of connecting the identifiers to each other, they

N // number o f i d e n t i f i e r s
M // ope ra t i on s per p o s s i b l e l i n k
P // p r obab i l i t y o f d e l e t e 0 . . . 100
i d en t s [N] // a l l i d e n t i f i e r s , array as in C
preq // pub l i sh r eque s t
s r eq // sub s c r i b e r eque s t

L = (N ⇤ (N � 1) / 2 // number o f p o s s i b l e l i n k s
// between a l l i d e n t i f i e r s

i n i t i a l i z e PRNG us ing N

// c r ea t e s ub s c r i p t i o n s
for i in (0 . . . N � 1) do

add update s ub s c r i p t i o n for i d ent [i] to s r eq
end for
send s req to s e r v e r

for i in (0 . . . (M ⇤ L � 1)) do
I1 <� pseudo random from iden t s
I2 <� pseudo random from iden t s != I1

i f (pseudo�random number) % 100 < P then
add d e l e t e (I1 , I2) to preq

else
add update (I1 , I2) to preq

end i f

send preq to se rver , r e s e t preq

i f was not d e l e t e then
p o l l s e r v e r

end i f
end for

Listing 5.14: pref-rand-graph pseudo-code [175].

210

5.6 Evaluation

are randomly2 selected and linked or unlinked to each other. The decision, if they are

linked or unlinked, is made by their previous linking status. That is, if they are already

linked to each other, they will be unlinked and vice versa. Furthermore, this behaviour can

also be controlled by the request the client used: it is either an update or delete request.

If a delete request is used, the linking and unlinking behaviour is inverted by default. The

decision about which request is issued by the client is also made by using the rand()

function. In order to receive comparable results, the random number generator used can

be seeded prior to its usage.

All of these test clients do not regard the overhead generated by invoking these oper-

ations using the IF-MAP protocol. That is, the network-based communication delay is

not directly treated by the client programs. In order to receive comparable results, they

should all run on the same machine with the same environmental settings.

Test Results In order to provide comparable results, all tests were run on the same Intel

Xeon-based machine. This machine possessed 8 gigabytes of memory and dual CPUs. The

Java version used for the tests was an 1.6 version of the openjdk. Furthermore an Ubuntu-

based Linux was used as operating system on the test machine. Both irond version were

reset after each run, thus cleaned up and restarted to provide a common starting point.

In addition, the test clients were also placed on that machine to avoid network-based

influences. Although the client server communication was carried out via IF-MAP, there

was no real network tra�c involved.

All four test clients described were used to compare the performance of the trust ex-

tended irond version against the default irond version. The particular irond implemen-

tation that was used for the trust version is based on irond 0.3.4. To provide real world

results, this version was compared against the default 0.3.5 implementation, which o↵ers

even greater performance. This allows to assess the results in a more critical way.

The first test was carried out using the perf-pulsing-star-ext test clients. The results

are depicted in figure 5.19. The setup used for this test was given with seven particular

runs of the client each with an increasing amount of identifiers and one star-based request.

The identifier amount was set to 4, 8, 16, 32, 48, 64 and 128. This can be easily seen when

comparing the points at which the response times have been recorded. Interestingly the

2In detail, they are chosen by calling rand() on the system, thus the randomness depends on the imple-
mentation of this system function.

211

5 Implementation

Figure 5.19: Performance comparison using the perf-pulsing-star-ext client.

irond-trust (i.e. the trust extended irond version) is performing equal within the first

two steps with small identifier amount. This is rather unexpected and may be due to

the way the Java VM operates and pre-caches elements, thus it is considered to be the

normal amount of variability of such measurements. The remainder of the graph until the

maximum count of identifiers is as it was expected, the irons-trust is somewhat slower

than the default irond. However, the di↵erence can be considered to be very small. This

small di↵erence is the result of the data model used by the irond. The Trust Token

generation doubles the particular amount of metadata within the graph but the irond’s

internal model handles this in a very e↵ective way.

The second test is based on the perf-pulsing-star-int test client. This test client

uses another way of constructing the links between the identifiers. The results of the runs

212

5.6 Evaluation

which were achieved using this client are shown in figure 5.20. As the graph shows, the

Figure 5.20: Performance comparison using the perf-pulsing-star-int client.

identifier amount used this time was significantly higher than in the first test. This helps to

evaluate the performance under circumstances within which a huge amount of identifiers

are linked to each other. The particular amounts used started with 4 again and ended

at 512. Furthermore, there was only one pulse (i.e. one construction and deconstruction

cycle) per run as further test did not show any changes in the results when using more

than one pulse. Given the overall graph, the behaviour which can be derived is the same

as within the first test. That is, the irond-trust is slower but not in a significant way.

Even when considering the last measurement with an amount of 512 identifiers and a

complete construction, linking, unlinking and deconstruction cycle, the di↵erence between

213

5 Implementation

both versions is about 30 percent. Given the overall time of this operation and the high

amount of identifiers, this can be considered as acceptable.

Both of the tests which were evaluated above did only generate one link between two

particular identifiers without linking the identifiers to each other. In order to increase the

metadata amount, the two following tests were used. First, the perf-complete-graph

client was used to link the identifiers to each other, thus generating a high amount of

metadata. In case of the irond-trust, the amount of metadata generated doubles due to

the Trust Tokens. Figure 5.21 depicts the result of this test. Equally to the first two tests,

Figure 5.21: Performance comparison using the perf-complete-graph client.

several runs with di↵erent identifier amounts were made, starting with 4 identifiers and

ranging to a maximum of 32 identifiers. All of these were linked to each other. The results

which can be seen in the graph show a similar picture as the first two tests. That is,

214

5.6 Evaluation

the irond-trust is again a little bit slower but within an acceptable range. The particular

di↵erence with the highest amount of identifiers is about 20 percent. Furthermore, it must

be considered that linking an amount of 32 identifiers to each other produces 992 links in

case of the irond-trust. Due to this, the result can be considered as reasonable and thus

acceptable.

Figure 5.22: Performance comparison using the perf-rand-graph client, first run with an
maximum amount of 32 identifiers.

The last performance-based tests that were carried out used the perf-rand-graph test

client. This client takes a certain number of identifiers and randomly connects them to

each other. Because of this randomness, it provides a way of simulating a real world like

scenario where publish and delete operations are received by the server in an rather not

deterministic way. There were three overall tests done with this client. The first and the

215

5 Implementation

second one (depicted in figure 5.22 and 5.23) have the same basic settings. They were

carried out twice to show that there are no significant di↵erences between them although

they are using random data. This stability is reached due to using the same seed for the

random number generator.

Figure 5.23: Performance comparison using the perf-rand-graph client, second run using
the same seed as in the first run and again with an maximum amount of 32
identifiers.

The first particular test is based on the same amount of identifiers used for the complete

graph test. As it easy to see in figure 5.22, the di↵erence is again from minor impact. In

detail, with the highest identifier amount of 32, the irond-0.3.5 performs about 15 percent

faster than the trust extended irond. Comparing this result to the complete graph test,

it can be summarised that the random graph test produces overall higher response times.

216

5.6 Evaluation

However, the particular di↵erence in the response times of both irond version are smaller

than in the complete graph test.

In order to confirm the results of this first random graph test, a second test with the

same parameters was done. The results of this test are depicted in figure 5.23. As it is

easy to discover, the results are very similar to the first run. Due to this, the test can be

considered as valuable, thus showing and emphasising the small di↵erences again.

As the amount of identifiers used in the previous random graph test was rather limited

and to verify that the di↵erences between the two version do not increase in an unexpected

way, a final test with a huge identifier amount was carried out. The result of this test is

pictured in figure 5.24. The identifier amount used for this test was starting by 4 again

Figure 5.24: Performance comparison using the perf-rand-graph client and using an max-
imum amount of 128 identifiers.

217

5 Implementation

and ranging to 128 which could theoretically produce 16256 metadata elements for the

irond-trust. As the measurement results show, the response time increases to a very high

amount, peaking at more than 2500 seconds when using 128 identifiers. This shows that

this kind of test setup produced a very stressing situation, which may be di�cult to reach

in a real world situation (due to the request would be performed in single steps). However,

it allows to gain an impression about how both versions behave under such circumstances.

Given the graph, it is interesting to see that the irond-trust becomes faster than the default

irond between 64 and 128 identifiers. Until that point, the results are as expected and

confirm the previously made findings about the extended irond being somewhat slower.

However, at 128 identifiers, the irond-trust performed faster within this test case. This is

rather unexpected and being considered as measuring inaccuracy. Discussing this, reasons

for this result may be either some disturbance on the system itself or the special caching

a garbage collection paradigm used within the Java VM the ironds were running in.

Summarising these tests, the irond-trust must be considered as about 10 to 20 percent

slower than the irond-0.3.5. Due to the doubled amount of metadata to be handled by

the trust extended version and the processing of the trust extension itself, this is a very

acceptable result. Given this, the irond-trust may also be used for providing a MAP

Server’s tasks as the response times are still very acceptable. If comparing them to other

MAP Servers (cf. [2] for such an comparison), the irond processes requests overall a lot

faster than other servers do. Due to this, the irond-trust can still be considered faster

than other MAP Servers.

Trust Token generation

This section summarises the evaluation of the particular trust calculation process. That

is, the above defined environment was used to simulate trust token calculations. These

calculations were checked against the expected (i.e. theoretical) results. This approach

showed that the calculated trust tokens matched the expected values. Furthermore, the

flow of operations used in this test consist of all necessary operation types. That is, trust

tokens are either created or updated. Creation takes place if new metadata is added while

updates takes place if particular ratings are changed.

Based on the test described in [166], the following flow of operations is used in order to

produce a well defined Trust Token.

218

5.6 Evaluation

1. The DHCP Server publishes an ip-mac metadata which is set to lifetime forever and

is linked between an ip-address and a mac-address identifier. The ip address is set

to 192.168.0.1 while the mac address is given as aa:bb:cc:11:22:33. This represents

the smartphone used within this test. Figure 5.25 depicts the graph which results

this step.

Figure 5.25: Created graph after the first step.

2. Based on the previously set ip address, the firewall subscribes to this ip. That is,

the ip-address identifier is used as starting point of the subscription.

3. Continuing after the subscription, the firewall performs the poll operation on the

irond. This poll operation returns a searchResult which consists of the three elements

that were created in the first step and the appropriate Trust Token as additional

metadata. The Trust Token holds all trust-specific data for the ip-mac metadata. It

is depicted in figure 5.26.

Figure 5.26: Created Trust Token Metadata [166].

219

5 Implementation

4. The PDP uses the same search filter on the MAP Server like the firewall used

for the subscription. Doing so, it receives also a searchResult which consists of

the elements published within the first step. Although there is also a Trust Token

attached, it is not the same as in the previous step. This is due to the di↵erent last

transmit operation used. However, this is a client centric operation which results in

an unchanged graph on the MAP Server.

5. The PDP itself now publishes the metadata access-request-ip and capability. The

access-request-ip is published on to the link between the already existing ip-address

and a new access-request. This access-request uses the dummy value ar012345678. In

addition, the capability with its value invincible is published on to the access-request

also (see figure 5.27).

Figure 5.27: Created graph after the PDP publishing step.

6. As the firewall has an active subscription and an open ARC, it receives another

pollResult after the last step. This pollResult holds the added elements along with

their TT. There are two Trust Tokens included: the one for the access-request-ip

metadata as well as the one for the capability metadata. This must also be considered

as a client centric operation which does not a↵ect the graph maintained on the MAP

Server.

220

5.6 Evaluation

7. The smartphone now publishes using a publish-notify operation event metadata

of the type p2p on the ip-address identifier. The resulting graph, which is only

temporary as the publish notify-based metadata is not stored is shown in figure

5.28.

Figure 5.28: Temporary graph including the publish notify-based metadata.

8. Given the subscription of the firewall and the active ARC again, another pollResult

is received. This time, a notifyResult is received including the event as well as the

appropriate Trust Token. No entry for the published event data is made in the

graph due to the type of operation used. The overall graph, which includes all

elements for a better understanding is depicted in figure 5.29. In addition to the

metadata itself, the trust tokens (depicted as red metadata) are also included along

with their appropriate relationships. The temporary elements which where created

by a publish-notify operation are grey coloured in order to distinguish them from

persistent graph elements.

9. The DHCP Server now performs a delete operation: the access-request-ip metadata

as well as the capability metadata is deleted.

10. As the subscription of the firewall is still active, a deleteResult is now received.

This result consists of the deleted metadata and their assigned Trust Tokens. In

particular, the Trust Tokens now hold the id of the deleting MAP client within the

mapc-id field indicating which client is responsible the the operation.

221

5 Implementation

Figure 5.29: Overall graph including the trust token metadata as well as the temporary
publish notify elements.

11. The DHCP Server performs an endSession operation thus ending its session. Due

to the ip-mac metadata being published with a lifetime of forever, it is not being

discarded. Following the endSession, the DHCP Server just performs a newSession

operation which establishes another session for it on the MAP Server. Additionally,

the rating of certain SPs within the policy is also changed and the irond is triggered

to update the rating.

12. A purgePublisher operation is carried out by the DHCP Server. This operation leads

to the deletion of the ip-mac metadata and results in the situation were no metadata

is left on the graph.

13. Due to the still valid subscription of the firewall, another pollResult of the type

deleteResult is received on the ARC. This deleteResult holds the purged ip-mac

metadata and the appropriate Trust Token. This Trust Token contains the updated

security properties as well as the mapc-id of the purging client.

222

5.6 Evaluation

14. In order to test the TT constraints on the MAP Server, the DHCP tries to publish

a Trust Token on its own. This triggers an errorResult message containing an Ac-

cessDenied error from the MAP Server. Thus, the DHCP Server is unable to publish

TTs.

The presented flow of operations showed all three types of trust token-specific handling:

trust token creation, updating an deletion. Comparing the gathered results against the

expected results, it can be concluded, that the extends MAP Server perform as expected

in terms of trust token handling. Due to this, there are no reservations against using it

for the next evaluation step.

5.6.3 TCADS Environment

The given environment from above, consisting of the evaluated trust-enhanced MAP

Server, is extended to the following architecture. This architecture now includes all rele-

vant components and is based on the evaluation environment used in [2] for the CADS

evaluation. It is depicted in figure 5.30. Given this figure, the blue elements depict general

services like the PDP or the vulnerability scanner. All other colours indicate which kind

of TCADS role is assigned to that component. That is, the red elements illustrate Feature

Collectors, orange elements illustrate the trust extended Feature Provider, yellow is used

for the Correlation Engine and green depicts Feature Consumers. In contrast to the envi-

ronment which was used for a plain CADS-based evaluation, this particular environment

is enhanced with the trust-specific components. This is on the one hand the irond-trust

as MAP Server and on the other hand the TrustLog enhanced Correlation Engine. Fur-

thermore, an additional Feature Consumer (another ironmonitor instance) is used on the

irond-trust’s system. It is used to receive rating change instructions from the Correlation

Engine.

Testcase: Sensor Sni�ng with compromised Feature Collector

To test the TCADS system and evaluate its behaviour, a sensor sni�ng attack is launched

by the smartphone. In detail, an application installed from an o�cial source (i.e. Google’s

Play Store, [177]) provides access to the smartphone’s camera and microphone sensors.

The access method is realised by starting a small web server which allows it to connect to

223

5 Implementation

Figure 5.30: TCADS evaluation environment used to simulate a sensor sni�ng-based at-
tack (cf. [2]).

224

5.6 Evaluation

the smartphone using a simple web browser. The task of connecting to the smartphone

browser-based is carried out on the Evil VM, which simulates the attacker’s system.

Within this browser, the sensors of the phone are accessible thus a live stream is provided

by the installed application. Contrary to the CADS evaluation, the Feature Collector

on the smartphone is also compromised. This results in the problem, that this Feature

Collector makes a false reporting about the smartphone’s properties, in detail about the

tra�c the smartphone produces in order to stay undetected. When connecting to the app

on the phone and starting the live stream the tra�c should normally increase drastically.

This is no longer being recognised due to the compromised Feature Collector. Using other

information sources from the network, in particular the Snort-based IDS the CE can

discover the compromise on the smartphone to some extent. Due to this, the CE lowers

the smartphone’s FC’s rating subsequently. Finally, a situation is reached where the trust

level trend of this FC runs under a certain threshold, thus triggering the enforcement of

the device and blocking access to the live stream.

Test environment

As already described, the test environment is based on the environment used for the CADS

evaluation in [2]. Due to this, most of the components are similar to the ones which were

used for the basic CADS evaluation. However, a short explanation of the used systems is

given in the following. The test environment was established using some physical devices

as well as three virtual machines (VMs). As the test was carried out multiple times,

the VMs have been deployed using VirtualBox on two di↵erent host systems: OS X 10.8

as well as Ubuntu Linux 12.04. Furthermore, the three VMs used simulated di↵erent

responsibilities within the environment. There is a Service VM which hosts all required

services, a Router VM responsible for establishing the network connection between the

inner and outer network as well as providing enforcement methods and the Evil VM acting

as an attackers device. The components which are housed inside these VMs along with

the particular physical devices are explained in the following.

Samsung Galaxy S III This particular device is used as the smartphone within the tests.

It is a common device type running a rather actual Android 4.1.1 as operating

system. The used App for providing the live stream feature has been installed on

it, along with the Feature Collector measuring the device’s properties. Given the

225

5 Implementation

environment, a network connection is established by the use of the access point,

thus a Wifi-based connection is used throughout all tests.

Access Point A Lancom L-54g (cf. [178]) device provides a wireless network to the smart-

phone. In detail, a 802.11g type network (cf. [179]), a very common type, is used.

The access point itself connects to the router VM and forms the outer network

(10.0.0.1/24) together with the smartphone.

iptables This service was installed within the Router VM in order to (1) provide access

from the outer network to the inner network and (2) to establish an enforcement

mechanism which is able to disconnect outer devices on demand. An Ubuntu Linux

(12.04) is used to provide routing means. Furthermore, the iptables/netfilter imple-

mentation performs the particular enforcement tasks. These tasks are received as

Features by the ironmonitor implementation. This implementation is responsible for

triggering the appropriate rule changes of the iptables service.

Snort All of the remaining services are located on the Service VM which is also an Ubuntu

Linux-based platform running version 12.04. The Snort service is used as IDS system

which recognises certain changes, in particular tra�c increases of outer network de-

vices. In order to allow easy testing, the ifmapcli implementation simulating Snort’s

responses is used as a Feature Collector.

OpenVAS This service acts as vulnerability scanner which is responsible for scanning

outer network-based devices, in particular the smartphone. Results of these scans

are provided as Features by using the ironvas [180] implementation which takes

OpenVAS results and publishes them as appropriate Features.

PDP To provide the root for the Feature tree within the MAP Server, an access-request

is required. This service is responsible for performing a basic NAC handshake and

publishing the appropriate access-request for the smartphone. As with the Snort

service, in order to allow for a flexible way of testing, the ifmapcli implementation

was used as a Feature Collector providing this required access-request.

irond-trust The Feature Provider used within the tests is given by this service. It is

based on the previously evaluated irond-trust. The irond-trust implementation is

an enhanced version of the default 0.3.4 implementation of the irond that was used

226

5.6 Evaluation

for the basic CADS evaluation. Additionally, the appropriate SPM which defines

the required security properties was directly placed on the Service VM. To allow a

change of the ratings by the Correlation Engine, the ironmonitor implementation is

used to receive appropriate Features and perform the SPM changes.

irondetect This service provides the Correlation Engine and forms the core of the TCADS

system together with the irond-trust. The extended irondetect implementation is

utilised. It is based on the version that was used for the CADS evaluation but

incorporates the TrustLog data model.

In addition to the VM-based components and the physical devices, the Ip Webcam App

on the smartphone is used to provide sensor sni�ng means. This app is explained shortly

in the following.

IP Webcam App The app is provided by the o�cial Google Play store and can be found

here [181]. It enables the smartphone’s camera and microphone to be accessed remotely.

As already stated, this is done by deploying a small web server on the smartphone itself

and opening up access to this server by outside connections. This web server simply

holds one web page which allows to access the camera’s live stream (including audio)

by di↵erent methods. These methods allow to use for example a Flash-based access or a

browser-specific access which utilises the appropriate browser plugin. Due to this, there

is eventual no need of installing third party software besides the browser on the machine

that is connecting to the app. Furthermore, the app has several convenience settings.

Besides the controllability given to the remote clients, there are options to hide the app

when running and to auto start the app on boot. Hiding the app means, that is not longer

being shown in Android’s notification bar, thus making it di�cult to be recognised by

the user. Starting on boot means that there is no interaction required in order to run the

app when rebooting the device. Combining this with the hiding option e↵ectively puts

the app into a state where the user may be unaware that it is actually running. However,

it is still retrievable from the o�cial app store and is rated rather high. Based on these

special properties, a TCADS policy can be formulated which includes all necessary parts

to recognise the sensor sni�ng and to disconnect the device from the network.

227

5 Implementation

Policies There are two policies which need to be set for the test case: the initial security

property setup including the appropriate ratings (i.e. the SPM) and the Correlation

Engine policy. Section 5.6.1 defines the initial SPM setup, which is being used here.

Based on this the policy is simply created by using the defined properties and their initial

ratings. Besides this rather straightforward task, the Correlation Engine policy must be

set. In particular, the policy being used is based on the CADS evaluation policy shown

in [2] and extended according to the trust requirements. The resulting policy is given in

listing 5.15 which is shown below.

1 context {
2 ctxWorkingHours := DATETIME > ” 06 :00 ” and DATETIME < ” 22 :00 ” ;

3 ctxTrustedInfrastructureComponent := TRUSTLEVEL > ”0”

4 and DATETIME > ” 6 :00 ” and DATETIME < ” 22 :00 ” ;

5 c tx I r onde t e c t := TRUSTLEVEL = ”1” ;

6 }
7

8 hint {
9

10 t ra f f i cHintSmartphone := ”smartphone . communication . ip . txother ”

11 ”de . fhhannover . inform . t r u s t . i r onde t e c tp ro c edu r e s . TrendByValueCW” ”50” ;

12 t r a f f i cH i n t Sn o r t := ” id s . snor t . event . h i g h t r a f f i c ”

13 ”de . fhhannover . inform . t r u s t . i r onde t e c tp ro c edu r e s . TrendByValueCW” ”100” ;

14 trustTrendHint := ” trend . measurement . event ”

15 ”de . fhhannover . inform . t r u s t . i r onde t e c tp ro c edu r e s . Trend” ”10” ;

16 }
17

18 anomaly {
19

20 anoHighTraff icSmartphone := tra f f i cH intSmartphone > 0 .5 ctxWorkingHours ;

21 anoHighTra f f i cSnort := t r a f f i cH i n t Sn o r t > 0 .5 ctxTrustedInfrastructureComponent ;

22 anoLowTrafficSmartphone := tra f f i cHintSmartphone <= 0.5 ctxWorkingHours ;

23 anoTrustTrend := trustTrendHint > 0 . 5 ;

24

25 }
26

27 s i gna tu r e {
28 sigCamera := ”smartphone . s enso r . cameraisused ” = ” true ” ctxWorkingHours ;

29 s igSusp ic iousApp := ”smartphone . android . app . permis s ion . granted ! 1 ” = ”android .

permis s ion .RECEIVE BOOTCOMPLETED”

30 and ”smartphone . android . app . permis s ion . granted ! 1 ” = ”android . permis s ion .CAMERA”

31 and ”smartphone . android . app . permis s ion . granted ! 1 ” = ”android . permis s ion .INTERNET”

ctxWorkingHours ;

32 sigPortOpen := count (” vu l n e r ab i l i t y�scan�r e s u l t . v u l n e r a b i l i t y . port ”) > ”0”

ctxTrustedInfrastructureComponent ;

33 sigNoReqForInv := count (” i d s . snor t . event . h i g h t r a f f i c ”) = ”0” ;

34 }
35

228

5.6 Evaluation

36 cond i t i on {
37 conDataLeakDetected := s igSusp ic iousApp and sigCamera and sigPortOpen and

anoHighTraff icSmartphone ;

38 conNoDataLeakDetected := anoLowTrafficSmartphone and sigNoReqForInv ;

39 conSp l i tRe su l t s := anoLowTrafficSmartphone and anoHighTra f f i cSnort ;

40 conAlertAndNegativeTrustTrend := anoTrustTrend ;

41 }
42

43 ac t i on {
44 r e que s tFo r Inv e s t i g a t i on := ”Reques tFor Inves t i ga t i on ” ”@smartphone . dev i c e . i paddre s s ” ;

45 decreaseSprAct ion := ” t ru s t s p rp s ” ” . / change�s e cu r i t y�property . sh” ”$1” ”1” ;

46 en f o r c ement I s o l a t e := ” enforcement . a c t i on ” ” . / drop�c l i e n t . sh” ”$1” ”@smartphone .

dev i c e . i paddre s s ” ;

47 enforcementAllow := ” enforcement . a c t i on ” ” . / undrop�c l i e n t . sh” ”$1” ”@smartphone .

dev i c e . i paddre s s ” ;

48 }
49

50 r u l e {
51 dataLeakage := i f conDataLeakDetected do en f o r c ement I s o l a t e ;

52 noDataLeakage := i f conNoDataLeakDetected do enforcementAllow ;

53 sprChange := i f c onSp l i tRe su l t s do decreaseSprAct ion ;

54 dataLeakageTrust := i f conAlertAndNegativeTrustTrend do en f o r c ement I s o l a t e ;

55 }

Listing 5.15: Evaluation Policy for detection of sensor sni�ng attacks with the use of trust

enhancements.

As it is easy to recognise, the policy is rather complex and consists of several anomalies

and signatures which are used to form conditions and rules. Details of creating a policy for

the CE can be found in [2] and will be omitted for improved readability. There are three

particular parts of the policy which are di↵erent compared to the non-trust enhanced

version. The first part is the context block which defines the used contexts for Features.

In addition to the standard context types like DATETIME which defines a certain clock-

wise time window and the SLIDING context which defines a moving time window, the

TRUSTLEVEL context is used. This context allows to setup certain constraints a Feature

must fulfil in terms of trust to be processed by the Correlation Engine. There are two

trust-based contexts defined within the test case: one for all infrastructure-based services

(e.g. Snort or the PDP) and one for the Correlation Engine (i.e. irondetect) itself. The

irondetect context is used to verify that Features which (1) change ratings and (2) trig-

ger Correlation Engine-based cascades are fully trustworthy. That is, these Features are

proven to being published by the CE itself. Given that, solely by using this context-based

trust definition it is possible to define powerful trust-based rulesets.

229

5 Implementation

The second part is given by the anomalies and their appropriate hints. In addition to

the CADS evaluation policy, a trust trend anomaly is defined. This anomaly monitors the

trust level of the smartphones Feature Collector and is eventually used to recognise the

compromise of it in the test case. More in detail, the trend hint operates solely on the

process RSPR of the Feature Collector, making full usage of the underlying TrustLog

data model. Furthermore, there are two more anomaly elements which monitor the data

received from the smartphone’s Feature Collector and the corresponding data received

from the Snort IDS. If a di↵erence is detected, a rating change of the smartphone’s process

SPR is triggered.

Finally, the third part is given by the signatures and the conditions using them. They

create a cascade whereas the next step of evaluation is only engaged if high tra�c from

the smartphone is detected. If this high tra�c Feature is detected, the ip address of the

device producing the tra�c is published as Feature and being used by irondetect to launch

the next evaluation step.

Given this policies, the particular test flow can be explained including the results after

each step.

Test flow

There are four particular steps which are carried out within the test:

1. Bootstrapping the environment, i.e. all required components start up and perform

an initial publish to the MAP Server.

2. Start of the compromised Feature Collector on the smartphone. The compromise of

this Collector results in it being unable to detect tra�c increases on the phone.

3. Start of the webcam app which provides a http-based server on the smartphone.

4. The last step consists of the enforcement procedure after a connection to the smart-

phone has been established. Due to its complexity, it consists of several sub-steps:

• Connecting to the webcam app on the smartphone using the http-based server.

This results in a huge tra�c increase.

• Detection of this tra�c increase only by Snort but not on the smartphone itself.

This is due to the compromised Feature Collector.

230

5.6 Evaluation

• Calculation of a trend for the detected tra�c, if the trend reaches a threshold,

the Correlation Engine lowers the trust level (i.e. the rating of the particular

SPR for the process operation on the smartphone) for the smartphone to indi-

cate the di↵erent tra�c measurements. This is done as the Correlation Engine

considers Snort to be fully trustworthy which was checked using Snort’s trust

context.

• A second trend is calculated by the CE for the trust level change of the smart-

phone. If the predicted value drops below a threshold, the CE publishes an

enforcement Feature to the firewall. The firewall verifies the trust context of

this Feature to ensure its validity and blocks all tra�c form and to the smart-

phone.

A detailed explanation of each step, including the particular results on the Correlation

Engine is given in the following.

1. The first step consists of bootstrapping the environment and starting the irond-trust

as well as the irondetect Correlation Engine. First of all, the irond-trust is started

up as it acts as the Feature Provider. Along with it, the appropriate ironmonitor

is started. After this, the infrastructure components which are iptables, the PDP

and the access point are started up. The smartphone can then be connected to

the wireless network which is recognised by the PDP. Due to this, the appropriate

access-request which works as root for the smartphone’s Feature tree is published

by the PDP. Following this, the other infrastructure components are started. In

detail, Snort, OpenVAS and as last component the irondetect Correlation Engine is

launched. Irondetect immediately starts to evaluate its ruleset-based on the existing

Features on the irond-trust. As the smartphone has not yet published a Feature due

to the Feature Collector not being started, there are no firing rules. The result of

this evaluation can be seen in figure 5.31. If there would be a rule element which

was evaluated to be true, this is indicated by a checkmark.

2. The second step consist of starting the Feature Collector on the smartphone. As

already stated, this Feature Collector is compromised and only reports the static

properties like the installed apps correctly. It does not report dynamic properties,

like the tra�c generated by the phone correctly, thus it only reports zero as tra�c

231

5 Implementation

Figure 5.31: Irondetect evaluation after the first step has been finished. No policy elements
have been evaluated true.

value. Besides the Feature Collector, the Webcam app is not yet started. This is done

in the next step. The result of this step is depicted in figure 5.32. As the picture

shows, a suspicious app is detected by irondetect. This is due to the Webcam app

possessing permissions (INTERNET, RECEIVE BOOT COMPLETE, CAMERA)

that are treated as critical. Furthermore, irondetect detects no tra�c and due to

this, no data leakage from the smartphone.

3. Starting the Webcam app on the smartphones initiates the third step. However,

no connection to the provided website is established at this point which results

in some of the rules firing but no increase of tra�c. As depicted in figure 5.33,

irondetect recognises the activation of the camera sensor and the opened port for the

website access. In detail, the activated camera is detected by the Feature Collector

on the smartphone while the opened port is measured by the OpenVAS vulnerability

232

5.6 Evaluation

Figure 5.32: Second step irondetect evaluation results. A checkmark indicates a true eval-
uation of a certain policy element. In this case, there is no tra�c and data
leakage but a suspicious app (i.e. the Webcam app) detected.

scanner running periodic scans of the device. As there is no tra�c produced yet,

there is no anomaly element evaluated true. Finishing this step completes the series

of steps which do not result in an enforcement of the device. This is due to the

missing tra�c. The last step triggering this enforcement is shown next.

4. The Evil VM is now used to connect to the provided web server on the smartphone.

Following this, the live streaming of the smartphone’s video and audio is started

and played back inside the Evil VM’s browser. Due to this the tra�c generated

by the smartphone, in particular in outbound direction, increases drastically. This

would be detected by irondetect using the information from the smartphone’s Fea-

ture Collector under normal conditions. However, as the Feature Collector has been

compromised in order to publish false tra�c measurements, irondetect is unable to

233

5 Implementation

Figure 5.33: Evaluation results of the third step. Irondetect recognises the activation of
the camera on the device and the opening of the port which is required to
access the web server provided by the Webcam app. No tra�c increase is
measured at this time as there is no connection to the live stream of the app.

detect the tra�c increase using this information. As there is the Snort IDS run-

ning in the network, there is another way of detecting this increase. Snort monitors

all connections for each device within the network, thus it is able to recognise the

increase of the smartphone’s tra�c. Furthermore, these tra�c measurements are

periodically published as Feature. Due to the fact, that this Feature originates from

a infrastructure-based component, it has a rather high trust level which makes it

di�cult to compromise it. Given this Feature, irondetect uses it for a trend-based

tra�c evaluation. In detail, a linear regression with a fixed window size is used

to estimate the progression of the tra�c. If this predicted progression grows over a

certain threshold, it is considered to be an abnormal behaviour, thus the anomaly el-

ement is being evaluated true. This happens in this step when connecting to the live

234

5.6 Evaluation

stream. In addition to that, irondetect recognises the split decision between Snort’s

measurement and the smartphone’s Feature Collector as both are describing the

same particular Feature (i.e. tra�c of the phone). Due to this, the smartphones

Feature Collector is interpreted as suspicious and irondetect reacts with a Feature

that lowers the particular rating of the smartphone’s process SPR. This Feature is

received by the ironmonitor on the Feature Provider which is responsible for carry-

ing out the change. In order to perform this change, the trust level of the Feature

instructing the change is verified which makes sure that only irondetect originated

Features can be used for such a changing task. Forming a cyclic relationship, the

smartphones trust level (i.e. the RSPR of the smartphone’s process operation re-

ceived through the Features published) is also monitored with an anomaly element

by irondetect. This anomaly is also trend-based an reacts if the predicted trust level

drops below a certain threshold. Note that in detail not the overall trust level is

used but the unmapped security level of the process operation. This happens in the

test case after some steps and leads eventually to the enforcement of the smart-

phone which interrupts the live stream. Figure 5.34 shows the situation after the

enforcement stage has been reached. On the anomalies side, the low and high tra�c

di↵erence can be seen easily. This discrepancy is used by the split decision condition

which is triggered if both anomalies are evaluated true. This leads to the sprChange

signature which triggers the lowering of the smartphone’s rating. The trust trend

anomaly (anoTrustTrend) reacts if the trust level drops below the threshold which

results in the dataLeakageTrust rule to be fired which performs the enforcement.

To explain more in detail, figure 5.35 depicts the particular trend calculations car-

ried out by the anomaly evaluation. The upper two figures (a) and (b) show the

calculation results done by the Snort anomaly module. As the calculation is based

on several sub steps which may not be time constant, there are always two graphs

depicted. The first one shows the calculation results based over the particular cal-

culation steps of the module. The second shows the results over the runtime of the

calculation module. As the Snort graph shows, the prediction made by the anomaly

module using the linear regression is rather accurate with some small di↵erences.

Based on the graph in figure (b), the anomaly becomes evaluated true and triggers

the second anomaly module which operates on the SPR of the smartphone and pre-

235

5 Implementation

Figure 5.34: Evaluation situation of irondetect after the fourth step. The enforcement of
the smartphone has been committed due to the detection of the split decision
and the following SPR change of the Feature Collector.

dicts the trend of the rating. The calculation carried out by this module can be seen

in figure (c) and (d), with the first being the actual results again and the second

being the prediction. The second one is used for the anomaly elements decision,

i.e. if the prediction drops below a certain value, which means the rating decreases

below a threshold, it returns true as evaluation result.

Finishing this test case, the smartphone is no longer able to provide the live stream to the

Evil VM or other components. In addition to this, the compromise of the smartphone itself

is likely to be recognised as irondetect has lowered the rating of the phone. In a real world

use, one or more messages would be provided to the administrator who is then able to take

care of the smartphone. Besides that, it is easy to see that the attack has been suppressed

very fast and rather e↵ective. Given the nature of the attack, it is unlikely that the short

236

5.6 Evaluation

(a) (b)

(c) (d)

Figure 5.35: Trend calculations used for both anomaly evaluations.

237

5 Implementation

amount the attacker had access to the phone is enough to gain substantial information.

Even more interesting, the system was now able to deal with false information provided

by a compromised Feature Collector. This allows for a sophisticated usage profile, where

a Feature Collector may not be considered trustworthy at any time.

5.7 Summary

This chapter presented a proof of concept implementation for the conceptual approach.

This proof of concept is based on two parts: the conceptual part and the actual imple-

mentation. The conceptual part first reviews the IF-MAP protocol of the TCG, which

acts as a technological basis for the proof of concept. Instantiating the trust model from

the previous chapter, a trust layer for IF-MAP is presented. By combining this layer with

the domain-specific extension (TCADS), a particular component-based approach proof

of concept is introduced. It consists of a MAPS which is trust-enhanced and acts as a

Provider, MAPCs and a trust-aware Correlation Engine, both acting as Senders as well

as Receivers. These enhancements not only provide the basic trust concepts but also the

snapshot part of the TCADS approach as well as the possibility to express a Feature’s

trust level by the use of a contextual parameter. Using all parts of the implementation

and deploying it within a real world like scenario allowed an overall evaluation of the ap-

proach based on the proof of concept. This was done in two ways: First the trust enhanced

components (i.e. the irond-trust) have been evaluated while in the second part the overall

environment was used to detect a real world like attack.

The component-based evaluation provided two useful results. The first statement which

can be made was the acceptable performance. That is, the irond-trust which uses the Trust

Token approach can be considered to be as useful as the irond without these modifications.

The test results clearly showed, that there is some di↵erence in terms of performance

but this di↵erence is small enough to treat it as not of significance. Furthermore, when

comparing to other MAP Servers, irond-trust is still to be considered fast. The second

result of the components evaluation showed that the Trust Token generation worked as

intended. Every possible IF-MAP operation was tested against the irond-trust with all of

them providing the expected results. Both of these evaluations showed that the enhanced

irond is able to perform as expected and can be used to substitute the non trust irond.

238

5.7 Summary

The second part of the evaluation used the complete TCADS system in order to detect

and enforce a sensor sni�ng attack which compromised the smartphone itself. In detail,

the Correlation Engine was not only able to detect the sensor sni�ng itself but also

the compromise of the smartphone. The successful completion of this complex test case

showed clearly the possibilities of the TCADS system. Furthermore, the gearing between

the irond-trust and irondetect provides a powerful mechanism for detecting not only

signature- and anomaly-based situations but also trust-based attacks. While the policy

definition for such cases must be considered rather complex, the possibilities which are

provided by the complete TCADS system cover a wide area of use.

Given the requirement R6, which demands the ability to seamless integrate the concept

into an already existing environment, the proof of concept showed that this is possible.

However, it depends on the particular implementation which is being used. In the case

presented here, the implementation is based on protocols and systems which were designed

with a high level of interoperability in mind. Due to this, integrability is achieved by simply

using the Feature-based IF-MAP data structure and adopting it for every component.

Even if is impossible to directly extend a component to use the IF-MAP data structure,

the ironmonitor component provides a way of integrating this component as it can be

customised as an adapter between a component’s internal data structure and the used

IF-MAP data structure. That is, if using the proof of concept shown here, requirement

R6 can be considered fulfilled also on the level of implementation.

239

240

6 Conclusion and Future Work

This chapter concludes the thesis. First, an overall summary of the work which has been

done is given. Next, an assessment of the results against the research questions is pre-

sented. Finally, an outlook is given. This outlook includes further questions as well as

promising directions for future developments.

6.1 Conclusion

This thesis provides two main contributions: (1) a generic trust model for smartphone

environments and (2) a domain-specific extension which provides a trust-aware decision

making system. Chapter 1 outlined the problems which arise when integrating smart-

phones into network-based business environments. The situation where smartphones can

be administered by the owner of such a network was described, showing that even this

case su↵ers from limitations in terms of integrating smartphones. In addition to that,

the chapter described the even more critical approach of bring your own device, where

the integration of such external devices becomes more valuable. Continuing this problem

description, current examples where given. These examples emphasised the need for a

solution. Based on this, approaches which try to give a solution where named and de-

scribed. However, analysing these approaches in detail, it was pointed out, that none of

them considered the trustworthiness of the collected data. As this collected data is used

as basis for the decision making process, it was made clear, that more work needs to

be done in order to use such systems e↵ectively. Based on these findings, three research

questions were identified which are assessed later in this chapter. The second chapter intro-

duced the relevant scenarios for this thesis. All presented scenarios are use cases from the

ESUKOM [21] research project. Prior to the detailed scenario description, the reference

infrastructure was introduced. Concluding this chapter, a set of requirements that need to

be fulfilled in order to solve the named problems has been introduced. Using this set of re-

241

6 Conclusion and Future Work

quirements as assessment criteria, chapter 3 provided an in depth look at the related work

that has been done in the relevant research areas. Furthermore, promising technologies

addressing some of the named problems were analysed. The reserach-based related work

analysis itself consists of trust centric views as well as IDS centric views and a special

view on the CADS approach, which can be considered as smartphone-capable IDS. From

the technologies point of view, Trusted Computing is one promising approach in order to

derive trust for a particular system and was therefore analysed in depth. Following this,

the stated requirements were assessed against the findings made and it was pointed out

that there is no solution available which fulfils all requirements in a satisfying manner.

Due to this, chapter 4 provided a solution for all of the requirements. In detail, the first

part of the concept introduced a generic trust model. This trust model gives not only a

definition of trust itself, but also provides means to specify, derive and calculate as well as

evaluate trust. The trust specification and derivation part is based on the introduction of

security properties upon role-based generic operations. These properties can be rated in

order to provide a basic trust measurement. Combining all rated properties into one value

introduced the trust level which expresses trust per data and not per component, thus

addressing the calculation and the evaluation of trust. Furthermore, a data model along

with a state machine using this data model was provided by the trust model. The second

part of the concept introduced the domain-specific extension, called TCADS, which is

based on the generic trust model. More precisely, the generic trust model was used to

build a trust-aware decision making system for the particular domain of smartphone en-

vironments. Finally, the generic trust model and the domain-specific TCADS system were

assessed against the requirements. This assessment showed the great potential as there

was only one requirement which could not be fulfilled completely. In particular, this was

due to the requirement’s fulfilment being very dependent on the implementation. Chapter

(5) introduced a proof of concept implementation for the conceptual parts which allowed

to show that the requirement can be fulfilled by a tailored implementation. The imple-

mentation was based on the CADS reference implementation and the IF-MAP protocol

of the TCG. The irond MAP Server was extended providing the defined trust means as

so-called Trust Tokens. Furthermore, the data model was placed on the used Correlation

Engine, irondetect, and enabled the remaining trust concepts like the history function.

Using this implementation, an evaluation was done in the same chapter. First, the used

security properties and their appropriate functions were defined. The performance of the

242

6.1 Conclusion

enhanced MAP Server, the irond-trust, was evaluated next. This evaluation only showed

a minor decrease in processing time, thus being overall successful. The Trust Token gen-

eration including every possible operation was evaluated next and showed the expected

results. At this point, the irond-trust was able to replace the non trust extended irond.

Based on this, the complete TCADS environment was tested within a real world scenario

by a sensor sni�ng attack. Running through the attack, TCADS was able to prevent the

dropping of the sni↵ed information in a very satisfying manner. As TCADS is based on

the generic trust model, the overall approach could be proved not only very promising

but also applicable.

Referring to the first chapter, three essential research questions have been stated. These

research questions can now be answered which is done in the following.

Which data and characteristics can be used to derive trust? This question is

mainly answered by the security property approach. More in detail, the introduced security

properties provide a reasonable way of expressing the most basic building block for the

overall trust model. They allow to define arbitrary properties which influence the trust

derivation for either a platform or a communication channel. By combining them, trust

is placed on a Feature rather than on a particular system as they provide a holistic view

on the complete environment. This is a very important point as all of the known existing

approaches derive trust from only one particular source (or a group of particular sources).

Given an example of this, the approach presented in this thesis is also applicable for a

scenario with multiple network-based hops. That is, if the Feature is transmitted trough

several other systems before being received on the Provider, the generic trust model allows

to recognise and evaluate this. In detail this is done by defining appropriate properties

for the transmit operation between the Sender and the Provider. These properties may

then for example be used to incorporate the trustworthiness of the systems which are in

between the Sender and the Provider. It would also be possible, e.g. in the case a secured

tunnel is used between Sender and Provider, to simply ignore the intermediate steps of

the transmission. The concept of basing trust on particular properties measuring a defined

set of operations in terms of there trustworthiness allows for this high level of flexibility.

Given this and the abstract model, the approach can be extended to arbitrary scenarios

and environments by using the model instantiation defined. As the evaluation showed,

security properties and their flexible way of definition is well suitable in a practical case.

That is, it could be shown that arbitrary sources for trust derivation may be used, thus

243

6 Conclusion and Future Work

it is possible to tailor them for the actual use case. Given the test case of sensor sni�ng,

there was for example a property used which expresses the vulnerability level of a system.

In the particular case of the smartphone, this level increased drastically when the port

for the web server was opened up on the device. That is, the generic trust model provides

a very flexible way of deriving trust which can be tailored to fit a wide range of possible

scenarios, even more than the scenarios shown here.

How can trust be defined and calculated? In order to answer this question, the

thesis first provides a generic definition of trust which is later refined. In detail, this

was done by leveraging the trust definition of the TCG and applying it on the trust

level concept. The introduction of ratings and the related calculation steps answers the

remaining part of this question. As with the security properties, a very flexible method is

given to define the particular level of trustworthiness as well as the resulting overall trust

level and its calculation. The particular level of trustworthiness, which is represented by

the appropriate rating, can be used to express trustworthiness as well as untrustworthiness

within the same scenario and environment. This allows for example, that trust values

may drop under a certain threshold which may be lower than the initial level of trust.

For example, if Features are transmitted using a particular communication library which

was considered trustworthy at time of transmission a rating which expresses this trust is

given to the transmit operation. If the evaluation of this library changes, e.g. due to a

recently discovered bug, the rating may be set to a specific value indicating this problem

(i.e., a value that is lower than the initial lowest value). A recalculation of the trust levels

for all Features, including the ones which have already been transmitted, a↵ected by this

problem would take place. Additionally, the concept provides not only the final trust level

for further usage but holds all intermediate steps ready. It is therefore also possible to base

a trust evaluation on a certain aspect, for example on a platforms trustworthiness without

considering the transmission steps. Due to this, most of the already existing approaches

can either be used within solutions that are based on the generic trust model, like TCADS,

or completely replaced by the trust model. The evaluation clearly showed, that tailoring

these conceptual parts provides a most satisfying way of using the trust model in di↵erent

scenarios. Along with the calculation, the ratings of the particular properties can also be

defined per scenario. Looking back to the evaluation, this allows to have a fine grained

distinction between particular properties of di↵erent devices.

How is it possible to use trust in the decision making process? As already

244

6.1 Conclusion

stated, the trust level itself is used to express the overall trustworthiness. Combined with

the domain-specific extension, it therefore answers the third question. In addition to the

plain value of the trust level, the intermediate steps are also provided. This allows to

only use certain aspects of the trust calculation, thus providing a very high flexibility.

Furthermore, the generic trust model provides two more concepts: a flexible data model

and a sophisticated state machine using the trust and operational models. The data model

allows to actually implement the trust model as it defines the relationship between the

di↵erent parts of the trust calculation and the Feature the trust is provided for. Along with

that, the relationship between the snapshot concept is also defined within the data model.

As the name states, the model only defines the entities holding certain data but not the

mechanisms operating on this data. This is given by the state machine which combines all

provided algorithms into a single overall picture. It consists of three di↵erent operational

paths, one for each request type. Due to this, the Provider which implements this state

machine is fully described. Besides that, the request type which addresses the relationship

between the decision making system and the Provider is also given by this state machine

as one request type defines the data exchange between these two systems. The domain-

specific extension, TCADS, provides a deployable trust-aware decision making system.

It contains all necessary functions to use the possibilities of the generic trust model in

order to use the trust concept within the decision making process. The extended policy

provided for the domain-specific extension addressing the Correlation Engine allows to

use the received data from the Provider in terms of trust evaluation. The proof of concept

implementation used throughout the evaluation showed, that all parts of the domain-

specific TCADS system work geared together, thus providing trust means and a solution

for the problems outlined in the introduction.

Given all this, it can be summarised that the generic trust model along with its domain-

specific extension, TCADS, provide a novel solution to the problems described. In detail,

a very flexible way of defining trust derivation, calculation and usage is introduced which

overcomes the limitations described within the state of the art. Furthermore, the trust

derivation includes every part of the information handling, thus forming an holistic system

which not only addresses small problematic parts. In addition to this, the trust derivation

and calculation is given in a dynamic fashion. That is, trust may be changed while the

system is running allowing to tweak the trust derivation to the needed level. Besides

the calculation, the particular base of trust is defined in a flexible way which allows to

245

6 Conclusion and Future Work

use arbitrary sources for trust derivation. This allows to use the system in a wide area

of scenarios. Considering the domain-specific extension, TCADS is able to operate and

correlate directly upon the trustworthiness including historic changes. Going one step

forward, this is not only possible for the defined scenarios but for all scenarios which can

be mapped to the generic trust model presented within the concept. The steps necessary

to this can be distinguished into two groups: conceptual and implementation. On the

conceptual side, there are only the steps of mapping the generic trust model correctly into

the environment. If these steps are completed, an implementation must be provided. This

is done by either creating an own conceptual domain-specific extension and implementing

it or by leveraging the already provided domain-specific extension. Using TCADS, it is

necessary to implement the Feature Collector on the appropriate platform along with the

TCADS Feature Provider (in particular the state machine) and the Correlation Engine.

Doing so allows to use TCADS in arbitrary environments where the role-based mapping

of the generic trust model is applicable for. That is, the TCADS system can be used for a

wider set of tasks. Providing an trust-based authorisation system or for making decisions

within a home automation environment are just two examples. Although these cases are

not relevant for this thesis, they show the possibilities of the developed system as it may be

used as a generic, trust-enabled decision making engine allowing for sophisticated tasks.

6.2 Future Work

While the current state of the concepts introduced in this thesis can be fully used, with

the generic trust model providing general purpose trust means and TCADS providing

a complete trust-based decision making system, there are some points which may be

investigated further. Namely, there are three points which leave room for improvement.

They are described in the following.

Gearing between Feature Provider and Correlation Engine TCADS is based on two

core components: the Feature Provider as well as the Correlation Engine. While the

Feature Provider is responsible for most parts of the trust calculation and derivation,

the Correlation Engine is used as main decision making component. In order to

realise sophisticated tasks like the recognition of the sensor sni�ng attack presented

in the evaluation, they work together in a very fine grained manner. In detail,

246

6.2 Future Work

decision cascades including trust are formed between them. From the architecture’s

point of view, both of them are still distinct sub systems. This leads to the fact, that

the Provider needs to verify the trustworthiness of the Correlation Engine which is

rather unnecessary as both are core components required for a functional TCADS

environment. Due to this, the gearing between these two core components should be

looked at again and if possible improved. An outcome of this could be to form one

high level component which provides the same flexibility as the current approach

but combines both the Provider and the Correlation Engine into one aggregated

engine. This would also reduce the attack potential.

Policy combination and language Looking at the gearing of the Provider and the Cor-

relation Engine, the policies must be considered as well. The current approach uses

two di↵erent policies, one coming from the generic trust model being the SPM with

the properties and ratings while the other being the CE policy of the domain-specific

extension defining the ruleset. If combining the Provider and the CE into one single

component, the policies should also be integrated to each other. This would allow

for a single point of control. Furthermore, the used language should also be looked

at. At the moment, both policies rely on self defined languages. Although they are

completely functional for the presented cases, they can be improved. This would

also allow for an easier integration into environments which rely on certain policy

languages and which use a central policy distribution instance.

SP derivation and SPRM definition The last point aims at an easier definition of the

used security properties for the generic trust model. Although the thesis provides

a small guideline to set such properties, an analysis defining core properties which

are found in every environment could be made. Using these core properties, the

trust model could be extended by a security property construction kit which allows

to assign the properties and their ratings in a very easy fashion. Furthermore, this

kit would also allow to generate the required SPRM functions to measure these

properties.

Further development of these three points allows for an easier integration of the overall

system and would be one step towards the development of a product like system which

would be usable for a wide range of tasks. The current version of the generic trust model

247

6 Conclusion and Future Work

and the domain-specific TCADS approach provides a very reasonable and promising basis

for such an extension.

248

7 Appendix

7.1 Publications and Contributions

• Trusted Service Access with Dynamic Security Infrastructure Configuration. [182]

• On Remote Attestation for Google Chrome OS. [151]

• TCADS: Trustworthy, Context-related Anomaly Detection for Smartphones (Best

Paper Award). [18]

• Trustworthy Anomaly Detection for Smartphones. [19]

• ESUKOM: Smartphone Security for Enterprise Networks. [183]

• Towards permission-based attestation for the Android platform. [149]

• Interoperable device identification in Smart-Grid environments. [184]

• Towards Trustworthy Networks with Open Source Software. [113]

• Interoperable Remote Attestation for VPN Environments. [135]

• tNAC - Trusted Network Access Control. [126]

• Countering Phishing with TPM-bound Credentials. [185]

• Privacy enhanced Trusted Network Connect. [120]

249

7 Appendix

7.2 Trusted Platform

As defined by the TCG, a Trusted Platform is a system, which fulfils the necessary re-

quirements. There are three of these requirements, namely providing so-called protected

capabilities, attestation and integrity measurement, logging and reporting. The basic ar-

chitecture of a system fulfilling these requirements is shown in figure 7.1. The three re-

Figure 7.1: Architecture of a Trusted Platform [106].

quirements are mainly fulfilled by the abilities the TPM provides to the system. They are

explained in short in the following.

Protected Capabilities The Trusted Platform provides a set of well defined operations,

which realise the most security critical tasks. These operations, called protected

capabilities, are well secured against compromise. They are for example used when

accessing critical locations in memory or when storing a certain measurement, i.e.

a hash-based, value. The use of TPM in order to perform a quotation of a PCR’s

value is for example carried out by invoking such a protected capability.

Attestation Attestation describes the process of attesting information in order to verify

their authenticity. As already stated, this is done by using the TPM’s key hierarchy

which allows it to securely determine if the information set has been signed by a

valid TPM. Furthermore, the attestation mechanism is used to verify the integrity

of a system. This is done by quoting the TPM’s PCRs and singing them using an

appropriate key. This signed message is then provided to a verifier which can (a)

check the integrity itself and (b) check the authenticity which should indicate that

250

7.2 Trusted Platform

the measurement comes from a valid TPM. The verifier may also be a remote party

which receives this message, i.e. the integrity report, via network-based communi-

cation. In this case, a remote attestation is performed which is being discussed in

detail later in this section.

Integrity Measurement, Logging and Reporting To allow for a verification of a sys-

tem’s integrity, the trusted platform provides appropriate means. First of all, it

allows to actually perform the measurement in a secure way by utilising the TPM’s

capability. In addition to this measurement, the platform records the single steps

which lead to the final measurement value, i.e. the final PCR value. Although it is

not defined that this logging has to be to performed in a secure way, it is possible

to compare the steps against the actual values of the measurement, if there is any

di↵erence the integrity of the system is no longer given. Furthermore, a possibility

to report the results is provided by such a platform. This allows to use the results

and to perform comparison against well known values or against the expected log.

A Trusted Platform is required (i.e. must) to fulfil all three expectations. That is, it needs

to provide technical means to perform the desired operations. This cannot be achieved

by only incorporating specialised hardware like the TPM, it must also be software-based.

This is realised through several, trusted platform tailored extensions. The first one is given

by a specialised BIOS which supports the use of the trusted platform-specific abilities, like

performing a measurement by using the TPM. Second, the boot system and all following

components must support the trusted platform paradigm. While this may be easy for

the limited code base of a boot loader, it grows very complex for the operating system

itself. Due to this, the use of a specialised operating system, commonly called a trusted

operating system (trusted OS) is required. This trusted OS provides means to access the

trusted platform’s capabilities, like accessing the TPM for a sealing operation. The trusted

OS is also responsible for measuring high level applications and for actually starting the

integrity verification by invoking the quotation of a TPM’s PCR.

Given all that, it is possible to establish a so-called Chain of Trust, which is another

basic building block of trusted computing.

251

7 Appendix

7.2.1 Chain of Trust

The Chain of Trust concept allows to put trust in high level measurements, for exam-

ple of measurements taken from user space applications. Given this concept, it can be

considered as trust calculation method, thus being relevant for the fulfilment of R1. This

is done by measuring each single software component of the system prior to the compo-

nents starting process. A simplified version of this process is depicted in figure 7.2. As

Figure 7.2: Chain of Trust [113].

already explained, the first measurement is triggered by the CRTM, which is residing in

a hardware-based component. The CRTM consists of executable code which instructs the

very first measurement. Before the measurement actually takes places, the TPM’s PCRs

are initialised into a well known state. I.e., the initial values are known and must di↵er

from the specifications. The code of the CRTM measures the system’s BIOS and extends

these values into the appropriate PCRs. This is done before the BIOS is actually started

to recognise changes that may have been made to the BIOS itself. After this step, the

control is handed over to the BIOS which starts up and is responsible for performing

the next measurement. The next component which is to be started is represented by the

boot loader. Due to this, the BIOS measures the boot loader and afterwards hands over

control to the boot loader by executing it. The boot loader can now measure the oper-

ating system before actually starting it. If this is done, the operating system starts and,

as long as it provides the capabilities of a trusted OS, further measurements of high level

252

7.3 Detailed Architecture of TNC

applications can be performed. By reaching this point, a chain of measurements has been

created beginning with the CRTM and ending on the last measured application. The trust

implication which is behind this concept is that if each of the measurements taken is as

expected i.e., the values are the same as the reference values, all measured components

are trustworthy, thus a transitive trust relationship has been established. To verify the

measurements taken, there need to be reference values for each of the measured compo-

nents, which might be rather complex due to the high amount of possible components

and their trustworthy states. Furthermore, this type of Chain of Trust can only be reset

by a full system reboot. It is therefore also based on an approach called Static Root of

Trust for Measurement (SRTM) as it creates a Static Chain of Trust.

To overcome this problem of high complexity and fully rebooting the system for a reset,

there is an enhanced conceptual version of the Chain of Trust which is based on the so-

called Dynamic Root of Trust for Measurement (DRTM). The DRTM approach allows to

establish arbitrary new Chain of Trust instances at runtime without the need to reboot the

system. It is another hardware-based concept as it must be supported by the CPU. This is

due to the fact, that the CPU is responsible for providing an isolated environment in which

the Chain of Trust can be established. Intel, with their Trusted Execution Technology

(TXT, [186]), as well as AMD with their Secure Virtual Machine Architecture (SVM,

[187]) provide such environments on chip. These isolated environments allow it to establish

a Chain of Trust which can be used to attest particular aspects of the system, without

the need to measure the whole system. This may be used to only spawn a Chain of Trust

if necessary for an application, e.g. for carrying out home banking tasks.

If deriving trust, it needs to be taken into account which one of the two types was used

to establish the actual Chain of Trust. While dynamic allows the definition of a particular

trustworthy environment on a system, static allows to derive the overall trustworthiness

of the system. Although the second option seems to be more promising, it is rather

questionable if it is possible to establish a complete static Chain of Trust in a real world

scenario. This is due to the high complexity.

7.3 Detailed Architecture of TNC

The Network Access Layer is responsible for realising the basic network-based communi-

cation. The communication may be realised by utilising di↵erent technologies, for example

253

7 Appendix

directly through 802.1X or indirect through a VPN tunnel. There are three building blocks

located in this layer, one in each component. On the AR’s side, there is the logical block

of the Network Access Requestor, which is usually software responsible for handling the

basic network connection without TNC-specific properties. The Policy Enforcement Point

consists only of this block as it only operates on this layer. This is due to the PEP being

only responsible for allowing or denying access on a network-based level. As third, the

Network Access Authority is residing on the PDP’s side. In contrast to the AR, it is not

only responsible for providing basic network-based communication but is also responsible

to include third party decisions into the overall access decision for an AR. For example,

the step of an user authentication is evaluated at this point as it is not TNC-specific.

There are two interfaces defined at this layer by the TNC architecture: IF-T for the

network-based communication and IF-PEP for the enforcement decisions the PEP has to

carry out. IF-T is defined in two di↵erent specifications. The first one [188], realises the

communication-based on EAP and 802.1X. It is mainly used when directly accessing a

network and leveraging port-based access control. It relies on the mechanisms provided

by the combination of 802.1X and EAP as there is no ip-based connection available for

communicating with the PDP. The second specification defined in [136] allows to base the

communication on an already existing ip-based network connection. It uses this connec-

tion and establishes a TLS secured tunnel. It is mainly useful in VPN environments where

the AR has already a connection to the VPN gateway. Decisions made by the PDP are

communicated to the PEP by leveraging the RADIUS-based IF-PEP [189] interface. This

is done by using the protocols ability to control the access state of the PEP. All PEPs

which are used must be able to understand this protocol to enforce the access decisions.

In order to realise the TNC-specific communication, the Integrity Evaluation Layer is

used. This layer provides means to negotiate the results of TNC-based measurements

made on the AR. It consists of two components: the TNC Client (TNCC) on the AR and

the TNC Server (TNCS) on the PDP. The TNC Client is responsible for collecting and

encapsulating the measurements made on the AR. This is done by receiving the measure-

ments through a well defined interface from the layer located above. The encapsulation is

done by leveraging the IF-TNCCS interface. This interface defines the actual communica-

tion between the TNC Client and the TNC Server. There are two versions of the protocol

defining the interface. The first version, which is specified in [190] uses a type length value

(TLV) based encoding in it’s actual revision. Legacy versions of this specification were

254

7.3 Detailed Architecture of TNC

based on the use of XML encoding. The second version [191], is used in order to provide

compatibility with Microsoft’s Network Access Protection (NAP, cf. [192]) concept. That

is, it is based on the exchange of so-called Statement of Health reports and allows to

use a TNC Client in conjunction with a Microsoft NAP server. After the results, i.e. the

measurements, have reached the server, they are provided to the layer above where an

in detail evaluation takes place. The result of this evaluation is given back to the TNC

Server, which is responsible for providing the final result to the NAA below. The final

result may not solely be based on the evaluation of the highest layer but also on a policy

which is located on the TNC Server. Furthermore, the result is not only given to the

NAA for enforcement purposes but also provided to the TNC Client. The interfaces to

the Network Access Layer are not specified. In particular, this is due to the fact, that

the communication at this level is very platform-specific and may not be specified. In

di↵erence, the interfaces to the upper layer are well specified to allow for a high level of

interoperability.

The upper layer, the Integrity Measurement Layer, consists of the Integrity Measure-

ment Collectors (IMCs) on the AR’s side and the Integrity Measurement Verifiers on the

PDP. The interface between these two components and the layer below is specified, as

already written. These specifications [193, 194, 195, 196] define the communication be-

tween the TNC Client and the IMCs on the AR as well as the communication of the TNC

Server and the IMVs on the PDP. Thus, they allow to use arbitrary IMC/Vs with arbitrary

server or client components. Going back to the Integrity Evaluation Layer, the IMCs on

the AR are responsible for actually performing the measurements on the platform. There

may be an arbitrary amount of such IMCs as long as there is the same amount of IMVs

on the other side. This is due to the fact, that there needs to be a component which is

possible to evaluate the measurement, which is the appropriate IMV on the PDP’s side.

Commonly, IMCs and IMVs are provided as pairs of each other, thus each IMC has a

corresponding IMV. Two di↵erent types of communications may be carried out between

them. The first one is unspecified and can only be used between pairs which belong ex-

actly to each other. This allows to measure arbitrary things and communicate the results

in the most suited manner. Although this provides a high flexibility and discretionary, it

limits the interoperability. To circumvent this, the second method that may be used is the

standard interface IF-M [121]. It provides a standardised message exchange, which allows

to combine di↵erent IMC/V pairs as long as they implement the IF-M standard.

255

7 Appendix

Besides these three layers, there is an extra component called Platform Trust Service

(PTS). It is responsible for realising the access to trusted platform-specific functions,

in detail to provide a method for accessing the TPM’s capabilities. Although the TNC

architecture is usable without the PTS enhancement, there would be no way of leveraging

the abilities of trusted computing, thus TNC would only be another NAC approach which

is not capable of providing a way to put trust into the measurements made on the client

(cf. [197]). The PTS is also a well specified interface [119]. In detail, it is located above the

Trusted Software Stack (TSS) which itself is located above the TPM. The TSS is usually

provided by the operating system as it is an interface which allows to use the capabilities

of the trusted platform and the trusted OS itself. The PTS leverages the functions of the

TSS by using its functions and due to this, it exposes this functions in a well defined

manner for the TNC architecture. It is usable through the two upper layers. The IMCs

may use it to extend their measurements made into the TPM, thus integrating them into

the chain of trust. The TNC Client can use them to measure the IMCs prior to their

execution, thus including also these components into the chain of trust. Note that the

TNC client itself must be measured by the operating system. Doing this, all three parts,

the TNC stack itself, the appropriate IMCs and their addressed components are measured

securely and are part of the chain of trust. This is the main benefit of using TNC as it

allows to perform trustworthy measurements. Trustworthy means, that it can on the one

hand distinguished between expected and unexpected measurement values and on the

other hand it is possible to recognise compromised measurement due to the chain of trust

concept.

Given these architecture and their components, the basic message flow which is carried

out when negotiating the integrity of a client can be constructed. The simplified flow is

shown in figure 7.3 with the particular steps described in the following. Note that the

actual enforcement communication is not explicitly addressed.

1. The first step starts the handshake. It is initiated from the side of the TNCC and

instructs the IMCs on the client (i.e. on the AR) to measure all necessary compo-

nents. The overall handshake process is also referred to as integrity check handshake

(cf. [96]). The IMCs perform the actual measurements.

2. Their results are communicated back to the TNCC in the second step. The TNCC

encapsulates the results in the appropriate version of the TNCCS protocol.

256

7.3 Detailed Architecture of TNC

Figure 7.3: Simplified TNC message flow [120].

3. The message which results from this encapsulation is then communicated to the

TNCS. This is done by using the layer below, the Network Access Layer which is

responsible for performing the actual network-based communication.

4. The TNCS unmarshalls the received message and provides the single parts, which

represent the single measurement result per IMC, to the appropriate IMV. The

IMVs are then responsible for evaluating the received results.

5. Each of the IMV provides a suggestion to the TNCS. This suggestion includes the

evaluation result of the measurements. Based on these suggestion and the combina-

tion of them, the TNCS may make a decision about the clients access. In the case

shown, a second round is triggered before the final decision is made. This is the case

if some information are missing.

6. The TNCS sends a message back to the TNCC. This message includes the request

for the missing information, thus this gives the AR the possibility to measure more

detailed and provide the missing information.

7. The TNCC receives this message and forwards the measuring request to the appro-

priate IMCs.

257

7 Appendix

8. After these IMCs have completed their measurement, the measured values are given

back to the TNCC which encapsulates them and provides them back to the TNCS.

The TNCS uses the evaluation of the IMVs appropriately and may then be able to

make a decision.

This message flow may take several rounds to find a real result where the TNCS can base

a decision upon. Furthermore, the TNCC measures the IMCs prior to their execution

to ensure the chain of trust. The final decision about network access is based on the

suggestions of the IMVs, the decision of the TNCS, which may include chain of trust

information and on other properties from the NAA. There are several policies controlling

this behaviour which are summarised shortly in the following.

7.4 System State Sealed Authentication Certificate

In oder to derive appropriate Security Properties through the SPRM, there must be a

method to reason about the trust state of a certain MAP Client. This is done by a special

certificate which can be used to determine this trust state of a specific MAP Client. The

findings made by the use of this approach can then be used to assign the correct Security

Properties for the process operation of this client. It is necessary to provide an approach

of this, as the process operation of the Client is the only operation which is not directly

visible by the SPRM. This is due to the fact, that all other operations are carried out by

or with the MAPS where the SPRM is placed on. While a remote attestation would also

be very useful for determining properties of the client’s process, the method used here

is rather straightforward and provides a complete coverage for the implementation. The

approach itself is based on mechanisms provided by Trusted Computing, in particular on

sealing data to a certain system state.

7.4.1 Overview

In detail, this method is based on the authentication mechanism provided by IF-MAP. To

publish data and to subscribe for certain information, an MAPC has to authenticate itself.

This prevents unauthorised access to the MAPS’s graph. As IF-MAP uses SOAP and the

HTTPS protocol for communication, there are two distinct authentication mechanisms

defined: the basic authentication and the certificate-based authentication.

258

7.4 System State Sealed Authentication Certificate

• The basic authentication provides a rather simple authentication method, which

uses a username and a password, i.e. a MAPC gets access to the MAPS if it knows

the appropriate credentials.

• The second authentication method is based on a certificate. That is, the MAPC has

to present a valid (possibly correctly signed by an appropriate authority) certificate

to the MAPS. If this certificate is presented and verified, the MAPS grants access

to the MAPS.

Based on this two authentication methods, the method proposed here works the following

way. The authentication certificate is issued to each MAPC in the network by the MAPS.

The certificate is not simply provided but only distributed to the MAPC in a defined

way and under the precondition of a valid integrity state. This means, the certificate is

only given to the MAPC if (1) the MAPC’s integrity state is valid (this is defined by

a third party, e.g. the networks administrator) and (2) the MAPC has a mechanism to

bind the certificate to this valid integrity state. This ensures, that the certificate can only

be accessed by the MAPC if it is in the same state as when the certificate was provided

to it, thus e↵ectively countering unwanted system changes. When the MAPC wants to

perform MAP operations, it accesses the certificate and presents it to the MAPS. The

MAPS recognises this certificate and gives this information to the SPRM which attaches

a TT to the MAPC which presented this certificate. If the system state of this MAPC

changes, it can no longer access the certificate. As the certificate for authentication is

missing and only the simple authentication is available at this time, it will be recognised

by the MAPS. The MAPS can then change the appropriate value of the TT by the use

of the SPRM. The exact process, is presented in the following.

7.4.2 Initialisation Phase

Aim of this phase is the attachment of a TT to a MAPC publishing data. To achieve this,

certain steps are necessary. Figure 7.4 shows these steps. As already explained, this method

uses the concept of indirect trust. Thus, the trustworthiness of the data published by a

MAPC is derived from its system/integrity state. Therefore, the first step is the definition

of a trustworthy system state of the MAPC. This definition is strongly related to the

actual implementation and needs therefore to be set while deploying the system. Usually,

259

7 Appendix

Figure 7.4: Initialisation of the Certificate.

the state will be defined by a third party (like the networks administrator). It will be

chosen in a way, that no compromising element such as malware or a computer virus, is

being included. An easy but not complete way of achieving a benign state would be to

keep the system always up to date. If such a state is defined, it should be applied to the

system. After this is done, the system can be treated as trustworthy for this case and

therefore (which is a core element of this method) data published by this system can also

be treated trustworthy.

The next step is to issue, provide and bind (seal) the MAP certificate, allowing to

authenticate the MAPC. This issuing process is commonly known and therefore not ex-

plained in detail here. After the certificate has been issued, it is registered on the MAPS

side, thus giving the MAPS the information that (1) the certificate is known and (2) data

provided with this certificate can be treated trustworthy. The next task is providing the

certificate, which is rather straightforward. The actual implementation should provide a

secure way to exchange this certificate. However, the part of binding it to a system’s state

is more interesting: The binding is done by using special mechanisms which are provided

by Trusted Computing. That is, to perform this binding, which is called sealing, the sys-

tem needs to be capable of performing those operations. This means, that such a system

must provide the abilities of a trusted platform. In detail, after the certificate has been

received, it will be sealed on to the defined system state. The certificate is therefore taken

260

7.5 Client Side Policy

and encrypted, i.e. it is encrypted with a key stored inside the platforms TPM. This key is

not accessible outside of the TPM and one is unable to retrieve this key out of the TPM.

Besides this, the usage of this key is bound to certain Platform Configuration Register

values. As these PCR values reflect the system’s state, the certificate is e↵ectively sealed

to the defined state. Having done this, it is not possible to access the certificate if the

platforms state has changed compared to the state which was defined as trustworthy.

With this sealed certificate, the MAPC may publish data to the MAPS. The MAPS can

distinguish between the authentication type (sealed certificate or simple authentication)

and if the connection was authenticated using the certificate, the next step is initiated.

This is described in the following.

After the connection is established, and the authentication takes place, the MAPS

verifies the certificate. If the certificate is known to the MAPS, access is granted. Otherwise

the MAPC is unable to publish data using this authentication type. If the certificate was

considered valid by the MAPS, it checks if there is already a TT entry for the metadata

published. If there is one, the update phase begins (explained below). If there doesn’t

exist a TT for the metadata of the MAPC, the MAPS starts the process of creating it. It

takes several information which are assigned as Security Properties to do so:

• The identity of the MAPC. This is uniquely identifying the MAPC thus binding the

TT to be generated globally to this MAPC.

• Some time information, which may be used for reasoning.

• Trust Anchor information. This is known due to the method used, i.e. it is always

the MAPCs TPM when using this method.

The MAPC then creates a new TTM including the above stated SPs in the SPR fields.

Along with these values, the Trust Level is put into the TTM. After the TT entities are

created, the MAPS publishes them into the MAP graph, thus finishing the initialisation.

7.5 Client Side Policy

The following two figures show the conceptual model of a client side policy and the

enhanced architecture used. An example Client-side Policy is depicted in a simplified

form in the listing (7.1) shown last.

261

7 Appendix

Figure 7.5: Client side policy definition [120].

262

7.5 Client Side Policy

Figure 7.6: Extended TNC message flow [120].

263

7 Appendix

1 <po l i c y>

2 < !�� zone f o r work network ��>
3 <zone name=”work” network=” 141 . 71 . 30 . 0/23 ”>

4 < !�� l i s t o f a l l a l lowed IF�M messages ��>
5 <a l low>

6 < !�� an entry ��>
7 <entry>

8 < !�� l i s t o f components ��>
9 <ifm�component>

10 <vendorID>TCG<vendorID>

11 <component>Anti Virus<component>

12 </ ifm�component>

13 <ifm�component>

14 <vendorID>TCG<vendorID>

15 <component>Operating System<component>

16 </ ifm�component>

17 < !�� l i s t o f a t t r i b u t e s ��>
18 <ifm�a t t r i b u t e>

19 <vendorID>TCG<vendorID>

20 <a t t r i b u t e>Product Vers ion</ a t t r i b u t e>

21 </ ifm�a t t r i b u t e>

22 <ifm�a t t r i b u t e>

23 <vendorID>TCG<vendorID>

24 <a t t r i b u t e>St r ing Vers ion</ a t t r i b u t e>

25 </ ifm�a t t r i b u t e>

26 </ entry>

27 <entry>

28 <ifm�component>

29 <vendorID>TCG<vendorID>

30 <component>Fi r ewa l l<component>

31 </ ifm�component>

32 <ifm�a t t r i b u t e>

33 <vendorID>TCG<vendorID>

34 <a t t r i b u t e>Operat iona l Status</ a t t r i b u t e>

35 </ ifm�a t t r i b u t e>

36 </ entry>

37 </ a l low>

38 < !�� l i s t o f a l l denied IF�M messages ��>
39 <deny>

40 <entry>

41 <ifm�component>

42 <vendorID>TCG<vendorID>

43 <component>⇤<component>

44 </ ifm�component>

45 <ifm�a t t r i b u t e>

46 <vendorID>TCG<vendorID>

47 <a t t r i b u t e>⇤</ a t t r i b u t e>

48 </ ifm�a t t r i b u t e>

49 <entry>

264

7.6 Interoperable Remote Attestation in VPN Environments

50 <deny>

51 </zone>

52 </ po l i c y>

Listing 7.1: An example Client-side Policy expressed in XML [120]

7.6 Interoperable Remote Attestation in VPN

Environments

Detailed architecture including the additionaly introduced components is shown in figure

7.7.

Figure 7.7: Detailed architecture for VPN environments [135].

7.7 Permission-based Attestation

Figure 7.8 and 7.9 depict the complexity of the permission structure in di↵erent situations

on a HTC Desire device.

265

7 Appendix

���������

��	���	
��������
����������������������

��	���	
��������
����������������

�����

��	���	
��������
������������� ������

��	���	
��������
��������

��!�"���	��

��	���	
��������
#�������$��%�����

��	���	
��������
&�#����

'��
(��(��
��	���	
(��(�����
��������
��������$��

�)	�*)"+���

��	���	
��������
�� �����

�����"��

��	���	
��������
����������������������

$�,��'*"%�"+���

����

���'���
��	���	
��������
������� �

��	���	
��������
�������+������������

��	���	
��������
���������+�������
��	���	
��������
���������+�������

��(�-"#��	

���..����	

��	���	
��������
��������$���

��	���	
��������
������%�

��	���	
��������
�����&���%�

Figure 7.8: Permission graph of a HTC Desire device with top ten free games installed,
only app-specific permissions shown.

266

7.7 Permission-based Attestation

���������

����	��
�������	�
���������������

����	��
�������	�
����������������������

����	��
�������	�
����������

����	��
�������	�
�������������

����	��
�������	�
 �������������

����	��
�������	�
�����������

����	��
�������	�
�����������

����	��
�������	�
��������

����	��
�������	�
�������

����	��
�������	�
��������

����	��
�������	�
��������

����	��
�������	�
 ��������

����	��
�������	�
���������� ��!������

����	��
�������	�
���������� ��!������

����	��
�������	�
����������������

����	��
�������	�
 �!�����!

����	��
�������	�
�������������

����	��
�������	�
 �������������

�	
���
"�#�����
�������	�
�������������

�	
���
"�#�����
�������	�
$������������$�

�	
����	��
"�#�����
�������	�
��������������$�

�	
����	��
"�#�����
�������	�
$���������������$�

�	
����	��
%�	&���
�������	�
�����������'����!���!�

����	��
�������	�
$������������������

����	��
�������	�
����������

����	��
�������	�
��������!�'�$���

��������#�(

����	��
�������	�
����������)��$������

����	��
�������	�
 �������������

����	��
�������	�
������� �)�������

����	��
�������	�
������� �)�������

������""#�(��

�	
(("�
����	��
(
�������	�
 ����������

�	
(("�
����	��
(
�������	�
����������

����	��
�������	�
 ��������$�����������

����	��
�������	�
��������� ��

����	��
�������	�
��$���$���$���)����'�����

����	��
�������	�
��$������

����	��
�������	�
��$������������

����	��
�������	�
���� ��������

����	��
�������	�
����)'��$������������

����	��
�������	�
������������

����	��
�������	�
$��������������

�	
(("�
����	��
(("�����
�������	�
��������$��

����	��
�������	�
��������� �������������

����	��
�������	�
����������$��������

����	��
�������	�
����)'������������

����	��
�������	�
����������������������

����	��
�������	�
 �����������������

����	��
�������	�
�����������!�������������

����	��
�������	�
�����$�������������'

����	��
�������	�
 �����$�������������'

����	��
�������	�
)�������������!����

����	��
�������	�
���!����$����������

����	��
�������	�
������'������

�		("�*���"

����	��
�������	�
�������������)����'����

����	��
�������	�
��������� ����������������������

����	��
�������	�
��������$���

����	��
�������	�
�����������$���

����	��
�������	�
������'�����������

����	��
�������	�
������'��������

����	��
�������	�
�$���������)���������

����	��
�������	�
�$���������)����� ����

����	��
�������	�
 ������'�����������

����	��
�������	�
 ������+��������������

�	
(("�
����	��
(
�������	�
����������������������

�	
(("�
����	��
(("�����
�������	�
��������$��
��"

�	
(("�
����	��
��	,�����
(�-
�������	�
��������������

��".

����	��
�������	�
��������������!'

�	
(("�
����	��
(��".���,���
�������	�
����!��������

�	
(("�
����	��
(��".���,���
�������	�
��������������

�	
(("�
����	��
��	,�����
��".
�������	�
��������'

�	
(("�
����	��
��	,�����
��".
�������	�
 ��������'

 �����

����	��
�������	�
�������������������

����

����	��
�������	�
�������!�

�	
(("�
����	��
(("�����
�������	�
��������$��
"	��"

����	��
�������	�
�������)������������

�#��.

����	��
�������	�
�'����������� ����

�	
���
"�#�����
�������	�
 �������������

���"

 ���/�	���	�

��������

����	��
�������	�
���� ��������

�	
����	��
%�	&���
�������	�
 �����������'����!���!�

����	��
�������	�
������� �����������������������

!	���.��

$��

����	��
�������	�
����$�����

!�"�����

)�/����	

!����

����	��
�������	�
������

����	��
�������	�
��������$���

���.��

�	
(("�
����	��
�0�
�������	�
�������

����	��
�������	�
�����������!����

����	��
�������	�
����������!����

����	��
�������	�
���������������

����	��
�������	�
�������!������1�

��������.	����

�����������

����	��
�������	�
�$���������������$���

)		�������

�������"���

�������#���

�	
(("�
����	��
(("�����
�������	�
��������$��
��

�	
(("�
����	��
��	,�����
������(�
�������	�
��������������

������*,	�*���

��)*���&��

����

����	��
�������	�
����$����������

)�����*�����

'	#�#%�

�	
(("�
����	��
(("�����
�������	�
��������$��
2	#�#%�

�	
(("�
����	��
(("�����
�������	�
��������$��
'	#�#%�$���

�.����

�������

������

3#��.	--���

��&�*#��* �����

�"%��

�	
(("�
����	��
(("�����
�������	�
��������$��
"�0

)���%		.

�#���

����	��
�������	�
�������������

�	
(("�
����	��
��	,�����
������(�
�������	�
 ��������������

Figure 7.9: Permission graph of the system apps installed on a HTC Desire device.

267

7 Appendix

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40

T
im

e
 t

o
 p

e
rf

o
rm

 m
e

a
su

re
m

e
n

t
(i
n

 m
s)

Nr. of permissions

Figure 7.10: Time required to measure permissions [149].

Performance

Performance figures are shown in table 7.1 and figure 7.10.

7.8 On Remote Attestation for Google Chrome OS

The trusted boot process is shown in figure 7.11.

The conceptual architecture of the approach is depicted in figure 7.12.

The flow of operations, based on these extension is depicted in figure 7.13.

268

7.8 On Remote Attestation for Google Chrome OS

Table 7.1: Performance impact of Permission-based measurement of application packages
(Abstract) [149]. n

p

is the number of permissions the application requests. Time
values are given in ms, PML Entry size in Bytes.

t
measure

t
extend

PML
Application Package n

p

avg min max avg min max Size

com.android.soundrecorder 4 11.54 7 30 7.08 6 37 205
com.android.voicedialer 8 13.84 8 26 7.12 6 14 344
com.android.launcher 11 62.44 52 77 6.78 6 18 465
android 1 6.87 4 14 6.83 6 11 113
com.android.providers.contacts 10 12.82 9 23 6.68 6 49 474
com.android.settings 36 35.50 28 48 6.92 6 38 1464
com.android.quicksearchbox 6 10.48 7 22 6.51 6 11 299
com.android.protips 1 5.9 4 12 6.65 6 39 79

. . .
com.android.providers.settings 1 4.63 4 7 7.26 6 47 90
com.android.magicsmoke 2 5.42 4 8 8.17 6 49 146
android.tts 2 4.53 4 9 7.65 6 43 128
com.android.mms 17 15.6 14 23 7.58 6 57 636
com.android.provision 2 3.99 3 6 7.42 6 46 143
com.android.providers.media 4 6.48 5 9 7.7 6 57 223
com.android.certinstaller 1 4.70 4 7 7.58 6 49 113
com.android.providers.downloads 9 9.90 9 18 7.51 6 51 435
com.android.server.vpn 1 4.53 3 8 7.38 6 45 96

. . .

com.android.providers.settings 1 4.04 3 6 7.41 6 49 90
android.tts 2 4.21 3 9 8.13 6 47 128
com.android.magicsmoke 2 5.14 4 7 7.64 6 40 146
com.android.mms 17 13.92 13 17 7.77 6 43 636
com.android.provision 2 3.98 3 6 8.94 6 47 143
com.android.providers.media 4 5.97 5 8 7.54 6 48 223
com.android.providers.downloads 9 9.11 8 11 7.62 6 41 435
com.android.certinstaller 1 4.07 3 6 8.46 6 48 113
com.android.server.vpn 1 4.1 3 6 8.7 6 46 96

Sum 463.24 324.89 13828
Average 10.82 7.29

269

7 Appendix

Figure 7.11: Verified boot [151].

270

7.8 On Remote Attestation for Google Chrome OS

Figure 7.12: Architecture for RA on Chrome OS [151].

271

7 Appendix

Figure 7.13: Flow of operations [151].

272

7.9 MAP Server Performance Analysis

7.9 MAP Server Performance Analysis

The following listing provides the source code for the perf-complete-graph test program

as this was used in a changed form.

1 /⇤
2 ⇤ COPYRIGHT AND PERMISSION NOTICE

3 ⇤
4 ⇤ Copyright (c) 2010�2011 , Arne Welzel , <arne . we lze l@goog lemai l . com>

5 ⇤
6 ⇤ Al l r i g h t s r e s e rved .

7 ⇤
8 ⇤ Permiss ion to use , copy , modify , and d i s t r i b u t e t h i s so f tware f o r any

purpose

9 ⇤ with or without f e e i s hereby granted , provided that the above copyr ight

10 ⇤ no t i c e and t h i s permis s ion no t i c e appear in a l l c op i e s .

11 ⇤
12 ⇤ THE SOFTWARE IS PROVIDED AS IS , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

13 ⇤ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

14 ⇤ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY

RIGHTS. IN

15 ⇤ NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

16 ⇤ DAMAGES OR OTHER LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR

17 ⇤ OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR

THE USE

18 ⇤ OR OTHER DEALINGS IN THE SOFTWARE.

19 ⇤
20 ⇤ Except as conta ined in t h i s not i ce , the name o f a copyr ight ho lder s h a l l

not

21 ⇤ be used in adv e r t i s i n g or otherw i s e to promote the sa l e , use or other

d ea l i n g s

22 ⇤ in t h i s Software without p r i o r wr i t t en au tho r i z a t i on o f the copyr ight

ho lder .

23 ⇤/
24

25 /⇤
26 ⇤ Performance Measurement o f a MAPS us ing a complete graph and some

27 ⇤ sub s c r i p t i on s , changed to match the t r u s t extended MAPS with doubled

metdadata

28 ⇤/

273

7 Appendix

29 #inc lude <l i b i fmap2c / s s r c . h>

30 #inc lude <l i b i fmap2c / arc . h>

31 #inc lude <l i b i fmap2c / i d e n t i f i e r s . h>

32 #inc lude <l i b i fmap2c /metadata . h>

33 #inc lude <algor ithm>

34 #inc lude <c s t d l i b>

35 #inc lude <iostream>

36 #inc lude < l i s t >

37 #inc lude <s t r i ng>

38 #inc lude <sstream>

39 #inc lude <c s td io>

40 #inc lude ”common . h”

41

42 us ing namespace std ;

43 us ing namespace ifmap2c ;

44

45 typede f pair<s t r i ng , s t r i ng> STRP;

46 typede f l i s t <SearchResul t ⇤> SRLIST ;

47 typede f l i s t <ResultItem ⇤> RILIST ;

48 typede f l i s t <XmlMarshalable ⇤> XMLMLIST;

49

50 s t a t i c unsigned i n t graphSize ;

51 s t a t i c i n t mdNode ;

52 s t a t i c i n t mdLink ;

53

54 s t a t i c void usage (const char ⇤name)

55 {
56 c e r r << ”Usage : ” << name << ” <nodes> <metadata per node> ”

57 ”<metadata per l ink> ” INDEPENDENT USAGE STRING << endl ;

58 }
59

60 #de f i n e f o r a l l i d e n t s (va lue) f o r ((va lue) = 0 ; (unsigned i n t) (va lue) <

graphSize ; (va lue)++)

61

62 s t a t i c void c r e a t eSub s c r i p t i o n s (I d e n t i f i e r ⇤⇤ idents , SSRC ⇤ s s r c)
63 {
64 i n t i ;

65 Subscr ibeRequest ⇤ s r ;
66 l i s t <Subscr ibeElement ⇤> l i s t ;

274

7.9 MAP Server Performance Analysis

67

68 f o r a l l i d e n t s (i) {
69 s t r i ng s t r eam s s ;

70 s s << ” sub id en t ” << i ;

71 l i s t . push back (Requests : : c reateSubscr ibeUpdate (

72 s s . s t r () ,

73 ”meta : r o l e ” ,

74 graphSize � 1 ,

75 ”meta : r o l e ” ,

76 SEARCH NO MAX RESULT SIZE,

77 i d en t s [i]�>c l one ())) ;

78 }
79

80 s r = Requests : : c reateSubscr ibeReq (l i s t) ;

81 sr�>addXmlNamespaceDefinition (TCG META NSPAIR) ;

82 s s r c�>sub s c r i b e (s r) ;

83 de l e t e s r ;

84 }
85

86 s t a t i c void publishMetaOnNodes (I d e n t i f i e r ⇤⇤ idents , SSRC ⇤ s s r c)
87 {
88 i n t i ;

89 Publ ishRequest ⇤pr ;
90

91 i f (mdNode <= 0)

92 r e turn ;

93

94 f o r a l l i d e n t s (i) {
95 XMLMLIST l i s t ;

96 f o r (i n t j = 0 ; j < mdNode ; j++) {
97 s t r i ng s t r eam s s ;

98 s s << ” r o l e ” << j << ” o n i d e n t i f i e r ” << i ;

99 l i s t . push back (Metadata : : c r ea teRo l e (s s . s t r ())) ;

100 }
101 pr = Requests : : c reatePubl i shReq (

102 Requests : : createPubl i shUpdate (l i s t , i d en t s [i]�>c l one ())) ;

103 pr�>addXmlNamespaceDefinition (TCG META NSPAIR) ;

104 s s r c�>pub l i sh (pr) ;

105 de l e t e pr ;

275

7 Appendix

106 }
107 }
108

109 s t a t i c void publ i shLink (I d e n t i f i e r ⇤ i1 , I d e n t i f i e r ⇤ i2 , SSRC ⇤ s s r c)
110 {
111 XMLMLIST l i s t ;

112 Publ ishRequest ⇤pr ;
113 XmlMarshalable ⇤md = Metadata : : c r ea t eRo l e (”some r o l e ”) ;

114

115 f o r (i n t i = 0 ; i < mdLink ; i++)

116 l i s t . push back (md�>c l one ()) ;

117

118 pr = Requests : : c reatePubl i shReq (Requests : : c reatePubl i shUpdate (

119 l i s t , i1�>c l one () , i2�>c l one ())) ;

120

121 pr�>addXmlNamespaceDefinition (TCG META NSPAIR) ;

122 s s r c�>pub l i sh (pr) ;

123 de l e t e pr ;

124 de l e t e md;

125

126 }
127

128 s t a t i c i n t getCountOfMetadata (RILIST r i l i s t)

129 {
130 i n t r e t = 0 ;

131 RILIST : : i t e r a t o r s t a r t = r i l i s t . begin () ;

132 RILIST : : i t e r a t o r end = r i l i s t . end () ;

133

134 f o r (; s t a r t != end ; s t a r t++)

135 r e t += (⇤ s t a r t)�>getMetadata () . s i z e () ;

136

137 r e turn r e t ;

138 }
139

140 s t a t i c i n t getCountOfMetadata (SRLIST l i s t)

141 {
142 SRLIST : : i t e r a t o r s t a r t = l i s t . begin () ;

143 SRLIST : : i t e r a t o r end = l i s t . end () ;

144 i n t r e t = 0 ;

276

7.9 MAP Server Performance Analysis

145

146 f o r (; s t a r t != end ; s t a r t++)

147 r e t += getCountOfMetadata ((⇤ s t a r t)�>getResu l t I t ems ()) ;

148

149 r e turn r e t ;

150 }
151

152 s t a t i c i n t getCountOfMetadata (Po l lRe su l t ⇤ pres)
153 {
154 i n t r e t = 0 ;

155 i f (pres�>ge tEr ro rResu l t s () . s i z e () > 0) {
156 l i s t <ErrorResu l t ⇤> : : c o n s t i t e r a t o r i t = pres�>ge tEr ro rResu l t s () . begin

() ;

157 l i s t <ErrorResu l t ⇤> : : c o n s t i t e r a t o r end = pres�>ge tEr ro rResu l t s () . end ()

;

158 f o r (/⇤ ⇤/ ; i t != end ; i t++) {
159 c e r r << ⇤⇤ i t << endl ;

160 }
161 }
162 r e t += getCountOfMetadata (pres�>getSearchResu l t s ()) ;

163 r e t += getCountOfMetadata (pres�>getUpdateResults ()) ;

164 r e t += getCountOfMetadata (pres�>ge tDe l e t eRe su l t s ()) ;

165 r e t += getCountOfMetadata (pres�>ge tNot i f yResu l t s ()) ;

166

167 r e turn r e t ;

168 }
169

170 s t a t i c void publishCompleteGraph (I d e n t i f i e r ⇤⇤ idents , SSRC ⇤ s s r c , ARC ⇤ arc)
171 {
172 Po l lRe su l t ⇤ pres ;
173 i n t i , j , count , expected ;

174 f o r a l l i d e n t s (i) {
175 f o r a l l i d e n t s (j) {
176 i f (j <= i)

177 cont inue ;

178 cout << ” . ” ;

179 cout . f l u s h () ;

180

181 publ i shLink (i d en t s [i] , i d en t s [j] , s s r c) ;

277

7 Appendix

182 pres = arc�>p o l l () ;

183

184 count = getCountOfMetadata (pres) ;

185

186 i f (i == 0)

187 expected = 4 ⇤ j ⇤ (mdNode + mdLink) ;

188 e l s e

189 expected = 2 ⇤ graphSize ⇤ mdLink ;

190

191 i f (count != expected) {
192 i f (count /2 != expected) {
193 c e r r << ”Unexpected metadata count ” ;

194 c e r r << ” i=” << i << ” j=” << j ;

195 c e r r << ” count=” << count ;

196 c e r r << ” expected=” << expected << endl ;

197 } e l s e {
198 c e r r <<’’Unexpected metadata count ’ ’ ;

199 c e r r <<’’Use standard performance guest f o r standard MAPS only ;

200 c e r r <<’’ count= ’ ’ << count ;

201 cer r <<’’ matches standard MAPS va lue s but not t r u s t va lue ! ’ ’ <<

endl ;

202 }
203 r e turn ;

204 }
205

206

207 de l e t e pres ;

208 }
209 cout << endl ;

210 }
211 }
212

213 s t a t i c void checkF i r s tSearchResu l t (ARC ⇤ arc)
214 {
215 Po l lRe su l t ⇤ pres = arc�>p o l l () ;

216 i n t count ;

217

218 i f (pres�>getSearchResu l t s () . s i z e () != graphSize && pres�>
ge tSearchResu l t s () . s i z e () ⇤2 != graphSize)

278

7.9 MAP Server Performance Analysis

219 c e r r << ”Unexpected SearchResu l t s ” << endl ;

220

221 count = getCountOfMetadata (pres) ;

222

223 i f (pres�>getUpdateResults () . s i z e () > 0)

224 cout << ”Note : MAPS Returns updateResults in f i r s t p o l lRe su l t ” << endl ;

225

226 i f (count != mdNode ⇤ (s igned i n t) graphSize) {
227 c e r r << ”Unexpected SearchResu l t s Metadata ” ;

228 c e r r << ” expected= ” << mdNode ⇤ (s igned i n t) graphSize ;

229 c e r r << ” got=” << count << endl ;

230 }
231

232 de l e t e pres ;

233 }
234

235 i n t main (i n t argc , char ⇤argv [])

236 {
237 SSRC ⇤ s s r c = NULL;

238 ARC ⇤ arc = NULL;

239 char ⇤ur l , ⇤user , ⇤pass , ⇤ capath ;

240 i n t i ;

241 I d e n t i f i e r ⇤⇤ i d en t s ;
242

243 checkAndLoadParameters (argc , argv , 3 , usage , &ur l , &user , &pass ,

244 &capath) ;

245

246 s s r c = SSRC : : createSSRC (ur l , user , pass , capath) ;

247 arc = ss r c�>getARC() ;

248

249 graphSize = a t o i (argv [1]) ;

250 mdNode = a t o i (argv [2]) ;

251 mdLink = a t o i (argv [3]) ;

252

253 i d en t s = new I d e n t i f i e r ⇤ [graphSize] ;

254

255 f o r a l l i d e n t s (i) {
256 s t r i ng s t r eam s s ;

257 s s << ” u s e r ” << i ;

279

7 Appendix

258 i d en t s [i] = I d e n t i f i e r s : : c r e a t e I d e n t i t y (username , s s . s t r () , use r) ;

259 }
260

261 t ry {
262 s s r c�>newSess ion () ;

263 c r e a t eSub s c r i p t i o n s (idents , s s r c) ;

264 publishMetaOnNodes (idents , s s r c) ;

265 checkF i r s tSearchResu l t (arc) ;

266

267 publishCompleteGraph (idents , s s r c , arc) ;

268 // getchar () ;

269

270 s s r c�>endSess ion () ;

271 } catch (XmlCommunicationError e) {
272 c e r r << e << endl ;

273 } catch (ErrorResu l t e) {
274 c e r r << e << endl ;

275 }
276

277 f o r a l l i d e n t s (i)

278 de l e t e i d en t s [i] ;

279

280 de l e t e i d en t s ;

281 de l e t e s s r c ;

282 de l e t e arc ;

283 }

Listing 7.2: Source of perf-complete-graph, based on [175].

280

List of Figures

1.1 Outline of the thesis. Chapters are shown dashed with the appropriate

sections (rectangles) inside them. Arrows depict the common thread and

the usage of particular results from previous chapters and sections. 6

2.1 Reference Infrastructure (cf. [2]). 10

3.1 CADS architecture as defined in [2]. 27

3.2 Example Flow given by [19]. 29

3.3 TPM architecture defined by [93]. 51

3.4 Overall TNC architecture [96]. 57

3.5 Detailed TNC architecture without IF-MAP [119]. 57

3.6 Extended TNC architecture [120]. 59

3.7 Changed message flow for VPN [135]. 64

3.8 Example graph. 71

3.9 IF-MAP mapped CADS architecture [2]. 72

3.10 IF-MAP example graph with CADS elements [2]. 73

3.11 CADS communication flow [2]. 74

4.1 Generic Model. 86

4.2 CADS Case I. 93

4.3 CADS Case II. 95

4.4 Feature life cycle on the Provider. 118

4.5 Complete TrustLog data model, including all layers. The Feature (marked

by a blue frame), is given by the CADS model (see [2] for more details of

the Feature data model). 125

281

List of Figures

4.6 Security Property Layer of the TrustLog data model, whereas the coloured

elements depict the appropriate classes of the layer. The relationship be-

tween the classes are given be the arrows which include the appropriate

cardinality. 126

4.7 Phase and Snapshot layer of the data model with the appropriate elements

shown as coloured classes. Cardinality and class relationship is indicated

by the appropriate arrows. 127

4.8 The Feature layer of the data model shown by coloured elements. Arrows

indicated the relationship between the classes including their cardinality. . 129

4.9 Provider State Machine including all relevant paths. 131

4.10 Sender Request path of the state machine, indicated by coloured elements. 132

4.11 Receiver Request path of the state machine depicted as coloured elements. 135

4.12 Reasoning path inside the state machine (shown as coloured elements). . . 138

4.13 Case I in TCADS. 142

4.14 Case II in TCADS. 143

5.1 Example MAP graph (cf. [166]). Identifiers are shown as rectangles, ovals

depict metadata and lines express the links between the particular elements.153

5.2 Summarised abstract trust model (cf. [166]). 167

5.3 Mapping of Roles to IF-MAP entities [166]. 170

5.4 Trust extension of IF-MAP[166]: Trust layer consisting of relevant compo-

nents and their exposed interfaces. In particular, the security property map

(SPM), the security property record manager (SPRM) which request an

appropriate rating from the SPM and the Trust Token Manager (TTMgr)

which request a Rated security property record (RSPR). 171

5.5 Ttrust Token Metadata as defined in [166]. 175

5.6 TrustService domain model [166]. 179

5.7 TrustService class model [166]. 180

5.8 P1TT request [166]. 184

5.9 P2TT request [166]. 185

5.10 TrustService extended layer model of irond [166]. 187

5.11 TrustService extended communication layer [166]. 188

5.12 Basic auth SP measurement [166]. 188

282

List of Figures

5.13 Enhanced data model [166]. 189

5.14 TrustLog enhanced Feature model. 192

5.15 Test environment (cf. [166]). 201

5.19 Performance comparison using the perf-pulsing-star-ext client. 212

5.20 Performance comparison using the perf-pulsing-star-int client. 213

5.21 Performance comparison using the perf-complete-graph client. 214

5.22 Performance comparison using the perf-rand-graph client, first run with an

maximum amount of 32 identifiers. 215

5.23 Performance comparison using the perf-rand-graph client, second run using

the same seed as in the first run and again with an maximum amount of

32 identifiers. 216

5.24 Performance comparison using the perf-rand-graph client and using an

maximum amount of 128 identifiers. 217

5.25 Created graph after the first step. 219

5.26 Created Trust Token Metadata [166]. 219

5.27 Created graph after the PDP publishing step. 220

5.28 Temporary graph including the publish notify-based metadata. 221

5.29 Overall graph including the trust token metadata as well as the temporary

publish notify elements. 222

5.30 TCADS evaluation environment used to simulate a sensor sni�ng-based

attack (cf. [2]). 224

5.31 Irondetect evaluation after the first step has been finished. No policy ele-

ments have been evaluated true. 232

5.32 Second step irondetect evaluation results. A checkmark indicates a true

evaluation of a certain policy element. In this case, there is no tra�c and

data leakage but a suspicious app (i.e. the Webcam app) detected. 233

5.33 Evaluation results of the third step. Irondetect recognises the activation of

the camera on the device and the opening of the port which is required to

access the web server provided by the Webcam app. No tra�c increase is

measured at this time as there is no connection to the live stream of the app.234

5.34 Evaluation situation of irondetect after the fourth step. The enforcement

of the smartphone has been committed due to the detection of the split

decision and the following SPR change of the Feature Collector. 236

283

List of Figures

7.1 Architecture of a Trusted Platform [106]. 250

7.2 Chain of Trust [113]. 252

7.3 Simplified TNC message flow [120]. 257

7.4 Initialisation of the Certificate. 260

7.5 Client side policy definition [120]. 262

7.6 Extended TNC message flow [120]. 263

7.7 Detailed architecture for VPN environments [135]. 265

7.8 Permission graph of a HTC Desire device with top ten free games installed,

only app-specific permissions shown. 266

7.9 Permission graph of the system apps installed on a HTC Desire device. . . 267

7.10 Time required to measure permissions [149]. 268

7.11 Verified boot [151]. 270

7.12 Architecture for RA on Chrome OS [151]. 271

7.13 Flow of operations [151]. 272

284

Glossary

AES Advanced Encryption Standard.

API application programming interface.

AR Access Requestor.

BYOD Bring your own device.

CE Correlation Engine.

DDoS Distributed Denial of Service.

DMZ Demilitarized Zone.

DoS Denial of Service.

FC Feature Collector.

GPS Global Positioning System.

IDS Intrusion Detection System.

IEL Integrity Evaluation Layer.

IMC Integrity Measurement Collector.

IMEI International Mobile Station Equipment Identity.

IML Integrity Measurement Layer.

IMV Integrity Measurement Verifier.

285

Glossary

IPS Intrusion Prevention System.

JDK Java Development Kit.

MAP Metadata Access Point.

MAPC MAP Client.

MAPS MAP Server.

NAC Network Access Control.

NAL Network Access Layer.

NAP Network Access Protection.

OS Operating System.

P1TT Phase 1 Trust Token.

P2TT Phase 2 Trust Token.

PDP Policy Decision Point.

PEP Policy Enforcement Point.

PTS Platform Trust Service.

RA Remote Attestation.

RSPR Rated Security Property Record.

SL Security Level.

SP Security Property.

SPM Security Property Map.

SPR Security Property Record.

286

Glossary

SPRM Security Property Record Manager.

TCB Trusted Computing Base.

TCG Trusted Computing Group.

TL Trust Level.

TLP1
⇣

Phase 1 Trust Level.

TLP2
⇣

Phase 2 Trust Level.

TPM Trusted Platform Module.

TSS TCG Software Stack.

TT Trust Token.

TTM Trust Token Metadata.

VPN Virtual Private Network.

287

288

Bibliography

[1] P. Zheng and L. M. Ni, “Spotlight: The rise of the smart phone,” IEEE Distributed

Systems Online, vol. 7, no. 3, pp. 3–, Mar. 2006. [Retrieved: 18-May-2013]

http://dx.doi.org/10.1109/MDSO.2006.22

[2] I. Bente, “Towards a network-based approach for smartphone security,” Ph.D. dis-

sertation, UniBW Muenchen, July 2013.

[3] M. Becher, “Security of smartphones at the dawn of their ubiquitousness,” Ph.D.

dissertation, 2009.

[4] Android Webpage. [Retrieved: 18-May-2013] http://www.android.com/

[5] International Data Corporation (IDC), “Android marks fourth anniversary since

launch with 75.0% market share in third quarter,” Nov. 2012. [Retrieved:

18-May-2013] http://www.idc.com/getdoc.jsp?containerId=prUS23771812

[6] Hu�ngton Post, “Android Market Share Q3 2012: Google’s Still Beating Apple,

But Will The iPhone 5 Change That?” [Retrieved: 18-May-2013] http://www.

hu�ngtonpost.com/2012/09/18/android-market-share-q3-2012-n-1893292.html

[7] CVE-2011-1823. [Retrieved: 18-May-2013] http://www.cvedetails.com/cve/

CVE-2011-1823/

[8] L. Davi, A. Dmitrienko, A. Sadeghi, and M. Winandy, “Privilege escalation attacks

on android,” Information Security, pp. 346–360, 2011. [Retrieved: 18-May-2013]

http://www.springerlink.com/index/D275570090NG72JT.pdf

[9] Fabian Scherschel, “Exynos 4 critical security hole a↵ects many Galaxy

devices,” 2012. [Retrieved: 18-May-2013] http://www.h-online.com/open/news/

item/Exynos-4-critical-security-hole-a↵ects-many-Galaxy-devices-1770075.html

289

http://dx.doi.org/10.1109/MDSO.2006.22
http://www.android.com/
http://www.idc.com/getdoc.jsp?containerId=prUS23771812
http://www.huffingtonpost.com/2012/09/18/android-market-share-q3-2012-n-1893292.html
http://www.huffingtonpost.com/2012/09/18/android-market-share-q3-2012-n-1893292.html
http://www.cvedetails.com/cve/CVE-2011-1823/
http://www.cvedetails.com/cve/CVE-2011-1823/
http://www.springerlink.com/index/D275570090NG72JT.pdf
http://www.h-online.com/open/news/item/Exynos-4-critical-security-hole-affects-many-Galaxy-devices-1770075.html
http://www.h-online.com/open/news/item/Exynos-4-critical-security-hole-affects-many-Galaxy-devices-1770075.html

Bibliography

[10] R. Felder, C. Banse, C. Krauss, and V. Fusenig, “Android os security: Risks and lim-

itations,” May. [Retrieved: 18-May-2013] http://www.aisec.fraunhofer.de/content/

dam/aisec/de/pdf/tech%20reports/AISEC-TR-2012-001-Android-OS-Security.pdf

[11] J. Bickford, R. O’Hare, A. Baliga, V. Ganapathy, and L. Iftode, “Rootkits on smart

phones: attacks, implications and opportunities,” in Proceedings of the Eleventh

Workshop on Mobile Computing Systems & Applications, ser. HotMobile

’10. New York, NY, USA: ACM, 2010, pp. 49–54. [Retrieved: 18-May-2013]

http://doi.acm.org/10.1145/1734583.1734596

[12] W. Shin, S. Kwak, S. Kiyomoto, K. Fukushima, and T. Tanaka, “A small but

non-negligible flaw in the android permission scheme,” in Policies for Distributed

Systems and Networks (POLICY), 2010 IEEE International Symposium on, july

2010, pp. 107 –110.

[13] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang,

“Soundcomber: A Stealthy and Context-Aware Sound Trojan for Smart-

phones,” in Proceedings of the 18th Annual Network and Distributed System

Security Symposium (NDSS), 2011, pp. 17–33. [Retrieved: 18-May-2013]

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Soundcomber:

+A+Stealthy+and+Context-Aware+Sound+Trojan+for+Smartphones#0

[14] L. Cai, S. Machiraju, and H. Chen, “Defending against sensor-sni�ng attacks

on mobile phones,” in Proceedings of the 1st ACM workshop on Networking,

systems, and applications for mobile handhelds - MobiHeld ’09. New York,

New York, USA: ACM Press, 2009, pp. 31–36. [Retrieved: 18-May-2013]

http://portal.acm.org/citation.cfm?doid=1592606.1592614

[15] D. Damopoulos, G. Kambourakis, and S. Gritzalis, “isam: An iphone stealth air-

borne malware,” Future Challenges in Security and Privacy for Academia and In-

dustry, pp. 17–28, 2011.

[16] S. Esser, “Exploiting the iOS kernel,” Black Hat USA, 2011.

[17] A. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of mobile malware

in the wild,” in Proceedings of the 1st ACM workshop on Security and privacy in

smartphones and mobile devices. ACM, 2011, pp. 3–14.

290

http://www.aisec.fraunhofer.de/content/dam/aisec/de/pdf/tech%20reports/AISEC-TR-2012-001-Android-OS-Security.pdf
http://www.aisec.fraunhofer.de/content/dam/aisec/de/pdf/tech%20reports/AISEC-TR-2012-001-Android-OS-Security.pdf
http://doi.acm.org/10.1145/1734583.1734596
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Soundcomber:+A+Stealthy+and+Context-Aware+Sound+Trojan+for+Smartphones#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Soundcomber:+A+Stealthy+and+Context-Aware+Sound+Trojan+for+Smartphones#0
http://portal.acm.org/citation.cfm?doid=1592606.1592614

Bibliography

[18] I. Bente, G. Dreo, B. Hellmann, J. Vieweg, and J. von Helden, “TCADS: Trustwor-

thy, Context-related Anomaly Detection for Smartphones,” Presented at the 15th In-

ternational Conference on Network-Based Information Systems (NBiS 2012), 2012,

Best Paper Award.

[19] ——, “Trustworthy Anomaly Detection for Smartphones,” Poster presented at the

13th Workshop on Mobile Computing Systems and Applications (HotMobile 2012),

2012.

[20] The White House, “Bring Your Own Device.” [Retrieved: 18-May-2013]

http://www.whitehouse.gov/digitalgov/bring-your-own-device

[21] ESUKOM Konsortium, “ESUKOM Project Page,” 2012. [Retrieved: 18-May-2013]

http://www.esukom.de

[22] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifi-

cation, IEEE Std. 802.11, 1997.

[23] J. Richter, N. Kuntze, and C. Rudolph, “Security digital evidence,” in Systematic

Approaches to Digital Forensic Engineering (SADFE), 2010 Fifth IEEE Interna-

tional Workshop on, may 2010, pp. 119 –130.

[24] N. Kuntze and C. Rudolph, “Secure digital chains of evidence,” in Systematic Ap-

proaches to Digital Forensic Engineering (SADFE), 2011 IEEE Sixth International

Workshop on, may 2011, pp. 1 –8.

[25] H. Debar, M. Dacier, and A. Wespi, “A revised taxonomy for intrusion-

detection systems,” Annals of Telecommunications, vol. 55, pp. 361–378,

2000, 10.1007/BF02994844. [Retrieved: 18-May-2013] http://dx.doi.org/10.1007/

BF02994844

[26] ——, “Towards a taxonomy of intrusion-detection systems,” Computer Networks,

vol. 31, no. 8, pp. 805 – 822, 1999. [Retrieved: 18-May-2013] http://www.

sciencedirect.com/science/article/pii/S1389128698000176

[27] T. Verwoerd and R. Hunt, “Intrusion detection techniques and approaches,”

Computer Communications, vol. 25, no. 15, pp. 1356 – 1365, 2002. [Retrieved: 18-

May-2013] http://www.sciencedirect.com/science/article/pii/S0140366402000373

291

http://www.whitehouse.gov/digitalgov/bring-your-own-device
http://www.esukom.de
http://dx.doi.org/10.1007/BF02994844
http://dx.doi.org/10.1007/BF02994844
http://www.sciencedirect.com/science/article/pii/S1389128698000176
http://www.sciencedirect.com/science/article/pii/S1389128698000176
http://www.sciencedirect.com/science/article/pii/S0140366402000373

Bibliography

[28] S. Axelsson, “Intrusion detection systems: A survey and taxonomy,” Tech. Rep.,

2000.

[29] “Testing intrusion detection systems: a critique of the 1998 and 1999 darpa

intrusion detection system evaluations as performed by lincoln laboratory,” ACM

Trans. Inf. Syst. Secur., vol. 3, no. 4, pp. 262–294, Nov. 2000. [Retrieved:

18-May-2013] http://doi.acm.org/10.1145/382912.382923

[30] M. Roesch and S. Telecommunications, “Snort - lightweight intrusion detection for

networks,” 1999, pp. 229–238.

[31] S. Kumar and E. H. Spa↵ord, “A pattern matching model for misuse intrusion

detection.”

[32] R. Erbacher, K. Walker, and D. Frincke, “Intrusion and misuse detection in large-

scale systems,” Computer Graphics and Applications, IEEE, vol. 22, no. 1, pp. 38

–47, jan/feb 2002.

[33] A. Sundaram, “An introduction to intrusion detection,” Crossroads, vol. 2, no. 4,

pp. 3–7, Apr. 1996. [Retrieved: 18-May-2013] http://doi.acm.org/10.1145/332159.

332161

[34] A. Lazarevic, A. Ozgur, L. Ertoz, J. Srivastava, and V. Kumar, “A comparative

study of anomaly detection schemes in network intrusion detection,” in In Proceed-

ings of the Third SIAM International Conference on Data Mining, 2003.

[35] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM

Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009. [Retrieved: 18-May-2013]

http://doi.acm.org/10.1145/1541880.1541882

[36] W. Lee and D. Xiang, “Information-theoretic measures for anomaly detection,” in

Security and Privacy, 2001. S P 2001. Proceedings. 2001 IEEE Symposium on, 2001,

pp. 130 –143.

[37] Z. Zhang, J. Li, C. N. Manikopoulos, J. Jorgenson, and J. Ucles, “A hierarchical

anomaly network intrusion detection system using neural network classification,” in

CD-ROM Proceedings of 2001 WSES International Conference on: Neural Networks

and Applications (NNA ’01, 2001.

292

http://doi.acm.org/10.1145/382912.382923
http://doi.acm.org/10.1145/332159.332161
http://doi.acm.org/10.1145/332159.332161
http://doi.acm.org/10.1145/1541880.1541882

Bibliography

[38] P. Mell and M. McLarnon, “Mobile agent attack resistant distributed hierarchical

intrusion detection systems,” in Purdue University, 1999.

[39] M. Locasto, J. Parekh, A. Keromytis, and S. Stolfo, “Towards collaborative security

and p2p intrusion detection,” in Information Assurance Workshop, 2005. IAW ’05.

Proceedings from the Sixth Annual IEEE SMC, june 2005, pp. 333 – 339.

[40] V. Yegneswaran, P. Barford, and S. Jha, “Global intrusion detection in the domino

overlay system,” in In Proceedings of Network and Distributed System Security Sym-

posium (NDSS 04), 2004.

[41] R. Bidou, J. Bourgeois, and F. Spies, “Towards a global security architecture

for intrusion detection and reaction management,” in Information Security

Applications, ser. Lecture Notes in Computer Science, K.-J. Chae and M. Yung,

Eds. Springer Berlin / Heidelberg, 2004, vol. 2908, pp. 1769–1785. [Retrieved:

18-May-2013] http://dx.doi.org/10.1007/978-3-540-24591-9 9

[42] A. K. Ganame, J. Bourgeois, R. Bidou, and F. Spies, “A global security

architecture for intrusion detection on computer networks,” Computers and

Security, vol. 27, no. 1–2, pp. 30 – 47, 2008. [Retrieved: 18-May-2013]

http://www.sciencedirect.com/science/article/pii/S0167404808000047

[43] R. Ramachandran, S. Neelakantan, and A. Bidyarthy, “Behavior model for detecting

data exfiltration in network environment,” in Internet Multimedia Systems Archi-

tecture and Application (IMSAA), 2011 IEEE 5th International Conference on, dec.

2011, pp. 1 –5.

[44] R. Cullingford, “Correlation and collaboration in anomaly detection,” in Conference

For Homeland Security, 2009. CATCH ’09. Cybersecurity Applications Technology,

march 2009, pp. 251 –254.

[45] C. V. Zhou, C. Leckie, and S. Karunasekera, “A survey of coordinated attacks

and collaborative intrusion detection,” Computers and Security, vol. 29, no. 1, pp.

124 – 140, 2010. [Retrieved: 18-May-2013] http://www.sciencedirect.com/science/

article/pii/S016740480900073X

293

http://dx.doi.org/10.1007/978-3-540-24591-9_9
http://www.sciencedirect.com/science/article/pii/S0167404808000047
http://www.sciencedirect.com/science/article/pii/S016740480900073X
http://www.sciencedirect.com/science/article/pii/S016740480900073X

Bibliography

[46] C. Zhou, C. Leckie, S. Karunasekera, and T. Peng, “A self-healing, self-protecting

collaborative intrusion detection architecture to trace-back fast-flux phishing do-

mains,” in Network Operations and Management Symposium Workshops, 2008.

NOMS Workshops 2008. IEEE, april 2008, pp. 321 –327.

[47] F. Cuppens and A. Miege, “Alert correlation in a cooperative intrusion detection

framework,” in Security and Privacy, 2002. Proceedings. 2002 IEEE Symposium on,

2002, pp. 202 – 215.

[48] H. Debar, D. Curry, and B. Feinstein, “The Intrusion Detection Message Exchange

Format (IDMEF),” RFC 4765 (Experimental), Internet Engineering Task Force,

March 2007. [Retrieved: 18-May-2013] http://www.ietf.org/rfc/rfc4765.txt

[49] R. Janakiraman, M. Waldvogel, and Q. Zhang, “Indra: a peer-to-peer approach

to network intrusion detection and prevention,” in Enabling Technologies: Infras-

tructure for Collaborative Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth

IEEE International Workshops on, june 2003, pp. 226 – 231.

[50] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust management,” in Secu-

rity and Privacy, 1996. Proceedings., 1996 IEEE Symposium on, may 1996, pp. 164

–173.

[51] A. Abdul-Rahman, “The pgp trust model,” April 1997, eDI-Forum.

[52] A. D. Keromytis, J. Parekh, P. N. Gross, G. Kaiser, V. Misra, J. Nieh,

D. Rubenstein, and S. Stolfo, “A holistic approach to service survivability,” in

Proceedings of the 2003 ACM workshop on Survivable and self-regenerative systems:

in association with 10th ACM Conference on Computer and Communications

Security, ser. SSRS ’03. New York, NY, USA: ACM, 2003, pp. 11–22. [Retrieved:

18-May-2013] http://doi.acm.org/10.1145/1036921.1036923

[53] Y. Bai and H. Kobayashi, “Intrusion detection systems: technology and develop-

ment,” in Advanced Information Networking and Applications, 2003. AINA 2003.

17th International Conference on, march 2003, pp. 710 – 715.

294

http://www.ietf.org/rfc/rfc4765.txt
http://doi.acm.org/10.1145/1036921.1036923

Bibliography

[54] C. Duma, M. Karresand, N. Shahmehri, and G. Caronni, “A trust-aware, p2p-based

overlay for intrusion detection,” in Database and Expert Systems Applications, 2006.

DEXA ’06. 17th International Workshop on, 0-0 2006, pp. 692 –697.

[55] C. Fung, J. Zhang, I. Aib, and R. Boutaba, “Robust and scalable trust management

for collaborative intrusion detection,” in Integrated Network Management, 2009. IM

’09. IFIP/IEEE International Symposium on, june 2009, pp. 33 –40.

[56] C. Fung, O. Baysal, J. Zhang, I. Aib, and R. Boutaba, “Trust management

for host-based collaborative intrusion detection,” in Managing Large-Scale Service

Deployment, ser. Lecture Notes in Computer Science, F. Turck, W. Kellerer, and

G. Kormentzas, Eds. Springer Berlin Heidelberg, 2008, vol. 5273, pp. 109–122.

[Retrieved: 18-May-2013] http://dx.doi.org/10.1007/978-3-540-87353-2 9

[57] C. Fung, J. Zhang, I. Aib, and R. Boutaba, “Trust management and admission

control for host-based collaborative intrusion detection,” Journal of Network and

Systems Management, vol. 19, pp. 257–277, 2011, 10.1007/s10922-010-9176-7.

[Retrieved: 18-May-2013] http://dx.doi.org/10.1007/s10922-010-9176-7

[58] ——, “Dirichlet-based trust management for e↵ective collaborative intrusion detec-

tion networks,” Network and Service Management, IEEE Transactions on, vol. 8,

no. 2, pp. 79 –91, june 2011.

[59] D. Quercia, S. Hailes, and L. Capra, “B-trust: Bayesian trust framework for

pervasive computing,” in Trust Management, ser. Lecture Notes in Computer

Science, K. Stølen, W. Winsborough, F. Martinelli, and F. Massacci, Eds.

Springer Berlin / Heidelberg, 2006, vol. 3986, pp. 298–312. [Retrieved:

18-May-2013] http://dx.doi.org/10.1007/11755593 22

[60] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed.

Pearson Education, 2003.

[61] S. T. Zargar, H. Takabi, and J. Joshi, “Dcdidp: A distributed, collaborative, and

data-driven intrusion detection and prevention framework for cloud computing en-

vironments.” IEEE, 4 2012.

295

http://dx.doi.org/10.1007/978-3-540-87353-2_9
http://dx.doi.org/10.1007/s10922-010-9176-7
http://dx.doi.org/10.1007/11755593_22

Bibliography

[62] S. S. Tripathi and S. Agrawal, “A survey on enhanced intrusion detection

system in mobile ad hoc network,” International Journal of Advanced Research in

Computer Engineering and Technology(IJARCET), vol. 1, no. 7, 2012. [Retrieved:

18-May-2013] http://ijarcet.org/index.php/ijarcet/article/view/367

[63] Y. Zhang and W. Lee, “Intrusion detection in wireless ad-hoc networks,” in

Proceedings of the 6th annual international conference on Mobile computing and

networking, ser. MobiCom ’00. New York, NY, USA: ACM, 2000, pp. 275–283.

[Retrieved: 18-May-2013] http://doi.acm.org/10.1145/345910.345958

[64] A. Mishra, K. Nadkarni, and A. Patcha, “Intrusion detection in wireless ad hoc

networks,” Wireless Communications, IEEE, vol. 11, no. 1, pp. 48 – 60, feb 2004.

[65] O. Kachirski and R. Guha, “E↵ective intrusion detection using multiple sensors in

wireless ad hoc networks,” in System Sciences, 2003. Proceedings of the 36th Annual

Hawaii International Conference on, jan. 2003, p. 8 pp.

[66] ——, “Intrusion detection using mobile agents in wireless ad hoc networks,” in

Knowledge Media Networking, 2002. Proceedings. IEEE Workshop on, 2002, pp.

153 – 158.

[67] D. B. Roy, R. Chaki, and N. Chaki, “A new cluster-based wormhole intrusion de-

tection algorithm for mobile ad-hoc networks,” CoRR, vol. abs/1004.0587, 2010.

[68] H. Deng, R. Xu, J. Li, F. Zhang, R. Levy, and W. Lee, “Agent-based cooperative

anomaly detection for wireless ad hoc networks,” in Parallel and Distributed Sys-

tems, 2006. ICPADS 2006. 12th International Conference on, vol. 1, 0-0 2006, p. 8

pp.

[69] M. S. I. Mamun and A. F. M. S. Kabir, “Hierarchical design based intrusion detec-

tion system for wireless ad hoc network,” CoRR, vol. abs/1208.3772, 2012.

[70] A. Morais and A. Cavalli, “A distributed intrusion detection scheme for wireless

ad hoc networks,” in Proceedings of the 27th Annual ACM Symposium on Applied

Computing, ser. SAC ’12. New York, NY, USA: ACM, 2012, pp. 556–562.

[Retrieved: 18-May-2013] http://doi.acm.org/10.1145/2245276.2245382

296

http://ijarcet.org/index.php/ijarcet/article/view/367
http://doi.acm.org/10.1145/345910.345958
http://doi.acm.org/10.1145/2245276.2245382

Bibliography

[71] N. Deb and N. Chaki, “Tids: Trust-based intrusion detection system for wireless

ad-hoc networks,” in Computer Information Systems and Industrial Management,

ser. Lecture Notes in Computer Science, A. Cortesi, N. Chaki, K. Saeed, and

S. Wierzchon, Eds. Springer Berlin / Heidelberg, 2012, vol. 7564, pp. 80–91.

[Retrieved: 18-May-2013] http://dx.doi.org/10.1007/978-3-642-33260-9 6

[72] K.-W. Yeom and J.-H. Park, “An immune system inspired approach of collaborative

intrusion detection system using mobile agents in wireless ad hoc networks,” in

Computational Intelligence and Security, ser. Lecture Notes in Computer Science,

Y. Hao, J. Liu, Y.-P. Wang, Y.-m. Cheung, H. Yin, L. Jiao, J. Ma, and Y.-C. Jiao,

Eds. Springer Berlin / Heidelberg, 2005, vol. 3802, pp. 204–211, 10.1007/11596981-

31. [Retrieved: 18-May-2013] http://dx.doi.org/10.1007/11596981 31

[73] K. Aberer and Z. Despotovic, “Managing trust in a peer-2-peer information

system,” in Proceedings of the tenth international conference on Information and

knowledge management, ser. CIKM ’01. New York, NY, USA: ACM, 2001, pp.

310–317. [Retrieved: 18-May-2013] http://doi.acm.org/10.1145/502585.502638

[74] L. Mui, M. Mohtashemi, and A. Halberstadt, “A computational model of trust

and reputation,” in System Sciences, 2002. HICSS. Proceedings of the 35th Annual

Hawaii International Conference on, jan. 2002, pp. 2431 – 2439.

[75] Z. Liu, A. W. Joy, and R. A. Thompson, “A dynamic trust model for mobile ad hoc

networks,” Future Trends of Distributed Computing Systems, IEEE International

Workshop, vol. 0, pp. 80–85, 2004.

[76] A. Pirzada, A. Datta, and C. McDonald, “Trust-based routing for ad-hoc wireless

networks,” in Networks, 2004. (ICON 2004). Proceedings. 12th IEEE International

Conference on, vol. 1, nov. 2004, pp. 326 – 330 vol.1.

[77] F. Azzedin and M. Maheswaran, “Evolving and managing trust in grid comput-

ing systems,” in Electrical and Computer Engineering, 2002. IEEE CCECE 2002.

Canadian Conference on, vol. 3, 2002, pp. 1424 – 1429 vol.3.

[78] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis, “The role of trust manage-

ment in distributed systems security,” in Secure Internet Programming, ser. Lecture

297

http://dx.doi.org/10.1007/978-3-642-33260-9_6
http://dx.doi.org/10.1007/11596981_31
http://doi.acm.org/10.1145/502585.502638

Bibliography

Notes in Computer Science, J. Vitek and C. Jensen, Eds. Springer Berlin / Hei-

delberg, 1999, vol. 1603, pp. 185–210.

[79] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust management,” in In

Proceedings of the 1996 IEEE Symposium on Security and Privacy. IEEE Computer

Society Press, 1996, pp. 164–173.

[80] I. Thomas, M. Menzel, and C. Meinel, “Using quantified trust levels to

describe authentication requirements in federated identity management,” in

Proceedings of the 2008 ACM workshop on Secure web services, ser. SWS

’08. New York, NY, USA: ACM, 2008, pp. 71–80. [Retrieved: 18-May-2013]

http://doi.acm.org/10.1145/1456492.1456504

[81] B. K. Bhargava and Y. Zhong, “Authorization based on evidence and trust,”

in Proceedings of the 4th International Conference on Data Warehousing and

Knowledge Discovery, ser. DaWaK 2000. London, UK: Springer-Verlag, 2002, pp.

94–103. [Retrieved: 18-May-2013] http://portal.acm.org/citation.cfm?id=646111.

679598

[82] E. Papalilo and B. Freisleben, “Towards a flexible trust model for grid environ-

ments,” in Grid Services Engineering and Management, ser. Lecture Notes in Com-

puter Science, M. Jeckle, R. Kowalczyk, and P. Braun, Eds. Springer Berlin /

Heidelberg, 2004, vol. 3270, pp. 35–65.

[83] Y. Wang and J. Vassileva, “Bayesian network-based trust model,” in Web Intelli-

gence, 2003. WI 2003. Proceedings. IEEE/WIC International Conference on, oct.

2003, pp. 372 – 378.

[84] Y. Sun, Z. Han, W. Yu, and K. Liu, “A trust evaluation framework in distributed

networks: Vulnerability analysis and defense against attacks,” in INFOCOM 2006.

25th IEEE International Conference on Computer Communications. Proceedings,

april 2006, pp. 1 –13.

[85] W. Yu, Y. Sun, and K. J. R. Liu, “Hadof: Defense against routing disruptions in

mobile ad hoc networks,” in in IEEE INFOCOM, 2005, pp. 1251–1261.

298

http://doi.acm.org/10.1145/1456492.1456504
http://portal.acm.org/citation.cfm?id=646111.679598
http://portal.acm.org/citation.cfm?id=646111.679598

Bibliography

[86] F. Bao, I.-R. Chen, M. Chang, and J.-H. Cho, “Trust-based intrusion detection

in wireless sensor networks,” in Communications (ICC), 2011 IEEE International

Conference on, june 2011, pp. 1 –6.

[87] X. Chen, K. Makki, K. Yen, and N. Pissinou, “Sensor network security: a survey,”

Communications Surveys Tutorials, IEEE, vol. 11, no. 2, pp. 52 –73, quarter 2009.

[88] K. Liu, N. Abu-Ghazaleh, and K.-D. Kang, “Location verification and trust

management for resilient geographic routing,” Journal of Parallel and Distributed

Computing, vol. 67, no. 2, pp. 215 – 228, 2007. [Retrieved: 18-May-2013]

http://www.sciencedirect.com/science/article/pii/S0743731506001602

[89] F. Wang, C. Huang, J. Zhao, and C. Rong, “Idmtm: A novel intrusion detection

mechanism based on trust model for ad hoc networks,” in Advanced Information

Networking and Applications, 2008. AINA 2008. 22nd International Conference on,

march 2008, pp. 978 –984.

[90] B.-J. Chang and S.-L. Kuo, “Markov chain trust model for trust-value analysis

and key management in distributed multicast manets,” Vehicular Technology, IEEE

Transactions on, vol. 58, no. 4, pp. 1846 –1863, may 2009.

[91] L. Ma, Y.-M. Zhang, and Q. Wei, “A trust evaluation method for dynamic dis-

tributed environment,” in Machine Learning and Cybernetics (ICMLC), 2010 In-

ternational Conference on, vol. 4, july 2010, pp. 1935 –1940.

[92] A.-R. Sadeghi and C. Stüble, “Property-based attestation for computing platforms:

caring about properties, not mechanisms,” in Proceedings of the 2004 workshop on

New security paradigms, ser. NSPW ’04. New York, NY, USA: ACM, 2004, pp.

67–77. [Retrieved: 18-May-2013] http://doi.acm.org/10.1145/1065907.1066038

[93] TCG Trusted Platform Module Work Group, “Tpm main part 1 de-

sign principles,” July 2007, specification Version 1.2 Level 2 Revision

103. [Retrieved: 18-May-2013] http://www.trustedcomputinggroup.org/resources/

tpmspecificationversion12revision103part13

[94] ——, “TPM Main Part 2 TPM Structures,” October 2006,

specification Version 1.2 Level 2 Revision 103. [Retrieved: 18-

299

http://www.sciencedirect.com/science/article/pii/S0743731506001602
http://doi.acm.org/10.1145/1065907.1066038
http://www.trustedcomputinggroup.org/resources/tpmspecificationversion12revision103part13
http://www.trustedcomputinggroup.org/resources/tpmspecificationversion12revision103part13

Bibliography

May-2013] http://www.trustedcomputinggroup.org/resources/tpm specification

version 12 revision 103 part 1 3

[95] ——, “TPMMain Part 3 Commands,” October 2006, specification Version 1.2 Level

2 Revision 103. [Retrieved: 18-May-2013] http://www.trustedcomputinggroup.org/

resources/tpm specification version 12 revision 103 part 1 3

[96] TCG Trusted Network Connect Work Group, “TNC Architecture for In-

teroperability, Version 1.5, Revision 3,” Trusted Computing Group, May

2012. [Retrieved: 18-May-2013] http://www.trustedcomputinggroup.org/resources/

tnc architecture for interoperability version 13

[97] K. Dietrich and J. Winter, “Secure boot revisited,” in Young Computer Scientists,

2008. ICYCS 2008. The 9th International Conference for, nov. 2008, pp. 2360 –2365.

[98] U. Kühn, M. Selhorst, and C. Stüble, “Realizing property-based attestation and

sealing with commonly available hard- and software,” in STC ’07: Proceedings of

the 2007 ACM workshop on Scalable trusted computing. New York, NY, USA:

ACM, 2007, pp. 50–57.

[99] L. Chen, R. Landfermann, H. Löhr, M. Rohe, A.-R. Sadeghi, and C. Stüble, “A

protocol for property-based attestation,” in STC ’06: Proceedings of the first ACM

workshop on Scalable trusted computing. New York, NY, USA: ACM, 2006, pp.

7–16.

[100] R. Korthaus, A.-R. Sadeghi, C. Stüble, and J. Zhan, “A practical property-based

bootstrap architecture,” in STC ’09: Proceedings of the 2009 ACM workshop on

Scalable trusted computing. New York, NY, USA: ACM, 2009, pp. 29–38.

[101] V. Vijayakumar and R. WahidhaBanu, “Trust and reputation aware security for

resource selection in grid computing,” in Security Technology, 2008. SECTECH

’08. International Conference on, dec. 2008, pp. 121 –124.

[102] V. Vijayakumar, R. S. Wahida Banu, and J. H. Abawajy, “An e�cient approach

based on trust and reputation for secured selection of grid resources,” International

Journal of Parallel, Emergent and Distributed Systems, vol. 27, no. 1, pp.

300

http://www.trustedcomputinggroup.org/resources/tpm_specification_version_12_revision_103_part_1__3
http://www.trustedcomputinggroup.org/resources/tpm_specification_version_12_revision_103_part_1__3
http://www.trustedcomputinggroup.org/resources/tpm_specification_version_12_revision_103_part_1__3
http://www.trustedcomputinggroup.org/resources/tpm_specification_version_12_revision_103_part_1__3
http://www.trustedcomputinggroup.org/resources/tnc_architecture_for_interoperability_version_13
http://www.trustedcomputinggroup.org/resources/tnc_architecture_for_interoperability_version_13

Bibliography

1–17, 2012. [Retrieved: 18-May-2013] http://www.tandfonline.com/doi/abs/10.

1080/17445760.2011.575048

[103] B. Zhang, Y. Xiang, and Q. Xu, “Trust and reputation based model selection mech-

anism for decision-making,” in Networks Security Wireless Communications and

Trusted Computing (NSWCTC), 2010 Second International Conference on, vol. 2,

april 2010, pp. 14 –17.

[104] K.Selvi and D. W. Banu, “A hybrid model for load aware trust management in

grid,” Journal of Computer Science, vol. 7, no. 8, pp. 1237–1243, 2011.

[105] B. Gupta, H. Kaur, N. Namita, and P. Bedi, “Trust based access control for grid

resources,” in Communication Systems and Network Technologies (CSNT), 2011

International Conference on, june 2011, pp. 678 –682.

[106] TCG Infrastructure Work Group, “TCG Specification Architec-

ture Overview,” August 2007, specification Version 1.4. [Retrieved:

18-May-2013] http://www.trustedcomputinggroup.org/files/resource files/

AC652DE1-1D09-3519-ADA026A0C05CFAC2/TCG 1 4 Architecture Overview.

pdf

[107] Trusted Computing Group, “TCG Website,” 2012. [Retrieved: 18-May-2013]

http://www.trustedcomputinggroup.org

[108] F. Azzedin and M. Maheswaran, “Towards trust-aware resource management in grid

computing systems,” in Cluster Computing and the Grid, 2002. 2nd IEEE/ACM

International Symposium on, may 2002, p. 452.

[109] Trusted Computing Group, “TCG Glossary,” 2012. [Retrieved: 18-May-2013]

http://www.trustedcomputinggroup.org/developers/glossary

[110] B. Parno, J. M. McCune, and A. Perrig, “Roots of trust,” in Bootstrapping Trust

in Modern Computers, ser. SpringerBriefs in Computer Science. Springer New

York, 2011, vol. 10, pp. 35–40. [Retrieved: 18-May-2013] http://dx.doi.org/10.

1007/978-1-4614-1460-5 6

301

http://www.tandfonline.com/doi/abs/10.1080/17445760.2011.575048
http://www.tandfonline.com/doi/abs/10.1080/17445760.2011.575048
http://www.trustedcomputinggroup.org/files/resource_files/AC652DE1-1D09-3519-ADA026A0C05CFAC2/TCG_1_4_Architecture_Overview.pdf
http://www.trustedcomputinggroup.org/files/resource_files/AC652DE1-1D09-3519-ADA026A0C05CFAC2/TCG_1_4_Architecture_Overview.pdf
http://www.trustedcomputinggroup.org/files/resource_files/AC652DE1-1D09-3519-ADA026A0C05CFAC2/TCG_1_4_Architecture_Overview.pdf
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org/developers/glossary
http://dx.doi.org/10.1007/978-1-4614-1460-5_6
http://dx.doi.org/10.1007/978-1-4614-1460-5_6

Bibliography

[111] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.

Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we remember:

cold-boot attacks on encryption keys,” Commun. ACM, vol. 52, no. 5, pp. 91–98,

May 2009. [Retrieved: 18-May-2013] http://doi.acm.org/10.1145/1506409.1506429

[112] T. Vidas, “Volatile memory acquisition via warm boot memory survivability,” in

System Sciences (HICSS), 2010 43rd Hawaii International Conference on, jan. 2010,

pp. 1 –6.

[113] I. Bente, J. Vieweg, and J. von Helden, “Towards trustworthy networks with open

source software,” Horizons in Computer Science Research, vol. 3, 2011.

[114] IEEE, “802.1X,” 2004. [Retrieved: 18-May-2013] http://standards.ieee.org/

getieee802/download/802.1X-2004.pdf

[115] B. Aboba, L. J. Blunk, J. R. Vollbrecht, J. Carlson, and H. Levkowetz, “Extensible

authentication protocol (eap),” RFC 3748, June 2004.

[116] C. Rigney, S. Livingston, A. Merit, and W. Daydreamer, “Remote authentication

dial in user service (radius),” RFC 2865, 2000.

[117] Ofir Arkin, “Bypassing Network Access Control Systems,” September 2006. [Re-

trieved: 18-May-2013] http://www.blackhat.com/presentations/bh-dc-07/Arkin/

Paper/bh-dc-07-Arkin-WP.pdf

[118] M. Thumann and D.-J. Roecher, “NAC@ATTACK - Hacking the Cisco NAC

Framework,” March 2007. [Retrieved: 18-May-2013] http://www.blackhat.com/

presentations/bh-europe-07/Dror-Thumann/Whitepaper/bh-eu-07-dror-WP.pdf

[119] TCG Trusted Network Connect Work Group, “Platform Trust Services Interface

Specification (IF-PTS),” November 2006, specification Version 1.0 Revision

1. [Retrieved: 18-May-2013] http://www.trustedcomputinggroup.org/files/temp/

6427263A-1D09-3519-ADEE3EFF23C8F901/IWG 20IF-PTS v1.pdf

[120] I. Bente, J. Vieweg, and J. von Helden, “Privacy enhanced trusted network

connect,” in Trusted Systems, ser. Lecture Notes in Computer Science, L. Chen

and M. Yung, Eds. Springer Berlin / Heidelberg, 2010, vol. 6163, pp. 129–145.

[Retrieved: 18-May-2013] http://dx.doi.org/10.1007/978-3-642-14597-1 8

302

http://doi.acm.org/10.1145/1506409.1506429
http://standards.ieee.org/getieee802/download/802.1X-2004.pdf
http://standards.ieee.org/getieee802/download/802.1X-2004.pdf
http://www.blackhat.com/presentations/bh-dc-07/Arkin/Paper/bh-dc-07-Arkin-WP.pdf
http://www.blackhat.com/presentations/bh-dc-07/Arkin/Paper/bh-dc-07-Arkin-WP.pdf
http://www.blackhat.com/presentations/bh-europe-07/Dror-Thumann/Whitepaper/bh-eu-07-dror-WP.pdf
http://www.blackhat.com/presentations/bh-europe-07/Dror-Thumann/Whitepaper/bh-eu-07-dror-WP.pdf
http://www.trustedcomputinggroup.org/files/temp/6427263A-1D09-3519-ADEE3EFF23C8F901/IWG_20IF-PTS_v1.pdf
http://www.trustedcomputinggroup.org/files/temp/6427263A-1D09-3519-ADEE3EFF23C8F901/IWG_20IF-PTS_v1.pdf
http://dx.doi.org/10.1007/978-3-642-14597-1_8

Bibliography

[121] TCG Trusted Network Connect Work Group, “TNC IF-M: TLV

Binding,” January 2010, specification Version 1.0 Revision 37. [Re-

trieved: 18-May-2013] http://www.trustedcomputinggroup.org/files/resource files/

495862FF-1D09-3519-AD8977DC98C1167C/TNC IFM TLVBinding v1 0 r37a.

pdf

[122] E. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attestation,” in

Proceedings of the 11th ACM conference on Computer and communications security,

ser. CCS ’04. New York, NY, USA: ACM, 2004, pp. 132–145. [Retrieved:

18-May-2013] http://doi.acm.org/10.1145/1030083.1030103

[123] J. Camenisch, “Better privacy for trusted computing platforms,” in ESORICS

’04: Proceedings of 9th European Symposium On Research in Computer Security.

Springer, 2004.

[124] J. M. McCune, A. Perrig, A. Seshadri, and L. van Doorn, “Turtles all the

way down: research challenges in user-based attestation,” in Proceedings of the

2nd USENIX workshop on Hot topics in security, ser. HOTSEC’07. Berkeley,

CA, USA: USENIX Association, 2007, pp. 6:1–6:5. [Retrieved: 18-May-2013]

http://dl.acm.org/citation.cfm?id=1361419.1361425

[125] E. Cesena, G. Ramunno, R. Sassu, D. Vernizzi, and A. Lioy, “On scalability of

remote attestation,” in Proceedings of the sixth ACM workshop on Scalable trusted

computing, ser. STC ’11. New York, NY, USA: ACM, 2011, pp. 25–30. [Retrieved:

18-May-2013] http://doi.acm.org/10.1145/2046582.2046588

[126] I. Bente, J. Vieweg, J. von Helden, M. Jungbauer, and N. Pohlmann, “tNAC -

Trusted Network Access Control,” Poster presented at the 19th Usenix Security

Symposium (USENIX ’10), 2010.

[127] B. Pfitzmann, J. Riordan, C. Stüble, M. Waidner, and A. Weber, “The perseus

system architecture,” 2001.

[128] A. Alkassar and C. Stüble, “Die Sicherheitsplattform Turaya,” in Trusted

Computing, N. Pohlmann and H. Reimer, Eds. Vieweg+Teubner, 2008, pp. 86–96.

[Retrieved: 18-May-2013] http://dx.doi.org/10.1007/978-3-8348-9452-6 7

303

http://www.trustedcomputinggroup.org/files/resource_files/495862FF-1D09-3519-AD8977DC98C1167C/TNC_IFM_TLVBinding_v1_0_r37a.pdf
http://www.trustedcomputinggroup.org/files/resource_files/495862FF-1D09-3519-AD8977DC98C1167C/TNC_IFM_TLVBinding_v1_0_r37a.pdf
http://www.trustedcomputinggroup.org/files/resource_files/495862FF-1D09-3519-AD8977DC98C1167C/TNC_IFM_TLVBinding_v1_0_r37a.pdf
http://doi.acm.org/10.1145/1030083.1030103
http://dl.acm.org/citation.cfm?id=1361419.1361425
http://doi.acm.org/10.1145/2046582.2046588
http://dx.doi.org/10.1007/978-3-8348-9452-6_7

Bibliography

[129] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,” RFC 4301

(Proposed Standard), Internet Engineering Task Force, December 2005. [Retrieved:

18-May-2013] http://www.ietf.org/rfc/rfc4301.txt

[130] C. Kaufman, P. Ho↵man, Y. Nir, and P. Eronen, “Internet Key Exchange Protocol

Version 2 (IKEv2),” RFC 5996 (Proposed Standard), Internet Engineering

Task Force, Sep. 2010, updated by RFC 5998. [Retrieved: 18-May-2013]

http://www.ietf.org/rfc/rfc5996.txt

[131] M. Feilner, OpenVPN: Building and Integrating Virtual Private Networks. Packt

Publishing, 2006.

[132] A.-R. Sadeghi and S. Schulz, “Extending ipsec for e�cient remote attestation,” in

Financial Cryptography and Data Security, ser. Lecture Notes in Computer Science,

R. Sion, R. Curtmola, S. Dietrich, A. Kiayias, J. Miret, K. Sako, and F. Sebé,

Eds. Springer Berlin / Heidelberg, 2010, vol. 6054, pp. 150–165. [Retrieved:

18-May-2013] http://dx.doi.org/10.1007/978-3-642-14992-4 14

[133] S. Schulz and A.-R. Sadeghi, “Secure vpns for trusted computing environments,” in

Trusted Computing, ser. Lecture Notes in Computer Science, L. Chen, C. Mitchell,

and A. Martin, Eds. Springer Berlin / Heidelberg, 2009, vol. 5471, pp. 197–216.

[Retrieved: 18-May-2013] http://dx.doi.org/10.1007/978-3-642-00587-9 13

[134] F. Baiardi and D. Sgandurra, “Attestation of integrity of overlay networks,” Journal

of Systems Architecture, vol. In Press, Corrected Proof, pp. –, 2010. [Retrieved:

18-May-2013] http://www.sciencedirect.com/science/article/B6V1F-508PPYT-1/

2/59cabe0d98e91e12c75b03d76b270d9f

[135] I. Bente, B. Hellmann, J. Vieweg, J. von Helden, and A. Welzel, “Interoperable

remote attestation for vpn environments,” in Proceedings of the Second

international conference on Trusted Systems, ser. INTRUST’10. Berlin,

Heidelberg: Springer-Verlag, 2011, pp. 302–315. [Retrieved: 18-May-2013] http:

//dx.doi.org/10.1007/978-3-642-25283-9 20

[136] TCG Trusted Network Connect Work Group, “TNC IF-T: Bind-

ing to TLS,” May 2009, specification Version 1.0 Revision 16. [Re-

304

http://www.ietf.org/rfc/rfc4301.txt
http://www.ietf.org/rfc/rfc5996.txt
http://dx.doi.org/10.1007/978-3-642-14992-4_14
http://dx.doi.org/10.1007/978-3-642-00587-9_13
http://www.sciencedirect.com/science/article/B6V1F-508PPYT-1/2/59cabe0d98e91e12c75b03d76b270d9f
http://www.sciencedirect.com/science/article/B6V1F-508PPYT-1/2/59cabe0d98e91e12c75b03d76b270d9f
http://dx.doi.org/10.1007/978-3-642-25283-9_20
http://dx.doi.org/10.1007/978-3-642-25283-9_20

Bibliography

trieved: 18-May-2013] http://www.trustedcomputinggroup.org/files/resource files/

51F0757E-1D09-3519-AD63B6FD099658A6/TNC IFT TLS v1 0 r16.pdf

[137] L. Chen, H. Löhr, M. Manulis, and A.-R. Sadeghi, “Property-based attestation

without a trusted third party,” in Information Security, ser. Lecture Notes

in Computer Science, T.-C. Wu, C.-L. Lei, V. Rijmen, and D.-T. Lee, Eds.

Springer Berlin / Heidelberg, 2008, vol. 5222, pp. 31–46. [Retrieved: 18-May-2013]

http://dx.doi.org/10.1007/978-3-540-85886-7 3

[138] A. Nagarajan, V. Varadharajan, M. Hitchens, and E. Gallery, “Property based at-

testation and trusted computing: Analysis and challenges,” in Network and System

Security, 2009. NSS ’09. Third International Conference on, oct. 2009, pp. 278 –285.

[139] C. Kil, E. Sezer, A. Azab, P. Ning, and X. Zhang, “Remote attestation to dynamic

system properties: Towards providing complete system integrity evidence,” in De-

pendable Systems Networks, 2009. DSN ’09. IEEE/IFIP International Conference

on, 29 2009-july 2 2009, pp. 115 –124.

[140] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, “Swatt: software-based at-

testation for embedded devices,” in Security and Privacy, 2004. Proceedings. 2004

IEEE Symposium on, may 2004, pp. 272 – 282.

[141] S. Bugiel, L. V. Davi, and S. Schulz, “Scalable trust establishment with software

reputation,” in Proceedings of the sixth ACM workshop on Scalable trusted

computing, ser. STC ’11. New York, NY, USA: ACM, 2011, pp. 15–24. [Retrieved:

18-May-2013] http://doi.acm.org/10.1145/2046582.2046587

[142] Y. Yang, X. Wang, S. Zhu, and G. Cao, “Distributed software-based attestation for

node compromise detection in sensor networks,” in Reliable Distributed Systems,

2007. SRDS 2007. 26th IEEE International Symposium on, oct. 2007, pp. 219 –230.

[143] X.-Y. Li, C.-X. Shen, and X.-D. Zuo, “An e�cient attestation for trustworthiness

of computing platform,” in Intelligent Information Hiding and Multimedia Signal

Processing, 2006. IIH-MSP ’06. International Conference on, dec. 2006, pp. 625

–630.

305

http://www.trustedcomputinggroup.org/files/resource_files/51F0757E-1D09-3519-AD63B6FD099658A6/TNC_IFT_TLS_v1_0_r16.pdf
http://www.trustedcomputinggroup.org/files/resource_files/51F0757E-1D09-3519-AD63B6FD099658A6/TNC_IFT_TLS_v1_0_r16.pdf
http://dx.doi.org/10.1007/978-3-540-85886-7_3
http://doi.acm.org/10.1145/2046582.2046587

Bibliography

[144] W. Arbaugh, D. Farber, and J. Smith, “A secure and reliable bootstrap architec-

ture,” in Security and Privacy, 1997. Proceedings., 1997 IEEE Symposium on, may

1997, pp. 65 –71.

[145] M. Alam, X. Zhang, M. Nauman, T. Ali, and J.-P. Seifert, “Model-based behavioral

attestation,” in Proceedings of the 13th ACM symposium on Access control models

and technologies, ser. SACMAT ’08. New York, NY, USA: ACM, 2008, pp.

175–184. [Retrieved: 18-May-2013] http://doi.acm.org/10.1145/1377836.1377864

[146] V. Haldar, D. Chandra, and M. Franz, “Semantic remote attestation - a virtual

machine directed approach to trusted computing,” in USENIX Virtual Machine

Research and Technology Symposium, 2004, pp. 29–41.

[147] M. Nauman, S. Khan, X. Zhang, and J.-P. Seifert, “Beyond kernel-level integrity

measurement: Enabling remote attestation for the android platform,” in Trust

and Trustworthy Computing, ser. Lecture Notes in Computer Science, A. Acquisti,

S. Smith, and A.-R. Sadeghi, Eds. Springer Berlin / Heidelberg, 2010, vol. 6101,

pp. 1–15. [Retrieved: 18-May-2013] http://dx.doi.org/10.1007/978-3-642-13869-0 1

[148] “Integrity Measurement Architecture (IMA) Website.” [Retrieved: 18-May-2013]

http://linux-ima.sourceforge.net/

[149] I. Bente, G. Dreo, B. Hellmann, S. Heuser, J. Vieweg, J. von Helden, and

J. Westhuis, “Towards permission-based attestation for the android platform,”

in Trust and Trustworthy Computing, ser. Lecture Notes in Computer Science,

J. McCune, B. Balache↵, A. Perrig, A.-R. Sadeghi, A. Sasse, and Y. Beres,

Eds. Springer Berlin / Heidelberg, 2011, vol. 6740, pp. 108–115. [Retrieved:

18-May-2013] http://dx.doi.org/10.1007/978-3-642-21599-5 8

[150] Chromium OS, Design Documents. [Retrieved: 18-May-2013] http://www.

chromium.org/chromium-os/chromiumos-design-docs/

[151] I. Bente, B. Hellmann, T. Rossow, J. Vieweg, and J. von Helden, “On remote attes-

tation for google chrome os,” in Network-Based Information Systems (NBiS), 2012

15th International Conference on, sept. 2012, pp. 376 –383.

306

http://doi.acm.org/10.1145/1377836.1377864
http://dx.doi.org/10.1007/978-3-642-13869-0_1
http://linux-ima.sourceforge.net/
http://dx.doi.org/10.1007/978-3-642-21599-5_8
http://www.chromium.org/chromium-os/chromiumos-design-docs/
http://www.chromium.org/chromium-os/chromiumos-design-docs/

Bibliography

[152] TCG Trusted Network Connect Work Group, “TNC IF-MAP Binding for SOAP,

Version 2.1, Revision 15,” Trusted Computing Group, May 2012.

[153] G. Mühl, “Large-scale content-based publish-subscribe systems,” Ph.D. dissertation,

TU Darmstadt, November 2002. [Retrieved: 18-May-2013] http://tuprints.ulb.

tu-darmstadt.de/274/

[154] Trust@FHH Research Group, “TNC@FHH Project Page,” 2012. [Retrieved: 18-

May-2013] http://trust.inform.fh-hannover.de/joomla/index.php/projects/tncfhh

[155] TCG Trusted Network Connect Work Group, “TNC IF-MAP Metadata for Network

Security, Version 1.1, Revision 8,” Trusted Computing Group, May 2012.

[156] ——, “TNC IF-MAP Metadata for ICS Security, Version 1.0, Revision 39,” Trusted

Computing Group, October 2012.

[157] M. Boisot and A. Canals, “Data, information and knowledge: have we got it

right?” Journal of Evolutionary Economics, vol. 14, no. 1, pp. 43–67, Jan. 2004.

[Retrieved: 18-May-2013] http://dx.doi.org/10.1007/s00191-003-0181-9

[158] R. Gerhards, “The Syslog Protocol,” RFC 5424 (Proposed Standard), Internet

Engineering Task Force, March 2009. [Retrieved: 18-May-2013] http://www.ietf.

org/rfc/rfc5424.txt

[159] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol

Version 1.2,” RFC 5246 (Proposed Standard), Internet Engineering Task Force,

Aug. 2008, updated by RFCs 5746, 5878, 6176. [Retrieved: 18-May-2013]

http://www.ietf.org/rfc/rfc5246.txt

[160] E. Rescorla, “HTTP Over TLS,” RFC 2818 (Informational), Internet Engineering

Task Force, May 2000. [Retrieved: 18-May-2013] http://www.ietf.org/rfc/rfc2818.

txt

[161] H. F. Nielsen, N. Mendelsohn, J. J. Moreau, M. Gudgin, M. Hadley, A. Karmarkar,

and Y. Lafon, “SOAP version 1.2 part 0: Primer,” W3C, W3C Recommendation,

Jun. 2007.

307

http://tuprints.ulb.tu-darmstadt.de/274/
http://tuprints.ulb.tu-darmstadt.de/274/
http://trust.inform.fh-hannover.de/joomla/index.php/projects/tncfhh
http://dx.doi.org/10.1007/s00191-003-0181-9
http://www.ietf.org/rfc/rfc5424.txt
http://www.ietf.org/rfc/rfc5424.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2818.txt

Bibliography

[162] H. F. Nielsen, N. Mendelsohn, J. J. Moreau, M. Gudgin, and M. Hadley, “SOAP

version 1.2 part 1: Messaging framework,” W3C, W3C Recommendation, Jun. 2007.

[163] T. Bray, J. Paoli, E. Maler, F. Yergeau, and C. M. Sperberg-McQueen, “Extensible

markup language (XML) 1.0 (fifth edition),” W3C, W3C Recommendation, Nov.

2008, http://www.w3.org/TR/2008/REC-xml-20081126/.

[164] C. M. Sperberg-McQueen, H. S. Thompson, M. Maloney, H. S. Thompson, D. Beech,

N. Mendelsohn, and S. S. Gao, “W3C xml schema definition language (XSD) 1.1 part

1: Structures,” W3C, Last Call WD, Dec. 2009, http://www.w3.org/TR/2009/WD-

xmlschema11-1-20091203/.

[165] D. Peterson, S. S. Gao, P. V. Biron, A. Malhotra, H. S. Thompson, A. Malhotra, and

C. M. Sperberg-McQueen, “W3C xml schema definition language (XSD) 1.1 part 2:

Datatypes,” W3C, Last Call WD, Dec. 2009, http://www.w3.org/TR/2009/WD-

xmlschema11-2-20091203/.

[166] O. Diehl, “Vertrauenswürdigkeitsbewertungen von Metadaten in Netzwerken,”

Bachelor’s Thesis, Hochschule Hannover, Mar. 2012.

[167] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of Applied Cryp-

tography, 1st ed. Boca Raton, FL, USA: CRC Press, Inc., 1996.

[168] “Trust at FHH Research Group Site.” [Retrieved: 18-May-2013] http://trust.

inform.fh-hannover.de/

[169] OpenVAS Project Team, “OpenVAS Project Page,” 2012. [Retrieved: 18-May-2013]

http://www.openvas.org

[170] S. Oezkan, “CVE Details Page,” 2012. [Retrieved: 18-May-2013] http://cvedetails.

com

[171] Internet Systems Consortium, “Isc dhcp project page,” 2012. [Retrieved:

18-May-2013] http://www.isc.org/software/dhcp

[172] Samsung Group, “Samsung Galaxy S III Webpage,” 2012. [Retrieved: 18-

May-2013] http://www.samsung.com/uk/consumer/mobile-devices/smartphones/

android/GT-I9300MBDBTU

308

http://trust.inform.fh-hannover.de/
http://trust.inform.fh-hannover.de/
http://www.openvas.org
http://cvedetails.com
http://cvedetails.com
http://www.isc.org/software/dhcp
http://www.samsung.com/uk/consumer/mobile-devices/smartphones/android/GT-I9300MBDBTU
http://www.samsung.com/uk/consumer/mobile-devices/smartphones/android/GT-I9300MBDBTU

Bibliography

[173] ——, “Samsung Galaxy Nexus Webpage,” 2012. [Retrieved: 18-

May-2013] http://www.samsung.com/uk/consumer/mobile-devices/smartphones/

android/GT-I9250TSAXEU

[174] P. McHardy, J. Kadlecsik, P. N. Ayuso, E. Leblond, and F. Westphal,

“netfilter/iptables Project Page,” 2012. [Retrieved: 18-May-2013] http://www.

netfilter.org

[175] A. Welzel and I. Bente, “A Note on IF-MAP Performance,” HS Hannover,

Trust@FHH, Technical Report, Nov. 2011.

[176] Arne Welzel, “libifmap2c Project Page,” 2012. [Retrieved: 18-May-2013]

http://code.google.com/p/libifmap2c/

[177] Google Inc., “Google Play Store,” 2012. [Retrieved: 18-May-2013] https:

//play.google.com/

[178] LANCOM Systems GmbH, “LANCOM L-54g Wireless,” 2012. [Retrieved:

18-May-2013] http://www.lancom-systems.de/en/l-54g-wireless-overview/

[179] D. Vassis, G. Kormentzas, A. Rouskas, and I. Maglogiannis, “The IEEE

802.11g standard for high data rate WLANs,” vol. 19, pp. 21–26, May 2005.

[Retrieved: 18-May-2013] http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&

arnumber=1453395&isnumber=31204

[180] R. Steuerwald, “Integration von OpenVAS in IF-MAP,” Bachelor’s Thesis,

Hochschule Hannover, Jun. 2011.

[181] P. Khlebovich, “IP Webcam,” 2013. [Retrieved: 18-May-2013] https://play.google.

com/store/apps/details?id=com.pas.webcam

[182] R. Marx, N. Kuntze, C. Rudolph, I. Bente, and J. Vieweg, “Trusted Service Access

with Dynamic Security Infrastructure Configuration,” Presented at the 18th Asia-

Pacific Conference on Communications (APCC 2012), 2012.

[183] I. Bente, J. Vieweg, and J. Helden, “ESUKOM: Smartphone Security for Enterprise

Networks,” in ISSE 2011 Securing Electronic Business Processes, N. Pohlmann,

309

http://www.samsung.com/uk/consumer/mobile-devices/smartphones/android/GT-I9250TSAXEU
http://www.samsung.com/uk/consumer/mobile-devices/smartphones/android/GT-I9250TSAXEU
http://www.netfilter.org
http://www.netfilter.org
http://code.google.com/p/libifmap2c/
https://play.google.com/
https://play.google.com/
http://www.lancom-systems.de/en/l-54g-wireless-overview/
https://play.google.com/store/apps/details?id=com.pas.webcam
https://play.google.com/store/apps/details?id=com.pas.webcam

Bibliography

H. Reimer, and W. Schneider, Eds. Vieweg + Teubner Verlag — Springer Fachme-

dien Wiesbaden GmbH, 2012.

[184] N. Kuntze, C. Rudolph, I. Bente, J. Vieweg, and J. von Helden, “Interoperable

device identification in Smart-Grid environments,” in Power and Energy Society

General Meeting, 2011 IEEE, july 2011, pp. 1 –7.

[185] I. Bente, J. Vieweg, and J. Helden, “Countering Phishing with TPM-bound

Credentials,” in ISSE 2010 Securing Electronic Business Processes, N. Pohlmann,

H. Reimer, and W. Schneider, Eds. Vieweg+Teubner, 2011, pp. 236–246.

[Retrieved: 18-May-2013] http://dx.doi.org/10.1007/978-3-8348-9788-6 23

[186] Intel Corporation, “Intel Trusted Execution Technology (Intel TXT) Measured

Launched Environment Developer’s Guide,” December 2009. [Retrieved: 18-May-

2013] http://download.intel.com/technology/security/downloads/315168.pdf

[187] Advanced Micro Devices, “Secure Virtual Machine Architecture Reference Manual,”

May 2005. [Retrieved: 18-May-2013] http://www.mimuw.edu.pl/⇠vincent/lecture6/

sources/amd-pacifica-specification.pdf

[188] TCG Trusted Network Connect Work Group, “TNC IF-T: Protocol Bindings

for Tunneled EAP Methods,” May 2007, specification Version 1.1 Revision 10.

[Retrieved: 18-May-2013] http://www.trustedcomputinggroup.org/files/resource

files/8CC75909-1D09-3519-ADA6958AA29CF223/TNC IFT v1 1 r10.pdf

[189] ——, “TNC IF-PEP: Protocol Bindings for RADIUS,” Febru-

ary 2007, specification Version 1.1 Revision 0.7. [Re-

trieved: 18-May-2013] http://www.trustedcomputinggroup.org/files/resource files/

8CC5592B-1D09-3519-AD45F0F893766F6B/TNC IF-PEP v1.1 rev 0.7.pdf

[190] ——, “TNC IF-TNCCS: TLV Binding,” January 2010, specification Version

2.0 Revision 16. [Retrieved: 18-May-2013] http://www.trustedcomputinggroup.

org/files/resource files/495CA3DD-1D09-3519-AD0043966E821ECB/IF-TNCCS

TLVBinding v2 0 r16a.pdf

[191] ——, “TNC IF-TNCCS: Protocol Bindings for SoH,”

May 2007, specification Version 1.0 Revision 0.8. [Re-

310

http://dx.doi.org/10.1007/978-3-8348-9788-6_23
http://download.intel.com/technology/security/downloads/315168.pdf
http://www.mimuw.edu.pl/~vincent/lecture6/sources/amd-pacifica-specification.pdf
http://www.mimuw.edu.pl/~vincent/lecture6/sources/amd-pacifica-specification.pdf
http://www.trustedcomputinggroup.org/files/resource_files/8CC75909-1D09-3519-ADA6958AA29CF223/TNC_IFT_v1_1_r10.pdf
http://www.trustedcomputinggroup.org/files/resource_files/8CC75909-1D09-3519-ADA6958AA29CF223/TNC_IFT_v1_1_r10.pdf
http://www.trustedcomputinggroup.org/files/resource_files/8CC5592B-1D09-3519-AD45F0F893766F6B/TNC_IF-PEP_v1.1_rev_0.7.pdf
http://www.trustedcomputinggroup.org/files/resource_files/8CC5592B-1D09-3519-AD45F0F893766F6B/TNC_IF-PEP_v1.1_rev_0.7.pdf
http://www.trustedcomputinggroup.org/files/resource_files/495CA3DD-1D09-3519-AD0043966E821ECB/IF-TNCCS_TLVBinding_v2_0_r16a.pdf
http://www.trustedcomputinggroup.org/files/resource_files/495CA3DD-1D09-3519-AD0043966E821ECB/IF-TNCCS_TLVBinding_v2_0_r16a.pdf
http://www.trustedcomputinggroup.org/files/resource_files/495CA3DD-1D09-3519-AD0043966E821ECB/IF-TNCCS_TLVBinding_v2_0_r16a.pdf

Bibliography

trieved: 18-May-2013] http://www.trustedcomputinggroup.org/files/resource files/

8D2DF7F3-1D09-3519-AD76CE4433FECE07/IF-TNCCS-SOH v1.0 r8.pdf

[192] Microsoft Corporation, “Network Access Protection,” 2012. [Retrieved: 18-May-

2013] http://technet.microsoft.com/en-us/network/bb545879.aspx

[193] TCG Trusted Network Connect Work Group, “TNC IF-

IMC,” May 2006, specification Version 1.1 Revision 5. [Re-

trieved: 18-May-2013] http://www.trustedcomputinggroup.org/files/static page

files/1D4F4303-1D09-3519-AD13BD81B3D741BB/TNC IFIMC v1 1 r5.pdf

[194] ——, “TNC IF-IMC,” February 2007, specification Version 1.2 Revision 8.

[Retrieved: 18-May-2013] http://www.trustedcomputinggroup.org/files/resource

files/8CB977E1-1D09-3519-AD48484530EF6639/TNC IFIMC v1 2 r8.pdf

[195] ——, “TNC IF-IMV,” May 2005, specification Version 1.0 Revision 3. [Re-

trieved: 18-May-2013] http://www.trustedcomputinggroup.org/files/static page

files/1D507DD9-1D09-3519-AD5C7FBC9B7BB368/TNC IFIMV v1 0 r3.pdf

[196] ——, “TNC IF-IMV,” February 2007, specification Version 1.2 Revision

8. [Retrieved: 18-May-2013] http://www.trustedcomputinggroup.org/files/static

page files/646808C3-1D09-3519-AD2E60765779A42A/TNC IFIMV v1 2 r8.pdf

[197] R. Sahita, U. R. Savagaonkar, P. Dewan, and D. Durham, “Mitigating the lying-

endpoint problem in virtualized network access frameworks,” in DSOM’07: Proceed-

ings of the Distributed systems: operations and management 18th IFIP/IEEE inter-

national conference on Managing virtualization of networks and services. Berlin,

Heidelberg: Springer-Verlag, 2007, pp. 135–146.

311

http://www.trustedcomputinggroup.org/files/resource_files/8D2DF7F3-1D09-3519-AD76CE4433FECE07/IF-TNCCS-SOH_v1.0_r8.pdf
http://www.trustedcomputinggroup.org/files/resource_files/8D2DF7F3-1D09-3519-AD76CE4433FECE07/IF-TNCCS-SOH_v1.0_r8.pdf
http://technet.microsoft.com/en-us/network/bb545879.aspx
http://www.trustedcomputinggroup.org/files/static_page_files/1D4F4303-1D09-3519-AD13BD81B3D741BB/TNC_IFIMC_v1_1_r5.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/1D4F4303-1D09-3519-AD13BD81B3D741BB/TNC_IFIMC_v1_1_r5.pdf
http://www.trustedcomputinggroup.org/files/resource_files/8CB977E1-1D09-3519-AD48484530EF6639/TNC_IFIMC_v1_2_r8.pdf
http://www.trustedcomputinggroup.org/files/resource_files/8CB977E1-1D09-3519-AD48484530EF6639/TNC_IFIMC_v1_2_r8.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/1D507DD9-1D09-3519-AD5C7FBC9B7BB368/TNC_IFIMV_v1_0_r3.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/1D507DD9-1D09-3519-AD5C7FBC9B7BB368/TNC_IFIMV_v1_0_r3.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/646808C3-1D09-3519-AD2E60765779A42A/TNC_IFIMV_v1_2_r8.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/646808C3-1D09-3519-AD2E60765779A42A/TNC_IFIMV_v1_2_r8.pdf

	Introduction
	Motivation
	Research Questions
	Outline of the Thesis

	Scenarios and Requirements
	Reference Infrastructure
	Zone Topology
	Infrastructure Components
	Endpoints

	Scenarios
	Scenario I: Trustworthy Data Collection for Smartphones
	Scenario II: Trust-based Policy Enforcement
	Scenario III: Context-related Service Provisioning
	Scenario IV: Secure Evidence

	Requirements

	State of the Art
	Research-based Approaches
	Intrusion Detection
	Trust-enhanced Intrusion Detection Systems
	Trust Management and Means of Deriving Trust
	Summary

	Technology-based Approaches
	Trust Definition and Trusted Computing
	Root of Trust
	Trusted Network Connect
	Summary

	Assessment

	A Concept for Trustworthy Smartphone Integration
	Generic Model
	Role and Operational Model
	Operational Flow
	CADS-specific Feature handling
	Model Summary

	Trust Model
	Definition of Trust
	Security Properties
	Trust Calculation
	Phase Extension
	Feature Handling on the Provider
	Snapshots

	Data Model
	Security Property Layer
	Phase and Snapshot Layer
	Feature Layer
	Provider State Machine
	Policy Encapsulation

	Domain-specific Extension - TCADS
	Case I
	Case II
	TCADS Features
	Direct and Indirect Trust

	Assessment

	Implementation
	IF-MAP Revisited
	Data Model
	Communication in Detail
	Trust Model

	Trustworthiness of IF-MAP
	IF-MAP Mapping of TCADS
	TCADS Revisited
	Abstract Role Mapping

	Trust Extension in IF-MAP
	Trust Tokens
	Extended Data Model
	Extended Communication Model
	MAPS Security

	Implementation based on IF-MAP
	TrustService
	Combining MAPS and TrustService
	Correlation Engine Enhancements

	Evaluation
	Security Property Definition
	Trusted MAP Server
	TCADS Environment

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Publications and Contributions
	Trusted Platform
	Chain of Trust

	Detailed Architecture of TNC
	System State Sealed Authentication Certificate
	Overview
	Initialisation Phase

	Client Side Policy
	Interoperable Remote Attestation in VPN Environments
	Permission-based Attestation
	On Remote Attestation for Google Chrome OS
	MAP Server Performance Analysis

